Language-Processing Strategies and Mixed-Initiative Dialogues

Johan Boye?, Mats Wirén?, Manny Rayner!,
Ian Lewin', David Carter' and Ralph Becket!

ISRI International
Suite 23, Millers Yard
Cambridge CB2 1RQ, UK

Abstract

We describe an implemented spoken-language
dialogue system for a travel-planning domain,
which accesses a commercially available travel-
information web-server and supports a flexible
mixed-initiative dialogue strategy. We argue,
based on data from initial Wizard-of-Oz exper-
iments, that mixed-initiative strategies are ap-
propriate for many types of user, but require
more sophisticated architectures for processing
of language and dialogue; we then use these
observations to motivate an architecture which
combines parallel deep and shallow natural lan-
guage analysis engines and an agenda-driven di-
alogue manager. We outline the top-level pro-
cessing strategy used by the dialogue manager,
and also a novel formalism, which we call Flat
Utterance Description, that allows us to reduce
the output of the deep and shallow language-
processing engines to a common representation.

1 Introduction

Travel-planning domains have been a common applica-
tion area for spoken-language dialogue systems almost
from their inception, both as pure research vehicles and
now, with maturing speech technology, as fielded proto-
types. Fielded systems naturally tend to employ simpler
linguistic and dialogue processing. Domain-specific key-
word /phrase spotting and slot-filling techniques are pre-
ferred for utterance interpretation. At the dialogue level,
systems tend to keep the dialogue initiative to themselves
by treating the user simply as an answer-supplier. Par-
ticular systems may also implement particular instances
of more sophisticated processing. However, the simple
methods do dovetail simply because the more expecta-
tions that a system can impose on a dialogue, then the
more those expectations can be used to aid interpreta-
tion of user utterances. (For a range of recent work, see
[Aust and Oerder, 1995], [Allen et al., 1996], [Lamel et
al., 1998), [Litman et al., 1998] and [Bos et al., 1999].)
In the work described here, we are primarily inter-
ested in exploring relaxation of the constraint that di-
alogues be system-driven together with the use of both

2Telia Research
Spoken Language Processing
S-123 86 Farsta, Sweden

sophisticated (but sometimes brittle) and simple (but
generally robust) linguistic processing. We hypothesize
that different techniques may be applicable at differ-
ent points in a dialogue. The specific scenario used
was that of booking a business trip within Sweden, us-
ing air travel or train, and accessing information about
times, destinations and fares. Communication in both
directions was entirely in spoken Swedish. The underly-
ing database was the Travellink 7™ system, accessible at
http://www.travellink.se.!

Prior to designing the system, we collected a corpus of
data through a Wizard-of-Oz experiment, obtaining al-
together 131 dialogues from 47 subjects (31 male and 16
female); the Wizard’s conversational style was purposely
chosen so as to permit mixed-initiative user strategies.
Analysis of the data showed that it displayed signifi-
cant variation. For example, with respect to verbose-
ness, there is a range of behaviour stretching from con-
sistent use of short, telegraphic-style utterances to very
long, disfluent utterances. Furthermore, there are both
inactive users who refrain completely from taking the ini-
tiative (in effect leaving it open to the system to cross-
examine them) and active users who quickly take the
initiative by means of counter-questions, keeping it more
or less throughout the dialogue. There is also a range of
users whose behaviours fall between these extremes. One
of our immediate conclusions was that if mixed-initiative
dialogues were supported, then a large proportion of the
people interacting with the system would make use of
this capability.

Typically, we found that the structure of a dialogue
about (a leg of) a trip could be subdivided into two
phases. First, there is a specification phase, in which
the user, possibly in response to system prompting, gave
the basic constraints on the trip they were looking for:
where they were going to, where they were coming from,
the date, and some information about the desired depar-
ture or arrival time. We regarded the specification phase
as terminated when the system had collected enough in-
formation that it could access the database and suggest
a possible specific trip. After this, there is a second

'We would like to thank SMART for help in making the
Travellink ™ system available to us.

negotiation phase, in which the user may request ad-
ditional information about the initially suggested trip,
ask for alternative trips, and eventually make a booking.
The balance between the two phases displayed consider-
able variation. For the most active users, the negotiation
phase dominated: it sometimes started even before the
system had suggested any alternative and could persist
more or less throughout the dialogue. In contrast, the
negotiation phase could be non-existent in the case of
the least active users.

In general, we found that analysis of utterances during
the negotiation phase required a higher degree of linguis-
tic sophistication than during the specification phase.
For example, it was often necessary to be able to under-
stand expressions referring to objects previously men-
tioned in the dialogue (“that flight”, “the first flight”),
or distinguish between questions expecting a yes/no re-
sponse (“Is that a direct flight?”) and questions expect-
ing a new object response (“Is there a direct flight?”).2

The above characteristics of the data and domain
prompted us to focus on the following aspects in the
design of the system:

e Ability to handle context-dependent, mixed-initia-
tive dialogues in order to cover both kinds of phases
in the dialogue as well as the range of active/inactive
users.

e Ability to do linguistic analysis deeper than surface
slot-filling, so as to be able to distinguish between
different forms of utterances critical to the domain.

¢ Robustness to be able to advance the dialogue even
in the case of complex, disfluent utterances and er-
rors likely to be introduced by the speech recognizer.

To meet these desiderata, we have taken an approach
with the following distinguishing characteristics:

e Linguistic analysis is factored into context-inde-
pendent and context-dependent processing phases.
The initial context-independent phase produces a
set of descriptions based on the explicit form of
the input utterance; the descriptions are then in-
terpreted in the relevant context by the dialogue
manager.

e The local exchange of initiatives and responses is
guided by domain-dependent moves and games,
whereas the global goals are handled using an agen-
da.

e To tackle deep linguistic analysis as well as robust-
ness successfully, and to try to cover different phases
of the dialogue equally well, we augment the slot-
filling processing method with a more sophisticated
grammar-based method. The two parsing engines
are run in parallel, and feed independently into the
dialogue manager.

2Since the focus of the paper is on discourse-level phenom-
ena, we have throughout translated surface linguistic expres-
sions from Swedish to English as a concession to non-Swedish
readers.

18

l

Speech
recognizer

RN

CLE Robust

parser

Dialogue
manager

Database
agent

Linguistic
generator

Speech
synthesizer

!

Figure 1: Architecture of the system.

2 System Overview

The architecture of the system is shown in Figure 1. The
modules communicate asynchronously by message pass-
ing; hence, in principle all of them could run in parallel
in different processes. In the current implementation,
there are four processes, which handle speech recogni-
tion, speech synthesis, database access and everything
else, respectively.

The speech recognizer is a Swedish-language version
of the SRI Decipher system [Murveit et al., 1993], devel-
oped by SRI International and Telia Research. It sends
an N-best speech hypothesis list to the two language pro-
cessors: the Core Language Engine (deep analysis) and
the Robust Parser (shallow analysis), further described
in Section 3. The language processors each send their
analyses to the dialogue manager (DM). After each sys-
tem turn, the DM updates the language processors with
limited information about the state of the discourse: the
most recent question (if any) posed by the system, and
the types of objects that are salient at the current point
in the dialogue.

The DM uses a two-stage heuristic selection process
to advance the dialogue. First, each input analysis is
categorized as a move of a certain type, and an appro-
priate response to that move is selected. References are
resolved and contextual information is also added, re-
sulting in a further multiplication of possible moves and
responses. Secondly, the relative utility of the various
responses is judged, and the most productive response

move is chosen. The dialogue manager is further de-
scribed in Section 4.

The generator produces the surface string represent-
ing the actual utterance, using a simple template-based
approach. The surface string is then turned into speech
by Telia Research’s synthesizer LIPHON.

In the current system, the database agent contains
a web client in order to retrieve data from the Travel-
link database. All query results are cached in order to

wh_agg Find the maximal/minimal X with property P

yn_agg Does the maximal/minimal X with property P
also have property P'?

The body of the FUD may contain items of three different
kinds. Slot—filler items are of the form

slot({frame name), (slot name), (filler value))

This is to be interpreted as saying that the slot

shorten the response times as much as possible. How-
ever, the response times for most queries would clearly
not be acceptable in a commercial system. That inspired
us to develop a version that is able to continue the di-
alogue while database access is in progress (that is, the
system might ask about the return leg of a trip, while the
database agent is searching for possible trains or flights
for the outbound leg).

The system described here is fully implemented and
has been permanently installed at the Telia Vision Cen-
ter in Farsta/Stockholm since November 1998.

3 Language Analysis
3.1 Flat Utterance Descriptions

(slot name) of the predicate (frame name) is filled with
the value (filler value).
Constraint items are of the form

exec({goal))

and express numerical relations obtaining between slot-
fillers and other values. Finally, referential items are of

the form
ref ({filler value), (ref info))

and indicate that the object (filler value) is linguisti-
cally associated with referential information encoded as
(ref info).

For instance, the utterance “I want to arrive in Stock-
holm before 6 pm” is interpreted as “Find flights arriving

As previously noted, the system combines two different
language processing architectures. Shallow processing
is performed by the slot-filling Robust Parser described
in Section 3.2 below; deep processing by the SRI Core
Language Engine (CLE; [Alshawi, 1992]). Linguistic
output can be either propositional or non-propositional.
Non-propositional output consists of markers which are
directly linked to dialogue moves; the most impor-
tant examples are confirmations (“yes”, “sure”, “that’s
fine”), rejections (“no”, “I’d rather not”) and topic shifts
(“then. ..”). Propositional output consists of structured
expressions which make reference to world objects like
flights, trains, dates, times and costs.

The propositional representations produced by the
Robust Parser are lists of slot—filler pairs; those pro-
duced by the CLE are expressions in a conservatively
extended first-order logic. To allow the DM easily to
compare the results produced by the two language pro-
cessors, it is highly desirable that they be mapped into a
common form: the challenge is to find a level of rep-
resentation which represents an adequate compromise
between them. With regard to the CLE, the important
point is that most logical forms in practice consist of one
or two existentially quantified conjunctions, wrapped up
inside one of a small number of fixed quantificational
patterns. By defining these patterns explicitly, we can
“flatten” our logical forms into a format, which we call
a Flat Utterance Description or FUD, that is compatible
with a slot—filler list.

The different quantificational wrappers were suggested
by our Wizard-of-Oz data; it proved meaningful to dis-
tinguish between four kinds of FUDs:

yn Are there objects with property P?
wh Find X with property P

19

Stockholm before 6 pm”, and is represented by the fol-
lowing FUD:?

wh(X,[slot(trip,trip-id,X),
slot(trip,tripmode, plane),
slot(trip,to_—city,stockholm)
slot(trip,arr_time,T)

(

exec(before(T, 1800))])

The utterance *

by:

‘Is that a direct flight?” is represented
yn([slot(trip,tripmode,plane),
slot(trip,stops,0),
slot(trip,trip-id,X),

ref (X, det(def, sing))])

where the ref expression represents the referential ex-
pression (“that”) in the utterance, and signals to the
dialogue manager that a reference resolution has to be
made.

Utterances like “I want the first flight to Stock-
holm” and “Which is the cheapest ticket?” translate into
wh_agg expressions, while utterances like “Is that the
first flight?” translate into yn_agg utterances. In our
Wizard-of-Oz data, the vast majority of user utterances
translate into wh FUDs (including some utterances that
superficially are yes/no-questions, like “Are there any
flights to Stockholm on Monday morning?”).

When producing the FuD, the Robust Parser does a
simple pass over the top hypothesis from the speech rec-
ognizer, in a manner described in the next section. In
contrast, the CLE attempts to extract the “best” gram-
matical fragment from the lattice of words representing
the top five hypotheses of the recognizer. Currently, the

3The notation used here is simplified; for example, in our
implementation each filler value is typed.

Repeat until no words remain:

Read the next word.

If a matching pattern is found (possibly by looking
ahead), then fill the corresponding slot and throw
away the words corresponding to the pattern

else throw away the word.

Figure 2: Basic algorithm of the Robust Parser.

longest grammatical fragment is considered to be the
best fragment, a strategy that can sometimes lead to
trouble (see Section 5).

It is important to understand that the CLE may fail
to translate its analyses into FUDs, because the user’s
utterance is not possible to capture using one of the FUD
forms. In these cases, the CLE does not give any output
at all. The Robust Parser, on the other hand, will always
produce something; if the input is completely unintelli-
gible it will at least give the minimal output wh(X, [1).
This robustness is usually an advantage, but sometimes
it can lead the system down the wrong path (see Sec-
tion 5).

3.2 The Robust Parser

The main purpose of the Robust Parser is to rapidly
produce some useful output even if parts of the in-
put are unintelligible or garbled. We have deliberately
aimed for a simplistic approach to be able to compare
an atheoretical, shallow method with the high-precision
but more resource-demanding and fragile processing car-
ried out by the CLE. Also, experiences from multi-
engine systems show that approaches such as these may
complement each other well [Frederking and Nirenburg,
1994]. Given these objectives, a straightforward pattern-
matching, slot-filling approach seemed most suitable.

A first version of the parser with reasonable cover-
age was developed in about two person-weeks. Briefly,
the parser works as follows: First, it looks for domain-
dependent keywords and phrases and produces a list of
filled slots as well as information about the utterance
type (for example, a wh or yn question). The rules that
guide this process are straightforwardly encoded in a
Definite Clause Grammar. The result is then converted
into a well-formed FUD. The parser is deterministic in
the sense that only the first matching pattern is chosen;
hence, only a single analysis is produced. (Interestingly,
the fastest parsers reported in the literature are all de-
terministic, rule-based partial parsers [Abney, 1997, page
128].) The basic algorithm is shown in Figure 2.

4 Dialogue Management

The dialogue manager (DM) is responsible for interpret-
ing each user utterance in its appropriate context, issu-
ing database queries, and formulating responses to the
user. The DM maintains a dialogue state, which is trans-
formed as a reaction to each incoming message (from

20

User: 1 want to go from Gothenburg to Stock-
holm on Friday. user:constraint

System: At what time do you want to leave?
system:ask-for-constraint

U: In the morning. user:constraint

S: There is a train at 5.30 am arriving at 9.45
am. system:suggestion

U: Is that a direct train? user:ask-for-info
S: Yes. system:answer-with-info

U: Is there a later train?
suggestion

S: There is a train at 6.06 arriving at 9.15. sys-
tem:suggestion

U: Fine, I'll take that one. user:accept

user:ask-for-

Figure 3: A dialogue fragment annotated with move la-
bels.

the language processors and the database agent). The
dialogue state consists of three data structures:

e a list of objects that have been introduced in the
course of the dialogue. An object may be a concrete
train or flight alternative proposed by the system,
or a set of constraints given by the user;

o the dialogue history, that is, the utterances up to
the current point in the dialogue;

e the agenda, that is, a stack of goals that the dialogue
manager is seeking to meet. The agenda encodes the
long-term objectives of the system.

The use of an agenda makes the system flexible, and it
is easy to quickly reconfigure the bM to try out different
dialogue strategies.

4.1 Dialogue Moves

One of the most important tasks of the bM is to cate-
gorize each user utterance as a move of a certain type.
The move categories were again determined based on an
analysis of our Wizard-of-Oz data. Figure 3 shows an
annotated dialogue fragment including most of the im-
portant move categories.

For example, in the user:constraint move, the user
delimits the range of possible trips he is interested in.
By contrast, in the user:ask-for-info move the user
asks for information about possible trips, but the queried
information does not count as content to be added to
the current constraints on possible trips. The query is
a “side question” not contributing directly to the cur-
rent set of mutually understood constraints (but may,
depending on the answer, lead to a new constraint). In
the user:ask-for-suggestion move, the user asks for
an alternative suggestion without rejecting the previous
suggestions from the system (the user might very well go
back and accept a previous suggestion).

We distinguish between twelve different user moves
and roughly the same number of system moves. The DM
catgorizes an utterance as a certain move by computing

For each FUD:

1. Resolve references

a heuristic likelihood score for each move type, based on
the following factors:

Add contextual information

Classify the FUD as a certain move

e the existence of suitable contexts. For example, an
utterance cannot be classified as a user:accept un-
less the system has proposed some train(s) and/or
flight(s) that the user can accept.

the difference between the propositional contents of
the utterance and that of the context. For instance,
if these two are inconsistent, the utterance cannot
be classified as a user:accept; if they are consis-
tent, it is unlikely that the utterance should be clas-
sified as a user:ask-for-suggestion.

the precence of keywords in the utterance. For
example, if the utterance contains “accept words”

Update dialogue state

Otk L N

Choose a response action (system utterance or
database call)

Calculate preference score

Figure 4: Basic working cycle of the dialogue manager.

and mark that object as ‘accepted’. Furthermore, it will
add actions to the agenda; in the case of an acceptance

move from the user, a move for confirming the booking
will be added.

like “yes”, “ok”, etc., the user:accept score is in-
creased.

The DM has a set of game rules [Power, 1979] that con-
strains the set of possible response moves, given a partic-
ular user move. For instance, currently a user:ask-for-
suggestion is always followed by a system:suggestion
or a system:no-suggestion. The game rules can also
easily be changed to redesign the dialogue structure.

We conjecture that this set of move labels is reusable
for a large set of applications; basically any application
where the user gradually specifies what she wants, the
system presents the user with alternative suggestions,
and the user accepts some suggestions and rejects others.
The implementation of the Dialogue Manager is divided
into domain-independent code and domain-dependent
code (i.e. code that directly refers to flights, trains, etc.),
and is thus largely reusable. However, we do not have
a separate domain description language; to modify the
Dialogue Manager to work with a new domain, one has
to rewrite the domain-dependent Prolog code.

4.2 The Dialogue Management Cycle

In every turn, the DM receives a number of FUDs. No at-
tempt is made to select the “best” FUD at this stage, but
each FUD is processed in a number of steps. First, refer-
ences are resolved and contextual information is added.
Since there may be several possible antecedents for each
reference, and several possible contexts, this leads to a
multiplication of the FUD (typically a FUD gives rise to
five to ten “resolved” FUDs).

As the next step, each resolved FUD is classified as a
move (of one of the categories mentioned in the previous
section), and a likelihood score is computed for each pair
of resolved FUD and move. The winning pair is sent on
to the next stage; all other candidates stemming from
the same original FUD are discarded.

Once the bM knows what move the FUD represents, the
dialogue state can be updated. For instance, if the user
has made a user:accept move, the bM will look for the
appropriate object in its list of objects under discussion,

21

Next, the DM will choose the system’s response by
looking at its agenda. The agenda is organised as a stack
of items of the form

(Cond, Action)

where Cond can be any predicate that can be true or
false of a dialogue state. If the top item’s Cond is true
for the current dialogue state, the corresponding Ac-
tion is performed. Typically, Action is a response move
(for example, a reply from the system to the user), or a
database lookup. (It may also be an instruction to re-
organize some internal data structure.) If Cond is false,
the whole item is popped off the agenda, and the DM
proceeds to the next item.

Finally, the chosen response action is given a score
by a heuristic function. For example, prompting the
user to rephrase his last utterance is judged as being less
productive than asking “When do you want to travel”
or performing a database lookup. Furthermore, the re-
sponse may receive extra scores based on the input FUD
(e.g. for the number of previously unknown filler values
the FUD determined).

The winning response action is then carried out, which
amounts to sending a message to the linguistic generator
(in case of a system utterance), or to the database agent.
The working cycle of the DM is summarized in Figure 4.

5 A Preliminary Evaluation

This section reports the results of a preliminary evalu-
ation, aimed particularly at testing the relative utility
of the Robust Parser and the CLE, respectively. To this
end, we used two configurations of the system: One of
them (RP—CLE) corresponds to the architecture shown in
Figure 1, in which the CLE and the Robust Parser work
in parallel. In the other (RP-only), the CLE was disabled,
thus only containing the shallow processing path.

Two similar tasks, A and B, were created, each involv-
ing a trip with at least three legs during two consecutive
days, suitable for both train and air travel. Two sub-
jects were used. Each of them was given the opportu-

nity to try out the RP—CLE version of the system. More
specifically, what they used was the demo version of the
system, in which system components get highlighted as
they engage in processing, and in which the recognized
utterance as well as the system’s responses are succes-

In terms of which component causes the most turn
failures, the picture was unclear. In the RP—CLE case,
only a single “failure” turn in each dialogue was actu-
ally due to language analysis (in which case both the
RP and the CLE failed, though the CLE had the better

sively written into a window. The purpose of this was
to give the subjects a better sense of what was going on,
since otherwise the system could remain silent for typi-
cally 30-60 seconds on Internet database queries. When
the subjects felt that they were able to handle the sys-
tem, they were presented with tasks A and B in different
orders.

The experiment resulted in four dialogues, each con-
sisting of between 22 and 28 user—system turns. Each
turn was tagged with “OK” or “failure”, depending on
whether the system had managed to move the dialogue
forward or not in response to the user’s utterance (pro-

analyses). In the RP-only case, the RP caused none at
all of 11 failures in one of the dialogues, whereas in the
other, it caused 5 of 15 failures. The figures also indicate
that language analysis was not the main bottleneck of
the system (both speech recognition and dialogue man-
agement were the sources of more failed turns). This
might have played a role when none of the subjects said
that they had noted any difference in terms of overall
performance between the RP—CLE and RP-only configu-
rations of the system. But the relatively small difference
in terms of overall turn efficiency, as indicated above,
might also have contributed to this.

vided that the utterance was reasonable given the con-
text). “Failure” thus consists of cases where the system
responded that it did not understand the last utterance

Our analysis also indicates that the Dialogue Manager
is quite good at choosing between analyses from the RP
and CLE: In the two RP—CLE dialogues, there is only a

or where its response constituted a misunderstanding.
Furthermore, each turn was tagged with “user” or “sys-
tem” depending on whether the subject’s utterance was
a response to a system initiative or whether the utter-
ance constituted a user initiative (for example, a spon-
taneous request for information or a counter-question).
The tasks were designed so as to encourage mixed ini-
tiative, and both subjects displayed a majority of user
initiatives in their dialogues.

Because of the small size of the experiment, the results
at this point can only be taken as suggestive. Neverthe-
less, to provide a rough idea of where we stand in our
on-going work, we shall briefly present some figures that
we obtained.

To begin with, the RP—CLE configuration appeared
slightly more efficient in terms of moving the dialogue
forward than the RP-only one: The RP—CLE and RP-only
dialogues used on average 22 and 27 moves, and out of
these had 15 and 14 “OK” turns, respectively. However,
in terms of providing successful analyses (in the cases
when at least one fragment of the output from the speech
recognizer was reasonable), the RP was the slightly more
successful one in the RP—CLE configuration: It succeeded
on average on 16 turns, whereas the CLE succeeded on
13. Surprisingly, the RP also turned out to be a bit more
successful on those turns where the user had taken the
initiative: it was successful on almost 2/3 of those cases,
whereas the CLE was successful on about half of them.

A closer analysis revealed that on five times in each
of the RP—CLE dialogues, failure of the CLE to deliver a
correct analysis was due to the fact that it had chosen a
wrong fragment (usually too long). The reason for this is
that the CLE attempts to analyse the longest grammat-
ical fragment on the path chosen from the N-best list,
something which may lead to strange results (compare
the example further below).*

4A previous study using our Wizard-of-Oz data came to
a similar result; see [Lewin et al., 1999].

22

single case of the Dialogue Manager choosing the wrong
alternative. (In this case, it chooses a CLE analysis which
lacks some information but the rest of whose contents
are correct, thereby still managing to move the dialogue
forward.)

We now turn to some qualitative differences between
the RP and CLE that we have observed in our analysis
above.? To begin with, the obvious advantage of the Ro-
bust Parser (RP) is that it is rather undisturbed by un-
grammaticalities, disfluences and (to some extent) recog-
nition errors in the input. For example, the utterance

Hej jag bestéller en flygbiljett den attonde i
sjatte tisdag fran Stockholm till Sundsvall. (Hi
I’'m ordering a flight ticket on June eighth from
Stockholm to Sundsvall).

recognized as VAD HEJ JAG BESTALLER JAG
VILL JAG DEN ATTONDE I SJATTE I JAG MMM
DA STOCKHOLM TILL SUNDSVALL. (roughly
What hi I'm ordering I want I on June eighth
in I mmm then Stockholm to Sundsvall.)

is analysed perfectly by the RP. The CLE locates the
longest grammatical fragment “den attonde i sjéitte”,
and produces an analysis that includes the date but not
the destination and origin cities of the trip.

As pointed out above, the strategy of choosing the
longest grammatical fragment can sometimes lead the
CLE completely astray. The utterance

Jag bokar det taget. (I book that train.)
was misrecognized as
JAG BOKAR DET DET TAGET

whose longest grammatical fragment is “bokar det det
taget” (“does that book that train”), which is something
completely different from what the user actually said.

5All example utterances below come from the experiment
described above, using the system.

The CLE failed to produce any FUD, while the RP got it
right.

On the other hand, the RP can produce erroneous re-
sults because it is analysing unconnected bits and pieces
of sentences. For instance, the RP analysed “Klockan nit-
ton eller senare” (“at seven pm or later”) as “at seven
pm, and later than some previously mentioned trip”, be-
cause it triggered on the two separate patterns “klockan
nitton” and “senare” without considering the relation
between them.

Actually, the very robustness of the RP can sometimes
prove to be a disadvantage. In one case, the test subject
meant to say “Jag har féretagsrabatt pa flyget” (“I have
a corporate discount on air travelling”), but the input
became totally garbled: “JA DA HAR FORETAG FYRA
VAD FOR ATT FLYGA” (roughly “Yes then has company
four what for to fly”). The cLE did not produce any
FUD. The RP reacted on “to fly”, and its analysis to-
gether with the keyword “Ja” (“Yes”) in the utterance
made the system book a previously mentioned flight al-
ternative. If the RP had been disconnected, the system’s
reply would instead have been to ask the user to rephrase
her utterance; certainly a more sensible reaction.

A considerable advantage of the CLE is its ability to
look at, and possibly combine, the top N hypotheses
from the recognizer. At several occasions this proved to
be important, for example, in correcting the top hypoth-
esis “hur och retur” into “tur och retur” (“return trip”).
The rRP, which only has access to the top hypothesis,
could only produce the “null” result wh(X, []) in this
case.

6 Conclusion

We have described an implemented spoken-language
dialogue system, which combines deep and shallow
language-processing engines and an agenda-driven dia-
logue manager. We have also described a preliminary
evaluation of the system. Although the limited set of
data prevents us from drawing any firm conclusions,
we feel encouraged in further exploring parallel shallow
and deep language processing in the context of spoken-
dialogue systems. There are principled cases that the

analysis selection in the CLE so that decisions can be
made statistically from the results of supervised training
over already parsed corpora. Some work has been done
to integrate this technique into our general tool for cus-
tomizing the disambiguation component of a language
processor [Carter, 1997].

References

[Abney, 1997] Steven Abney. Part-of-Speech Tagging
and Partial Parsing. In Steve Young and Gerrit
Bloothooft, editors, Corpus-based Methods in Lan-
guage and Speech Processing, pages 118-136. Kluwer
Academic Publishers, Dordrecht, The Netherlands,
1997.

[Allen et al., 1996] James F. Allen, Bradford W. Miller,
Eric K. Ringger and Teresa Sikorski. A Robust System
for Natural Spoken Dialogue. In Proc. 3/st Annual
Meeting of the Association for Computational Linguis-
tics, pages 62-70, Santa Cruz, California, USA, 1996.

[Alshawi, 1992] Hiyan Alshawi, editor. The Core Lan-
guage Engine. MIT Press, Cambridge, Massachusetts,
1992.

[Aust and Oerder, 1995] Harald Aust and
Martin Oerder. Dialogue Control in Automatic In-
quiry Systems. In Proc. ESCA Workshop on Spoken
Dialogue Systems: Theories and Applications, Vigss,
Denmark, 1995.

[Bos et al., 1999] J. Bos, S. Larsson, I. Lewin, C. Math-
eson and D. Milward. Survey of Existing Interactive
Systems. Trindi (Task Oriented Instructional Dia-
logue) report number D1.3, 1999. [Trindi, Telematics
Application Programme, Language Engineering LE4-
8314, funded by the European Commission.]

[Carter, 1997] David Carter. The Treebanker: A Tool
for Supervised Training of Parsed Corpora. In
ACL Workshop on Computational Environments for
Grammar Development and Linguistic Engineering,
Madrid, 1997. See also: SRI Technical Report CRC-
068 available from http:/www.cam.sri.com.

[Frederking and Nirenburg, 1994] Robert Frederking

shallow processor has problems dealing with, and in our
limited experiment the configuration that combined deep
and shallow processing was at a slight advantage rela-
tive to the one that only used shallow processing. On
the other hand, our hypothesis that deep processing was
more advantageous in situations where the user takes
the initiative did not receive support by this experiment.
Actually, the RP appeared slightly more successful both
in general and on user initiatives. However, in our ex-
periment this difference could be largely explained by
the extent to which the CLE chose the wrong (grammat-
ical) fragment from the N-best list. It thus seems that
we had underestimated the degree to which output from
the speech recognizer would require fragment analysis
whose results might require careful selection. To be able
to deal with this, we would have to improve fragmentary-

23

and Sergei Nirenburg. Three heads are better than
one. In Proc. Jth Conference on Applied Natural Lan-
guage Processing, pages 95-100, Stuttgart, Germany,
1994.

[Lamel et al., 1998] L. Lamel, S. Rosset, J. L. Gauvin,
S. Bennacef, M. Garnier-Rizet and B. Prouts. The
LIMSI ARISE System. In Proc. IEEE 4th Workshop
Interactive Voice Technology for Telecommunications
Applications, pages 209-214, Torino, Italy, 1998.

[Lewin et al., 1999] I. Lewin, R. Becket, J. Boye,
D. Carter, M. Rayner, and M. Wirén. Language pro-
cessing for spoken dialogue systems: is shallow parsing
enough? In Accessing Information in Spoken Audio:
Proceedings of ESCA ETRW Workship, Cambridge,
19 & 20th April 1999, pages 37-42, 1999.

[Litman et al., 1998] Diane J. Litman, Shimei Pan and
Marilyn A. Walker. Evaluating Response Strategies
in a Web-based Spoken Dialogue Agent. In Proc.
ACL/COLING 98: 86th Annual Meeting of the Asso-
ciation of Computational Linguistics, pages 780-787,

[Murveit et al., 1993] H. Murveit, J. Butzberger, V. Di-
galakis and M. Weintraub. Large Vocabulary Dicta-
tion using SRI’s DECIPHER(TM) Speech Recogni-
tion System: Progressive Search Techniques. In Proc.
International Conference on Acoustical, Speech and
Signal Processing, Minneapolis, Minnesota, 1993.

[Power, 1979] Hiran R. Power. The Organization of Pur-
poseful Dialogues. Linguistics, 17:107-152, 1979.

24

