
DD3501 Current Research in Proof Complexity Jan 18, 2011

Lecture 13

Lecturer: Jakob Nordström Scribe: Léo Perrin

1 Quick Recap of Last Lecture

We started the last lecture by asking three questions:

1. If a k-CNF formula F is easy with respect to length, is it then also easy with respect to
clause space?

2. If F is refutable in length L and clause space s, can it be refuted in length O(L) and
clause space O(s) simultaneously?

3. If F is refutable in length L and we do not care about clause space as long as it is not
worse than the worst-case upper bound O(S (F)) (i.e., linear in the formula size), can the
formula be refuted in simultaneous length O(L) and clause space O(S (F))?

We then revealed (finally, since these questions were raised for the first time already during the
autumn term) the answer to all three questions is “no,” and set about giving the formal proofs
of the answers to the first two questions.

Our starting point for the proof was pebbling formulas, which have interesting trade-offs
between length and variable space. However, these formulas have resolution refutations in
simultaneous minimal length (linear) and clause space (constant), and so will not give us the
results we are looking for.

We then discussed the idea of replacing variables x in a CNF formula F by Boolean functions
f(x1, . . . , xd) and expanding this to a new CNF formula F [f]. We saw that if we refute F [f]
in the naive way in resolution by mimicking a resolution refutation of the original formula F ,
then there is a space blow-up in that the variable space of the original refutation of F will be a
lower bound on the clause space of the simulating refutation of F [f]. We claimed that such a
space blow-up in fact turns out to be unavoidable if we pick the right substitution function f .

In order to prove this formally, we wanted to show that we can “project” any refutation
of F [f] to a refutation of the original formula F . We gave the following definition of what it
means to “project” a configuration D derived from F [f] to a configuration C derived from F .
Recall that for sets of clauses C and D we define C ∨ D = {C ∨D | C ∈ C, D ∈ D} and for a
set of variables V = {x, y, z, . . .}, we let

Varsd(V) = {x1, x2, . . . , xd, y1, y2, . . . , yd, z1, z2, . . . , zd, . . .} (1.1)

denote the variables after substitution (which we assume are disjoint from the variables in V).

Definition 1.1 (Projection). Assume that f : {0, 1}d 7→ {0, 1} is a fixed Boolean function
and let P be any sequential proof system. Let D denote an arbitrary set of Boolean functions
over Varsd(V) of the form specified by P. Also, let C denote an arbitrary set of disjunctive
clauses over V . Then the function projf mapping sets of Boolean functions D to clauses C is an
f-projection if it is:

Complete: If D � C[f], then there is a C ′ ⊆ C such that C ′ ∈ projf(D) (i.e., the clause C
either is in projf(D) or is derivable from projf(D) by weakening).

Nontrivial: If D = ∅, then projf(D) = ∅.

13-1

Monotone: If D′ � D and C ∈ projf(D), then C ⊇ C ′ ∈ projf(D′).

Incrementally sound: Let A be a clause over V and let LA be the encoding of some clause
in A[f] as a Boolean function of the type prescribed by P. Then if C ∈ projf(D ∪ {LA}),
it holds for all literals a ∈ Lit(A) \ Lit(C) that a ∨ C ⊇ Ca ∈ projf(D).

Note that Definition 1.1 is stated for projections from any sequential proof system P to
resolution, not just for projections from resolution to resolution. The next lemma says that
we can always extract resolution refutations from P-refutations using projections as defined in
Definition 1.1.

Lemma 1.2. Let P be a sequential proof system and f : {0, 1}d 7→ {0, 1} a Boolean func-
tion, and suppose that projf is an f-projection. Then for any CNF formula F it holds that
if πf = {D0, D1, . . . , Dτ} is a P-refutation of the substitution formula F [f], the sequence of sets
of projected clauses

{
projf(D0), projf(D1), . . . , projf(Dτ)

}
forms the “backbone” of a resolution

refutation π of F in the following sense:

1. projf(D0) = ∅.

2. ⊥ ∈ projf(Dτ).

3. All transitions from projf(Dt−1) to projf(Dt) for t ∈ [τ] can be accomplished in resolution
in such a fashion that VarSp(π) = O

(
maxD∈πf

{VarSp(projf(D))}
)
.

4. The length of π is upper-bounded by πf in the sense that the only time π does a download
of C ∈ F is when πf downloads some axiom LC ∈ C[f] from F [f].

Intuitively speaking, Lemma 1.2 says that we can consider the projected clause configu-
rations projf(Di) as “snapshots” of a resolution refutation π of F . These snapshots capture
the “interesting part” of the refutation π in that “nothing important” happens in between the
snapshots, in particular with regards to variable space.

2 How to Use Projections to Prove Space Lower Bounds

We ended last time after having stated Lemma 1.2. One of the items on today’s agenda is to
prove this lemma. Before doing so, however, we want to discuss how it can be used.

Note that Lemma 1.2 as stated holds for any sequential proof system P. At some later point
we will have to restrict our attention to P being resolution for the proofs to work, but for as
long as it is possible we will try to keep the discussion general.

In order for Lemma 1.2 to be really useful, there is one more component that we need.
Namely, we would like the projection to somehow preserve space when it is projecting derivations
in the proof system P to resolution derivations. These considerations lead us to the concept of
space-faithfulness as defined next.

Definition 2.1 (Space-faithful projection). Consider a sequential proof system P with
space measure SpP(·). Let f : {0, 1}d 7→ {0, 1} be a fixed Boolean function, and suppose that
projf is an f-projection. Then we say that projf is space-faithful of degree K with respect to P
if there is a polynomial Q of degree at most K such that for any set of Boolean functions D
over Varsd(V) on the form prescribed by P, it holds that Q(SpP(D)) ≥

∣∣Vars(projf(D))
∣∣. We

say that projf is linearly space-faithful if Q has degree 1, and that projf is exactly space-faithful
if we can choose Q(n) = n.

The way to read Definition 2.1 is that the smaller the degree K is, the tighter the reduction
between the proof system P and resolution will be with respect to space.

13-2

Before proving Lemma 1.2, let us see how it can be used to prove trade-offs provided that we
can construct space-faithful projections. As stated in the introduction, proving such trade-offs
is the very reason we set up all this mathematical machinery.

Theorem 2.2. Let P be a sequential proof system with space measure SpP(·). Suppose that
f : {0, 1}d 7→ {0, 1} is a Boolean function such that there exists an f-projection which is space-
faithful of degree K with respect to P. Then if F is any unsatisfiable CNF formula and πf is
any P-refutation of the substitution formula F [f], there is a resolution refutation π of F such
that:

• The length of π is upper-bounded by πf in the sense that π makes at most as many axiom
downloads as πf.

• The space of π is upper-bounded by πf in the sense that VarSp(π) = O
(
SpP(πf)K

)
.

In particular, if there is no resolution refutation of F in variable space O(s) that does O(L) ax-
ioms downloads, then there is no P-refutation of F [f] in simultaneous length O(L) and P-space
O

(
K
√

s
)
.

Proof. First, note that the first bullet in the theorem is a direct consequence of Lemma 1.2
(namely part 4 of this lemma) . Thus, we only need to prove the second bullet here.

Let πf be a P-refutation of F [f], and let π be the resolution refutation we obtain by applying
the projection projf on πf as in Lemma 1.2. By part 3 of the lemma we have

VarSp(π) = O
(

max
D∈πf

{VarSp(projf(D))}
)

. (2.1)

Fix some P-configuration D maximizing the right-hand side of (2.1). For this D ∈ π we have

VarSp(projf(D)) = O
(
SpP(D)K

)
(2.2)

according to Definition 2.1, and since obviously Sp(D) ≤ maxD∈πf
{Sp(D)} = Sp

(
πf

)
we get by

combining (2.1) and (2.2) that

VarSp(π) ≤ O
(
Sp

(
πf

)K
)

(2.3)

and the theorem follows.

We now turn to the proof of Lemma 1.2. We will give a fairly detailed outline of the proof,
but for the complete details we refer to Appendix A.

Proof sketch for Lemma 1.2. Suppose that πf = {D0, D1, . . . , Dτ} is a P-refutation of F [f]. In
this proof, for the sake of conciseness let us write Ct to denote projf(Dt). We prove the parts
of the lemma one by one.

1. The fact that C0 = ∅ is a direct consequence of the nontriviality of the projection.

2. ⊥ ∈ Cτ is also implied immediately by the definition of a projection, namely by the
completeness condition.

3. So far, not too much interesting stuff happened in the proof, but this part is more in-
teresting. We need to show that if we can derive Dt from Dt−1 using our favorite proof
system P, then we can derive Ct from Ct−1 in resolution. Note that we only need to worry
about new clauses in Ct \ Ct−1 here—clauses in Ct−1 \ Ct that disappear at time t can
just be erased and will not cause us any problems. We have three cases for the derivation
step at time t:

13-3

Inference: Any C ∈ Ct \Ct−1 can be derived from Ct−1 by weakening as projf is mono-
tone.

Erasure: Again, monotonicity allows us to derive any new clauses in Ct from Ct−1 by
weakening.

Axiom download: Let C be a clause in Ct \ Ct−1 for Ct = projf(Dt−1 ∪ {LA}), where
LA is an encoding in P of some clause in A[f] downloaded at this time step. The
incremental soundness of projections tells us that for all literals a ∈ Lit(A) \ Lit(C)
we have some Ca ∈ Ct−1 such that Ca ⊆ a∨C. This means that we can derive a∨C
by weakening from Ct−1 for all a ∈ Lit(A) \ Lit(C). Then we download the axiom
clause A in our resolution derivation and resolve with all these clauses one by one to
derive C.

This proof is only a sketch because some things were swept under the rug. For instance,
we did not look at the variable space. While we know its values for the projected clause
configurations Ct, what happens in between these configurations? Who knows, maybe the
space treacherously increases a lot after Ct before decreasing again to reach the known value
at Ct+1, pretending nothing happened? Actually, as shown in Appendix A, this cannot happen,
but the proof sketch provided above does not argue why this is so.

3 Designing Projections for Resolution

What Theorem 2.2 says is the following: suppose we have a family of CNF formulas with
lower bounds for refutation variable space in resolution, or with trade-offs between refutation
length (or, more precisely, number of axiom downloads) and refutation variable space (such as
for instance pebbling contradictions over suitable graphs, as we discussed last lecture). Then
we can amplify these lower bounds or trade-offs to stronger proof complexity measures in a
potentially stronger proof system P, provided that we can find a Boolean function f and an
f-projection projf that is space-faithful with respect to P.

Thus, at this point we can in principle forget everything about proof complexity. If we want
to prove space lower bounds or time-space trade-offs for some proof system P, we can focus on
studying Boolean functions of the form used by P and trying to devise space-faithful projections
for such functions. For the rest of this lecture, we will let P be resolution. What will be said
below works in slightly greater generality, however, namely for the stronger family of k-DNF
resolution proof systems. Although we did not have time to cover these results in class, we
discuss them briefly in Appendix B.

To describe the projections we will study, we need a definition.

Definition 3.1 (Precise implication [BN11]). Let f be a Boolean function of arity d, let D
be a set of Boolean functions over Varsd(V), and let C be a disjunctive clause over V . If

D � C[f] (3.1a)

but for all strict subclauses C ′ $ C it holds that

D 2 C ′[f] , (3.1b)

we say that the clause set D implies C[f] precisely and write

D B C[f] . (3.2)

Informally speaking, a precise implication of some Boolean function means that precisely
this function is implied but nothing stronger. We want to project clauses that correspond to
such precise implications as described next.

13-4

Definition 3.2 (Resolution projection [BN11]). Let f denote a Boolean function of arity d
and let D be any set of Boolean functions over Varsd(V). Then we define the set of clauses

Rprojf(D) = {C | D B C[f]} (3.3)

to be the resolution projection of D.

What we want to prove now is that for P being resolution, and for the right choice of Boolean
function f, Rprojf is a linearly space-faithful projection. Then we can apply Theorem 2.2 to
the CNF formula families we discussed at the beginning of last lecture, and this will give us the
results we are after. Let us start by showing that Rprojf is a projection.

Lemma 3.3. The mapping Rprojf is an f-projection (for any sequential proof system P).

Proof. The proof of this lemma is very straightforward. All we have to do is to check each
condition Rprojf must satisfy in order to be an f-projection.

Nontriviality is obvious. An empty P-configuration evaluates to true under all assignments,
and so cannot project any clauses according to Definition 3.2. Thus, Rprojf(∅) = ∅.

Suppose D B C[f] and D′ � D. Then we can remove literals from C one by one until we get
a new clause C ′ which is minimal with respect to the property that D′ � C ′[f]. By definition,
we then have that D′ B C ′[f], i.e., C ′ ∈ Rprojf(D′). This shows that Rprojf satisfies both
completeness and monotonicity.

It remains to consider the incremental soundness.. Suppose, using the notation introduced
above, that D ∪ {LA} � C[f]. Consider a truth value assignment α such that α(D) = 1 and
α(C[f]) = 0. If no such α exists, then simply by parsing what semantic implication � means we
get that D � C[f] and we have already seen how C can be derived from Rprojf(D) by weakening
in this case. It would be great if this were always the case, because if so we would now be done
with the proof, but as conscientious mathematicians we must also consider the other case.

Thus, suppose there exists such an α. This α must falsify LA ∈ A[f] or we immediately get
a contradiction. If we write A =

∨k
i=1 ai, we have that A[f] = a1[f] ∨ a2[f] ∨ · · · ∨ ak[f] and α

must falsify every ai[f] in order to falsify LA. Turning the tables, this means that α
(
ai[f]

)
= 1

for all i = 1, . . . , k. From this we can deduce that if α satisfies D, then this assignment must
also satisfy ai[f] ∨ C[f] for all i = 1, . . . , k. The incremental soundness follows.

In order to get a space-faithful projection Rprojf , we pick a Boolean function f as in the
next definition.

Definition 3.4 (Non-authoritarian function [BN11]). We say that a Boolean function
f(x1, . . . , xd) is k-non-authoritarian1 if no restriction to {x1, . . . , xd} of size k can fix the value
of f . In other words, for every restriction ρ to {x1, . . . , xd} with |ρ| ≤ k there exists two
assignments α0, α1 ⊃ ρ such that f(α0) = 0 and f(α1) = 1. If this does not hold, f is
k-authoritarian. A 1-(non-)authoritarian function is called just (non-)authoritarian.

Observe that a function on d variables can be k-non-authoritarian only if k < d. Perhaps the
most natural example of a k-non-authoritarian function is exclusive or ⊕k+1 of k + 1 variables.
Indeed, even if you fix any k variables in this function to any values, you can still flip the
function to both true and false by choosing the right value of the final (k + 1)st variable. One
could say that in such a function, every variable has its say in deciding the final result. That
is, as Boolean functions go, it seems to be somewhat democratic, or at least not authoritarian.
Hence the terminology in Definition 3.4.

Now we are finally ready to state the main technical result, which will allow us to prove the
space lower bounds and trade-offs that we are after: picking f non-authoritarian is enough to
guarantee that Rprojf is linearly space-faithful for resolution.

1Such functions have also been referred to as (k+1)-robust in [ABRW02].

13-5

Theorem 3.5 ([BN11]). If f is a non-authoritarian Boolean function, then the projection
Rprojf is linearly space-faithful with respect to the resolution proof system.

Proof. In the case of resolution, the set of Boolean functions D just consists of disjunctive clauses
over Varsd(V). Fix an arbitrary such clause set D and let V ∗ = Vars

(
Rprojf(D)

)
. What we

want to prove is that |D| ≥ |V ∗|. We assume without loss of generality that D is a minimal
clause set such that Vars

(
Rprojf(D)

)
= V ∗, since otherwise we can just remove clauses from D

until we get such a set.
Consider a bipartite graph with the vertices on the left labelled by clauses D ∈ D and the

vertices on the right labelled by variables x ∈ V ∗. We draw an edge between D and x if some
variable xi from Varsd(x) appears in D. Let N(D′) denote the neighbours on the right of a
clause set D′. We claim without proof that N(D) = V ∗, i.e., that all x ∈ V ∗ have incoming
edges from D (establishing this claim is left as a useful but not too hard exercise in juggling
with the definitions in this lecture).

Fix some D1 ⊆ D of maximal size with neighbour set V ∗
1 = N(D1) such that |D1| ≥ |V ∗

1 |
(and note that such a set always exist, since D1 = ∅ is allowed). If D1 = D we are done, since if
so |D| ≥ |V ∗| which is exactly what we want to prove. Suppose therefore that D1 6= D and let
us argue by contradiction. Let D2 = D \ D1 6= ∅ and V ∗

2 = V ∗ \ V ∗
1 . For all D′ ⊆ D2 we must

have |D′| ≤ |N(D′) \ V ∗
1 | = |N(D′) ∩ V ∗

2 |, since otherwise we could have added D′ to D1 and
so this latter set would not have been chosen of maximal size. This in turns implies by Hall’s
theorem that there is a matching M from D2 into V ∗

2 .
Consider some clause C ∈ Rprojf(D)\Rprojf(D1) such that D1 is “too weak” to project C

(such a clause exists by the minimality of D). Let Ci be the part of C that mentions variables
from V ∗

i for i = 1, 2. Then by Definitions 3.1 and 3.2 it holds that D1 ∪ D2 � C1[f]∨C2[f] but
D1 2 C1[f]. This means that there is a truth value assignment α1 to Varsd(V ∗

1) satisfying D1

but falsifying C1[f]. Observe that Vars(D1) ⊆ Varsd(V ∗
1) by construction and that Vars(D2) ∩

Varsd(V ∗
1) = ∅. Thus, we can choose α1 to be a a partial truth value assignment that satisfies

all clauses of D that contain variables that α1 are assigning values to.
Using the matching M , we can find another partial truth value assignment α2 to Varsd(V ∗

2)
that satisfies all clauses D ∈ D2 by setting at most one variable xi for every x ∈ V ∗

2 . In particular,
this means that α2 does not determine the truth value of C2[f] since f is non-authoritarian, and
this in turn means that we can extend α2 to a full assignment over Varsd(V ∗

2) such that C2[f]
is falsified. But then α1 ∪ α2 is an assignment2 that satisfies D1 ∪ D2 but falsifies C1[f]∨C2[f],
which is a contradiction.

4 Space Lower Bounds and Length-Space Trade-offs for Resolution

Now the three theorems we discussed at the beginning of lecture 12 follow with clause space
instead of variable space in the bounds, just as we wanted. Let us conclude by stating these
theorems (where for concreteness we choose the substitution function to be binary exclusive or,
which after substitution gives us 6-CNF formulas).

Theorem 4.1 ([BN08]). There is a family of explicitly constructible 6-CNF formulas {Fn}∞n=1

of size Θ(n) which have resolution refutation length LR(Fn `⊥) = O(n) but require clause space
SpR(Fn `⊥) = Ω

(
n

log n

)
.

That is, Theorem 4.1 tells us that although small space complexity implies that a formula
is easy also with respect to length in resolution, the opposite does not hold: a formula can
be maximally easy with respect to length but still have essentially worst-case clause space

2Note that α1 ∪ α2 is a legal truth value assignment since α1 and α2 are assigning two disjoint sets of variables,
namely Varsd(V ∗

1) and Varsd(V ∗
2). Therefore, they cannot “overlap” in such a way that there is some variable

assigned to 1 by one assignment and to 0 by the other.

13-6

complexity. (In fact, although we did not have time to discuss this in class, by combining
[ET01] and [HPV77] it is straightforward to show that if a formula is refutable in length O(n),
then it is also refutable in clause space O(n/ log n), so the bound in Theorem 4.1 is optimal.)

The next two theorems give examples of trade-offs between proof length and proof space.
These are just two particular instances of theorems that can be proven with this machinery—we
refer to [BN11] for more examples.

Theorem 4.2 ([BN11, Nor12]). Let g : N+ 7→ N+ be any non-constant monotone function
with ω(1) = g(n) = O

(
n1/7

)
and fix any ε > 0. Then there is a family of explicitly constructible

6-CNF formulas {Fn}∞n=1 of size Θ(n) such that:

• The total space of refuting Fn is TotSpR(Fn `⊥) = O
(
g(n)

)
(i.e., very small space).

• There are resolution refutations πn : Fn `⊥ with length L(πn) = O(n) and total space
TotSp(πn) = O

((
n/(g(n))2

)1/3
)

(i.e., very short refutations, but in substantially larger
space).

• Any refutation πn : Fn `⊥ in clause space Sp(πn) = O
((

n/(g(n))2
)1/3−ε

)
has superpoly-

nomial length L(πn) = nω(1) (i.e., decreasing the clause space significantly compared to the
short refutations above leads to a superpolynomial blow-up in length).

Theorem 4.3 ([BN11]). Let κ be a sufficiently large constant. Then there is a family of
explicitly constructible 6-CNF formulas {Fn}∞n=1 of size Θ(n) and a constant κ′ � κ such that:

• The total space of refuting Fn is bounded by TotSpR(Fn `⊥) ≤ κ′ n
log n .

• There are resolution refutations πn : Fn `⊥ with length L(πn) = O(n) and linear total
space TotSp(πn) = O(n).

• Any refutation πn : Fn `⊥ in clause space Sp(πn) ≤ κ n
log n must have exponential length

L(πn) = exp (nε) for some ε > 0.

A very interesting question is whether results similar to the ones above could be proven for
other strictly stronger proof systems such as cutting planes or polynomial calculus resolution,
or even for polynomial calculus (which is formally speaking incomparable to resolution). For
these systems no trade-offs are known (as far as the lecturer is aware) except for the very recent
results in [HN12], and these are probably not trade-offs in a strict sense.

It can be shown that the projection in Definition 3.2 will not work for these proof systems
(i.e., it is not space-faithful for CP, PC or PCR), and although we did not have time to cover
this in class we discuss this briefly in Appendix B. But maybe there are other ideas that could
work.

Open Problem 1. Is it possible to prove space lower bounds and/or trade-offs between proof
length/size and space for cutting planes, polynomial calculus, or PCR by designing smarter
projections than in Definition 3.2 that are space-faithful for these proof systems?

A A Full Proof of Lemma 1.2

In this appendix, we present a complete proof of Lemma 1.2 including the details that we glossed
over in class.

Fix any sequential proof system P, any f-projection projf (for some Boolean function f),
and any CNF formula F . Recall that we want to show that if πf = {D0, D1, . . . , Dτ} is
a P-refutation of the substitution formula F [f], then the sequence of projected clause sets

13-7

{
projf(D0), projf(D1), . . . , projf(Dτ)

}
is essentially a resolution refutation π except for some

details that we might have to fill in when going from projf(Dt−1) to projf(Dt) in the derivation.
As we already mentioned above, parts 1 and 2 of Lemma 1.2 are immediate from Defi-

nition 1.1, since we have projf(D0) = projf(∅) = ∅ by nontriviality and ⊥ ∈ projf(Dτ) by
completeness (note that Dτ � ⊥ = ⊥[f] and the empty clause clearly cannot be derived by
weakening).

We want to show that a resolution refutation of F can get from projf(Dt−1) to projf(Dt) as
claimed in part 3 of the lemma. For brevity, let us write Ci = projf(Di) for all i, and consider
the possible derivation steps at time t.

Inference Suppose Dt = Dt−1 ∪ {Lt} for some Lt inferred from Dt−1. Since P is sound we
have Dt−1 � Dt, and since the projection is monotone by definition we can conclude that all
clauses in Ct \ Ct−1 are derivable from Ct−1 by weakening. We go from Ct−1 to Ct in three
steps. First, we erase all clauses C ∈ Ct−1 for which there are no clauses C ′ ∈ Ct such that
C ⊆ C ′. Then, we derive all clauses in Ct \ Ct−1 by weakening, noting that all clauses needed
for weakening steps are still in the configuration. Finally, we erase the rest of Ct \Ct−1. At all
times during this transition from Ct−1 to Ct−1, the variable space of the intermediate clause
configurations is upper-bounded by max{VarSp(Ct−1),VarSp(Ct)}.

Erasure Suppose Dt = Dt−1 \ {Lt−1} for some Lt−1 ∈ Dt−1. Again we have that Dt−1 � Dt,
and we can appeal to the monotonicity of the projection and proceed exactly as in the case of
an inference above.

Axiom download So far, the only derivation rules used in the resolution refutation π that
we are constructing are weakening and erasure, which clearly does not help π to make much
progress towards proving a contradiction. Also, the only properties of the f-projection that we
have used are completeness, nontriviality, and monotonicity. Note, however, that a “projection”
that sends ∅ to ∅ and all other configurations to {⊥} also satisfies these conditions. Hence, the
axiom downloads are where we must expect the action to take place, and we can also expect
that we will have to make crucial use of the incremental soundness of the projection.

Assume that Dt = Dt−1 ∪ {LA} for a function LA encoding some clause from the substitution
clause set A[f] corresponding to an axiom clause A ∈ F . We want to show that all clauses in
Ct \ Ct−1 can be derived in π by downloading A, resolving (and possibly weakening) clauses,
and then perhaps erasing A, and that all this can be done without the variable space exceeding
VarSp(Ct−1 ∪ Ct) ≤ VarSp(Ct−1) + VarSp(Ct).

We already know how to derive clauses by weakening, so consider a clause C ∈ Ct\Ct−1 that
cannot be derived by weakening from Ct−1. By the incremental soundness of the projection, it
holds for all literals a ∈ Lit(A) \ Lit(C) that the clauses a ∨ C can be derived from Ct−1 by
weakening. Once we have these clauses, we can resolve them one by one with A to derive C.

Some care is needed, though, to argue that we can stay within the variable space bound
VarSp(Ct−1) + VarSp(Ct) while performing these derivation steps. Observe that what was just
said implies that for all a ∈ Lit(A) \ Lit(C) there are clauses a ∨ Ca ∈ Ct−1 with Ca ⊆ C. In
particular, we have a ∈ Lit(Ct−1) for all a ∈ Lit(A)\Lit(C). This is so since by the incremental
soundness there must exist some clause C ′ ∈ Ct−1 such that a ∨ C is derivable by weakening
from C ′, and if a /∈ Lit(C ′) we would have that C is derivable by weakening from C ′ as well,
contrary to our assumption above.

If it happens that all clauses in Ct \ Ct−1 can be derived by weakening, we act as in the
cases of inference and erasure above. Otherwise, to make the transition from Ct−1 to Ct in a
space-efficient fashion we proceed as follows.

1. Erase all clauses in Ct−1 \ Ct not used in any of the steps below.

13-8

2. Infer all clauses in Ct \ Ct−1 that can be derived by weakening from Ct−1.

3. Erase all clauses in Ct−1 \ Ct used in these weakening moves but not used in any further
steps below.

4. Download the axiom clause A, and derive any clauses C ∈ Ct \ Ct−1 such that A ⊆ C by
weakening.

5. For all remaining clauses C ∈ Ct \ Ct−1 that have not yet been derived, derive a ∨ C for
all literals a ∈ Lit(A) \ Lit(C) and resolve these clauses with A to obtain C.

6. Erase all remaining clauses in the current configuration that are not present in Ct, possibly
including A.

Clearly, step 1 can only decrease the variable space, and steps 2 and 3 do not increase it. Step 4
can increase the space, but as was argued above we have Vars(A) ⊆ Vars(Ct−1) ∪ Vars(C) ⊆
Vars(Ct− 1) ∪ Vars(Ct) for every new clause C derived with the help of A. Step 5 does not
change the variable space, and step 6 can only decrease it. It follows that the set of variables
mentioned during these intermediate steps is contained in Vars(Ct−1 ∪ Ct).

Wrapping up the proof, we have shown that no matter what P-derivation step is made in the
transition Dt−1 Dt, we can perform the corresponding transition Ct−1 Ct for our projected
clause sets in resolution without the variable space going above VarSp(Ct−1)+VarSp(Ct). Also,
the only time we need to download an axiom A ∈ F in our projected refutation π of F is when
πf downloads some axiom from A[fd]. The lemma follows.

B A Look at Stronger Proof Systems

It can be shown that the projection in Definition 3.2 also works for the k-DNF resolution proof
systems, although we will not prove it in these notes. Unfortunately, there is quite a substantial
loss in the parameters of the reduction here, as can be seen in the next theorem.

Theorem B.1 ([BN11]). If f is a (k + 1)-non-authoritarian Boolean function (for some
fixed k), then the projection Rprojf(D) is space-faithful of degree k + 1 with respect to k-DNF
resolution.

Proof sketch for Theorem B.1. Let us restrict our attention to 2-DNF resolution, since this
already captures the hardness of the general case. Also, we sweep quite a few technical details
under the rug to focus on the main idea of the proof.

Suppose that we have a set of 2-DNF formulas D of size |D| = m such that the set of projected
variables V ∗ = Vars(Rprojf(D)) has size |V ∗| ≥ K ·m3 for some suitably large constant K of
our choice. We want to derive a contradiction.

As a first preprocessing step, let us prune all formulas D ∈ D one by one by shrinking any
2-term a ∧ b in D to just a or just b, i.e., making D weaker, as long as this does not change
the projection Rprojf(D). This pruning step does not decrease the size (i.e., the number of
formulas) of D.

By counting, there must exist some formula D ∈ D containing literals belonging to at least
K ·m2 different variables in V ∗. Consider some clause C ∈ Rprojf(D) such that D \ {D} is too
weak to project it. This means that there is an assignment α such that α(D \ {D}) = 1 but
α
(
C[f]

)
6= 1, i.e., α either fixes α

(
C[f]

)
to false or leaves it undetermined. Let us pick such an

α assigning values to the minimal amount of variables. It is clear that the domain size of α will
then be at most 2(m − 1) since the assignment needs to fix only one 2-term for every formula
in D \ {D}. But this means that the formula D contains a huge number of unset variables.
We would like to argue that somewhere in D there is a 2-term that can be set to true without
satisfying C[f], which would lead to a contradiction.

13-9

We note first that if D contains 2m 2-terms xb
i ∧ yc

j with all literals3 in these terms be-
longing to pairwise disjoint variable sets for distinct terms (but where we can have x = y), we
immediately get a contradiction. Namely, if this is the case we can find at least one 2-term
xb

i ∧yc
j such that α does not assign values to any variables xi′ or yj′ . We can satisfy this 2-term,

and hence all of D, without satisfying C[f] since by assumption f is 3-non-authoritarian (so
any assignments to xi and yj can be repaired by setting other variables xi′ , yj′ to appropriate
values).

But if D does not contain 2m such 2-terms over disjoint variables, then by counting (and
adjusting our constant K) there must exist some literal a that occurs in D in at least 2m terms
a ∧ xb

i with the xi belonging to different variables. Moreover, these 2-terms were not pruned in
our preprocessing step, so they must all be necessary. Because of this, one can argue that there
must exist some other assignment α′ such that α′(D \ {D}) = 1, α

(
C[f]

)
6= 1, and α′(a) = 1.

Now at least one of the 2m companion variables of a is untouched by α′ and can be set to true
without satisfying C[f]. This is the contradiction we needed to finish this proof.

Although we will not go into any details here, we want to mention that Theorem B.1 can
be used to obtain the following results:

1. The k-DNF resolution proof systems form a strict hiearchy with respect to space. That
is, for every k ≥ 1 there is a family of formulas which requires non-constant formula space
(the generalization of clause space) in k-DNF resolution but can be refuted in constant
formula space in (k + 1)-DNF resolution.

2. There are length space trade-offs for k-DNF resolution qualitatively similar to those in
Theorems 4.1, 4.2, and 4.3, albeit with slightly worse parameters.

Comparing Theorem 3.5 to Theorem B.1, we can see that for k = 1 (i.e., standard resolution)
the latter theorem is off by one in the exponent. A natural question is whether the exponent in
Theorem B.1 can be improved from k+1 to k, or whether perhaps the projection in Definition 3.2
is even linearly space-faithful for k-DNF resolution for any k. The answer is that the loss in
the parameters in Theorem B.1 as compared to Theorem 3.5 is necessary, except perhaps for
an additive constant 1 in the degree (which does not rule out, however, that stronger trade-offs
for k-DNF resolution, matching those for resolution, could be proven by other means).

Theorem B.2 ([NR11]). Let f denote the exclusive or of k +1 variables. Then the projection
Rprojf cannot be space-faithful with respect to k-DNF resolution for any degree K < k.

To see why we cannot hope to use Rprojf to prove lower bounds for cutting planes, polyno-
mial calculus, or PCR, consider the following examples.

Example B.3. If we have variables x[1], x[2], x[3], . . . and make substitutions using binary ex-
clusive or ⊕2 to get new variables x[1]1, x[1]2, x[2]1, x[2]2, x[3]1, x[3]2, . . ., then the example

k∑
i=1

(x[i]1 − x[i]2) ≥ k (B.1)

shows that just a single CP-inequality can project an arbitrarily large conjunction x[1] ∧ x[2] ∧
· · · ∧ x[k]. Thus, here we have |D| = 1 while VarSp(Rproj⊕2

(D)) goes to infinity.

Example B.4. Again using substitutions with ⊕2, for polynomial calculus and PCR we have the
example

− 1 +
k∏

i=1

x[i]1x[i]2 (B.2)

3Although it is not important for this discussion, let us mention that when we use the notation xb in the
context of (k-DNF) resolution, this denotes the positive literal x if b = 1 and the negative literal x if b = 0.

13-10

showing that just two monomials can project the arbitrarily large conjunction x[1]∧x[2]∧ · · · ∧
x[k] if we use the projection in Definition 3.2.

As already mentioned in Open Problem 1, it would be very interesting to see whether other
projections could be constructed that preserve space for CP, PC and/or PCR, or whether there
are some fundamental obstacles here explaining why such an approach cannot work.

References

[ABRW02] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigder-
son. Space complexity in propositional calculus. SIAM Journal on Computing,
31(4):1184–1211, 2002. Preliminary version appeared in STOC ’00.

[BN08] Eli Ben-Sasson and Jakob Nordström. Short proofs may be spacious: An optimal
separation of space and length in resolution. In Proceedings of the 49th Annual
IEEE Symposium on Foundations of Computer Science (FOCS ’08), pages 709–718,
October 2008.

[BN11] Eli Ben-Sasson and Jakob Nordström. Understanding space in proof complexity:
Separations and trade-offs via substitutions. In Proceedings of the 2nd Symposium
on Innovations in Computer Science (ICS ’11), pages 401–416, January 2011. Full-
length version available at http://eccc.hpi-web.de/report/2010/125/.

[ET01] Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Information and
Computation, 171(1):84–97, 2001. Preliminary versions of these results appeared in
STACS ’99 and CSL ’99.

[HN12] Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: Amplify-
ing communication complexity hardness to time-space trade-offs in proof complex-
ity. In Proceedings of the 44th Annual ACM Symposium on Theory of Computing
(STOC ’12), May 2012. To appear.

[HPV77] John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space. Journal
of the ACM, 24(2):332–337, April 1977.

[Nor12] Jakob Nordström. On the relative strength of pebbling and resolution. ACM Trans-
actions on Computational Logic, 13(2), 2012. To appear. Preliminary version ap-
peared in CCC ’10.

[NR11] Jakob Nordström and Alexander Razborov. On minimal unsatisfiability and time-
space trade-offs for k-DNF resolution. In Proceedings of the 38th International Col-
loquium on Automata, Languages and Programming (ICALP ’11), pages 642–653,
July 2011.

13-11

http://eccc.hpi-web.de/report/2010/125/

	Quick Recap of Last Lecture
	How to Use Projections to Prove Space Lower Bounds
	Designing Projections for Resolution
	Space Lower Bounds and Length-Space Trade-offs for Resolution
	A Full Proof of Lemma 1.2
	A Look at Stronger Proof Systems

