
Current Research in Proof Complexity: Problem Set 5

Due: June 19, 2012. Submit as a PDF-�le by e-mail to jakobn at kth dot se with the
subject line Problem set 5: 〈your name〉. Solutions should be written in LATEX or some
other math-aware typesetting system. Please try to be precise and to the point in your
solutions and refrain from vague statements. In addition to what is stated below, the general
rules stated on the course webpage always apply.
Hints: For most or all problems, �hints� can be purchased at a cost of 5�10 points. In this
way, you can con�gure yourself whether you want the problems to be more creative and
open-ended, where sometimes a lot can depend on �nding the right idea, or whether you
want them to be more of guided exercises providing a useful work-out on the concepts of
proof complexity. If you do not solve a problem, there is no charge for the hint (i.e., it is not
deducted from the score on other problems).
Collaboration: Discussions of ideas in groups of two to three people are allowed�and in-
deed, encouraged�but you should write down your own solution individually and understand
all aspects of it fully. For each problem, state at the beginning of your solution with whom
you have been collaborating. Everybody collaborating on a certain problem is considered to
have purchased a hint for that problem if one of the collaborators has done so.
Reference material: For some of the problems, it might be easy to �nd solutions on the
Internet or in research papers. It is not allowed to use such material in any way unless
explicitly stated otherwise. You can refer without proof to anything said during the lectures
on in the lecture notes, except in the obvious case when you are speci�cally asked to show
something that we claimed without proof in class. It is hard to pin down 100% formal rules
on what all this means�when in doubt, ask the lecturer.
About the problems: Some of these problems are meant to be quite challenging and you
are not necessarily expected to solve all of them. As a general guideline, a total score of
around 140 points on this problem set should be enough to get a pass. Any corrections or
clari�cations will be posted on the course webpage www.csc.kth.se/~jakobn/teaching/

proofcplx11.

1 (10 p) Prove that if a CDCL solver uses the DECISION clause learning scheme as described
in [Atserias et al. '11] � i.e., learning the clause A1 in the notation used in the paper and in
our lectures � then the clause learned will be an asserting clause which only contains decision
variables and no implied variables. (We used this fact without proof in the lectures.)

2 (20 p) We saw in lecture 17 that using random restrictions of the right form, we can prove
size-space trade-o�s for pebbling formulas with XOR-substitution where the upper bounds hold
for both resolution and polynomial calculus and the lower bounds hold for PCR. Can the same
approach be used to obtain trade-o�s also for cutting planes? Show how to modify the proof or
explain why this does not work.

3 (30 p) Recall that a derivation in unit resolution is a derivation where for each application of
the resolution rule, one of the clauses is unit (i.e., has size 1). Prove that SpR(F `⊥) ≤ 3 if and
only if there is a unit resolution refutation of F .

Page 1 (of 5)

DD3501 Current Research in Proof Complexity � Winter 2011/12
Jakob Nordström

http://www.csc.kth.se/~jakobn/teaching/proofcplx11
http://www.csc.kth.se/~jakobn/teaching/proofcplx11

4 (40 p) Prove the properties of 1-empowerment and absorption crucially used in [Pipatsrisawat &
Darwiche '11] but which we just stated as Observation 9 without proof in our lectures. That is,
using terminology as in the lectures, prove the following:

4a If C ⊆ C ′, then C ′ is absorbed by C.

4b Adding more clauses to the knowledge base can absorb a 1-empowering clause but never
make an absorbed clause 1-empowering.

4c Every asserting clause is 1-empowering with respect to the knowledge base at the time of
its derivation with its asserted literal as empowering.

5 (50 p) The purpose of this problem is to compare the power of resolution and cutting planes,
and also to get some exercise in encoding combinatorial principles as CNF formulas.

5a Show that cutting planes can refute the pigeonhole principle formulas PHPm
n for m > n

with proofs in small size (which yields an exponential separation between cutting planes
and resolution).

Hint: Count the number of holes used by the pigeons and conclude that it is larger than
the number of pigeonholes available.

5b Let us now consider an alternative encoding of the pigeonhole principle where the pigeons
get access to their hole using keys, every key opens some (non-empty) subset of pigeon-
holes, and the keys should be distributed among the pigeons in such a way that every
pigeon can open only its own private hole. We will denote this formula by KPHPm,k

n for
�key pigeonhole principle� (or maybe more appropriately, albeit with a slight misspelling,
�konvoluted pigeonhole principle�).

As before we have m pigeons and n pigeonholes for m > n, but we also have k keys to
the holes, where k is (potentially much) larger than m. The formula KPHPm,k

n says that
no two pigeons should get the same key. If some pair of pigeons get some pair of keys,
then both of these keys are being used, but for privacy reason no two keys currently in use
should open the same pigeonhole.

Write down the CNF formula KPHPm,k
n as described above, using variables pi,` to mean

that pigeon i gets key `, h`,j to mean that key ` opens pigeonhole j, and u`,`′ to mean that
keys ` and `′ are both in use. (Note that there are some conditions on the variables which
are only implicit above, but which are necessary to capture the combinatorial principle as
described. Such conditions should be encoded in the same spirit as is done for PHPm

n .)

5c Can you use the CP-refutation in your solution of problem 5a to refuteKPHPm,k
n e�ciently?

If so, describe how to modify the CP-refutation of PHPm
n to achieve this, or else explain

why this more convoluted encoding of the pigeonhole principle seems harder for CP.

6 (60 p) In this problem we want to study one of the key lemmas in [Pipatsrisawat & Darwiche '11]
and the way it was presented in our lectures (as Lemma 16 or the �3rd key lemma�). In particular,
while proving the lemma the lecturer claimed that during the whole process of turning a literal
into non-empowering in the proof, any variable in the formula will be asserted by the CDCL
solver only once. In discussions after class, it was further claimed that this in turn implies that
we can absorb a clause after O

(
n2

)
con�icts, which would improve the O

(
n4

)
bound in the

polynomial simulation result to O
(
n3

)
. Your task is to verify these claims.

Page 2 (of 5)

DD3501 Current Research in Proof Complexity � Winter 2011/12
Jakob Nordström

(a) Slitherlink problem instance. (b) Solution.

Figure 1. Slitherlink puzzle with solution

6a Is it true that every variable gets asserted only once during the process to turn a literal into
non-empowering? For full credit, a correct formal proof of or convincing counter-example
to this claim is needed.

6b Can you show, using either a positive answer to the claim in Problem 6a (if that was what
you established), or possibly arguing by other means, that one can absorb a clause after
only O

(
n2

)
con�icts instead of O

(
n3

)
con�icts as proven in class? Again a correct proof

or convincing counter-example is needed for full full credit.

7 (80 p) Slitherlink is yet another one of those Japanese combinatorial puzzles that are fun to
study also in the context of SAT solving. Each Slitherlink puzzle consists of a rectangular lattice
of dots with some clues in various places in the form of integers between 0 and 3. The object
is to connect the dots surrounding each clue so that the number of lines equals the value of the
clue and also so that the lines around all clues form one continuous loop with no crossings or
branches. Empty squares without clues may be surrounded by any number of lines. An example
Slitherlink puzzle with solution is given in Figure 1.

For more information, including a more detailed description of the rules which might be help-
ful when solving this problem, see e.g. the Wikipedia page en.wikipedia.org/wiki/Slitherlink
(from which the example above has been taken). To get a feel for how to solve Slitherlink
puzzles by hand, see the tutorials at www.nikoli.com/en/puzzles/slitherlink/rule.html or
www.conceptispuzzles.com/index.aspx?uri=puzzle/slitherlink/tutorial.

The purpose of this problem is to use SAT solvers to solve Slitherlink puzzles. In your solution,
do not submit any code, but instead describe how the algorithm works. Place the actual code in
a directory in the AFS �le system where jakobn has reading and listing permission rl (as shown
by fs la .) . Note that permission l is needed for the whole path leading to the directory.
Make sure your code works in the KTH CSC Ubuntu Linux environment. Include a Make�le
in the directory, or a shellscript make that will compile your code. If there are problems with
any of the above, contact the lecturer to agree on some other technical solution. For the SAT
solving you should use MiniSAT. Some helpful practical information about MiniSAT and about
the standard DIMACS format used by MiniSAT and other SAT solvers can be found on the
webpage www.csc.kth.se/~jakobn/teaching/proofcplx11/minisat.php.

Page 3 (of 5)

DD3501 Current Research in Proof Complexity � Winter 2011/12
Jakob Nordström

http://en.wikipedia.org/wiki/Slitherlink
http://www.nikoli.com/en/puzzles/slitherlink/rule.html
http://www.conceptispuzzles.com/index.aspx?uri=puzzle/slitherlink/tutorial
http://www.csc.kth.se/~jakobn/teaching/proofcplx11/minisat.php

7 x 7

1 - 2 - - - 3

- 3 - - 0 - 3

3 - - - 2 - 3

- - - - - - -

3 - 3 - - - 2

2 - 3 - - 2 -

2 - - - 3 - 3

(a) Input format.

--- -----

1| 2| | 3|

- - -

3| 0 |3

--- - -

|3 | |2 3|

----- - -

| |

- ----- -

|3| |3 2|

| | - --- |

|2| 3| | 2| |

| --- - | |

|2 3| |3|

--------- -

(b) Output format

7a Describe how Slitherlink puzzles can be solved using a SAT solver as a subroutine. Your
account should be brief and concise, but should in principle contain enough information for
a competent programmer to translate the description into working code without having any
knowledge of Slitherlink (other than what problem instances look like). In particular, do
not leave out any crucial details in any translations of problem instances to CNF formulas.

Hint: There are di�erent approaches here, in that you can use either single calls or repeated
calls to the SAT solver. Be warned that there are some subtleties involved to get a solution
that is guaranteed to be correct, and for full credit you need to deal with these subtleties.
In case you happen to consider several di�erent options, describe what these are and discuss
what you think are possible pros and cons. (All such variants should be correct, of course.
Also, this is optional in the sense that only one correct solution is needed for full credit.)

7b Write a program that implements the algorithm you describe in your solution to problem 7a.
If given no arguments, the program should read a Slitherlink instance from standard input
and write the solution on standard output (or, if no solution exists, print a message to this
e�ect).

The format of the Slitherlink input �le is as in Figure 2(a). That is, the �rst line
<int> x <int> speci�es the dimensions of the Slitherlink puzzle grid (rows x colums).
Then the puzzle grid follows, row by row, but with a blank line before each row with clues
(to simplify comparison of the problem instance with the solution printed as described
below). Each row starts with a blank and then contains the clues separated by further
blanks. A dash instead of a number signi�es an empty square without any clue. Each row
is terminated by a newline character.

To print the solution, �rst erase the �rst line in the input �le and convert all dashes encoding
non-clues to blanks. Then use dashes and horizontal bars to indicate the Slitherlink loop
as shown in Figure 2(b).

Page 4 (of 5)

DD3501 Current Research in Proof Complexity � Winter 2011/12
Jakob Nordström

7c Use your implementation in problem 7b to investigate if and how MiniSAT can be used to
solve Slitherlink puzzles e�ciently.

There are tons of di�erent Slitherlink instances on the web � can you �nd an instance that
is not solved within 5 minutes of processor time on u-shell.csc.kth.se as reported by
e.g. top? (Note that we are interested in actual processor time here, not wall-clock time.
Also note that here it is required that the hardness should not be the result of an obviously
ine�cient CNF encoding, but should in some intuitive sense be intrinsic to the instance.)

What happens if you take a solvable instance and add an inconsistent clue somewhere �
does the instance get harder or easier?

In case you were considering di�erent options for your algorithm, do they seem to make
any di�erence in practice? (You do not need to answer this �nal question in order to get
full credit.)

To get you started, the directory www.csc.kth.se/~jakobn/teaching/proofcplx11/files
contains four �les slitherlink1.txt to slitherlink4.txt with (solvable) Slitherlink puz-
zles in the format described above. Note, however, that for full credit you are required to
evaluate your program on a broader set of benchmarks not limited to these example in-
stances.

Page 5 (of 5)

DD3501 Current Research in Proof Complexity � Winter 2011/12
Jakob Nordström

http://www.csc.kth.se/~jakobn/teaching/proofcplx11/files

