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Lecture 4

Lecturer: Jakob Nordström Scribe: Léo Perrin

The agenda for today’s lecture is to start by proving a stronger exponential lower bound
on resolution refutation length than in Lecture 3, which we do in Section 1, again using the
connection between length and width proven in previous lectures. Then we switch gears a bit
and discuss space in resolution in Section 2. It turns out that here, too, the width measure is a
very useful tool, as we will see in Section 3 where we prove that space is always an upper bound
on length. As part of our continued study of space and the relation between space and width,
we conclude in Section 4 by taking a very brief look at so-called pebble games played on DAGs
and CNF formulas encoding instances of these games.

1 A Stronger Exponential Lower Bound on Refutation Length

Last time, we managed to prove a lower bound on the length of resolution refutations of CNF
formulas encoding the pigeonhole principle. In terms of the size N of the formula, we obtained
an exp

(
Ω
(

3
√

N
))

bound. The aim today is to prove a stronger lower bound for another family
of formulas, defined in terms of graphs, for which any resolution refutations must have length
exp(Ω(N)). This is optimal up to constant factors in the exponent, since any unsatisfiable CNF
formula of size N can be refuted in resolution in length exp(O(N)). We refer to such bounds
as being truly exponential to distinguish them from bounds exp

(
Ω
(
N δ
))

for 0 < δ < 1 which
we call just exponential.

We will start by recalling what these formulas look like, as we discussed at the very end
of last lecture, and then discuss what graphs are good starting points for constructing such
formulas (although we will not exhibit such graphs but just claim that they can be shown to
exist, similarly to what we did in last lecture). Then, in a second step we will show that we
can obtain from such good graphs unsatisfiable CNF formulas requiring refutations of truly
exponential length.

1.1 Tseitin Contradictions and Edge Expander Graphs

Recall from last time that we started with a graph G and let the variables in our formula
correspond to edges in this graph. Throughout this lecture, G is assumed to be undirected and
connected, and if we want to be really precise we should also specify that G has no self-loops,
i.e., that there are no edges (v, v). We also fix some function f : V (G) → {0, 1} giving zero-one
labels to all vertices in G. We want the boolean variables corresponding to the edges incident to
a vertex v to have truth values such that f(v) =

⊕
e3v xe. In other words, the logical exclusive

or (XOR) of the edges must have the same value as f(v). Therefore, f can be viewed as a
parity constraint for each vertex, and we can define a set of CNF clauses PARITY v encoding
this constraint as explain in the last lecture.

In this way, for any G and for any f we can define the Tseitin formula for G and f as
follows.

Definition 1.1 (Tseitin formula). The Tseitin formula Ts(G, f) with respect to an undi-
rected graph G and a function f : V (G) → {0, 1} is

Ts(G, f) =
∧

v∈V (G)

PARITY v .
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Note that so far we have not said anything about satisfiability or unsatisfiability, so Ts(G, f)
is just a formula Let us write down some basic properties of this formula.

Proposition 1.2. If G is a graph with |V (G)| = n and maximum degree d, then Ts(G, f) is
a d-CNF formula with at most nd

2 variables and at most n2d−1 clauses. In particular, if d is
constant, then Ts(G, f) has Θ(n) clauses and variables.

Proof. Summing over all vertices v ∈ V (G) and all edges incident to v we get at most nd edges.
Each edge e = (v, w) is counted twice (once for v and once for w) so the total number of edges
in G, which is also the total number of variables in Ts(G, f), is at most nd

2 .
We have n constraints PARITY v, and each contraint encodes an XOR or negated XOR

(when f(v) = 1 or f(v) = 0, respectively). As we saw in an example last lecture, an XOR
or negated XOR over d variables can be written as a conjunction of 2d−1 clauses, each clause
ruling out one of the 2d−1 assignments to the variables that violate the constraint. Each such
clause speaks about at most d edges and so has size at most d. Therefore, Ts(G, f) consists of
d-clauses and there are at most n2d−1 of them.

In order to get unsatisfiable formulas, we will focus on functions f such that the total number
of 1-labelled vertices is odd.

Definition 1.3. We say that f : V (G) → {0, 1} has odd weight if
∑

v∈V (G) f(v) ≡ 1 (mod 2).

Lemma 1.4. If G is a connected graph, then Ts(G, f) is unsatisfiable if and only if f has odd
weight.

Proof sketch. One direction of this equivalence is fairly easy to argue. Let G be a graph. Suppose
f has odd weight and consider a supposedly satisfying assignment α of Ts(G, f). Since all parity
constraints are satisfied, we have

⊕
e3 α(xe) ≡ f(v) (mod 2) for every vertex v. Summing over

the whole graph we get ∑
v∈V (G)

⊕
e3v

α(xe) ≡
∑

v∈V (G)

f(v) ≡ 1 (mod 2) (1.1)

since f has odd weight. On the other hand, as we observed in the proof of Proposition 1.2,
when we sum over all vertices in the graph all edges are counted exactly twice, and therefore
the sum ∑

v∈V (G)

⊕
e3v

α(xe) ≡ 2
∑

e∈E(G)

α(xe) ≡ 0 (mod 2) (1.2)

clearly must be even. Thus there cannot exist any satisfying assignment α.
The other direction requires more complex arguments which will not be detailed here.

From now on, we will only consider odd-weight functions f , and we will refer to formulas
corresponding to such functions as Tseitin contradictions.

In order to get hard instances for resolution, we want to define formulas Ts(G, f) for “the
right kind” of graphs G. As in the previous lecture, it turns out that expander graphs will be
useful, although here we will use a slightly different concept of edge expansion.

Definition 1.5 (Edge expansion). Let G be an undirected graph and for any subset S ⊆
V (G) of vertices let E(S, S) be the set of edges connecting S to its complement S = V (G) \ S.
Then the edge expansion of G, also known as the isoperimetric number, is

h(G) = min
{
|E(S, S)|
|S|

: S ⊂ V (G), |S| ≤
∣∣S∣∣} .

Intuitively, if h(G) is large then there are lots of edges leaving any subset of vertices of G.

Claim 1.6. There are graphs Gn of size n →∞ of maximal degree 3 and with edge expansion
h(Gn) ≥ h∗ for some absolute constant h∗ > 0.

When such an inequality holds, we also say that h(Gn) is bounded away from zero.
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1.2 A Lower Bound on Refutation Length of Tseitin Contradictions

Now that we have all the tools we need at our disposal, let us prove an exponential lower bound.
Just as in last lecture, we will show a lower bound on width, and then turn this lower bound
on width into a lower bound on length using the result from [BW01].

Lemma 1.7. If G is an undirected graph with n vertices and f is an odd-weight function, then
WR (Ts(G, f) `⊥) ≥ h(G) · n

3 .

We will spend the rest of this section proving this lemma. To do so, we again define a
measure µ : {clauses} → N of “progress” for resolution refutations of Tseitin contradictions.
This µ is different from, but very similar to, the measure used last time, and it should have the
same general properties. Namely:

1. µ(axiom clause) ≤ 1, i.e., the measure of any axiom is small (since the axiom clauses are
given, just listing such a clause is not making much progress).

2. µ(⊥) is large (having finished the refutation is a lot of progress).

3. µ only increases gradually, in particular, it can never more than double in a single deriva-
tion step (making progress requires hard work).

4. The gradual increase implies that there is a “medium-progress” clause. As last time, we
will prove that any such clause must have to be wide.

We define the measure of a clause D as

µ(D) = min

{∣∣V ′∣∣ : ∧
v∈V ′

PARITY v � D

}
. (1.3)

In words, µ(D) is the minimal size of a subset of vertices V ′ such that any truth value assignment
satisfying the parity constraint over this set must also satisfy D. We observe that µ(D) exists
and is finite, since if we set V ′ = V (G), then the set of constraints

∧
v∈V ′ PARITY v = Ts(G, f)

is unsatisfiable and an unsatisfiable formula implies anything, which in particular includes D
(All satisfying truth value assignments to

∧
v∈V ′ PARITY v must satisfy D for the simple reason

that there are no such assignments). So µ(D) ≤ n = |V (G)| for any clause D.
Let us verify that µ as defined in (1.3) has all the properties requested above.

1. If C ∈ Ts(G, f) then µ(C) = 1 since C ∈ PARITY v for some v.

2. µ(⊥) = n since
∧

v∈V ′ PARITY v is satifiable for all V ′ $ V (G). To see this suppose
that v ∈ V (G) \ V ′ and consider f ′ such that f ′(w) = f(w) for all w ∈ V (G) \ {v} but
f ′(v) = 1 − f(v). Then by Lemma 1.4 the formula Ts(G, f ′) is satisfiable since f ′ must
have even weight, and since flipping f ′(v) to 1 − f(v) does not change

∧
v∈V ′ PARITY v

because v /∈ V ′ we have that
∧

v∈V ′ PARITY v ⊆ Ts(G, f ′) is also satisfiable.

3. Suppose that D∨D′ is derived by resolving D∨x and D′∨x. Fix V1 and V2 of minimal size
such that

∧
v∈V1

PARITY v � D ∨ x and
∧

v∈V2
PARITY v � D′ ∨ x. Then any assignment

satisfying
∧

v∈V1∪V2
PARITY v must satisfy both of these clauses and hence also their

resolvent D ∨D′. Thus, it must hold that

µ(D ∨D′) ≤ |V1 ∪ V2| ≤ |V1|+ |V2| = µ(D ∨ x) + µ(D′ ∨ x) . (1.4)

A fancy way of rephrasing (1.4) in words is to say that µ is a subadditive measure with
respect to resolution steps.
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4. Because axioms have measure 1, contradiction has measure n, and the measure is subad-
ditive, in any resolution refutation π : Ts(G, f)`⊥ there must exist at least one clause D
such that n

3 ≤ µ(D) ≤ 2n
3 .

Fix such a clause D ∈ π and also some minimal V ∗ such that∧
v∈V ∗

PARITY v � D . (1.5)

By construction, n
3 ≤ |V ∗| ≤ 2n

3 as the measure of D is this large. Note that this implies the
same bounds for the size of the complement V ∗ of V ∗ in V , namely that n

3 ≤
∣∣V ∗
∣∣ ≤ 2n

3 . Hence,∣∣E(V ∗, V ∗
)∣∣ ≥ h(G) ·min

{
|V ∗|, |V ∗|

}
≥ h(G) · n

3
. (1.6)

We claim that for all of the at least h(G) · n
3 edges e ∈ E

(
V ∗, V ∗

)
, the variables xe must occur

in D, from which Lemma 1.7 follows.
We establish the claim by contradiction. Consider a hypothetical edge e∗ ∈ E

(
V ∗, V ∗

)
such

that xe∗ /∈ Vars(D). Suppose e∗ = (v∗, w∗) for v∗ ∈ V ∗. Since V ∗ has minimal size among all
vertex sets satisfying (1.5), if we look at the smaller set V ∗ \ {v∗} there exists some assignment
α such that α

(∧
v∈V ∗\{v∗} PARITY v

)
= 1 but α(D) = 0. Because of (1.5) it must hold that

α(PARITY v∗) = 0. Let α∗ be the same assignment as α except that we flip in on xe∗ so that
α∗(xe∗) = 1 − α(xe∗). Then α∗(PARITY v∗) = 1 since the parity locally around v∗ has been
flipped, and we still have α∗

(∧
v∈V ∗\{v∗} PARITY v

)
= 1 since xe∗ is not incident to V ∗ \ {v∗}

(the other endpoint w∗ of e∗ is in V ∗). Thus, for all of V ∗ we have α∗
(∧

v∈V ∗ PARITY v

)
= 1.

But since flipping a variable xe∗ that does not appear in D clearly does not change the truth
value of D, we have α∗(D) = 0. But this contradicts (1.5). The claim is proven.

Using this lemma, we can now prove the following theorem which states the so eagerly
awaited lower bound.

Theorem 1.8 ([Urq87]). Let {Gn}∞n=1 be a family of graphs of size Θ(n) with constant indegree
and edge expansion bounded away from zero (which exist); let fn : V (Gn) → {0, 1} be odd-weight
functions; and let Fn = Ts(Gn, fn) denote the corresponding family of Tseitin contradictions.
Then it holds that the formulas Fn have size Θ(n), bounded width, and resolution refutation
length

LR (Ts(Gn, fn) `⊥) = exp(Ω(n)) .

Proof. We know

LR (F `⊥) ≥ exp

(
Ω

(
(W(F `⊥)−W(F ))2

n

))
(1.7)

from [BW01], where n is the number of variables in the formula. Plugging in that Fn has Θ(n)
variables and width W(Fn) = O(1) by Proposition 1.2, and that W(Fn `⊥) ≥ h(G) · n

3 = Ω(n)
by Lemma 1.7, we get the truly exponential bound claimed.

And now for something completly different. . .

2 Space Complexity in Resolution

Memory usage is a very important factor for modern state-of-the-art SAT solvers. Therefore, it
is also of interest to study this issue from a theoretical point of view, to see if there is a natural
way to define space in proof complexity and if interesting results can be proven about such a
measure. In the rest of today’s lecture, we will study space in resolution and prove some upper
and lower bounds. When we do this, the width measure pops up again and turns out to be of
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great importance. Jumping a little bit ahead, we will see that we can get optimal lower bounds
on space by proving lower bounds on width and appealing to a general theorem that width is
a lower bound for space.

We need to recall the formal definition of space that was given in the very first lecture of
the course. Before we do so, however, let us first try to get some kind of intuition for what this
space measure means.

To get an intuitive sense of what space is, we can think of a resolution proof as being
presented on a blackboard. The blackboard represents the information derived so far (analogues
to lemmas, propositions, et cetera). We can use such partial result to derive new results. In
particular, in a resolution proof we can take two clauses that are written on the blackboard and
resolve them to derive a new clause, but we can only resolve clauses that are currently on the
board. Since the blackboard has limited size we need to conserve space (a familiar situation
during, e.g., a lecture). Therefore, if a clause seems no longer useful at a given point, we can
cleverly erase it as it is no longer needed. However, if it turns out later that we were not so
clever and the information was needed again after all, then there is nothing to be done about
it—we have to rederive this clause from scratch. If it is not on the board, we have forgotten.
All we know is what is on the board, and if it is not on the board, then we do not know it. The
only exception is that we know the statement of the theorem that we are trying to prove, or
rather that we can look it up. For a resolution proof, this means that we have the formula F
written on a slip of paper, and we can look at this paper and copy axiom clauses from F to the
board. Very loosely speaking, the space of a resolution proof measures the size of a smallest
blackboard needed to carry out the proof according to this description.

We now make these notions more formal.

Definition 2.1. A resolution derivation is a sequence of sets of clauses, or clause configurations,
{C0, . . . , Cτ} such that C0 = ∅ and Ct follows from Ct−1 by one of the following rules:

Download: Ct = Ct−1 ∪ {C} for a clause C ∈ F (an axiom).

Erasure: Ct = Ct−1 \ {C} for a clause C ∈ Ct−1.

Inference: Ct = Ct−1 ∪ {C ∨ D} for a clause C ∨D inferred by the resolution rule from
C ∨ x,D ∨ x ∈ Ct−1

A resolution derivation π : F `D of the clause D from the CNF formula F is a derivation
{C0, . . . , Cτ} such that D ∈ Cτ . A resolution refutation of F is a derivation π : F `⊥ of the
empty clause ⊥ from F .

Using this formal definition, we can make the connection to the intuitive description above:
the action of writing an axiom on the blackboard corresponds to a download, the erasure rule
is just the formalization of deleting information from the board, and using the the inference
rule we can derive new partial results from the information we already have on the board. Let
us next define the space measure of interest in this lecture, which we should think of as the
maximum number of clauses stored in memory while carrying out the proof.

Definition 2.2 (Clause space). The clause space1 of a resolution derivation π is Sp(π) =
maxC∈π{|C|}, i.e., the maximal number of clauses in any configuration. The clause space of
deriving D from F in resolution is

SpR (F ` D) = min
π:F `D

{
Sp(π)

}
1Recall from the first lecture that there are also other ways of measuring space. For resolution, the most

studied measure is clause space, however, and this lecture will focus almost exclusively on this measure. So when
we say only “space” in what follows, we mean “clause space.”
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x ∨ z y ∨ z x ∨ y ∨ u y ∨ u u ∨ v x ∨ v u ∨ w x ∨ u ∨ w

0

x x

x ∨ y x ∨ y x ∨ u x ∨ u

Figure 1: Example tree-like resolution refutation represented as a DAG.

and the clause space of refuting F is the space of deriving the empty clause ⊥ from F , denoted
SpR (F `⊥).

We can also define the clause space of refuting F in tree-like resolution, denoted SpT (F ` ⊥),
where the minimum is taken over all tree-like resolution refutations.

As we have mentioned before, the length of refuting a formula in general resolution is different
from the length of refuting it in (the subsystem of) tree-like resolution. The situation is the
same for space. We will focus on the space measure in general, unrestricted resolution, which
is the most interesting case (but also the most challenging one). Thus, whenever we drop the
subscript from the space measure, the measure is understood to be for general resolution.

Theorem 2.3 ([ET01]). The space of refuting a CNF formula F is upper-bounded by the
number of variables in F by

Sp(F `⊥) ≤ |Vars(F )|+ 2 .

Proof. Although we focus on the general case, tree-like resolution is sufficient to establish this
upper bound.

In lecture 2, we sketched the correspondence between tree-like resolution refutations and
decision trees2 and in particular argued that for any CNF formula F over n variables, there is
a tree-like refutation π for which the proof DAG Gπ is a binary tree of height h ≤ n. For such
a tree, one can prove that the corresponding resolution proof can be carried out in space h + 2.

The proof is by induction over the tree height, and the reader can have a look at the example
in Figure 1 to see what is happening. The induction hypothesis is that any clause in the proof
tree which is at height h above the axiom clauses can be derived in space h + 2.

• Base case h = 1: In this case, the subtree we are considering is simply a sort of triangle
consisting of an internal vertex with two predecessor axiom clauses. The clause labelling
the internal vertex can be derived in space 3 = h+2 from the predecessors by downloading
the axioms and resolving. (For instance, x ∨ y can be derived in this way from x ∨ z and
y ∨ z at the far left bottom end of Figure 1).

• Inductive step: Suppose now that the clause at the root of any height-h subtree can
be derived in space h + 2. Consider a vertex at height h + 1. According to the induction
hypothesis, it takes clause space h+2 to derive its left predecessor. Now erase everything
except this clause, and then by induction derive also the right predecessor in space h + 2
while keeping the left predecessor in memory. Then erase everything except the two
predecessors and resolve them to get the clause at height h+1. This requires clause space
(h + 1) + 2 = h + 3. The theorem follows by the induction principle.

An important concept in proof complexity is that of minimally unsatisfiable formulas as
defined next.

2Working out the formal details of this correspondence is one of the problems in the first problem set.
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Definition 2.4. An unsatisfiable CNF formula F is minimally unsatisfiable if removing any
clause from F makes it satisfiable.

Example 2.5. The formula

F = (x ∨ z) ∧ (z ∨ y) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)
∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

can be verified to be minimally unsatisfiable. Indeed, if we remove the first clause, we can satisfy
the rest of the clauses with for instance the assignment {x = 0, y = 0, z = 0, u = 0, v = 1, w = 0}.
If we remove the second clause then the assignment {x = 0, y = 0, z = 1, u = 0, v = 1, w = 0}
works instead. The rest of the cases are left to the reader as they are a bit tedious.

If we restrict F by setting x to true, we get

F�x = (z ∨ y) ∧ (y ∨ u) ∧ (u ∨ v)
∧ v ∧ (u ∨ w) ∧ (u ∨ w)

and this formula is not minimally unsatisfiable since we can remove the first two clauses and
still have an unsatisfiable formula. The easy verification of this fact is left to the reader.

We remark that this example shows that although restrictions preserve other useful proper-
ties, for instance the property of being a resolution refutation with weakening (as we have seen
before), they do not preserve minimal unsatisfiability.

Let us now study the properties of minimally unsatisfiable CNF formulas. We will see that
their number of variables is upper-bounded by the number of clauses. In other words, if there are
no more clauses than variables, then a formula cannot be minimally unsatisfiable. This result is
almost folklore and has been (re)proven many times, but it is known as “Tarsi’s lemma” from
the paper [AL86] .

Theorem 2.6 (Tarsi’s lemma). Any minimally unsatisfiable CNF formula must have strictly
more clauses than variables.

In order to prove this theorem, we will argue in terms of matchings in bipartite graphs, and
therefore Hall’s theorem, used in the last lecture, will come in handy again. Let us recall what
it says.

Theorem 2.7. Let G = (U ∪ V,E) be a bipartite graph. Then there is a matching of U into
V if and only if for all subsets U ′ ⊆ U it holds that

∣∣N(U ′)
∣∣ ≥ ∣∣U ′∣∣.

Proof of Lemma 2.6. We will prove it by contradiction. Suppose there exists a minimally un-
satisfiable formula having more clauses than variables.

Let us introduce a bipartite graph G such that left vertices are labelled by clauses Ci ∈ F
and that right vertices are labelled by variables xj ∈ V ars(F ). There is an edge between Ci

and xj if the variable xj occurs in the clause Ci. For purposes of illustration, let us assume this
graph looks like in Figure 2(a).

By the construction of G, it is easy to see that if there is a matching of U into V , then there
is also satisfying assignment (but setting the variables so that they satisfy the clauses with
which they are matched). Therefore, as we know that there is no such assignment, we deduce
that there is no such matching. This is where Theorem 2.7 enters. As there is no matching, the
theorem says that there exists some subset S ⊆ F on the left with |S| > |N(S)|.

Fix such an S of maximal size. Suppose that this S is actually F . This would mean that
|F | > |Vars(F )| which is exactly what we want. Great! We cannot expect life to be quite
this easy, however, and so we also have to consider the possibility that S 6= F . Or rather, we
will now prove that we do not have to consider this possibility, since if S 6= F then we get a
contradiction. That clearly proves the theorem. So here goes.
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(a) Bipartite graph corresponding to formula F .
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(b) Picture proof that F is not minimally unsatisfiable.

Figure 2: Illustration of argument in proof of Tarsi’s lemma.

Suppose that when we pick such a set S of maximal size we get a set that is not all of F .
Again for purposes of illustration, suppose that S and N(S) are as in the tetragon in Figure 2(b).
The set of clauses S must be satisfiable since it is a strict subset of a minimally unsatisfiable
formula. Fix some satisfying assignment to S, and observe that we only need to assign values
to variables in N(S) since no other variables occur in the clauses in S.

Now consider F \S. For any subset S′ ⊆ F \S it must hold that
∣∣S′∣∣ ≤ ∣∣N(S′)\N(S)

∣∣. For if
this was not so, we could add S′ to S to get an even larger set with |S ∪ S′| > |N(S ∪ S′)|. But
then Hall’s theorem strikes again and says that there is a matching of F \S into N(S′) \N(S),
as depicted in Figure 2(b). We can use this matching to assign values to the matched variables
so that all clauses in F \ S are satisfied.

The variables we just assigned are different from those assigned previously for S. As the two
domains are disjoint, we can join these two assignments into one larger assignment satisfying
all clauses in F . But if so F is satisfiable, which is a contradiction. Hence it cannot be that
S 6= F , so as claimed above we do not have to worry about this possibility.

Tarsi’s lemma can be used to show that refutation clause space is also upper-bounded by
the number of clauses in a formula.

Theorem 2.8 ([ET01]). SpR (F `⊥) ≤ |F |+ 1.

Proof. If F is not minimally unsatisfiable, throw away clauses in some arbitrary order until we
get a minimally unsatisfiable subformula F ′ ⊆ F . We know from Theorem 2.6 that

∣∣F ′∣∣ >∣∣Vars(F ′)
∣∣, and combining this with Theorem 2.3 we get that Sp(F ′ `⊥) ≤

∣∣Vars(F ′)
∣∣ + 2 ≤∣∣F ′∣∣+ 1 ≤ |F |+ 1.

We have proven that

Sp(F `⊥) ≤ min
{
|F |+ 1, |Vars(F )|+ 2

}
(2.1)

and in particular that the size of a formula (which is at least the number of clauses and at least
the number of variables) is an upper bound on the refutation clause space in resolution. This
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means that the space complexity of a formula F will always be somewhere between constant
and linear, and the interesting questions then become:

• Which formulas require linear space? (Are there such formulas?)

• Which formulas can be refuted in, say, just logarithmic space?

• Or even in just constant space?

The next theorem says that the linear upper bound is indeed tight in the worst case, at least
up to constant factors. We state it without proof for now.

Theorem 2.9 ([ABRW00, Tor99]). There is a polynomial-size family {Fn}∞n=1 of unsatisfi-
able 3-CNF formulas such that SpR (F `⊥) = Ω(|F |) = Ω(|Vars(F )|).

(The journal version of [ABRW00] is [ABRW02], and [Tor99] later appeared as a part of
[ET01].)

Perhaps even more interesting than exactly what these and other lower bounds on clause
space in resolution look like is the history behind how they appeared. The first results were
reported independently in [Tor99] and [ABRW00]. These papers proved optimal lower bounds
on space for pigeonhole principle formulas, which turned out to match the bounds on width. In
the same articles, a lower bound was also proven for Tseitin contradictions (cf. Theorem 1.8)
which also turned out to also be the same as the width bound. These rather funny coincidences
were explicitly pointed out and discussed in the papers. A little bit later, [BG01] (journal
version in [BG03]) proved optimal space bounds for random k-CNF formulas, and again these
bounds coincided with the width bounds. Also, at this point there seemed to be a pattern in
that the methods to prove space lower bounds were somehow quite similar in flavour to the
techniques for proving width lower bounds. Funny indeed. And although there still was no
formal link, by now it was an established conjecture that the width and space measures had
to be connected in some way, and in particular that width actually provides a lower bound on
clause space.

This conjecture turned out to be perfectly correct and was proven true in the beautiful
paper [AD03] by Atserias and Dalmau (the corresponding journal article took a while before it
appeared as [AD08]). This paper not only solves this question, it also provides very simple and
elegant proofs using tools originating in finite model theory. These proofs are what we want to
study next.

3 Space and Width

What we want to do now is the following:

1. Give an exact characterization of resolution width in terms of a combinatorial game, where
a good winning strategy corresponds to small refutation width.

2. Prove that a small-space refutation can be used to derive a good winning strategy.

Although this outline is (for now) rather vague, it should hopefully be clear that making and
argument along these lines will allow us to prove lower bounds on space in terms of lower bounds
on width (or upper bounds on width in terms of upper bounds on space, depending on which
perspective we prefer). In particular, before we have finished today’s lecture, Theorem 2.9 will
have followed as a corollary from combining such an argument with lower bounds on width that
we have proved previously.

Let us start by trying to give an intuitive description of what the combinatorial game is
about. Of course, a formal definition will follow shortly.

4-9



The existential pebble game is a game between two (perhaps somewhat odd) persons, Spoiler
and Duplicator.3 These two persons are having a heated debate regarding a given unsatifiable
CNF formula F and have different goals. Duplicator claims the formula is satisfiable, but Spoiler
wants to prove him wrong (and by assumption Spoiler is right in wanting to do this).

In order for the debate not to spin out of control, strict rules have been set. Spoiler and
Duplicator must speak during rounds having a very specific structure. First, Spoiler should
pick a variable and ask Duplicator which value it should have. As Duplicator claims there is
a satisfying assignment, he should know it and be able to answer. But since the formula is
unsatisfiable this cannot really be the case, and if Spoiler just asks about enough variables
then the contradiction should become apparent. However, things are not so easy for this poor
Spoiler fellow as he is senile—he cannot keep more that p variable assignments in memory
simultaneously (where p is a parameter of the game). Before Spoiler asks for the value of the
(p+1)st variable, therefore, he will forget one of the previous answers. But interestingly, Spoiler
is selectively senile in that he can make a conscious choice which of the previous answers to
forget. All of this is completely transparent to Duplicator, who knows exactly what Spoiler
remembers and what he has forgotten. In particular, if Spoiler ever asks again about a variable
for which Duplicator already provided and answer but for which Spoiler forgot this answer,
Duplicator is free to give a different answer each time which is inconsistent with what he has
said previously.

If Duplicator ever answers in such a way that Spoiler has in memory a partial assignment
falsifying a clause in F , Duplicator loses and Spoiler wins. The aim of Duplicator is thus to
give Spoiler partial assignments that keep the formula from being falsified. Phrased differently,
Duplicator wins if he can go on playing the game forever. If Duplicator can do this, a little
bit of thought reveals that he must have a strategy that we will denote by H and that can be
described as follows.

Definition 3.1. Duplicator wins the Boolean existential p-pebble game over the CNF formula F
if there is a nonempty family H of partial truth value assignments that do not falsify any clause
in F and for which the following holds:

1. If α ∈ H then |α| ≤ p (where |α| denotes the number of variables in the current partial
truth value assignment, which should be at most p).

2. If α ∈ H and β ⊆ α then β ∈ H. (When Spoiler forgets, Duplicator just keeps track of
the partial assignment to the variables still in memory.)

3. If α ∈ H, |α| < p and x ∈ Vars(F ) then there exists a β ∈ H such that α ⊆ β and x is in
the domain of β. (This tells Duplicator how to answer to a query about x.)

H is called a winning strategy for Duplicator. If there is no such strategy then Spoiler wins the
game.

If there is a winning strategy for Duplicator, then it is not hard to see that there is a
deterministic winning strategy that for each α ∈ H and each move of Spoiler defines one unique
move β for Duplicator. This in turn means that if Duplicator does not win, then there is a
deterministic winning strategy for Spoiler as explained next.

Proposition 3.2. If Duplicator has no winning strategy, then there is a deterministic winning
strategy (in the form of a partial function from partial truth value assignments to variable
queries/deletions) for Spoiler.

Proof. The reason for this proposition to be true is that since the number of possible deter-
ministic strategies for Duplicator is finite, then Spoiler can build a strategy by “brute force”

3These names are used for historical reasons.
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evaluating all possible responses to sequences of queries and deletions. (Note that we are not at
all interested in questions about efficiency here, we just care about the existence of deterministic
strategies.)

Arguing somewhat more carefully, we can consider Duplicator’s strategy to be simply a large
table. If the partial assignment in Spoiler’s memory is α and variable x is being queried, then
Duplicator looks at the corresponding row in the table to see if he should answer 0 or 1. If F
has n variables, then the number of subsets of variables Spoiler can have in memory is

∑p
i=0

(
n
i

)
and since each subset of variables of size m can be assigned in 2m ways, we get a total of at
most

∑p
i=0 2i

(
n
i

)
partial assignments. The total number of rows needed in Duplicator’s strategy

table, therefore, is at most R = n
∑p

i=0 2i
(
n
i

)
. Each row contains 0 or 1, so if we write S to

denote the set of all possible strategies for a deterministic Duplicator in the p-pebble game, we
get that |S| ≤ 2R < ∞ is certainly finite.

The assumption is that none of these strategies is winning. Therefore, shifting to Spoiler’s
perspective, for each strategy S ∈ S, each α ∈ S, and each x not assigned by α, there is a
shortest sequence of queries and deletions beginning with x that leads to a β ∈ S that cannot
be extended to any variable y without falsifying some C ∈ F . Denote this length l(S, α, x).
Start with the empty assignment ∅ and let Spoiler choose x minimizing maxS∈S{l(S, ∅, x)}.
Record the possible answers α1 = {x = 0}, α2 = {x = 1}. Note that for both α1 and α2 we
now have shorter sequences miny 6=x{maxS∈S{l(S, αi, y)}} < maxS∈S{l(S, ∅, x)} by assumption.
Inductively, suppose we need to fix Spoiler’s response to α. Look at all possible moves and pick
one minimizing the maximum distance to a contradiction. Since these sequences keep getting
shorter, this construction takes a finite number of steps and yields a winning strategy.

Somewhat amazingly, this existential p-pebble game exactly characterizes resolution width,
as stated formally in the following theorem.

Theorem 3.3 ([AD08]). The CNF formula F has a resolution refutation π : F `⊥ of width
W(π) ≤ p if and only if Spoiler wins the existential (p + 1)-pebble game on F .

Proof. Let us do the directions of the if and only if statement on at a time.
(⇒) First, let us prove that a narrow resolution refutation yields a winning strategy for

Spoiler. Consider the DAG Gπ associated to the resolution proof π : F `⊥. Spoiler starts at
the vertex for ⊥ and inductively queries the variable resolved upon to to get there. Spoiler then
moves to the assumption clause D falsified by Duplicator’s answer and forgets all variables not
in D. This is inductively repeated for each new clause. As Spoiler walks through the DAG,
he maintains the invariant that he is always standing on a clause falsified by the variables he
has kept in memory. Spoiler will eventually reach a falsified axiom having remembered no more
than W(π) + 1 variables simultaneously. The reason we have W(π) in the bound is that this is
the largest size of any clause D ∈ π, and the extra +1 is needed for the variable resolved over
to derive D.

(⇐) Let us now prove that the existence of a winning strategy for Spoiler yields a narrow
proof. We will build a DAG Gπ corresponding to a proof π of the formula using Spoiler’s
strategy. Here is how.

Start with the ⊥ vertex. Supposing that x is the first variable queried, make vertices labelled
by the clauses x and x with edges to ⊥. Inductively, let ρv be the unique minimal partial truth
value assignment falsifying the clause Dv labelling v. If the move on ρv is the deletion of y,
make new vertex Dv \{y, y} with an edge to Dv, corresponding to a weakening step. Otherwise,
if y is queried, make new vertices D∨y and D∨y with edges to D, corresponding to a resolution
step.

Since Spoiler will win in a finite number of steps regardless of how Duplicator answers, the
graph Gπ is finite. Moreover, it is easy to see that locally all steps in Gπ are legal resolution
derivation steps. The question is from which initial clauses this derivation starts, i.e., which
clauses are labelling source vertices in Gπ. By construction the source vertices of the DAG are
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winning positions for Spoiler, and since Spoiler wins when the current assignment falsifies an
axiom clauses all sources will be labelled by (weakenings of) axioms of F . Therefore, Gπ is the
DAG of a correct resolution refutation π : F `⊥, possibly using weakening. If we go over π in
a postprocessing step and remove all weakening steps, we get a derivation in width at most p
since if |ρv| = p + 1 then the next move for Spoiler must be a deletion.

The lower bound on space in terms of width that we will prove next follows from the fact
that Spoiler can use proofs in small space to construct winning strategies with few pebbles.

Lemma 3.4 ([AD08]). Let F be an unsatisfiable CNF formula of width W(F ) = w with
refutation space Sp(F `⊥) = s. Then Spoiler wins the existential (s+w−2)-pebble game on F .

Proof. Take a resolution refutation π =
{
C0 = ∅, C1, . . . , Cτ = {⊥}

}
of F in clause space s.

Spoiler can construct a winning strategy by inductively defining a partial truth value assignment
ρt such that ρt satisfies Ct by setting (at most) one literal per clause to true.

Suppose inductively that we have constructed such assignments up to time t and consider
the three possible derivation steps to get from Ct to Ct+1.

Suppose first that π does an axiom download at time t. We observe that we can assume
that axiom downloads occur only for configurations Ct of size |Ct| ≤ s − 2. This is without
loss of generality since at the time of a download, one also needs one free memory slot for the
resolvent. Otherwise, the next step would have to be an erasure and we could reverse the order
of these two derivation steps. When π downloads C ∈ F , Spoiler queries Duplicator about all
variables in C until Duplicators gives an answer that satisfies C (which he must to avoid losing).
Once Spoiler obtains an answer satisfying a literal a in C, he forgets the rest of the variables
queried for C and keeps this one satisfying literal to get ρt+1 = ρt ∪ {a}. This sequence of
moves in the pebble game uses at most (s − 2) + w pebbles. To see this, note that ρt has size
atmost |Ct| ≤ s − 2 as explained above, and at most W(F ) = w extra pebbles are needed to
find a literal satisfying C.

When a clause is erased, Spoiler deletes the corresponding literal satisfying the clause from
ρt if necessary (i.e if |ρt| = |Ct|).

At last, for inference steps, Spoiler sets ρt = ρt−1 since, by induction, ρt−1 must satisfy
the resolvent. Indeed, suppose a clause D ∨ D′ ∈ Ct+1 is derived by resolving two clauses
D ∨ x,D′ ∨ x ∈ Ct over x. Then ρt(D ∨ x) = ρt(D ∨ x) = 1 by our inductive hypothesis, and
at least of of these clauses is satisfied by some literal over a variable other than x. This same
literal appears in D ∨D′, and so ρt must fix this resolvent to true.

As we can see, ρτ cannot satisfy Cτ since it contains ⊥, so whatever Duplicator does he
must fail to satisfy an axiom downloaded at some time prior to time τ . Therefore, Spoiler has
a winning strategy with a number of pebbles smaller than or equal to (s− 2) + w.

Theorem 3.5 ([AD08]). For any unsatisfiable CNF formula F it holds that

Sp(F `⊥)− 3 ≥ W(F `⊥)−W(F ) .

Proof. This theorem is a direct consequence of Theorem 3.3 and Lemma 3.4. Indeed, from
the theorem we know that if Spoiler wins the existential (p + 1)-pebble game on F , then
W(F `⊥) ≤ p. The lemma then says that if W(F ) = w and Sp(F `⊥) = s, then Spoiler wins
the existential (s + w − 2)-pebble game on F .

Remark 3.6. One way of rephrasing what Theorem 3.5 means in words is as follows. Any
resolution refutation of a nontrivial formula needs to do at least one resolution step, and that
requires clause space 3 (to keep the two clauses resolved as well as the resolvent in memory).
Thus, the left-hand side Sp(F `⊥)− 3 of the inequality in Theorem 3.5 measures the amount
of space needed over the bare minimum necessary. Similarly, if F is a minimally unsatisfiable
formula it is clear that any resolution refutation needs to have width W(F ) since all clauses are
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needed to refute the formula. Hence, the right-hand side of the inequality W(F `⊥) −W(F )
is the width needed on top of the obvious minimal requirement. What Theorem 3.5 says is
that the minimum extra space needed is lower-bounded not asymptotically, but exactly, by the
minimum extra width needed.

Using this theorem, we can rederive all optimal (i.e, linear) lower bounds on space we know.
To do so, all we have to do is to use lower bounds on width from, e.g., [BW01] and then the
lower bound on space in terms of width in Theorem 3.5. In particular, in this way we can obtain
Theorem 2.9 (for instance, by using Tseitin contradictions).

In view of that we have just proven that width is a lower bound on clause space, and that as
we saw above these two measures seem to coincide for a number of formula families, it is very
natural to ask whether this is always the case. That is, more formally we have the following
question:

Is it true for an unsatisfiable k-CNF formula that the width of refuting it and the
clause space of refuting it always coincide asymptotically?

We will return to this question, and answer it, later during the course.
An interesting corollary of Theorem 3.5 is that if a k-CNF formula is easy with respect to

clause space, it is also easy with respect to length.

Corollary 3.7. If a k-CNF formula F over n variables is refutable in constant space, then F
is also refutable in length polynomial in n.

Proof. The proof of this corollary is very direct. A constant upper bound on clause space implies
a constant upper bound on width. As the number of clauses of constant width is polynomial,
we obtain an upper bound on the length by simply counting.

Space is still not a very well understood complexity measure, not even for such a (seemingly)
simple proof system and resolution, and there are a number of easy to state but (apparently)
hard to resolve open problems regarding space. Let us very quickly give a few examples.

The first question is whether Corollary 3.7 can be strengthened by relaxing the necessary
upper bound on clause space to logarithmiv.

Open Problem 1. Is it true that a logarithmic upper bound on clause space implies a polyno-
mial upper bound on length?

The second question is whether something can be said about the length of a refutation in
constant clause space.

Open Problem 2. Is it true that a resolution refutation in constant space can also be carried
out in polynomial length, or can at least be modified to a refutation in simultaneous polynomial
length and constant space?

We remark that Corollary 3.7 does not give any information regarding this question. When
we take a small-space refutation and run it through Theorem 3.5, what pops out is a potentially
completely different refutation, and we do not know anything about this refutation except that
it is narrow, and therefore also has to be short. It would be interesting to get a more constructive
proof of Corollary 3.7 that can provide some understanding as to why constant space implies
polynomial length.

Open Problem 3. Is there a direct proof showing that constant clause space implies polynomial
length, and explaining why this is true?

In a sense, the problem is that the upper bound on width in terms of space by Atserias
and Dalmau is fairly non-constructive. It just says that small space implies the existence of a
narrow-width refutation, but does not tell us anything about how to construct such a narrow
refutation if we are given a small-space refutation. Hence the final open question that we want
to mention in this context.
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Open Problem 4. Is there a constructive, explicit version of Theorem 3.5 that can tell us how
to convert space-efficient refutations to narrow refutations?

A question which is not open however is the following:

Is it true that the space-efficient refutation can itself also be narrow?

The answer to this question is “no.” Interestingly, this was proven in [Ben02] even before
the paper [AD03] appeared. We will conclude this lecture by starting to discuss the tools used
to answer this question, and will continue on the same topic next time.4

4 Pebble Games and Pebbling Contradictions

We want to find CNF formulas exhibiting a trade-off between clause space and width in the
sense that they are easy for both width and space, but that one cannot minimize both of these
measures simultaneously.

It turns out that such formulas can be constructed by using pebble games, but these games
are not the existential pebble games discussed above but instead very different games played on
DAGs. It the pebble games we are interested in now, we should think of a DAG G as modelling
some kind of computation, and we use pebbling to determine the time and space needed to
carry out this computation. More precisely, the time needed for calculation is the number of
pebbling moves and the space needed is the number of pebbles.

Before going any further, let us agree on some terminology. DAGs consist of vertices with
directed edges between them. Vertices with no incoming edges are sources and vertices with no
outgoing edges are sinks. The (immediate) predecessors of a vertex v are all vertices u having
edges to v. In what follows G is assumed to have one unique sink, which we denote z.

In the black-white pebble game, as defined by [CS76], we start with all vertices in G empty
and want to finished with the whole graph empty again except for z which should contain a
black pebble. The rules of the pebble game are the following:

1. One can place a black pebble on an empty vertex v if all its predecessors have pebbles on
them.

2. It is always possible to remove a black pebble from any vertex.

3. It is always possible to place a white pebble on any empty vertex.

4. If all the predecessors of a white pebble on v have pebbles, it is possible to remove the
white pebble from v.

So what does this game have to do with proof complexity in resolution? Not a lot, it might
seem, but it turns out that one can define CNF formulas encoding speficic instances of pebble
games on graphs, and such formulas have interesting properties.

If G is a DAG with sources S and a unique sink z we associate a variable v with every vertex
v ∈ V (G). The pebbling contradiction over G, denoted PebG, consists of the following clauses
over these variables:

• For all source vertices s ∈ S, we have a unit clause (i.e., a clause of size 1) s—such clauses
are called source axioms.

• For all non-source vertices v with immediate predecessors u1, . . . , u`, we have a clause
u1 ∨ · · · ∨ u` ∨ v—a pebbling axiom.

4Or that was the plan, but it did not quite work out. Instead, there is now a separate write-up “Notes on
pebble games and pebbling contradictions” on the course webpage in which you can read all about this.
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(a) Pyramid graph Π2 of height 2.
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∧ (x ∨ y ∨ z)
∧ z

(b) Pebbling contradiction PebΠ2 .

Figure 3: Pebbling contradiction for the pyramid graph Π2.

• Finally, for the sink z we have the unit clause z—the sink axiom.

See Figure 3 for an example of this. Clearly, such formulas have to be unsatisfiable since all
sources are postulated to be true and truth propagates from predecessors to successors but the
sink is required to be false.

At the very end of the lecture, we argued that although this is a priori not abvious at all,
there is a close relation between resolution refutations of pebbling contradictions and black-white
pebblings of graphs. Namely, from any resolution refutation of a pebbling contradiction PebG,
one can extract a black-white pebbling of the graph G, and the time and space of this pebbling
is at least as good as the length and space of the resolution refutation. This was proven by
Ben-Sasson in [Ben02] (but as usual a better reference is the full-length journal version [Ben09]).
A somewhat informal statement of this result is as follows.5

Theorem 4.1 ([Ben09]). Any resolution refutation π of a pebbling contradiction PebG over G
can be translated into black-white pebbling P of G such that the time of the pebbling P is upper-
bounded by the length of the refutation π and the space of P is upper-bounded by the total space
of π.

We ended the lecture by giving a “proof by example” of Theorem 4.1.6 We did not even
attempt to make any formal proof that this always works out as nicely as in the example we
saw, but we briefly described the general outline of how to show such a thing.

The idea is to let positive literals in a clause configuration correspond to black pebbles and
negative literals correspond to white pebbles. Then for each clause configuration in a refutation
we get sets of black and white pebbles on the graph, and the number of pebbles is clearly
upper-bounded by the total space of the clause configuration. One now needs to argue that as
the resolution refutation proceeds, the sets of black and white pebbles on the graph appear and
disappear in accordance with the rules of the pebble game. This is not quite true as stated, but
if one just works out some necessary technicalities7 then everything pans out and Theorem 4.1
follows.
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