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Goal of Today’s Lecture

Study resolution (some repetition, some new stuff)

Introduce new measure of proof width

Show that to obtain lower lower bounds on proof length, it is
sufficient to prove (strong) lower bounds on proof width

Sets the stage for proving exponential lower bounds on resolution
proof length (next lecture)
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Outline

1 Recap and Some More About Resolution
Resolution Basics
Proof Length
Two Useful Tools

2 Resolution Width
Definition of Width
Two Technical Lemmas
Width is Upper-Bounded by Length
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Some Notation and Terminology

Literal a: variable x or its negation x

Clause C = a1 ∨ . . . ∨ ak: set of literals
At most k literals: k-clause

CNF formula F = C1 ∧ . . . ∧ Cm: set of clauses
k-CNF formula: CNF formula consisting of k-clauses

Vars(·): set of variables in clause or formula
Lit(·): set of literals in clause or formula

F � D: semantical implication, α(F ) true ⇒ α(D) true
for all truth value assignments α

[n] = {1, 2, . . . , n}
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Resolution Revisited

Last time we talked about resolution refutation as sequence of clause
configurations {D0, . . . , Dτ}

For all t ∈ [τ ], the set Dt is obtained from Dt−1 by one of the following
derivation steps:

Download Dt = Dt−1 ∪ {C} for axiom clause C ∈ F

Inference Dt = Dt−1 ∪ {D} for D inferred by resolution on clauses
in Dt−1.

Erasure Dt = Dt−1 \ {D} for some D ∈ Dt−1.

But if we don’t care about space, then we can view a resolution refutation
as simply a listing of the clauses (i.e., no erasures)
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Resolution Proof System (Ignoring Space)

Resolution derivation π : F `A of clause A from F :
Sequence of clauses π = {D1, . . . , Ds} such that Ds = A and each line
Di, 1 ≤ i ≤ s, is either

a clause C ∈ F (an axiom)

a resolvent derived from clauses Dj , Dk in π (with j, k < i) by the
resolution rule

B ∨ x C ∨ x

B ∨ C

resolving on the variable x

Resolution refutation of CNF formula F :
Derivation of empty clause ⊥ (clause with no literals) from F
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Example Resolution Refutation

F = (x ∨ z) ∧ (z ∨ y) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

1. x ∨ z Axiom 9. x ∨ y Res(1, 2)
2. z ∨ y Axiom 10. x ∨ y Res(3, 4)
3. x ∨ y ∨ u Axiom 11. x ∨ u Res(5, 6)
4. y ∨ u Axiom 12. x ∨ u Res(7, 8)
5. u ∨ v Axiom 13. x Res(9, 10)
6. x ∨ v Axiom 14. x Res(11, 12)
7. u ∨ w Axiom 15. ⊥ Res(13, 14)
8. x ∨ u ∨ w Axiom
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Resolution Sound and Complete

Resolution is sound and implicationally complete.

Sound If there is a resolution derivation π : F `A
then F � A

Complete If F � A then there is a resolution derivation π : F `A′ for
some A′ ⊆ A.

In particular:

F is unsatisfiable ⇔ ∃ resolution refutation of F
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Completeness of Resolution: Proof by Example

Decision tree:

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0 1 0 1 0 1 0 1

0 1 0 1

0 1x

y u

z u v w

Resulting resolution refutation:

x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

⊥

x x

x ∨ y x ∨ y x ∨ u x ∨ u
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Derivation Graph and Tree-Like Derivations

Derivation graph Gπ of a resolution derivation π:
directed acyclic graph (DAG) with

vertices: clauses of the derivations

edges: from B ∨ x and C ∨ x to B ∨ C for each application of the
resolution rule

A resolution derivation π is tree-like if Gπ is a tree
(We can make copies of axiom clauses to make Gπ into a tree)

Example

Our example resolution proof is tree-like.
(The derivation graph is on the previous slide.)
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Length

Length of derivation π : F `A is
# clauses in π (with repetitions)

Length of deriving A from F is

L(F ` A) = min
π:F `A

{
L(π)

}
where minimum taken over all
derivations of A

Length of deriving A from F in tree-like
resolution is LT (F ` A) (min of all
tree-like derivations)

1. x ∨ z
2. z ∨ y
3. x ∨ y ∨ u
4. y ∨ u
5. u ∨ v
6. x ∨ v
7. u ∨ w
8. x ∨ u ∨ w
9. x ∨ y

10. x ∨ y
11. x ∨ u
12. x ∨ u
13. x
14. x
15. ⊥



Length
15
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Exponential Lower Bound for Proof Length

Goal of this and next lecture to prove:

Theorem (Haken ’85)

There is a family of unsatisfiable CNF formulas
{
Fn

}∞
n=1

of size Θ
(
n3

)
such that L(Fn `⊥) = exp

(
Ω(n)

)
.

Also known: general resolution is exponentially stronger than tree-like
resolution [Bonet et al. ’98, Ben-Sasson et al. ’04]

Resolution widely used in practice anyway because of nice properties for
proof search algorithms (but is probably not automatizable)

Theoretical point of view: we want to understand resolution

This will hopefully help us understand SAT solvers that use resolution

Also gain insights and develop techniques that perhaps can be used to
attack more powerful proof systems
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Weakening

In proofs, sometimes convenient to add a derivation rule for weakening

B

B ∨ C

(for arbitrary clauses B,C).

Proposition

Any resolution refutation π : F `⊥ using weakening can be transformed
into a refutation π′ : F `⊥ without weakening in at most the same length.

Proof.

Easy proof by induction over the resolution refutation.
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Restriction

Restriction ρ: partial truth value assignment
Represented as set of literals ρ = {a1, . . . , am} set to true by ρ

For a clause C, the ρ-restriction of C is

C�ρ =

{
1 if ρ ∩ Lit(C) 6= ∅
C \ {a | a ∈ ρ} otherwise

where 1 denotes the trivially true clause

For a formula F , define F�ρ =
∧

C∈F C�ρ

For a derivation π = {D1, . . . , Ds}, define π�ρ = {D1�ρ, . . . , Ds�ρ}
(with all trivial clauses 1 removed)
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Example Restriction

π =
1. x ∨ z Axiom in F
2. z ∨ y Axiom in F
3. x ∨ y ∨ u Axiom in F
4. y ∨ u Axiom in F
5. u ∨ v Axiom in F
6. x ∨ v Axiom in F
7. u ∨ w Axiom in F
8. x ∨ u ∨ w Axiom in F
9. x ∨ y Res(1, 2)

10. x ∨ y Res(3, 4)
11. x ∨ u Res(5, 6)
12. x ∨ u Res(7, 8)
13. x Res(9, 10)
14. x Res(11, 12)
15. ⊥ Res(13, 14)

π�x =
1. 1
2. z ∨ y Axiom in F�x
3. 1
4. y ∨ u Axiom in F�x
5. u ∨ v Axiom in F�x
6. v Axiom in F�x
7. u ∨ w Axiom in F�x
8. u ∨ w Axiom in F�x
9. 1

10. 1
11. u Res(5, 6)
12. u Res(7, 8)
13. 1
14. ⊥ Res(11, 12)
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Restrictions Preserve Resolution Derivations

Proposition

If π : F `A is a resolution derivation and ρ is a restriction on Vars(F ),
then π�ρ is a derivation of A�ρ from F�ρ , possibly using weakening.

Proof.

Easy proof by induction over the resolution derivation.

In particular, if π : F `⊥ then π�ρ can be transformed into a resolution
refutation of F�ρ without weakening in at most the same length as π.
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Width

Width W(C) of clause C is |C|, i.e.,
# literals

Width of formula F or derivation π is
width of the widest clause in the
formula / derivation

Width of deriving A from F is

W(F ` A) = min
π:F `A

{
W(π)

}
(No difference between tree-like and general
resolution)

Always W(F `⊥) ≤
∣∣Vars(F )

∣∣

1. x ∨ z
2. z ∨ y
3. x ∨ y ∨ u
4. y ∨ u
5. u ∨ v
6. x ∨ v
7. u ∨ w
8. x ∨ u ∨ w
9. x ∨ y

10. x ∨ y
11. x ∨ u
12. x ∨ u
13. x
14. x
15. ⊥︸ ︷︷ ︸

Width 3
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Width and Length

A narrow resolution proof is necessarily short.

For a proof in width w,
(
2 · |Vars(F )|

)w
is an upper bound on the number

of possible clauses.

Ben-Sasson & Wigderson proved (sort of) that the converse also holds.

Theorem (Very informal)

If there is a short resolution refutation of F , then there is a resolution
refutation in small width as well.

Making this theorem precise, and proving it, is today’s goal.
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Technical Lemma 1

Lemma

If W(F�x ` A) ≤ w then W(F ` A ∨ x) ≤ max{w + 1,W(F )}
(possibly by use of the weakening rule).

Proof.

Suppose π = {D1, . . . , Ds} derives A from F�x in width W(π) ≤ w

Start new derivation π′ by listing all clauses in F

Then list clauses in π but with literal x added to all clauses

Claim: this makes π′ into a legal derivation of A ∨ x from F (possibly
with weakening)

Given this claim, obviously W(π′) ≤ max{w + 1,W(F )} and the last
line in π′ is A ∨ x
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Proof of Technical Lemma 1 (continued)

Proof of claim.

Need to show that each clause in π′ can be derived from previous clauses
by resolution and/or weakening.

First half of π′ just listing axioms in F — clearly OK
Consider second half with clauses Di ∨ x for Di ∈ π with x added

Let Fx = {C ∈ F | x ∈ Lit(C)} be set of all clauses of F containing x

Three cases:

1 Di ∈ Fx�x: This means that Di ∨ x ∈ F , which is OK

2 Di ∈ F�x \ Fx�x: This means that Di ∈ F , so Di ∨ x can be derived
by weakening

3 Di not axiom in F�x: Then derived from Dj , Dk ∈ π by resolution.
By induction Dj ∨ x, Dk ∨ x ∈ π′ derivable; resolve to get Di ∨ x
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Technical Lemma 2

Lemma

If

W(F�x `⊥) ≤ w − 1 and

W(F�x `⊥) ≤ w

then

W(F `⊥) ≤ max{w,W(F )}.

Proof.
1 Derive x in width ≤ w by Technical Lemma 1.

2 Resolve x with all clauses C ∈ F containing literal x to get F�x in
width ≤ W(F ).

3 Derive ⊥ from F�x in width ≤ w (by assumption).
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Warm-Up: Tree-Like Resolution

Theorem (Ben-Sasson & Wigderson ’99)

For tree-like resolution, the width of refuting a CNF formula F is bounded
from above by

W(F `⊥) ≤ W(F ) + log2 LT (F `⊥).

Corollary

For tree-like resolution, the length of refuting a CNF formula F is bounded
from below by

LT (F `⊥) ≥ 2(W(F ⊥̀)−W(F )).
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Proof for Tree-Like Resolution (1 / 2)

Proof by nested induction over b and # variables n that

LT (F `⊥) ≤ 2b ⇒ W(F `⊥) ≤ W(F ) + b

Base cases:
b = 0 ⇒ proof of length 1 ⇒ empty clause ⊥ ∈ F
n = 1 ⇒ formula over 1 variable, i.e., x ∧ x ⇒ ∃ proof of width 1

Induction step:
Suppose for formula F with n variables that π is tree-like refutation in
length ≤ 2b

Last step in refutation π : F `⊥ is x x
⊥ for some x

Let πx and πx be the tree-like subderivations of x and x, respectively
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Proof for Tree-Like Resolution (2 / 2)

πx πx

x x
⊥

Since L(π) = L(πx) + L(πx) + 1 ≤ 2b

(true since π is tree-like),
one of πx and πx has length ≤ 2b−1

Suppose w.l.o.g. L(πx) ≤ 2b−1

1 πx�x is a refutation of F�x in length ≤ 2b−1

⇒ by induction W(F�x `⊥) ≤ W
(
F�x

)
+ b− 1 ≤ W(F ) + b− 1

2 πx�x is a refutation in length ≤ 2b of F�x with ≤ n− 1 variables
⇒ by induction W(F�x `⊥) ≤ W

(
F�x

)
+ b ≤ W(F ) + b

Technical Lemma 2: W(F�x `⊥) ≤ W(F ) + b− 1 and
W(F�x `⊥) ≤ W(F ) + b ⇒ W(F `⊥) ≤ W(F ) + b

The theorem follows by the induction principle
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Are Short Proofs Narrow?

Proof on previous slide transform short refutation into narrow one

But construction leads to exponential blow-up in length

Look at step 2 in Tech Lemma 2 — every time we need x have to do
whole derivation in step 1 again (because of tree-likeness)

Potentially blows up length exponentially, and by [Ben-Sasson ’02]
this can’t be avoided

So short proofs are not narrow after all. . . (At least not tree-like
proofs)
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The General Case

Theorem (Ben-Sasson & Wigderson ’99)

The width of refuting a CNF formula F over n variables in general
resolution is bounded from above by

W(F `⊥) ≤ W(F ) +O
(√

n log L(F `⊥)
)
.

Note: 2n+O(1) maximal possible proof length, so bound is

W(F `⊥) / W(F ) +
√

log(max possible) · log L(F `⊥)

Kind of ugly bound — possible to do better?
Will return to this question in coming lecture
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The General Case: Corollary

Corollary

For general resolution, the length of refuting a CNF formula F over n
variables is bounded from below by

L(F `⊥) ≥ exp

(
Ω

(
(W(F `⊥)−W(F ))2

n

))
.

Has been used to simplify many length lower bound proofs in resolution
(and to prove a couple of new ones)

Need W(F `⊥)−W(F ) = ω
(√

n log n
)

to get superpolynomial bounds
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(Not a) Proof of the General Case

Proof for tree-like resolution breaks down in general case

Not true that L(π) = L(πx) + L(πx) + 1
Subderivations πx and πx may share clauses!

πx πx

x x
⊥

Instead

Look at very wide clauses in π

Eliminate many of them by applying restriction setting commonly
occurring literal to true

More complicated inductive argument

Still exponential blow-up in length
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An Intriguing Open Problem

Open Problem

Can the exponential length blow-up in [Ben-Sasson & Wigderson ’99] for
general resolution be avoided?

I.e., given short resolution refutation, can we find a refutation that is
both narrow and short? (With at most polynomial blow-up, say)

Or is there a length-width trade-off, so that decreasing width must always
increase length in worst case?

Would be very interesting to know the answer

And there are simpler variants of this open problem that would also be
very interesting to solve
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Proof of the General Case

On the board

(if we have the time)

But we didn’t, so see

handwritten notes instead
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