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Abstract
Adding interactive capabilities to pedestrian
wayfinding systems in the form of spoken di-
alogue will make them more natural to hu-
mans. Such an interactive wayfinding sys-
tem needs to continuously understand and in-
terpret pedestrian’s utterances referring to the
spatial context. Achieving this requires the
system to identify exophoric referring expres-
sions in the utterances, and link these expres-
sions to the geographic entities in the vicin-
ity. This exophoric spatial reference resolution
problem is difficult, as there are often several
dozens of candidate referents. We present a
neural network-based approach for identifying
pedestrian’s references (using a network called
RefNet) and resolving them to appropriate geo-
graphic objects (using a network called Space-
RefNet). Both methods show promising results
beating the respective baselines and earlier re-
ported results in the literature.

1 Introduction

Remember yourself being lost in a completely un-
familiar city without knowing the local language
or acquaintances that can help? Being close to
desperate, you ask a passerby for a help and get
an answer similar to the following:

Just go forward until you see a McDon-
ald’s on the corner. There you turn right
and keep straight until the old Gothic
style church. A tall glass building near
it is exactly what you need.

Such wayfinding instruction is a typical example
of how humans guide each other in a city, rely-
ing mostly on landmarks in the vicinity (Cornell
and Greidanus, 2006; Goodman et al., 2004; May
et al., 2003; Denis, 1997; Lynch, 1960).

On the contrary, a current generation of naviga-
tion systems aiding pedestrian wayfinding gener-
ally makes use of quantitative information based

on GPS signals, e.g. distances, cardinal directions
and street names. The same instruction rephrased
by such system would sound as follows:

Head north on West Avenue. Turn right
at the corner. Continue 150 meters
straight until East Avenue 29. You’ve
reached your destination.

Such instructions are presented to a pedestrian as
a sequence on a screen (possibly voiced as well)
supplemented by a map with a moving marker in-
dicating pedestrian’s position.

The approach presented above, referred to as
turn-by-turn navigation, does not resemble a hu-
man wayfinding process and thus can be perceived
as unnatural and more complicated than it should.
In our opinion, making pedestrian’s experience
more natural should be based on the following two
observations.

First, a wayfinding is an inherently interactive
process, e.g. we need to know if a person is lost,
if the instruction is not clear enough, etc. Human
guide guarantees such interactivity, since wayfind-
ing happens in a dialogue, hence a wayfinding sys-
tem should interact with a pedestrian by means of
a spoken dialogue.

Second, humans have difficulties understanding
instructions based on quantitative characteristics
of a spatial environment (such as distance or an-
gles) (Ross et al., 2004), (Moar and Bower, 1983).
Such instructions make humans less confident in
their ability to reach the goal correctly. Hence,
they tend to rely more on qualitative ones, such as
salient geographical objects (landmarks), by sim-
ply referring to them (Denis, 1997). Such ap-
proach can be called landmark-by-landmark nav-
igation. Furthermore, landmarks can be used not
only when giving route descriptions, i.e. serving
as a guide, but also when being guided. For in-
stance, when giving a reassuring confirmation to



the guide, such as “Yes, I can see a tall glass build-
ing that you’ve mentioned before”, or describing
the proximal surroundings when got lost (“I be-
lieve I’m lost, but I see a pizzeria to my right”).

A prerequisite for providing such interaction ca-
pabilities is being able to identify the landmarks
referred to by phrases as “a tall glass building”
or “a pizzeria to my right”. Such kind of phrases
is called referring expressions (RE) and the land-
marks these phrases refer to are called referents.
A task of matching a referring expression with
its referent(s) is called reference resolution (RR).
Guiding humans in a real city environment re-
quires resolving exophoric spatial references, i.e.
those referring to spatial objects outside of the dis-
course. The focus of this paper is on designing the
method for solving this task.

The main contribution of this paper is a new
method for resolving exophoric spatial REs, con-
sisting of two substeps:

• a method for identifying exophoric spatial
REs in spoken utterances;

• a method for resolving exophoric spatial REs
to the appropriate referents, represented as 0,
1, or more geographic entities.

2 Background

Pedestrian wayfinding is an interactive, problem-
solving process by which people use environmen-
tal information to locate themselves and navigate
from place to place (Vandenberg et al., 2016). De-
spite the ubiquity of wayfinding for pedestrians,
the navigation systems aiding the process, usually
mobile applications, generally use methods offer-
ing a turn-by-turn navigation, described in the
previous section. Such approach limits possibili-
ties for interaction with the system along the route
and forces the user to pay constant attention to
the map on the screen. Such design can also lead
to an increasing spatial anxiety (an anxious feel-
ing when navigating in unfamiliar environments),
which was shown by several studies (Hund and
Minarik, 2006; Lawton and Kallai, 2002) to neg-
atively influence pedestrian’s wayfinding perfor-
mance.

In this paper we suggest to remove pedestrian’s
dependency on the digital maps by interacting
with a pedestrian by means of a spoken dialogue
offering a landmark-by-landmark navigation. In
fact, a number of studies (Cornell and Greidanus,

2006; Goodman et al., 2004; May et al., 2003; De-
nis, 1997; Lynch, 1960) have confirmed that hu-
mans reason about a spatial environment in qual-
itative terms, mostly relying on landmarks. As
stated in (May et al., 2003), pedestrians were ob-
served to use distances and street names much less
frequently than landmarks when describing a city
environment. Such approach have been observed
to be more efficient for older people, who tend to
find a way quicker when using a landmark-based
navigation aid (Goodman et al., 2004). Pedestri-
ans with cognitive impairment have been observed
to rely on landmarks during navigation as well
(Sheehan et al., 2006).

As previously stated, a landmark-based naviga-
tion requires being able to resolve exophoric spa-
tial references. Exophoric reference resolution is
not a new task in itself, but it has primarily been
explored in unrealistic environments containing
distinct objects that can be described by a rela-
tively small number of visual features, e.g. recog-
nizing one of 36 Pentomino puzzle pieces in (Ken-
nington and Schlangen, 2015), one of 7 Tangram
puzzles in (Funakoshi et al., 2012) or an object in
a 3D treasure-hunt game in (Engonopoulos et al.,
2013). Only recently the research started to focus
on resolving references to objects in real environ-
ments. (Schlangen et al., 2015) try to identify ob-
jects in the images taken from different locations
around the world. (Götze and Boye, 2017) deal
with reference resolution in a complex city envi-
ronment. (Chen et al., 2019) present a TOUCH-
DOWN dataset, where the agents navigate in a
real-life visual urban environment trying to find a
hidden object based on a number of cues formu-
lated in a natural language. The presented task
is then called spatial description resolution, i.e.
given a set on instructions find the referred place,
whereas reference resolution aims at resolving all
references mentioned in the given instructions as
well.

A number of research papers on exophoric ref-
erence resolution (eRR) decompose the problem
into three subtasks: identifying referring expres-
sions (RE), constructing a search space of candi-
date referents and resolving the found references.
Hence, the descriptions of the existing eRR meth-
ods are decomposed in the same way.

As mentioned above, most of the studies on
eRR have been conducted in an unrealistically
small toy domain, hence REs can be identi-



fied manually, as in (Engonopoulos et al., 2013),
(Funakoshi et al., 2012) or (Kennington and
Schlangen, 2015). (Schlangen et al., 2015) and
(Götze and Boye, 2017) addressed RR in a re-
alistic domain, but all REs were manually anno-
tated as well. (Schutte et al., 2010) worked on re-
solving REs in simple manipulation instructions,
e.g. “hit that red button”, and identified REs us-
ing a set of simple regular expressions. (Prasov
and Chai, 2010) used syntactic parsing on a word
confusion network, constructed out of n-best list
of alternative speech recognition hypotheses. All
non-pronominal NPs were then detected and said
to be a set of exophoric REs.

In most research studies, the search space of
candidate referents is the same for all utterances
and consists of a limited number of objects, e.g.
(Kennington and Schlangen, 2015), (Funakoshi
et al., 2012), (Engonopoulos et al., 2013), (Ma-
tuszek et al., 2014). In these studies all candi-
date referents (candidate set) have a limited num-
ber of distinct properties (color, shape, size, etc)
and hence each object in the search space is ei-
ther represented as a combination of such prop-
erties or simply as a numeric identifier (as the
search spaces are very small). (Schlangen et al.,
2015) worked with resolving references to a much
more diverse real-life objects in images containing
object segmentations. The referred objects come
from over 80 different categories and only around
2% of the objects comprise geographical entities,
e.g. benches, traffic lights, fire hydrants, etc., that
are of interest in the present article. The candi-
date set for every referring expression was set to
contain all object segmentations of the given im-
age and every candidate is encoded using a deep
convolutional neural network augmented with a
number of extra features. Similarly, (Götze and
Boye, 2017) have dealt with a constantly changing
candidate set of diverse geographical objects in
a pedestrian’s vicinity. Each geographical object
was then represented by a pedestrian’s position
and a number of properties inferred from Open-
StreetMap (OSM) (Haklay and Weber, 2008).

In most of the studies, eRR itself is solved by
taking the stochastic approach by training a gener-
ative probabilistic model to estimate the distribu-
tion over a set of candidate objects and then find
the most probable intended referent as:

O∗ = argmax
O

P (O|U, S), (1)

where U is a representation of an utterance con-
stituting RE, S is the search space of possible
referents, O is an object in the search space,
O∗ is the predicted referent. Such a stochastic
approach is pursued, for instance, in (Kenning-
ton and Schlangen, 2015), (Engonopoulos et al.,
2013), (Matuszek et al., 2014), (Funakoshi et al.,
2012), (Schlangen et al., 2015), (Götze and Boye,
2017).

3 Approach

Also in this paper, spatial reference resolution is
seen as a three-stage problem. First, referring ex-
pressions should be identified in the utterances and
encoded into a numerical representation. We refer
to this stage as spatial referring expressions iden-
tification (sREI). This is achieved by a neural net-
work, referred to as RefNet. Then the candidate
set of referents should be constructed (described
further in Sect. 4). Finally, the found referring
expressions should be resolved to the appropriate
referents, which we call a spatial reference resolu-
tion (sRR) stage. This adds a spatial dimension to
the first task, hence a method name SpaceRefNet
(also a neural network).

sREI (Sect. 3.1) is seen as a classification prob-
lem, where each word is to be assigned one of
the three labels, B-REF (beginning of RE), I-REF
(inside of RE), O (outside of RE), inspired by the
BIO labeling strategy for named entity recognition
(NER).

sRR (Sect. 3.2) is seen as a set of binary clas-
sification problems, each assigning a pair of an
RE and a candidate object to either the positive
class, if the candidate is predicted as a referent for
the RE, or to the negative class, otherwise. Both
stages use the same dataset, described further in
Sect. 4, pre-processed in different ways.

3.1 Referring expression identification

Let us now describe the way RefNet operates (see
Fig. 1). We start by padding (with a special word
<pad>) or trimming every utterance to some fixed
sentence length Ls. Each utterance is fed into
RefNet word by word, as a part of a training
batch. Each word is encoded using pre-trained
Dw-dimensional distributional word embeddings
(we are using GloVe (Pennington et al., 2014)).
Additionally, each word is split into characters,
mapped to the pre-trained D̃c-dimensional char-
acter embeddings, trained on the SpaceRef corpus



using the Random Indexing technique (Kanerva
et al., 2000) for a character level. These character
embeddings are then fed into a bidirectional recur-
rent neural network (BiRNN) with gated recurrent
units (GRUs), having rectifier activation functions
(ReLUs) and Hc-dimensional hidden states. This
BiRNN produces (Dc = 2 × Hc)-dimensional
character-level word embeddings by concatenat-
ing the hidden states of forward and backward
GRUs.

Figure 1: RefNet architecture diagram. The purple
blocks specify the pre-trained layers; thick arrows em-
phasize that 2D tensors of dimensionality specified to
the left of arrows are passed; the blue block denotes
RefNet encoder. (Best viewed in color)

The motivation behind taking character-level
embeddings into account is that some words in
an RE will inevitably lack word vectors. In such
cases, the corresponding word embeddings are as-
signed to be zero vectors, leaving character-level
embeddings as the only source of information.
This amendment should be particularly helpful in
at least the following two cases:

• if an RE is a proper name of a geographical
object, pronounced in the language, different
from the dominant language of the utterance,
e.g. “Bahnstraße”, “Östvägen”;

• if an RE is a composite name with one of the

constituents being recognized as a valid RE,
e.g. “supermegamarket”.

The final word encoding is then a concatena-
tion of the word embedding and the character-
level word embedding, resulting in a (Dw +
Dc)-dimensional vector. These word encodings
are then collected into a sentence representation,
which is a Ls × Dw matrix. This sentence rep-
resentation is fed row-wise as a sequence into an-
other BiRNN (with forward and backward GRUs
with ReLUs having Hs hidden units).

In order to incorporate the contextual informa-
tion, we want to represent a sentence as a ma-
trix, the ith row of which contains the informa-
tion about the sub-sentence up until, and includ-
ing, the ith word. To clarify, let us say the sentence
“I see a building” is being processed (the padding
step is omitted for the sake of brevity), then we
are interested in vectorizing all its sub-sentences
in the forward direction, i.e. “I”, “I see”, “I see a”,
“I see a building”, and in a backward direction,
i.e. “building”, “building a”, “building a see”,
“building a see I”. To achieve that, we concate-
nate forward and backward memory cells (which
are equivalent to hidden states in case of GRUs) at
each time step i. This results in (Ds = 2 × Hs)-
dimensional sub-sentence representations, which
are concatenated into Ls ×Ds matrix, referred to
as sub-sentence encoding. The sub-network used
for obtaining such encoding will be referred to as
RefNet encoder (blue block in Fig. 1).

The rationale behind using sub-sentence encod-
ing is that the same word can be either a part of RE
or not, depending on the preceding and succeeding
words. Consider the following two passages:

1. “You can see a train station to the right, it
is for commuter trains and is called
City’s Eastern.”

2. “You can see a train departing from the sec-
ond track. It one of the city’s eastern parts.”

Finally, the sub-sentence encoding is fed into
the softmax layer, which produces a Ls×3 matrix
with ith row representing a probability distribution
over the possible labels, i.e. O, B-REF, I-REF,
for the ith word. RefNet is trained by minimiz-
ing the cross-entropy loss using Adam optimiza-
tion method, presented in (Kingma and Ba, 2014).



3.2 Reference resolution
The resolution step implies matching a textual re-
ferring expression with a candidate geographical
object. For performing such reference resolution
(sRR) we employ another neural network archi-
tecture, dubbed as SpaceRefNet (see Fig. 2).

Figure 2: SpaceRefNet architecture diagram. The pur-
ple block is the pre-trained layer; the dashed arrows
denote optional connections (Best viewed in color)

SpaceRefNet takes as an input a referring ex-
pression (RE) and a candidate geographical ob-
ject, denoted as the candidate. The RE is en-
coded using the pre-trained RefNet encoder, re-
sulting in a Ls × Ds matrix, containing forward
and backward Ds

2 -dimensional encodings for ev-
ery sub-sentence. The final RE encoding is then
the concatenation of the vectors containing for-
ward and backward sub-sentence encodings for
the whole sentence excluding paddings (the se-
lected vectors are shown in a dark red in Fig. 2),
resulting in Ds-dimensional vector. The input can-
didate is fed as only an OSM representation, or
together with the distance and/or sweep features
(see details in Sect. 4). The vectors obtained after
encoding both RE and candidate are then concate-
nated and passed to the fully connected layer with
Nh hidden units having rectifier activation func-
tions. The final fully connected softmax prediction
layer produces the probability of a match between
the RE and the candidate.

SpaceRefNet is trained by optimizing the

weighted cross-entropy loss using the Adam op-
timization method. Weights for the loss function
are introduced, because the SpaceRef dataset has
a high class imbalance – it has much more nega-
tives (when a candidate and an RE mismatch) than
positives (when a candidate and an RE match). To
counteract this, a contribution of each data point (a
candidate and an RE) to the global loss is adjusted
using class-dependent multiplication factors (neg-
atives receive lower weights than positives), allow-
ing us to penalize the network more for the mis-
takes made on positive data points.

Such an architecture allows handling the cases
when an RE has any number of referents (0, 1,
or more) in the candidate set, which is an advan-
tage compared to previously developed methods
that required more ad-hoc solutions, e.g. setting
an experimentally selected probability threshold in
(Götze and Boye, 2017).

4 Data and processing

The utilized data consists of three datasets:

• a slightly corrected version of a publicly
available SpaceRef dataset (Götze and Boye,
2016) (used for RefNet and SpaceRefNet
training);

• a number of walks, containing the subjects’
descriptions of their vicinity, which is re-
ferred to as WalksRef dataset1 (used for
RefNet training);

• a number of dialogues with manually anno-
tated REs, referred to as DialogsRef, taken
from the publicly available Cornell Movie-
Dialogs Corpus (Danescu-Niculescu-Mizil
and Lee, 2011) and DailyDialog corpus (Li
et al., 2017) (used for RefNet training only).

The SpaceRef dataset contains descriptions of
immediate geographical environment given by
pedestrians following predefined routes. REs in
the spoken utterances were manually annotated.
GPS information representing a physical context
is also available.

Referring expressions (REs) in SpaceRef are
mostly noun phrases (NPs). Some example utter-
ances with the referring expressions (underlined)
include:

1is publicly available at https://traktor.csc.
kth.se

https://traktor.csc.kth.se
https://traktor.csc.kth.se


Figure 3: Data processing for training. The rows in bold denote a positive data point for SpaceRefNet training, i.e.
the one where RE describes the given OSM entity.

• indefinite and definite NPs, e.g. “...
walking down some stairs”, “there is
a fountain to my left”;

• NPs with interjections, which should be ex-
cluded from an RE, e.g. “I am near eh the red
eh brick building”;

• demonstratives, e.g. “... standing to the right
of this building”;

• proper names, e.g. “... I am now passing
7-Eleven store”.

However, not all NPs in these categories are REs,
for instance,

• in the utterance “Do you know if there is a
subway station nearby?”, “a subway station”
is not an RE, since it has no intention of re-
ferring to a specific geographic object;

• in the utterance “This architectural style I like
the most”, a demonstrative “this architectural
style” is not an RE;

• in the utterance “The statue in front of the li-
brary portrays Carl Linnaeus”, a proper name
“Carl Linnaeus” is not an RE either.

SpaceRef and WalksRef contain mostly the ut-
terances with at least one RE in them. Hence,
the number of negative examples (NPs that are not
REs), was not sufficient for training the neural net-
work. With this in mind, the DialogsRef corpus
was annotated providing more negative examples
to improve the robustness of the trained models.

The candidate sets were regenerated for each
referring expression by first computing lines-of-
sight around the pedestrian location in 1 degree

steps using a “visibility engine”, inspired by (Boye
et al., 2014). The lines-of-sight were computed in
every direction between -100 and 100 degrees with
respect to the pedestrian’s walking direction. The
closest OSM nodes and ways, intersecting with
these lines-of-sight, were included into the candi-
date set as OSM identifiers.

Each candidate referent is then encoded using
the following features:

• 427 binary OSM type features, as described
in (Götze, 2016, Subsection 4.3.2).;

• the distance feature: the logarithm of a dis-
tance between pedestrian’s and object’s loca-
tions;

• the sweep feature: a number of lines-of-sight
intersecting with an object divided by 360.

The last two features are referred to as extra geo-
features and a numeric vector consisting of these
429 features – as geoencoding.

The available data were transformed differently
for training RefNet and SpaceRefNet (see Fig. 3).
RefNet training requires the data to be labeled us-
ing BIO-REF labeling strategy (as mentioned be-
fore), i.e. each word in an utterance is either at the
beginning of an RE and gets a label B-REF, or in-
side an RE and gets a label I-REF, or is not a part
of an RE and gets a label O. SpaceRefNet training
requires labeling of tuples (RE, OSM entity) with
a binary label (1 if RE describes this OSM entity,
0 otherwise).

Finally, note that the training data for Space-
RefNet are heavily (and necessarily) skewed: for
every referring utterance from the user, there will
be about 30 candidate referents to consider, and in



most cases all of them but one are not the referent
the user intended. Thus, there will always be many
more negative examples than positive examples in
any dataset.

5 Models for comparison

5.1 Referring expression identification
baseline

The REs are mostly represented by the noun
phrases (NP), so the natural baseline is just return-
ing every found NP as a candidate RE. The base-
line was implemented as follows:

• a part-of-speech (POS) tag was defined for
each word in an utterance using the Stan-
ford POS tagger for English (Toutanova et al.,
2003), to be more specific, the wsj-0-18-
bidirectional-distsim version was used;

• the POS-tagged utterance is then parsed us-
ing NLTK RegexpParser (Bird et al., 2009),
supplied with the following grammar:

NP: {
(<DT>?(<RB.*>*<JJ>*)*<NN.*>+<IN>*)+

}

• all found NPs are returned as REs.

5.2 Reference resolution baseline

The natural RR baseline is just querying the OSM
database and checking for geographical objects
with an OSM property containing at least one
word from the utterance (except stop words) ei-
ther in a property key or value. For example, con-
sider two utterances, (1) “a very nice big park”
and (2) “a huge green area”, are being matched
with the geographical object “Stanford Arbore-
tum” (see Fig. 4). The utterances are first split
by space and then all the stop words are removed.
The result would be as follows: (1) {very, nice,
big, park} and (2) {huge, green, area}.

Each word is then checked against all proper-
ties of the OSM object (both keys and values are
checked). The first utterance will then be matched
with “Stanford Arboretum”, because the “leisure”
tag has value “park”, which is part of the utter-
ance. The second utterance will not be matched,
since none of the words matches any of the prop-
erty keys or values.

Figure 4: OpenStreetMap (OSM) representation of
“Stanford Arboretum”

6 Experimental results

In all experiments the networks were trained for a
maximum of 100 epochs with the early stopping
(patience of 5 epochs).

6.1 Spatial RE identification
A RefNet was trained on the SpaceRef, Walks-
Ref and DialogRef corpora. The data was split
into training set (around 90% of the data con-
taining around 90% of REs) and a test set (the
remaining data). RefNet has a large number of
hyper-parameters making a grid search computa-
tionally infeasible. Instead, some of the hyper-
parameters were fixed to the values found through
manual experiments and the others were found us-
ing a random search (Bergstra and Bengio, 2012).
The hyper-parameter space was searched during
60 random trials evaluating RefNet’s performance
for each of hyper-parameter’s combination using
5-fold cross-validation.

The model’s performance was assessed by com-
puting precision and recall, which can be done
in several ways. The most straightforward way
is to consider a word and its BIO-REF label as
one datapoint, and compute precision and recall
based on this. However, our aim is to measure
how well the network identifies full referring ex-
pressions. Therefore, we’ve considered one data
point being a tuple of all words in the referring ex-
pression together with their respective labels. The
datapoint is then considered as a true positive only
if all the words in the RE are correctly labeled (ex-
act match). In order to assess the magnitude of
method’s errors, we say that a partial match oc-
curs if the starting word is correctly labeled and
there are no more than 2 errors in the rest of the



expression.
During the experiments the batch size was fixed

to 128, the maximum sentence length set to 100
and maximum word length to 30. The best-
performing RefNet model found after the per-
formed hyper-parameter search had 24 hidden
units on the character-level BiRNN layer, 51 hid-
den unit on the sentence-level BiRNN layer, a
learning rate of 0.002. A regularization in the form
of dropout was applied with the probabilities of
keeping the input, the state and the output being
0.7, 0.75, 0.95 for the character-level BiRNN and
0.8, 0.95, 0.95 for the sentence-level BiRNN re-
spectively. The found RefNet model achieved the
following performance (averaged over 5 folds):

• a precision of 0.7846 (partial precision of
0.8083);

• a recall of 0.6608 (partial recall of 0.784).

Evaluating the same model on the test set re-
sulted in a better performance compared to the
baseline (see Table 1).

Metric Baseline RefNet
Correct sentences (%) 21.02 77.08
Precision 0.1204 0.5457
Recall 0.2997 0.5531
Partial precision 0.1663 0.7204
Partial recall 0.4142 0.7302

Table 1: Performance of different methods for solving
spatial referring expression identification (sREI) task
on the test set

6.2 Spatial reference resolution
SpaceRefNet was trained exclusively on the
SpaceRef corpus. The data were split into train-
ing set (around 80% of the data), validation set
(around 10% of the data) and a test set (the re-
maining data). SpaceRefNet has a smaller num-
ber of hyper-parameters than RefNet, but a higher-
dimensional input data (429 dimensions + RE en-
coding size). Hence, the combination of random
search with cross-validation becomes computa-
tionally infeasible. Given the nature of SpaceRef
data, i.e. the subjects walking along the routes
in the same vicinity, the datapoints are more ho-
mogeneous compared to DialogRef and WalksRef
used for RefNet training. Keeping in mind ev-
erything mentioned above, hyper-parameter space
was searched using a combination of random and

manual search relying on the performance on the
held-out validation set.

During random search, the batch size was fixed
to 256. The best found SpaceRefNet model had
32 hidden units, negatives weighted with 0.25 and
positives – with 1 in the loss function, a learning
rate of 0.001 and used both distance and sweep
features. The model’s performance was evalu-
ated by computing precision, recall and F1-score
for positives (matches between an RE and a can-
didate) and negatives (mismatches). The perfor-
mance on the validation set was:

• for positives, precision of 0.5854, recall of
0.4444, F1-score of 0.5053;

• for negatives, precision of 0.9860, recall of
0.9748, F1-score of 0.9804;

Evaluating the same model on the test set re-
sulted in a better performance compared to the
baseline and previously reported results in the lit-
erature (see Table 2). Additionally a percentage
of completely correctly labeled sentences is pro-
vided.

Metric Baseline WAC SpaceRefNet
Prec. (p) 0.5588 0.40 0.6105
Rec. (p) 0.2043 0.45 0.6237
F1 (p) 0.2992 0.42 0.6170
Prec. (n) 0.9757 0.98 0.9883
Rec. (n) 0.995 0.98 0.9876
F1 (n) 0.9853 0.98 0.9879

Table 2: Performance of different methods for solving
spatial reference resolution (sRR) task on the test set
(“(p)” stands for positives, “(n)” stands for negatives),
“WAC” stands for words-as-classifiers method (results
reported in (Götze and Boye, 2017)).

7 Discussion

The designed methods have shown promising re-
sults in solving exophoric spatial reference reso-
lution (sRR) beating the respective baselines and
earlier reported results in the literature. It should
be noted that sRR is a complicated task with non-
trivial subproblems. Identifying REs in spoken
utterances gets complicated because of multiple
challenges:

• unclear sentence segmentation in spoken ut-
terances results in the utterances like “I am
passing the shop on my left on my right



there is a bank”, the phrase “on my left” de-
scribes the RE “the shop”, whereas the phrase
“on my right” describes “the bank”;

• ASR errors can lead to the utterances like
“I’m crossing the street on my rights”;

• interjections and self-corrections result in ut-
terances like “there is another shop eh called
ehm jer- jersey shop”.

A problem arises because of the possible differ-
ences in the interpretation. Consider the utterance
“on my right is the embassy of Poland in an old
fantastic villa”. Depending on the interpretation,
one might find either two REs “the embassy of
Poland” and “an old fantastic villa” referring to the
same geographic object or only one RE “the em-
bassy of Poland in an old fantastic villa” referring
to the same object. Such interpretation differences
have not been considered while evaluating RefNet.

Resolving spatial references is even more tricky,
since each found RE has mostly only one correct
referent out of 30 candidates on average, making
data very unbalanced. Furthermore, one RE can
have multiple referents, e.g. the streets often con-
sist of many different parts in OSM, or have no
referents, e.g. some specifics about the geographi-
cal objects (“a big clock on the wall of the univer-
sity”), or outdated information.

Ongoing work includes incorporating this refer-
ence resolution model into our wayfinding spoken
dialogue system and collecting more data to im-
prove the model.
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