Declarative Diagnosis of Constraint Programs:
an assertion-based approach

Johan Boye, Wilodek Drabent, Jan Matuszynski*

April 21, 1997

Abstract

This paper discusses adaptation of the declarative diagnosis techniques for
the use in constraint logic programming. The objective is to show how the
well-known concepts are to be modified in this setting. In particular, the paper
outlines basic algorithms for diagnosing incorrectness errors and insufficiency
errors for constraint programs over arbitrary domains.

The main focus is on defining kinds of assertions needed to facilitate the
task of answering of debugger queries. The examples illustrate the use of the
proposed assertions in the declarative diagnosis algorithms for finite domain
constraint programs.

1 Introduction

How to debug constraint logic programs is an important practical problem. Due
to the complexity of the operational semantics of such programs, the information
obtained by tracing the execution is difficult to understand. The alternative idea of
declarative diagnosis, proposed for logic programs (see e.g. [19, 14, 17]), is applicable
also in the case of constraint programs [16, 20]. However, the declarative diagnosis
algorithms assume that the user is able to answer queries whether or not certain
intermediate results of the computation correspond to her expectations. In practice,
such questions may be very complex and virtually impossible to answer. We believe
that this approach is unrealistic even for moderately sized programs.

This paper proposes an alternative approach where the user has a possibility of
answering queries indirectly, by formulating simple assertions about the expected
results. We will not commit ourselves to any specific assertion language, but an
obvious possibility is to state assertions as additional constraints or small constraint
programs. In this case, the capabilities of the constraint solver may be exploited to
answer the queries. The use of assertions in declarative diagnosis of Prolog programs
has been already advocated in our previous work [11, 12] but the assertions used
there are different from those considered in this work.

In the framework of declarative diagnosis, two kinds of error symptoms are
distinguished:

e An incorrectness symptom, where the program computes a result which is not
expected by the user;

*Linkoping University, Sweden; janma@ida.liu.se. The second author is also affiliated at
Institute of Computer Science, Polish Academy of Sciences, Warsaw; drabent@ipipan.waw.pl.
This work was partly supported by ESPRIT project DiSCiPL (22532). The second author was
also supported by Polish Academy of Sciences.

incorrectness
diagnosis

insufficiency
diagnosis

e An insufficiency symptom, where a program fails to compute some results
expected by the user, after traversing whole search space (which must thus be
finite).

Figure 1 shows the general situation.

Computed

Expected answers

answers

N AN

[0

7

insufficiency symptoms

AN

incorrectness symptoms

Figure 1: Error symptoms

The user initiates a diagnosis session when she observes an error symptom. In
case of incorrectness, the proof tree resulting from the computation is analysed, and
the aim of the diagnosis is to find an erroneous clause in the program. This kind
of diagnosis is called incorrectness diagnosis. In case of insufficiency, the search
space for a given goal is to be analysed. The aim in this case is to identify a unique
predicate whose definition must be extended to avoid the insufficiency symptom that
triggered the diagnosis. This insufficiency diagnosis also produces a constraint, that
gives more precise information about the source of the problem.

When diagnosing incorrectness, the user has to tell the diagnoser if given com-
puted results are correct or not. When diagnosing insufficiency, the user has to say
whether or not some answers are missing in the set of all answers computed for a
given goal. These two kinds of questions are of different nature and if we want to
answer them by assertions, different kinds of assertions may be needed. The paper
shows that in incorrectness diagnosis assertions specifying universal properties of
the computed answers may be useful. A property which should be satisfied by every
computed answer determines a superset of the set of correct answers and is called
a superset assertions. Any answer which does not have the required property is
thus incorrect. On the other hand, when diagnosing insufficiency we may state that
there should be a computed answer satisfying certain property. Such an ezisten-
tial assertion may be very useful for providing an evidence that some answers are
missing.

The paper is organised as follows. Section 2 provides some basic notions concern-
ing constraint logic programs. Section 3.1 outlines our approach to incorrectness
diagnosis with assertions, and section 3.2 discusses insufficiency diagnosis with as-
sertions. Sections 4 and 5 outline some future research and discuss related work.

A running example of a simple constraint program (n queens) is used as an
illustration of the approach.

2 Constraint Logic Programs

This section summarises some formal notions needed for a precise statement of the
method. The reader familiar with foundations of constraint logic programming may
directly proceed to Section 3.

As stated above, the declarative diagnosis is triggered when the user encounters
a discrepancy between her expectations and the actual outcome of a computation.
But outcomes of computations can be characterised by a declarative semantics,
without referring to any specific model of computation. In our approach, this refer-
ence semantics used for comparison with user expectations will be the least D-model
semantics (see e.g. [15]). On the other hand, for localisation of errors we will use
the notions of proof tree and search space, which can be linked to computations.

2.1 Syntax

We will consider definite programs interpreted over some a priori given domains,
called the constraint domains.

A constraint domain is a pair (£,D) where £ is a first-order language with
equality, and D is a domain (a set). All function symbols of £ are given a fixed
interpretation on D.

The predicate symbols of £ are divided into two disjoint sets:

e constraint predicates, which are given a fixed interpretation in D. These in-
clude the symbol =, interpreted as identity.

o defined predicates, which may occur in program clause heads and for which
the user has an intended interpretation (on D)

A primitive constraint is an atomic formula whose predicate symbol is a constraint
predicate, e.g. X > Y + 1. For the purpose of this paper we define a constraint to be
either a primitive constraint, or a formula c¢; A c2, where ¢; and ¢ are constraints,
or a formula Jzc, where ¢ is a constraint and & is a tuple of variables. Generally,
constraints are defined as a subset of the first-order formulae over the alphabet of
function symbols and constraint predicates.

An atom is a formula of the form p(zi,...,z,) where p is an n-ary defined
predicate and z1,...,x, are distinct variables. A clause is a formula of the form
a <+ ¢ by,...,b, where n > 0, a,by,...,b, are atoms and c is a constraint. It may

be assumed that clauses are normalized in the sense that all arguments in the atoms
of a clause are variables and each variable in a clause occurs in at most one atom.
The clauses used in the examples are not normalized and can be seen as a syntactic
sugar for their normalized versions.

A constraint program is a set of clauses.

A goal is a conjunction of constraints and atoms. In the sequel we will assume
that the initial goal consists of a single atom g of the form p(Z), and of a single
constraint ¢, which may be empty. Such a constrained atom will be denoted g|c].
Every initial goal can be transformed into the required form by adding an extra
clause to the program.

A common practice in programming is to deal with data structures such as lists,
trees, etc. In the examples discussed in this paper some function symbols of D
are distinguished as constructors. Any nullary constructor k£ belongs to D and is
interpreted as k. A m-ary constructor c is an interpreted as a function that maps

constraint predi-
cates

defined

predicates

constraint

atom

clause

program
goal

constrained
atom

constructors

valuation

any n-tuple (di,...,d,) of the domain elements into a tree (which is an element of
the domain) whose root is labeled ¢ and whose children are dy,...,d,. Thus, D
consists of some basic values and of labeled trees whose leaves are basic values.
In the examples we will use the Prolog list notation when dealing with the list
constructors.

2.2 Logical Semantics

A wvaluation is a mapping from the variables of £ to D. Valuations are extended
to terms, atoms and constraints in the standard way. A valuation v satisfies a

D-interpretation

constraint ¢ if v(c) is true in D. The notion of a D-interpretation is a generalization
of the notion of an Herbrand interpretation in logic programming. Constructors
are interpreted as defined above. The remaning function symbols have their fixed
interpretation in D. We can view a D-interpretation I as a set of objects of the
form

p(dla teey dn)
where p is an n-ary defined predicate, and di,...,d, € D. Such objects will be

D-atom

D-model

least D-model

represents

goal clause

called D-atoms. A D-atom p(d) is true in I iff p(d) € I. The usual concept of a
model can now be defined as follows. A D-interpretation I is a D-model of a clause

h<+cby,...,b,
if the following condition holds:

Whenever a valuation v satisfies ¢, and v(b1),...,v(b,) are all true in I,
then also v(h) is true in I.

A D-interpretation is a D-model of a program if it is a D-model of every clause of
the program.

The D-models are sets ordered by set inclusion. A well-known result is that
every constraint program has a least D-model, which can also be characterised as
a least fixpoint of a monotonic operator (see e.g. Jaffar and Maher [15]). We will
assume that the constraint domain D is fixed for a given program P.

Let g be an atom of the form p(z1, ..., z,), where z1, ..., z,, are distinct variables.
Then for every valuation v on D v(g) is a D-atom. A goal g[c] represents the set of
all D-atoms v(g) such that ¢ is true under the valuation v. This set will be denoted
[glc]]. By the goal clause corresponding to a goal g[c] we mean <« ¢, g.

2.3 An Example Program

The n-queens problem is the problem of placing n chess queens on an n X n chess-
board, so that no two queens attack each other. A solution to the problem can be
represented as an n-place list, where the value j at place ¢ means that the queen in
file ¢ is placed on row j. Fig. 2 shows a solution to the 8-queens problem, together
with its list representation. The program in Fig. 2, which is written in the CLP
language ECLiPSe [13], solves the problem. The domain D is the set of integers
between 1 and some fixed integer N and of the lists over such integers. The call
make 1ist(N,List) creates a list of N distinct variables, and the call List :: 1..N
states that all variables in List range from 1 to N. The call labeling(List) enu-
merates all the possible values for List in a straightforward way. The predicate
constrain queens and its sub-predicates constrain the variables in List. The
constraint predicates are ## and #=. They denote “not equal to” and “equal to”,
respectively. The non constructor function symbols are the integers and the arith-
metic operators, interpreted in the obvious way.

2.4 Proof trees

This section discusses a notion of a proof tree, which makes it possible to relate the
least model semantics of a program to computations. The approach follows that of
[8]. The notion of a proof tree will be used in declarative diagnosis of incorrectness.

A skeleton is a labeled ordered tree with nodes labeled by (renamed) clauses of
the program, by a goal clause or by “?” and such that:

e the root is labeled by a (program or goal) clause,

e if a node is labeled by a clause of the form h < a,b1,...,b, (or by a goal
clause < a,b; with n = 1), where a is the constraint of the clause, then

e

[1, 5,8, 6,3,7, 2,41

nqueens(N,List) + safe(,[],-)-
make 1list(N,List), safe(X, [Y|T],K) +
List :: 1..N, noattack(X, Y,K),
constrain queens(List), K1 #= K+1,
labeling(List). safe(X, T,K1).

constrain queens([]). noattack(X,Y,K) <

constrain queens([X|Y]) < X ## Y,
safe(X, Y, 1), X+K ## Y,
constrain queens(Y). X-K ## Y.

Figure 2: Above: A solution to the 8-queens problem with its list representation
Below: A program for the n-queens problem

skeleton

incomplete node

complete skeleton

associated atom

clause skeleton

skeleton’s set of
constraints

proper skeleton
proof tree

proof tree for a
constrained
atom

— it has n children,

— if the ¢-th child is labeled by a clause then the head predicate of this
clause and the predicate of b; are identical;

e no two clauses labeling two distinct nodes of the skeleton have a common
variable;

e if a node is labeled by “?” then it is a leaf node; if a node is labeled by a goal
clause then it is the root.

Notice that a skeleton defines two ordering relations on the nodes: the parent-
child ordering and the left-to-right ordering. A (leaf) node labeled by “?” will be
called an incomplete node of the skeleton. A skeleton is said to be complete if it has
no incomplete nodes.

Let 7 be a number such that a node of a skeleton is the ¢-th child of its parent in
the left-to-right ordering. Then the i-th body atom in the clause instance labeling
the parent is said to be the associated atom of the node. Notice that for the root
node the associated atom does not exist.

For a given skeleton S let nq,...,n; be the sequence of all incomplete nodes of
S. The sequence ordering is defined by the left-to-right ordering on the nodes of
S. By a frontier of a S we mean the sequence by, ..., b of the associated atoms of
Niye .. NE.

A skeleton S is said to be a clause skeleton of a clause c iff its root is labeled by
c and the children of the root are incomplete nodes.

For a given skeleton S the set C'(S) of constraints, to be called the set of con-
straints of S, consists of:

e the constraints of all clauses labeling the nodes of S

e all equations ¥ = ¢ where ¥ are the arguments of the i-th body atom of the
clause labeling a node n of S and ¥ are the arguments of the head atom of
the clause labeling the i-th child of n.

A skeleton is called proper if its set of constraints is satisfiable.

A proof tree for a program P is a complete skeleton whose set of constraints
is satisfiable and whose nodes are labeled by variants of the clauses of P or by
some goal clause. A graphical representation of an example proof tree is given
in Fig. 4. In this representation the nodes are labeled not by clauses but by the
associated atoms. Moreover, the arguments are replaced by their values whenever
the constraints define them uniquely. (This representation is closer to a usual notion
of a proof tree in logic programming).

We will say that a proof tree T' (with the set of constraints C' and the root
labeled by « ', h) is a proof tree for a constrained atom h[c] iff ¢ is equivalent to
JnC, where 3;,C denotes existential quantification over all variables of C that do
not occur in h.

For practical purposes it would be important to simplify constraints associated
with a given skeleton.

2.5 Towards an operational semantics

The objective of an ideal operational semantics would be to construct all proof trees
of a given goal. A simple idea would be to construct skeletons in a top-down manner,
and to check satisfiability of the accumulated constraints. One should not delay the
satisfiability check until construction of a complete skeleton, since for every recursive
program the number of skeletons is infinite. A natural choice would be to check
satisfiability after adding every new instance of a clause to the existing skeletons.

However, in general there may be no complete algorithms for checking satisfiability
of constraints in a given constraint domain. Following [20] this can be abstracted
as an assumption that there is some sufficient condition for unsatisfiability to be
called the reject criterion. This is an abstraction for a spectrum of behaviours. An
operational semantics of a program can now be defined in terms of skeletons, using
reject criterion. We will also need the concept of a selection rule (or computation
rule), which selects an incomplete node of a given skeleton in order to extend it
with a copy of a program clause. In this paper we assume that the selection rule
is total, i.e. that the selection rule will always select an incomplete node if such a
node exists.

For given goal p(z1,...,zy)[c], reject criterion and selection rule, a computation
is a sequence of proper skeletons Sp, ..., Sk, such that Sy is a clause skeleton of
a clause of the form <+ ¢, p(z1,..,%,), and for each i = 1,...,k S; is obtained by
extending the incomplete node of S;_; selected by the selection rule. By the selected
subgoal of the computation step we mean the constrained atom g[c] where g is the
associated atom of the selected node of S;_; and c is the constraint of this skeleton.

Notice that there may be several different extensions of the selected node. This
happens if several program clauses are applicable and give proper skeletons. Thus,
for a given selection rule and given initial goal g[c] the search space may be rep-
resented as a tree with the root labeled by the clause skeleton for the goal clause
+ ¢,g. Every node corresponds then to a skeleton, and each of its children corre-
sponds to a different extension. The transitive and irreflexive closure of the child
relation will be called the offspring relation.

Every node of the search space is labeled by a sequence of atoms and has an
associated constraint. Both elements are determined by the skeleton S correspond-
ing to the considered node. They are: the frontier of S and the constraint of S.
A leaf labeled by an empty sequence whose associated constraint is satisfiable! will
be called a success node. In practice we have to extend this concept by replacing
satisfiability condition by the condition that the constraint is not rejected by the
reject criterion.

In the special case of the Herbrand constraint domain the constraints are rep-
resented by substitutions and the notion of search space reduces to the notion of
SLD-tree.

If the selection rule is that of Prolog then a node n' of the search space is said
to be a proper offspring of a node n labeled by a sequence of atoms ay, .., a,, iff

e n' is an offspring of n in the search space,
e the label of n' is ao, ..., a,,

e there is no node m with the above properties and such that m is an offspring
of n and n' is an offspring of n.

So the fragment of computation between node n and n’ corresponds to a success of
aj.

As explained above, every computation of a program corresponds to construction
of a branch of the search space. By an exhaustive search we mean the process which
eventually constructs the whole search space. In practice this is possible only if the
space is finite.

3 Declarative Diagnosis with Assertions

In the previous work on declarative diagnosis it has been assumed that there exists
a unique set I, usually called “the intended model”, describing exactly the expec-

1Thus the corresponding skeleton is a proof tree.

reject criterion

selection rule

computation

selected subgoal

search space

proper offspring

search

assertion

incorrectness
symptom

incorrectness
diagnosis

intermediate

tations of the user. When referring to the least model semantics, this would mean
that by correcting all errors in a given program, we would obtain a new program
with the least model I. Recall that in the case of constraint programs the elements
of the set I are D-atoms. Generally, a single D-atom may not be expressible in the
language, for example when the elements of D are real numbers. In that case the
language can only specify sets of atoms.

An assertion is a statement that partially describes I. Our example assertions
will describe supersets of I when diagnosing incorrectness, and sets having non-
empty intersection with I, when diagnosing insufficiency. In this article, we will
not concern ourselves with any rigorous definition of the assertion language (the
assertions will be given in natural language, and their semantics will be informally
discussed). However, in all the examples the assertions could be defined as simple
constraints or small constraint programs.

3.1 Incorrectness Diagnosis

Incorrectness is a situation when a computed constraint does not conform to the
expectations of the user. More precisely, for a given goal? g[c|] a constraint a is
computed such that the set of D-atoms represented by g[a], denoted [g[a]] is not a
subset of the intended model I. The constrained atom g[a] is called an incorrectness
symptom. We will say that g[a] is ¢true in the intended model I iff [g[a]] C I.

Incorrectness diagnosis starts from an incorrectness symptom, and attempts to
localize the clause in the program that is respon_§ible for this unexpected result.
More precisely, the aim is to find a clause h < ¢, b such that, for some valuation v
satisfying c, v(b) is true in the intended model I, and v(h) is false in I. It is easy
to prove that such a clause must exist whenever an incorrectness symptom exists
(see e.g. Lloyd [17]). Intuitively, such a clause is the source of incorrectness, since
it transforms expected intermediate results into an incorrectness symptom. From
the logical point of view, the clause is false in the intended model I.

Since an incorrectness symptom gfa] has been computed, there is a proof tree
T for it. (So the root of T is labeled by a goal clause + ¢, g and has a single child
with the associated atom g). Let ¢ be the conjunction of the constraints of T'. By
the intermediate result connected to a node n of T we mean the constrained atom

result

DPnltn], where p,, is the associated atom of n and ¢,, is the constraint 3,¢ where 3,
denotes existential quantification over all variables of ¢ which do not appear in p,,.
Clearly, the intermediate result connected to the child of the root is an incorrectness
symptom (as a is 3,,t, where m is the root’s child).

The diagnosis process is essentially a (partial) traversal of the proof tree T'. In
the basic algorithm, the diagnoser poses a question to the user for each visited node:
“Is this intermediate result what you expect?”, or equivalently, “Is this constrained
atom true in the intended model?”. The algorithm halts when encountering a node
n such that the intermediate result connected to n is an incorrectness symptom and
the intermediate results of all children of n are true in I. It reports then that the
clause labeling n is incorrect, and shows the intermediate results as justification.

The problem is that the questions mentioned in the previous paragraph can be
very difficult to answer. Our intention is to facilitate this task by allowing the user
the possibility of answering the questions by giving assertions. For instance, when
facing the problem of answering the question “Is g[c] true in the intended model?”,
the user may answer: “I expect that g[c] has the property P”. The diagnoser then
checks whether the property P is satisfied or not. In case of a negative answer
(i.e. if g[c] is in the shaded area of Fig. 3), the diagnoser concludes that g[c] is an

2Remember that we consider atomic initial goals, to simplify the presentation. This does not
lead to a loss of generality.

incorrectness symptom, and progress is made in the diagnosis process. Otherwise,
glc] is or is not an incorrectness symptom but property P is too weak to conclude
this.

Computed

Expected answers

answers

Answers satisfying the assertion

Figure 3: A superset assertion

This kind of assertions will be called superset assertions, since they, roughly
speaking, define a superset of the set represented by the expected answers. The
set of D-atoms represented by any correct answer should be included in the set
represented by a superset assertion. This is a constraint entailment check if the
assertion is expressed as a constraint. The set of all assertions given for a predicate,
will be called the specification for the predicate.

We will now summarize how the diagnosis algorithm works. At the beginning of
the diagnosis process, the specification for each predicate is empty. As stated above,
the proof tree for the incorrectness symptom is traversed. At each visited node, the
system first attempts to show that the associated constrained atom p(z1,...,z,)[c]
is an incorrectness symptom by using the current specification for p. If this fails, a
question “Is p(z1,...,%,)[c] true in the intended model?” is posed by the system.
The user can answer with:

e a specification that augments the existing one. If the augmented specification
is not sufficient for showing that p(zi,...,z,)[c] is an incorrectness symptom
the question is repeated. If it shows that p(z1,...,Z,)[c| is an incorrectness
symptom then the algorithm proceeds as in the case of “No” answer below.

e a “Yes” answer: the user confirms that p(z1,...,z,)[c] is true in the intended
model. In this case the subtree rooted at this node will be excluded from
further search.

e a “No” answer: the user confirms that p(zi,...,z,)[c] is an incorrectness
symptom. In this case the diagnosis re-starts for the subtree rooted at one of
the children nodes.

e a “Don’t know” answer. A simple solution is to exclude the subtree rooted
at this node from further search, similarly as in the “yes” case. An alterna-
tive approach would be to search through this subtree with the hope that it
includes error symptoms which can be identified.

superset
assertion

specification

If “don’t know” subtrees are not examined the search terminates when all an-
swers for n are “yes” or “don’t know”. If all answers are “yes” the clause labeling n
is reported erroneous. If at least one of the answers is “don’t know” the error is not
precisely localized. It is reported that it is caused by the clause labeling either n or
a node in one of the subtrees rooted at the children of n with “don’t know” answers.
Better localization of the error may be achieved by finding an error symptom in one
of the “don’t know” subtrees. The decision, where to search may be consulted with
the user. Alternatively, the “don’t know” answers may be withdrawn with a new
effort to give a definitive answer to the queries.?

Example 1 Consider the queens program of Sect. 2.3. We introduce an error in
the program by replacing the clause for noattack by the clause

noattack(X,Y,K) +
X ## Y,
X+K ## Y.

This clause is now under-constrained, and the first result produced by the call
nqueens(8,List) is
List =[1,4,8,7,2,5,3,6]

It is possible to discover that this solution is incorrect by looking at a fragment of
the list above: The queens on files 3 and 4 are placed on rows 8 and 7, respectively,
so one can directly see that they attack each other. Thus the incorrect solution
violates a general property of the desired solutions, expressed below as an assertion.

Assertion: Whenever constrain queens(l) is a logical consequence
of the program, no two consecutive values in the list [should differ by
1.

The above assertion is a superset assertion, i.e. every desired solution satisfies this
assertion, but a list satisfying the assertion is not necessarily a desired solution. We
will now illustrate how this assertion is used in the debugging process. Fig. 4 shows
the proof tree for the incorrectness symptom

constrain queens([1,4,8,7,2,5,3,6])

At the top node, the user is asked whether this result is true or not in the intended

model. The user responds by giving the assertion above. Since the atom at this
node does not satisfy the assertion, the diagnoser concludes that the atom is an
incorrectness symptom, and proceeds to examine the children nodes. Since the
child node

constrain queens([4,8,7,2,5,3,6])

and its child node
constrain queens([8,7,2,5, 3, 6])

do not satisfy the assertion, the diagnoser automatically commits to the subtree
rooted by the latter atom. The second question posed to the user thus concerns one
of the children nodes, i.e.

safe(8,[7,2,5,3,6],1)

3The algorithm outlined above commits the search to a subtree as soon as a “no” answer is
encountered. It is possible that some nodes excluded from the search would also give a “no” answer.
Exploring these branches would also lead to (partial) localization of an erroneous clause. This may
be another occurrence of the same erroneous clause, or an occurrence of another erroneous clause.
Finding and correcting one error at a time may be a good strategy but if answering queries in one
“no” branch is too difficult, it may be sometimes worthwhile to explore some other branches.

constrain_queens([1,4,8,7,2,5,3,6])

safe(1,[4,8,7,2,5,3,6],1) constrain_queens([4,8,7,2,5,3,6])
safe(4,[8,7,2,5,3,6],1) constrain_queens([8,7,2,5,3,6])
safe(8,[7,2,5,3,6],1) constrain_queens([7,2,5,3,6])

safe(7,12,5,3,61,1) :

A

Figure 4: A proof tree. At the nodes their associated atoms are displayed (instead
of the clauses labelling the nodes). The root node is not shown (it does not have
its associated atom).

Intuitively, this atom is incorrect for the same reason as the previous incorrectness
symptoms: The queen on row 8 attacks the queen on row 7. The user can now
give a new assertion concerning the predicate safe, or simply answer “No”. In the
latter case, the diagnoser will immediately proceed to a child node, for instance

noattack(8,7,1)

If the user confirms that this atom is an incorrectness symptom, the diagnoser
concludes that the clause

noattack(X,Y,K)
X ## Y,
X+K ## Y.

is erroneous, since the body consists only of constraints. (End of example)

The example shows a simple assertion that eliminates the need for user interac-
tion in several nodes of the proof tree. Notice that the granularity of incorrectness
diagnosis is limited to program clauses. Notice also that a superset assertion is not
able to confirm correctness of a constrained atom; it is only able to find out its
incorrectness.

3.2 Insufficiency Diagnosis

Informally, insufficiency is the situation where a program fails to compute some
expected solution. For a precise definition, we need some preliminary notions.
Throughout this section we require that the Prolog selection rule is used (the left-
most literal is selected).

Suppose the execution for a goal g[c] terminates after having produced answer
constraints ay, ..., a, (upon backtracking). Then the set {g[ai],...,g[an]} will be

answer
collection

answer set
slice
sufficient
insufficient
insufficiency
symptom

insufficiency
diagnosis

uncovered atom

existential
assertion

called the answer collection for P and g[c]. The union
U [gla:]]

of the sets represented (conf. Section 2.2) by the answer collection will be called the
answer set of the goal.

A slice of a set S of D-atoms w.r.t. a constrained atom a is the intersection of
S and the set represented by a.

A program P is sufficient for a goal g iff the search space for P and g is finite,
and the slice of the intended model wrt g is a subset of the answer set.

A program P is insufficient for a goal g iff the search space for P and g is finite,
and P is not sufficient for g. A goal g such that P is insufficient for g will be called
an insufficiency symptom of P. The notion of insufficiency extends naturally for
non-atomic goals.

Insufficiency diagnosis starts from an insufficiency symptom, and attempts to
localise the predicate in the program whose definition needs to be augmented. More
precisely, the aim is to find a constrained atom g¢(z1,...,z,)[c] with the following
two properties:

e g(z1,...,2,)[c] is an insufficiency symptom, and

e whenever q(z1,...,2z,) « ¢, bisa (possibly renamed) clause of the program,
the program is sufficient for b[c A ¢'].

Such a constrained atom will be called an uncovered atom.

A basic insufficiency diagnosis algorithm communicates with the user by asking
queries of the form: “Does the answer collection {g[c1],..., g[ck]} (k > 0) represent
all the expected solutions of the atomic query g¢[c]?” (In our terminology, the
question is whether the program is sufficient for the selected subgoal). Again, such
questions are usually hard to answer.

Computed

Expected / answers
answers

Answers satisfying the existential
assertion

Figure 5: An existential assertion

We propose to give the user a possibility to answer the questions by giving exis-
tential assertions. For instance, when facing the problem of answering the question

“Do g[ei], - - ., g[ck] represent all solutions to the goal g[a]?”, the user may reply “I
expect that there is a solution with the property P”. The diagnoser then computes
the intersection between the union of the sets represented by g[c1], .. ., g[ck], and the
set of D-atoms having the property P. If the intersection is empty (illustrated in
Fig. 5), the diagnoser concludes that g[a] is an insufficiency symptom, and progress
is made in the diagnosis process. Otherwise, either g[a] is not an insufficiency
symptom or P is too weak to provide evidence for this.

In the insufficiency diagnosing algorithm, the search space? (with the Prolog
selection rule) for the insufficiency symptom is traversed. At every step of the
traversal there is a set of active nodes from which the visited node is selected. The
initial set of active nodes includes the children of the root node of the search space®.
At each node visited, the diagnoser asks the user whether the computed constraints
for the selected subgoal at the node represent all the expected solutions. More
specifically, the user faces a question of the form “Do g[ci1],..., g[ck] represent all
solutions to the goal g[a]?”. She may answer it in one of the following four ways:

e by giving an existential assertion. If the existential assertion is not sufficient
for showing that g[a] is an insufficiency symptom, the question is repeated.
Otherwise, g[a] is an insufficiency symptom and the algorithm proceeds as in
the case of “No” answer below.

e a “Yes” answer: the user confirms that g[c1],. .., g[ck] represent all the desired
solutions to the goal g[a]. In this case the visited node in the set of active
nodes is replaced by the set of all its proper offsprings (conf. page 7).

e a “No” answer: the user confirms that g[a] is an insufficiency symptom. In
this case the insufficiency diagnosis re-starts with the search space of this
symptom.

e a “Don’t know” answer: the diagnosis proceeds as in the “Yes” case. However,
the user may return to this node at a later stage if she so pleases.

Upon termination of the diagnosis, the most recently found insufficiency symptom
is returned as the result. If no “don’t know” answers appear in the search space
for the symptom, the symptom is also an uncovered atom. Otherwise an uncovered
atom is not fully localised. If for a node n of the search space an answer “don’t
know” was given then the uncovered atom may be present in the offsprings of n.
More precisely, in those offsprings of n that are not offsprings of any proper offspring
(conf. Section 2.5) of n. (In other words, in the nodes between n and its proper
offsprings). So, if a “don’t know” answer is given about a procedure call then it is
possible that the error, for which we search, occurred in the computations related
to this call.

Even in the latter case the set of suspected predicates may constitute only a
small subset of all program predicates.

Example 2 Consider again the queens program of Sect. 2.3. We introduce an error
in the program by replacing the clause for noattack by the clause

noattack(X,Y,K) +
X ## Y,
X+K ## Y,
X-K ## Y,
X-K ## Y-1.

4SLD-tree in the case of the Herbrand constraint domain.
550 if the computation begins with an initial goal h[c] then, for any element of the initial set,
its frontier is the right hand side of a clause applied to the initial goal.

active node

The clause is now over-constrained, and only two solutions are computed for the
call

nqueens(8,List)

The user knows that there should be more solutions, so she identifies the call as an
insufficiency symptom. The questions asked by the diagnosing algorithm rapidly
become very difficult. For instance, one of the first subgoals to be computed is

safe(A, [B,C,D,E,F,G,H|, 1)
which yields the constraint

A##B, 1+A-B##0, -1+A-B##0, O+A-B##0, A##C, 2+A-C##0, -2+A-C##O0,
-1+A-C##0, A##D, 3+A-D##0, -3+A-D##0, -2+A-D##0, A##E, 4+A-E##0,
-4+A-E##0, -3+A-E##0, A##F, 5+A-F##0, -5+A-F##0, -4+A-F##0, A##G,
6+A-G##0, -6+A-G##0, -5+A-G##0, A##H, T+A-H##0, -7+A-H##0,
-6+A-H##0

Even for this small constraint, it is difficult to decide whether or not it reflects our
expectations. We now give the following existential assertion:

Existential assertion: There should be a solution where the queen in
the first file is placed on row 7, i.e. there should be a logical consequence
of the program which is an instance of safe(7,[B,C,D,E,F,G,H], 1).

The goal safe(7,[B,C,D,E,F,G,H], 1) returns the constraint

B[1..5], C[1..4,8], D[1..3,6,8], E[1,2,5,6,8],
F[1,4..6,8], G[3..6,8], H[2..6,8]

(where the numbers in brackets denote the possible values for the different vari-
ables). The constraint is illustrated in Fig. 6, where the white squares denote the
possible instantiations for the different variables, and the shaded squares denote the
impossible instantiations.

The user is now asked the question whether or not this answer corresponds to
her expectations. Although non-trivial, this constraint is at least easier to digest
than the previous one. By looking at the picture in Fig. 6, one can conclude e.g. that
the value 6 for the variable C is erroneously excluded. The user can thus answer the
question negatively. (Another possibility is to strengthen the previous existential
assertion, by asserting the existence of a solution where C has the value 6. However,
although this assertion is true, this is far from obvious.)

If the user confirms that the safe(7,[B,C,D,E,F, G, H], 1) (together with the con-
straint above) is an insufficiency symptom, the diagnoser proceeds with the first
subgoal in the computation of safe(7,[B,C,D,E,F,H],1). Table 7 shows the subse-
quent questions from the diagnoser, and the user’s response.

Since the body of the clause for noattack consists only of constraints, the con-
strained atom

noattack(7,C,2),C|[1..4, 8]

is an incompletely covered atom, revealing that the definition of noattack needs to
be extended. (End of example)

The example shows how the use of existential assertions may simplify answering
the queries. In contrast to the previous example, we do not have here a case where
a single assertion is able to answer more than one queries posed by the algorithm.
Note that the granularity of insufficiency diagnosis is that of program predicates.

[7, B, C, D, E, F, G, H]

Figure 6: Pictorial representation of a constraint

4 Further work

We have shown that the classical declarative techniques apply in principle also in
the case of constraint programs. However, the adaptation requires modification of
certain semantic notions, such as proof tree and search space, which provide a for-
mal basis for declarative diagnosis. Due to the nature of the semantic domains the
queries in declarative diagnosis of constraint programs become even more compli-
cated than in the case of logic programs, as can be seen from the examples. The
use of assertions seems to be a must. We outlined basic notions needed to define
declarative diagnosis algorithms for constraint programs. We sketched such algo-
rithms. In contrast to the classical algorithms we study also the case of “don’t
know” answers.

We proposed two different kind of assertions and we illustrated on simple exam-
ples their potential usefulness for declarative diagnosis algorithms.

Goal Answer constraint | User replies
noattack(7,B, 1) B[1..5] | Yes
safe(7,[C,D,E,F,G,H],2) | C[1..4,8],D[1..3,6,8],E[1,2,5,6,8],
F[1,4..6,8],G[3..6, 8], H[2..6, 8] No
noattack(7,C,2) C[1..4,8] | No

Figure 7: Further questions and answers in a diagnosis session

The approach presented above is preliminary. Experiments are needed to collect
some body of example assertions and to evaluate the usefulness of the paradigm.
Maybe some other kinds of assertions should also be considered.

Using assertions which are constraints or simple constraint programs in the
underlying language would allow to use the solver for answering the queries. The
example assertions in this paper are of this kind. The tests needed to answer the
queries are a disentailment test for incorrectness and an unsatisfiability test for
insufficiency diagnosis.

Another way would be to exploit for the purpose of diagnosis some more power-
ful constraint solver in addition to that of the actual CLP system. Sometimes the
solvers implemented are restricted due to efficiency reasons, for example CLP(R)
does not solve non-linear constraints. In debugging, efficiency is much less impor-
tant, what matters is the time spent by the users on thinking. One could expect
that the additional functionality of more sophisticated solvers could contribute to
the diagnosis. We may expect that eg. constraint negation and constraint entail-
ment could be useful.

The examples show also that the problem-specific graphical representation is of
great importance for answering debugger queries.

We believe that in many cases it is unrealistic to assume that the intended model
is 2-valued. Often it is actually 3-valued. The user knows that some D-atoms should
be true (w.r.t. the intended model), some should be false, the rest are irrelevant.
This may be related to the implicit assumption about kind of data used in execution
of the program. For example, take the Herbrand domain and the standard append
predicate. The programmer may implicitly assume that append is only called with
the arguments being lists or variables. She may not know if append with certain
non-list arguments should be true or false in the intended model. If we want to
make all such atoms fail, we obtain a program with additional type checks, which
is inefficient and different from the program actually requested. However, if such
atoms appear during the computation this may be due to errors not in program but
in input data, which do not satisfy the imposed assumptions. We believe that such
a case should be distinguished in the diagnosis process from the case of program
error symptoms.

From our previous experience [12, 18] we know that a simple implementation
of a diagnosis algorithm is often rather unpleasant to use. The programmer has to
answer a sequence of questions, in an order fixed by the debugger. She has no possi-
bility to correct her own errors, to delay answers to difficult questions, to influence
the workings of the debugger, etc. It is important to make such implementation
user-friendly. The user should not feel restricted. It should be possible eg. to switch
from insufficiency diagnosis to incorrectness diagnosis (when it turns out that one
of the computed answers posed in the queries is incorrect). It should be possible to
make (and withdraw) hypotheses. (“I cannot say if this sophisticated constrained
atom is correct. Assume that it is, what happens then.”)

5 Related work and discussion

The foundations of declarative diagnosis for constraint logic programs have been
presented by Le Berre and Tessier [16, 20]. Our intention was to give an introduction
to the declarative diagnosis in a setting where the oracle could be (partly) replaced
by assertions. The aspect of query answering is the main focus of this paper in
contrast to [16, 20] where semantic details of the diagnosis are studied.

We advocate answering the queries by assertions. The traditional yes/no answers
are also allowed®. In addition, we allow also ”don’t know” answers. In this case

8They could also be seen as specialised types of assertions [11]. This was, however, not discussed

localisation of the error may be (but sometimes is not) less precise.

Several kinds of assertions have been proposed for various purposes. Generally
assertions play a role of (partial) specifications of intended programs (i.e. describe
some intended properties of a program). Then one may consider :

e Checking them at run time, as proposed in [21].

e Proving them. General techniques for proving assertions are described in e.g.
[7] and [8] for declarative properties, and in e.g. [10, 9] for run-time properties.
To mechanise such proofs, rather powerful general automatic provers would
be necessary. However, for some restricted classes of assertions proving them
boils down to relatively simple and efficient checks. They could be performed
by programming systems as compile time checks. The problem of automatic
type checking of directional types has been discussed e.g. in [21, 1, 2].

e Using them for localising errors in the case of error symptoms, as discussed
in [11, 12] and this paper.

We may also consider algorithms that for a given program produce assertions
describing its properties. The standard techniques for that purpose is abstract
interpretation. The work presented in [3, 4, 5] is of direct interest here. If the
obtained assertions show that the program has some undesired property, then there
is a bug. One may expect that such assertions may also help in localising the
bug. A work along these lines combining the declarative debugging with abstract
interpretation, known as abstract debugging is reported in [6].

For automatic checking or generating it is necessary to have a formalised lan-
guage of (a certain class of) assertions.

In our previous work [11, 12, 18] we used assertions for declarative diagnosis of
Prolog programs. The assertions defined in that work were meta-level assertions
describing sets of possibly non-ground atomic formulae, thus sets of constrained
atoms under a specific restricted constraint language. So an assertion of that work
corresponds to a set of assertions discussed here. In this paper we deal with a
different (simpler) kind of assertions, referring directly to the semantic domain.
In general case, the meta-level assertions would specify sets of constraints. Thus
they would depend on the constraint language used. The usefulness of meta-level
assertions for diagnosis of constraint program may be a subject of future work.

References

[1] J. Boye and J. Maluszynski. Two Aspects of Directional Types. In Proc. of
Int’l Conf. on Logic Programming ’95. MIT Press, 1995. See also: J. Boye
and J. Maluszynski. Directional Types and the Annotation Method. J. Logic
Programming, 1996. (To appear)

[2] J. Boye. Directional Types in Logic Programming, Ph.D. thesis no. 437,
Link6ping studies in science and technology, 1996.

[3] F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Data-Flow Analysis of
Prolog Programs with Extra-Logical Features. Technical Report CLIP2/95.0,
Computer Science Dept., Technical U. Madrid (UPM), Facultad Informatica
UPM, 28660-Boadilla del Monte, Madrid-Spain, March 1995.

in this paper. A more careful study of this topic may lead to identification of new kinds of assertions
useful in declarative diagnosis.

[4]

[5]

(6]

[7]

F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Data Analysis of
Standard Prolog Programs. In Furopean Symposium on Programming, Sweden,
April 1996.

F. Bueno, M. Garcia de la Banda, and M. Hermenegildo. The PLAI Abstract
Interpretation System. Technical Report CLIP2/94.0, Computer Science Dept.,
Technical U.Madrid (UPM), Facultad Informatica UPM, 28660-Boadilla del
Monte, Madrid-Spain, February 1994.

M. Comini, G. Levi and G. Vitiello. Declarative Diagnosis Revisited. In J.
Lloyd, editor, International Logic Programming Symposium. MIT Press, 1995.

P. Deransart. Proof methods of declarative properties of definite programs.
Theoretical Computer Science, vol. 118, 1993.

8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

18]

[19]
[20]

[21]

P. Deransart and J. Matuszynski. 4 grammatical view on logic programming.
The MIT Press, 1993.

W. Drabent. A Floyd-Hoare Method for Prolog. Post-conference workshop
“Verification and Analysis of Logic Programs” at JICSLP ’96 (Joint Interna-
tional Conference and Symposium on Logic Programming, Bonn).

W. Drabent and J. Matuszynski. Inductive assertion method for logic pro-
grams. Theoretical Computer Science, 59:133-155, June 1988. Special issue
with selected papers from TAPSOFT’87, Pisa.

W. Drabent, S. Nadjm-Tehrani and J. Maluszyniski. Algorithmic Debugging
with Assertions. In: H. Abramson and M.H. Rogers (eds.) Metaprogramming
in Logic Programming, 501-522. The MIT Press, 1989.

W. Drabent, S. Nadjm-Tehrani, and J. Matuszyniski. The Use of Assertions in
Algorithmic Debugging. In Proc. of Fifth Generation Computer Systems 88,
pages 573-581, 1988.

ECLiPSe 3.5 User Manual. ECRC, Munich 1995.
G. Ferrand. Error Diagnosis in Logic Programming. JLP vol. 4, 177-198, 1987.

J. Jaffar and M. Maher. Constraint Logic Programming: a Survey. JLP vol.
19 and 20, 503-581, 1994.

F. Le Berre and A. Tessier. Declarative incorrectness diagnosis in constraint
logic programming. In P. Lucio, M. Martelli, and M. Navarro, editors, Joint
Conference on Declarative Programming APPIA-GULP-PRODE’96, pages
379-391, 1996.

J.W. Lloyd. Declarative Error Diagnosis. New Generation Computing 5, 133—
154, 1987.

S. Nadjm-Tehrani. Debugging Prolog Programs Declaratively. In Proc. of
Second Workshop on Meta-programming in Logic, META 90, pages 137-155.
Dept. of Computer Science K. U. Leuven, 1990.

E.Y. Shapiro. Algorithmic Program Debugging. The MIT Press, 1982.

Alexandre Tessier. Declarative debugging in constraint logic programming.
In Joxan Jaffar, editor, Asian Computing Science Conference, volume 1179 of
Lecture Notes in Computer Science, pages 64-73. Springer-Verlag, 1996.

E. Vetillard. Utilisation de Declarations en Programmation Logique avec Con-
traintes. Ph.D. Thesis. Univ. Aix-Marseilles 11, 1994

