
DD3501 Current Research in Proof Complexity Nov 28, 2011

Lecture 6

Lecturer: Jakob Nordström Scribe: Björn Terelius

In the first lecture of this course we gave three examples of concrete proof systems, namely
resolution, polynomial calculus, and cutting planes. After that we have been focusing exclusively
on resolution. Today, we want to switch gears and start talking about polynomial calculus (or
PC for brevity) . We will also introduce a stronger variant of PC called polynomial calculus
resolution (or PCR) which sometimes will be more convenient to work with. We will then follow
roughly the same path as for resolution in lecture 2, i.e., define some proof complexity measures
and state some basic results relating these measures.

But first, let us try to get a birds-view perspective of what we have been doing up to this
point.

1 Summary of the Lectures So Far

We introduced the general definition of a propositional proof system for tautologies in the
first lecture, but then immediately decided to focus on the slightly more restricted concept of
sequential proof systems for unsatisfiable CNF formulas. In such a proof system, a refutation
of a formula F (sometimes also referred to as a proof of F) is a sequence of lines written on a
board, where at each step we can apply one of the following derivation rules:

1. Download of an axiom (a clause of F) to the board.

2. Application of an inference rule of the proof system to lines already on the board.

3. Erasure of a line from the board.

A concrete proof system is determined by the format of lines and the allowed inference rules.
So far, we focused on the resolution proof system, where each line consists of a disjunction of
literals and the only rule for deriving new clauses is the resolution rule

C1 ∨ x C2 ∨ x
C1 ∨ C2

(1.1)

where C1 and C2 denote any clauses, and x is the variable resolved over. A resolution refutation
of a formula F , sometimes also referred to as a proof of F , is a derivation of the empty clause ⊥
without any literals from F . We have studied the following measures on resolution proofs.

Length: the number of lines in a proof.

Space: the maximum number of clauses simultaneously on the board at any point during a
proof (to be precise, this is the clause space measure).

Width: the maximum number of literals appearing in any clause in a proof.

The measures we were mainly interested in were length and space, but it turned out that width
was a useful concept when trying to understand and prove properties about length and space.

Let us summarize what we known and do not know at this point about the relationships
between these three measures.

6-1

1.1 Length Versus Width

In lecture 2, we learned that a strong upper bound on length implies a fairly strong upper bound
on width [BW01]. Furthermore, as shown in lecture 5 this result is essentially tight [BG01].
By a simple counting argument, we also know that a strong upper bound on width implies a
strong upper bound on length (since there are only so many distinct clauses in limited width,
an every clause need appear only once in a resolution refutation if we are focused on minimizing
length and do not care at all about space). One question we raised but did not answer was the
following.

Question 1. Are there trade-offs between length and width?

1.2 Space Versus Width

In lecture 4 we proved that a strong upper bound on space implies a strong upper bound on
width [AD08]. What about the converse?

Question 2. Does a strong upper bound on width imply a strong upper bound on space?

As to the question whether there are trade-offs between space and width, we have learnt that
the answer is yes. We started to prove this in lecture 4 but did not have time to finish. However,
in the scribe notes for “lecture 41/2” (posted on the course webpage), there is a full proof of the
fact that there are formulas which are maximally easy with respect to both width and clause
space, but where optimizing one of the measures leads to essentially worst-case behaviour for
the other measure.

1.3 Space Versus Length

In lecture 4 we also observed that a a strong upper bound on clause space implies a strong
upper bound on length. This follows from the upper bound on width in terms of clause space
in [AD08] plus a simple counting argument. It is natural to ask whether there is a similar
implication in the other direction.

Question 3. Does a strong upper bound on length imply a strong upper bound on space?

Finally, one of the questions that we will be particularly interested in, but did not get to so
far during the course, it whether length and space can be optimized simultaneously or whether
minimizing one of the measures must cause a significant increase in the other measure.

Question 4. Are there trade-offs between length and space?

So what is the status of these questions? Question 1 is still open. Questions 2, 3, and 4
were open for a while, but were solved a couple of years back. To keep the suspense, however,
we will have to wait until after Christmas to learn the answers.

2 Polynomial Calculus

We now turn our attention to a proof system called polynomial calculus (PC) that was in-
troduced by Clegg, Edmonds and Impagliazzo [CEI96]. In this proof system, the lines are
polynomial equations and the inference rules are addition and multiplication, with the calcu-
lations done over some fixed field F. For applications, the coefficient field is usually F2 (also
known as GF(2)), the field consisting only of 0 and 1. In the theoretical definition, any finite or
even infinite field can be used, but which field we choose can make a difference for which results
hold. In particular, the characteristic of the field is important.

6-2

Definition 2.1. The characteristic of a field is the smallest positive number p such that p·1 = 0,
or 0 if no such number exists.

Some theorems in the literature hold only for fields of certain characteristics, or for all fields
except those of certain characteristics. For instance, when proving lower bounds the hardest
case seems to be F2. All this will not make too much difference for us, however, since in this
course we will focus on results that hold regardless of characteristic.

To work in the polynomial calculus proof system, we need to translate CNF formulas F to
the admissible format in this proof systems, i.e., to polynomial equations. As we shall soon see,
in the context of polynomial calculus it is more natural to think of 0 as true and 1 as false, which
is the opposite of the convention we have for resolution and for CNF formulas. So the reader
should be warned that some care will be needed when switching between these two contexts.
Thus, in all of our lectures on polynomial calculus, true will be translated to 0 and false will be
translated to 1. The translation of CNF clauses is best illustrated by an example.

Example 2.2. The clause x∨ y ∨ z is translated to the equation x(1− y)z = 0. To get a unique
representation of the polynomials, we require them to be written in expanded form, i.e., as a
sum of monomials. In this case, we get xz − xyz = 0. Clearly, any truth value assignment
satisfies the clause iff the corresponding 0/1-assignment is a root to the polynomial.

In general, each clause C in a formula F is translated into a product where each factor is
either a variable or one minus a variable depending on whether the corresponding literal was
positive or negative, respectively. This gives us a system of polynomial equations, and we want
to know if they have any common root where all variables are assigned either 0 or 1. To force
0/1-solutions, we also add equations x2 − x = 0 for every variable x.

If we have derived two equations p = 0 and q = 0, then clearly αp + βq = 0 must also
hold for any α, β ∈ F. Similarly, it is clear that xp = 0 for any variable x. This motivates the
following collection of derivation rules for PC, where α, β ∈ F, p, q ∈ F[x, y, z, . . .], and x is any
variable:

Linear combination
p = 0 q = 0

αp + βq = 0

Multiplication
p = 0
xp = 0

for any variable x

Boolean axioms
x2 − x = 0

for all variables x (forcing 0/1-solutions)

Note that all polynomials occurring in the proof can be made multilinear by use of the Boolean
axioms, so without loss of generality we can assume that no variable occurs with higher exponent
than 1. (In fact, if we wanted to, we could define the multiplication rule to always result in
a multilinear polynomial equivalent to xp. Although we will not do so here, we will be fairly
liberal in assuming that all polynomials occurring in a PC-derivation are multilinear without
going into too much detail about how this happens.)

To refute a formula F in the PC proof system, we derive the equation 1 = 0 from the
polynomials corresponding to the clauses of F .

Theorem 2.3. Polynomial calculus is sound and implicationally complete.

Proof sketch. Soundness is easy. Common zeroes to the polynomial equations are preserved by
our inference rules. If we manage to derive the polynomial 1, then clearly there cannot exist
any common zero to the polynomial equations.

Completeness is harder, but can be demonstrated either algebraically by Hilbert’s Nullstel-
lensatz or via a simulation argument (by having PC mimic resolution proofs without worrying
about the efficiency of the simulation). We did not at all go into any details here but just de-
cided to accept that this is a well-known fact. (However, see the write-up in Section 2.2 added
during preparation of the scribe notes).

6-3

There are solvers based on Gröbner bases that search for PC-proofs, for instance Poly-
BoRi [BD09], but although this seemed to be a very promising direction at the time of the
paper [CEI96], it is probably fair to say that SAT solvers based on algebra have so far failed
to deliver on the hopes raised then. Current state-of-the-art solvers based on resolution—so-
called DPLL solvers with clause learning, also known (perhaps more correctly) as conflict-driven
clause learning solvers or CDCL solvers for short—seem to be an order of magnitude faster on
most instances occuring in practice (although the paper [BDG+09] presents data claiming that
PolyBoRi can be faster on certain industrial instances).

Let us next see how our generic proof complexity measures for sequential proof systems get
instantiated for polynomial calculus.

Definition 2.4 (Proof size). The size S (π) of a polynomial calculus proof π is the total
number of monomials in all the lines in π (counted with repetitions). The size of refuting an
unsatisfiable CNF formula F in polynomial calculus, denoted SPC (F `⊥), is the minimal size
of any PC-refutation of F .

Note that if we wanted to be precise, we should also count the number of variables in each
monomial, but the size measure as defined in Definition 2.4 clearly is within a linear factor of
this and is much cleaner to work with (assuming that the field F is constant so that we do not
need to worry about issues regarding representation of the coefficients).

Definition 2.5 (Proof length). The length L(π) of a PC-proof π is the number of derivation
steps in π. The length of refuting F in PC, denoted LPC (F `⊥), is the minimal length of any
PC-refutation of F .

This definition is the same as for resolution. Note, however, that while for resolution size
and length are essentially the same measure1 (to within a linear factor), this is not necessarily
the case for PC since a single line can have exponential size.

Definition 2.6 (Proof space). The (monomial) space Sp(π) of a polynomial calculus proof
π = {P0 = ∅, P1, . . . , Pτ} is the maximal number of monomials (counted with repetitions) in
any configuration Pt ∈ π. The total space TotSp(π) is the maximal total number of symbols
(counted with repetitions) in any configuration.2 The (monomial) space and total space of
refuting F , denoted SpPC (F `⊥) and TotSpPC (F `⊥), respectively, is the minimal monomial
space or total space of any any PC-refutation of F .

The measure of monomial space is the polynomial calculus analogue of clause space in
resolution. In this course, we will mainly be interested in size and (monomial) space.

2.1 An Alternative Algebraic Interpretation

Derivations in the PC proof system can also be interpreted naturally in terms of ideals in
polynomial rings.

Definition 2.7 (Ideal). Let R be a (commutative) ring. An ideal I of R is a subset such that

1. if p, q ∈ I then p + q ∈ I

2. if p ∈ I then rp ∈ I for any r ∈ R
1Indeed, in much of the proof complexity literature, what we refer to in this course as the “length” of a

resolution proof is called the “size” of the proof, which is not unreasonable given the convention we just adopted
ourselves in Definition 2.4. However, since we will sometimes be interested in measuring both size and length,
and in contrasting the two measures, we want to have a slightly more precise terminology that does not mix them
up.

2If the field F is finite, which is the case we are mostly interested in, we can just charge one unit of memory for
every coefficient, but in infinite fields one should probably also take into consideration the size of the coefficients.

6-4

That is, an ideal is a subring that is not only closed under addition and multiplication within
the subring, but is also closed under multiplication by any element of the ambient ring.

Instead of translating CNF clauses to polynomial equations p(x, y, . . .) = 0, we can consider
them as just the polynomials p(x, y, . . .) in the polynomial ring F[x, y, z, . . .]. This has the
notational advantage that we can drop all the “= 0” from the inference rules and proof lines.
Looking at the ideal I generated by those polynomials, it is easy to show that the polynomials
derivable by polynomial calculus are precisely the polynomials in the ideal I (that is simply
the way PC is defined). Refuting a CNF formula F in polynomial calculus amounts to showing
that the ideal I contains 1, and hence that the ideal is the entire ring.

During the rest of this course, we will usually think of polynomial calculus as making deriva-
tions in the ideal generated by the clauses of a CNF formula F , rather than as deriving poly-
nomial equations.

2.2 Implicational Completeness of PC (Detour Courtesy of Scribe)

Let us now do something that was not at all covered in class, namely sketch how the Null-
stellensatz can be used to prove that PC is complete. Before stating the Nullstellensatz, we
need the concept of algebraic closure.

Definition 2.8 (Algebraic closure). The algebraic closure F of a field F is the smallest field
containing F such that every non-constant polynomial in F[x, y, z, . . .] has a root in F.

For example, the complex numbers C is the algebraic closure of the real numbers R. Some-
what similar constructions can be performed to obtain an algebraic closure of any field F.

Theorem 2.9 ((Weak) Nullstellensatz). Let F be an algebraically closed field. An ideal I in
a polynomial ring F[x, y, z, . . .] contains 1 if and only if the polynomials in I have no common
zero in F.

Let us use the Nullstellensatz to argue that polynomial calculus is complete.

Proof sketch for Theorem 2.3. To prove that polynomial calculus is complete, we need to show
that if the axioms have no common zero in F, then there are polynomials g1, . . . , gk ∈ F[x, y, z, . . .]
such that 1 =

∑k
i=1 gifi. The Nullstellensatz tells us that if the axioms have no common zero

in F, then there are polynomials g1, . . . , gk ∈ F[x, y, z, . . .] such that 1 =
∑k

i=1 gifi. It remains
for us to show that the algebraic closure does not matter in this case. First, because of the
Boolean axioms, any common zero will assign 0 or 1 to every variable. Hence, there are zeroes
in F if and only if there are zeroes in F.

It is not as easy to show that polynomials gi with coefficients in F can be found. From the
Nullstellensatz we know that there are polynomials gi with coefficients in F. Observe that F is
a vector space over F, so there is some (possibly infinite) basis for F over F. Let {1, θ1, . . . , θm}
be a (finite) subset that spans all the coefficients of the polynomials gi and note that

∑k
i=1 gifi

is a linear expression in {1, θ1, . . . , θm} with coefficients in F[x, y, z, . . .]. Since 1 is linearly
independent of θ1, . . . , θm and

∑k
i=1 gifi = 1, the θj parts cannot contribute to the sum. Thus

we can remove any θj parts from the coefficients of g1, . . . gk without changing the sum. This
gives polynomials in F[x, y, z, . . .], as desired. Thus, the Nullstellensatz implies that polynomial
calculus is complete, i.e., that we can derive 1 if the formula F in unsatisfiable.

Sometimes it is useful to have the stronger notion of implicational completeness. Implica-
tional completeness in general means that if a set of Boolean functions S semantically implies
another function h (in whatever representation the proof system uses), then we can derive h
from S in the proof system. For the case of polynomial calculus, it means that if a polyno-
mial h vanishes on all common roots of the polynomials f1, . . . , fk, then we can find polynomials
g1, . . . , gk such that h =

∑k
i=1 gifi. The fact that PC is implicationally complete appears to be

6-5

more or less part of folklore, but a formal statement and proof can be found, for instance, in
Buss et al. [BIK+97, Theorem 5.2]. The paper by Buss et al. also contains a constructive proof
for a version of the Nullstellensatz that uses the Boolean axioms to avoid the algebraic closures.
We will now prove the implicational completeness of PC using essentially the same argument
as in [BIK+97], except that we use Theorem 2.3 instead of their version of the Nullstellensatz.

Theorem 2.10 (Implicational completeness). Given a set of polynomials {f1, . . . , fk} in
F[x, y, z, . . .] plus the Boolean axioms x2

i − xi for all variables xi involved in the polynomials,
and given a polynomial h ∈ F[x, y, z, . . .] which is zero for all common roots to {f1, . . . , fk},
there exists polynomials g1, . . . , gk ∈ F[x, y, z, . . .] such that

h =
k∑

i=1

gifi .

Proof. Let F be a finite field with q = pn elements. By the assumption of the theorem, h is
zero whenever the polynomials f1, . . . , fk are zero, so f1, . . . , fk, 1−hq−1 have no common roots.
From the proof of Theorem 2.3, we get polynomials g1, . . . , gk+1 ∈ F[x, y, z, . . .] such that

1 =
k∑

i=1

gifi + gk+1(1− hq−1) . (2.1)

Multiplying both sides by h gives

h =
k∑

i=1

(gih)fi + gk+1(h− hq) . (2.2)

Recall that in a field (or ring) of characteristic p, it holds that (a + b)p = ap + bp and similarly
for sums with more terms. Thus, raising the polynomial h to the power q is the same as raising
each term in h to the power q. Look at such a term c

∏
xi. We see that (c

∏
xi)q = cq

∏
xq

i =
c
∏

xi because of the Boolean axioms x2
i = xi and the fact that cq = c for all c ∈ F. Hence

h−hq = 0 (modulo the Boolean axioms) and we get polynomials g1, . . . , gk ∈ F[x, y, z, . . .] such
that h =

∑k
i=1 gifi.

3 Polynomial Calculus Resolution

There is one annoying problem with how we encode formulas as polynomials. Consider the
clause x1 ∨ x2 ∨ . . . ∨ xw. This is translated to the polynomial

w∏
i=1

(1− xi) =
∑

S⊆[w]

(−1)|S|
∏
i∈S

xi (3.1)

which has size exponential in the clause width w. Thus, if a formula F has a clause with a linear
number of negative literals, then just downloading that clause gives an exponential lower bound
on size and space. Usually, exponential lower bounds would get us very excited, but somehow
it is clear that this particular type of exponential lower bound is not what we are looking for. . .

Let us discuss two ways to “fix” this problem.

1. We can choose to consider only k-CNF formulas for some constant k. We know that
any CNF formula F can be converted to an equivalent 3-CNF formula F̃ using extension
variables, and for formulas of bounded width the blow-up in (3.1) is not an issue.

6-6

2. We can change the encoding of clauses as polynomials by introducing new variables cor-
responding to negated literals and additional axioms making sure that variables corre-
sponding to positive and negative literals get opposite values in {0, 1} as will be described
shortly. This second “fix” was introduced by Alekhnovich, Ben-Sasson, Razborov, and
Wigderson in the paper [ABRW00] (journal version in [ABRW02]) and results in a stronger
proof system which we will refer to as polynomial calculus resolution or usually just PCR
for brevity.

Which fix is “the right one”? Well, both are interesting and well-motivated, but perhaps in
slightly different ways.

In general, we will always prefer to get space bounds that hold also for k-CNF formulas.
Since any formula can be converted to a k-CNF, it seems desirable to have results that do not
break completely just because we make such a transformation. On the other hand, sometimes
it is just too hard to prove bounds for k-CNF formulas, and in this case results for formulas of
unbounded width can also be very interesting. (For instance, as we will learn in a later lecture,
for a long time we only had nontrivial space lower bounds in polynomial calculus for formulas
of unbounded width.)

As to the issue of PC versus PCR, some Gröbner basis SAT solvers (for instance, [BD09])
use a representation where the issue of exponential blow-up of negative literals does not arise
when encoding the CNF formulas, whereas it seems to be a more serious problem for other
solvers. So the case could be made for studying both PC and PCR. When we prove lower
bounds, however, of course it is preferable to prove such bounds against as strong an adversary
as possible, and therefore PCR would seem to be the proof system of choice in such cases.

The translation of clauses in PCR is done by introducing new variables x, y, z, . . ., and using
the new variable x instead of the factor 1− x to encode negation. Let us again explain this by
an example.

Example 3.1. In PCR, the disjunctive clause x ∨ y ∨ z is encoded as the equation xyz = 0, or
the polynomial xyz if we use the algebraic formulation (as we will tend to do below).

Now we need to enforce that x is the negation of x, i.e., that x = 0 if x = 1 and vice versa.
We do this in the obvious way by requiring that x = 1− x, i.e., by adding the following axiom.

Complementarity axioms
x + x− 1

for all variables x

For simplicity and symmetry, we also add the Boolean axioms for negated variables.

Boolean axioms
x2 − x

for all variables x

All other derivation rules and proof complexity measures are as for polynomial calculus. Note
that for PCR, it is even clearer that monomial space is the analogue of clause space in resolution,
since every clause gets translated to one monomial.

4 Some Basic Facts About PC and PCR

It is not hard to see that PCR can simulate PC refutations in essentially the same size and space.
PCR can do everything PC can do, except downloading axiom clauses in the PC format. A
minor technical issue that can arise here is that if there is an axiom clause with a linear number
of negative literals, PC can download the exponential-size representation of this axiom in one
step, whereas in a naive simulation by PCR we will have to derive the inefficient representation
in an exponential number of steps from the efficient PCR-representation with negated literals
as variables, using the complementarity axioms x + x − 1 repeatedly. Each application of the
complementarity axioms increases the number of monomials by 1, so we need to use the rule at
most 2s times if there are s negative literals in the clause. Since each of those lines have size

6-7

at most 2s, the size of the total proof is not much worse than 22s. This is only polynomially
worse than downloading the PC axiom directly, since the axiom has size 2s. (And also, if we
really wanted to, it seems that there would be smarter ways of having PCR simulate PC than
immediately expanding out a single monomial to an exponential number of monomials, but
since we do not really need it we will not waste any time on thinking about it.)

From the fact that PCR can simulate PC proofs, we conclude that upper bounds on size
and space for PC hold for PCR too. Similarly, lower bounds on size and space for PCR hold
for PC too.

Furthermore, it is not hard to show that once we add separate variables for negated literals,
PCR can simulate resolution in a line-by-line fashion (which is the reason that it is called
polynomial calculus resolution).

Proposition 4.1. PCR polynomially simulates resolution in essentially the same length, size
and space.

Proof. Left as an exercise.

From Proposition 4.1 it follows immediately that the worst-case behaviour of PCR cannot
be worse than that of resolution.

Corollary 4.2. Let F be an unsatisfiable CNF formula and let S (F) denote the size of F , i.e.,
the number of literals in F counted with repetitions. Then

SPCR (F `⊥) = exp(O(S (F)))
SpPCR (F `⊥) = O(S (F))

and there are PCR-refutations attaining both of these bounds simultaneously.

Remark 4.3. The first part of the corollary holds also for polynomial calculus, i.e., it is true
that SPC (F ` ⊥) = exp(O(S (F))). This is because the PCR-simulation of resolution in size
exp(O(S (F))) essentially has all polynomials being single monomials (corresponding to the
clauses in the simulated resolution refutation), and such a PCR-refutation can in turn be mim-
icked by a PC-refutation where each monomial grows by at most a factor exp(O(S (F)). This
gives a PC refutation of size

(
exp(O(S (F)))

)2 which is still at most exp(O(S (F)).
On the other hand, it does not hold that SpPC (F `⊥) = O(S (F)). For a counterexample,

consider the family of formulas

Fn = (x1 ∨ x2 ∨ · · · ∨ xn)
∧ x1

∧ x2 (4.1)
...

∧ xn

which has small resolution and PCR refutations, but for which any PC-refutation must at some
point download the first clause, which requires exponential space.

The following result seems to be almost folklore and we probably will not cover it in class.
It is just stated here for reference.

Theorem 4.4. PCR is exponentially stronger than resolution with respect to proof size.

A natural question is whether an analogue of Theorem 4.4 holds also with respect to space.
One would expect the answer to be yes, but this is not known.

6-8

Open Problem 5. Is PCR asymptotically stronger than resolution with respect to space, i.e.,
when comparing monomial space to clause space?

Another question that arises quite naturally at this point is how much stronger PCR is than
PC. Well, that is a good question, but we will not discuss it in any greater detail. Clearly, the
formula in (4.1) provides an exponential separation between PCR and PC, but this example
seems artificial since it only works because of the first clause of unbounded width. For k-CNF
formulas we know of no such simple example. And it so happens that the lower bound techniques
that we will use work for both PC and PCR simultaneously, so we will not get any separations
between the two systems in that way. Also, although it is not a priori obvious, it turns out that
for k-CNF formulas PC has the same worst-case behaviour as resolution.

Lemma 4.5 ([FLN+11]). If F is an unsatisfiable k-CNF formula (for some universal con-
stant k), then there is a PC-refutation π : F `⊥ such that

S (π) = exp(O(S (F)))
Sp(π) = O(S (F))

where the constants hidden in the asymptotic notation depend on k.

Proof. Left as a (somewhat non-trivial) exercise.

As already stated, we will mainly be interested in the size and (monomial) space of PC- and
PCR-refutations. As we will soon see, however, when we want to prove size lower bounds it is
very helpful to study the auxiliary measure of degree. This is similar to how width turned out
to be a useful measure in resolution, and indeed, it is not hard to see an analogue here since
clauses of width k in resolution correspond to monomials of degree k in PCR.

It was shown in [CEI96] that if there is a PC-refutation in degree d, then it is possible to find
a PC-refutation in time nO(d). We want to show that there is a kind of converse to this in that
if the minimal degree of any refutation is large, then there cannot exist small-size refutations.
But let us first give a formal definition of the degree measure.

Definition 4.6. The degree Deg(π) of a PC- or PCR-derivation is the largest total degree
of any monomial appearing in π, i.e., (by multilinearity) the largest number of variables that
appears in any monomial. The degree of refuting F in PC or PCR, denoted DegPC (F ` ⊥)
and DegPCR (F ` ⊥) respectively, is the minimal degree of any refutation of F in PC or PCR
respectively.

In fact, without loss of generality we can drop the subscript from the degree measure when-
ever we like and just talk about the degree Deg (F `⊥) of refuting F .

Proposition 4.7. DegPC (F `⊥) = DegPCR (F `⊥) for any unsatisfiable CNF formula F .

Proof. Left as a fairly straightforward exercise.

Now we can state the relation between degree and size that we want to prove. We state the
theorem for PCR below, but exactly the same result holds also for PC. (Indeed, it was originally
proven for PC by Impagliazzo, Pudlák, and Sgall [IPS99], but the proof for PCR is the same
line by line.)

Theorem 4.8 ([IPS99]). Let F be an unsatisfiable formula over n variables. Then

DegPCR (F `⊥) ≤ W(F) + O
(√

n lnSPCR (F `⊥)
)

.

Focusing on CNF formulas of constant width, we have the following corollary.

6-9

Corollary 4.9 ([IPS99]). Let F be an unsatisfiable k-CNF formula over n variables for
k = O(1). Then

SPCR (F `⊥) = exp
(

Ω
(

(DegPCR (F `⊥))2

n

))
.

Looking back to our study of resolution, it should be clear that Theorem 4.8 and Corollary 4.9
are very, very similar to the relations between length and width in [BW01]. And indeed, the
results in [IPS99] were very much an inspiration for [BW01]. Even more can be said: the proofs
in [BW01] are essentially a translation line by line of the corresponding proofs in [IPS99] for PC
to the resolution setting. But of course, this is obvious only in hindsight. And it was a truly
brilliant translation—one that has made [BW01] one of the most cited papers in all of proof
complexity. The moral of this, perhaps, is that often the really great results are the simple but
ingenious ones.

In the next lecture we will prove Theorem 4.8 (and hence Corollary 4.9), but this is all we
had for today.

Acknowledgements

The lecturer wants to thank Massimo Lauria and Alexander Razborov for helping with pointers
and explanations for the material for this lecture. (Of course, any remaining errors or ambigui-
ties are solely the lecturer’s responsibility.) Thanks also to the scribe Björn Terelius for writing
up the material for the “detour” in Section 2.2.

References

[ABRW00] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson.
Space complexity in propositional calculus. In Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing (STOC ’00), pages 358–367, May 2000.

[ABRW02] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigder-
son. Space complexity in propositional calculus. SIAM Journal on Computing,
31(4):1184–1211, 2002. Preliminary version appeared in STOC ’00.

[AD08] Albert Atserias and Vı́ctor Dalmau. A combinatorial characterization of resolu-
tion width. Journal of Computer and System Sciences, 74(3):323–334, May 2008.
Preliminary version appeared in CCC ’03.

[BD09] Michael Brickenstein and Alexander Dreyer. PolyBoRi: A framework for Gröbner-
basis computations with Boolean polynomials. Journal of Symbolic Computation,
44(9):1326–1345, September 2009.

[BDG+09] Michael Brickenstein, Alexander Dreyer, Gert-Martin Greuel, Markus Wedler, and
Oliver Wienand. New developments in the theory of Gröbner bases and applications
to formal verification. Journal of Pure and Applied Algebra, 213(8):1612–1635,
August 2009.

[BG01] Maria Luisa Bonet and Nicola Galesi. Optimality of size-width tradeoffs for res-
olution. Computational Complexity, 10(4):261–276, December 2001. Preliminary
version appeared in FOCS ’99.

[BIK+97] Samuel R. Buss, Russell Impagliazzo, Jan Kraj́ıček, Pavel Pudlák, Alexander A.
Razborov, and Jiri Sgall. Proof complexity in algebraic systems and bounded depth
Frege systems with modular counting. Computational Complexity, 6(3):256–298,
1997.

6-10

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made sim-
ple. Journal of the ACM, 48(2):149–169, March 2001. Preliminary version appeared
in STOC ’99.

[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner
basis algorithm to find proofs of unsatisfiability. In Proceedings of the 28th Annual
ACM Symposium on Theory of Computing (STOC ’96), pages 174–183, May 1996.

[FLN+11] Yuval Filmus, Massimo Lauria, Jakob Nordström, Neil Thapen, and Noga Zewi.
Space complexity in polynomial calculus. Submitted, December 2011.

[IPS99] Russell Impagliazzo, Pavel Pudlák, and Jiri Sgall. Lower bounds for the polynomial
calculus and the Gröbner basis algorithm. Computational Complexity, 8(2):127–144,
1999.

6-11

	Summary of the Lectures So Far
	Length Versus Width
	Space Versus Width
	Space Versus Length

	Polynomial Calculus
	An Alternative Algebraic Interpretation
	Implicational Completeness of PC (Detour Courtesy of Scribe)

	Polynomial Calculus Resolution
	Some Basic Facts About PC and PCR

