Two Aspects of Directional Types

Johan Boye, Jan Maluszyniski !
Linkoping University

5-581 83 Linkoping, Sweden

{ johbo, janma}@ida.liu.se

Abstract

The idea of directional types is to describe the computational behaviour of
Prolog programs by associating an input and an output assertion to every
predicate. The input assertion puts a restriction on the form of the arguments
of the predicate in the initial atomic goals. The output assertion describes
the form of the arguments at success, given that the predicate is called as
specified by its input assertion.

This paper discusses two aspects of directional types: the declarative no-
tion of input-output correctness and the operational notion of call correctness.
By separating these two concepts, we readily obtain better correctness crite-
ria than those existing in the literature. We further show how directional
types can be used for controlling execution of logic programs through a delay
mechanism.

1 Introduction

Recently there has been a growing interest in the notion of directional types for
Prolog programs [6, 12, 2, 3, 1, 11]. This kind of prescriptive typing describes
the intended ways of calling the program, as well as the user’s intuition of how
the program behaves when called as prescribed. Together with some methods
and tools for type checking, directional types may provide a good support for
program validation.

This paper shows that directional types have two aspects. One of them is
declarative and can be discussed regardless of the computation model, while
the other is related to the computation model. This view allows us to obtain a
better correctness criterion than those existing in the literature (e.g. the well-
typing condition of [6, 2]). We further demonstrate how directional types
can be used for controlling execution in a coroutining fashion. We show
that programs satisfying our new correctness condition will never suspend
indefinitely when executed this way.

The idea of directional types is to describe the computational behaviour
of Prolog programs by associating an input and an output assertion to every
predicate. The input assertion puts a restriction on the form of the arguments

1 Address until July 1995: INRIA-Rocquencourt, B.P. 105, 78153 Le Chesnay cedex,

France

of the predicate in the initial atomic goals. The output assertion describes the
form of the arguments at success, given that the predicate is called as specified
by its input assertion®?. As an example, consider the append/3 predicate:

append([], X, X).
append([E|L], R, [EILR]) :- append(L, R, LR).

When this predicate is used to concatenate two lists, we call it with the two
first arguments bound to the two lists. Upon success the third argument
is bound to the resulting list. The form of the third argument at call is
not restricted. Also we are not concerned about the form of the first two
arguments at success. This use of the predicate may be described by the
following notation:

append/3: (| List, | List, | List)

where the two first argument positions (marked with |) are considered as
input positions, and the third argument (marked with 1) is considered an
output position.

A given directional type may or may not be correct in the sense that
it properly describes the actual computational behaviour. As shown in this
article, the correctness of directional types has two aspects:

o the input-output correctness: whenever the call of a predicate satisfies
the input assertion, then the call instantiated by any computed answer
substitution satisfies the output assertion.

e the call correctness (for the Prolog computation rule): whenever the
call of a predicate satisfies the input assertion, then any succeeding call
in this computation will satisfy its input assertion.

The directional type in the append/3 example is correct in both aspects.

The well-typing condition of [2, 6] is sufficient to ensure both input-output
correctness and call correctness of a given directional type. However, it is not
applicable to directional types which are input-output correct but not call
correct. This kind of directional types may be particularly interesting for
programs using the power of the logical variable, as illustrated in the example
of Sect. 3. In Sect. 4 we formulate a correctness condition — S-well-typedness
— which is sufficient to ensure input-output correctness of directional types
which are not call correct.

Section 5 discusses the problem of call correctness for a given computation
rule. The question considered is to distinguish those input arguments of the
program predicates for which the directional type is a call invariant. For
the Prolog computation rule we provide a sufficient test for answering this
question.

?Directional types constitute a special case of inductive assertions [10].

In section 6, we discuss type-driven resolution (or simply T-resolution),
which uses directional types as a means for controlling execution of logic pro-
grams through a delay mechanism. T-resolution is sound but not complete in
general, since the computation may deadlock. We show that S-well-typedness
is a sufficient condition for deadlock-free execution under T-resolution.

Proofs of all theorems can be found in [5].

2 Preliminaries

2.1 Types

Adopting to a popular view (e.g. Apt [2]), we define a type to be a decidable
set of terms closed under substitution. In particular, in the examples we will
use the following types:

Any the set of all terms

Gnd the set of ground terms

List [] | [Any| List] (lists)

G'List [| [Gnd| GList] (ground lists)
BinTree void | tree(Any, BinTree, BinTree) (binary trees)
GBinTree woid | tree(Gnd, GBinTree, GBinTree) (ground bin. trees)

A typed term is an object t : T, where t is a term, and T is a type.
A directional type for an n-ary predicate p is an n-tuple, associating every
argument position of p with a direction (| or 1) and a type. The argument
positions associated with | (1) are called the input (output) positions of p. For
instance,

append/3: (| List, | List, | List)

is a directional type for the append/3 predicate. The two first positions are
input positions, and the last position is an output position.

An atom p(ty : Ty,....t, : T,) is said to be correctly typed in its i-th
position iff t; € T;. The atom append([1,Y,[1,2]) is correctly typed in its
first and third positions. Let P be a program and R be a computation rule.
If for every atom A which is correctly typed in its input positions:

(1) all atoms selected in every SLD-derivation of P starting from A are
correctly typed in their input positions, and if

(2) for every computed answer o, Ao is correctly typed in its output posi-
tions,

then the directional type is correct for P (and R). (Alternatively, we say
that P is correctly typed under R). If condition (1) is satisfied, the typing of
the program is said to be call correct for R. If condition (2) is satisfied, the
typing of the program is said to be input-output correct (10 correct).

2.2 Well-typing

Let sq1,...,8,,t be terms, and Sy,...,5,,7T be types. A type judgement has
the form

S1: 5T AN oA s, S, =t T

The judgement is true, written

Esi ST A oA s S, = T

if, for all substitutions o, whenever o(s;) € 5; (1 <¢ < n), then o(t) € T.
To simplify the notation, we will throughout this section write an atom
as p(u:U,t:T), where u:U is a sequence of typed terms filling in the input
positions of p;, and t : T is a sequence of terms filling in the output positions
of p;.
The following is a well-known sufficient condition for a program to be
correctly typed under the Prolog computation rule (cf. [6]):

Definition 2.1

e po(io : Ip,00: Op) :— pi1(i1 : 11,01 : O1),..., pu(in : In,0on : On) is
well-typed if, for all j from 1 to n:

Fig:Ip AN op: 01 A ... A Oj_lloj_]_ = i_]I_]
and if

Fig:Ip AN 01:01 A ... ANop:0n = 09:0g

e A program is well-typed if each of its clauses is well-typed. a
[hus a clause is well-typed if

e the types of the terms filling in the input positions of a body atom can
be deduced from the types of the terms filling in the input positions of
the head and the output positions of the preceding body atoms, and if

e the types of the terms filling in the output positions of the head can be
deduced from the types of the terms filling in the input positions of the
head and the output positions of the body atoms.

To show that the first clause of append/3 is well-typed, we have to prove that
([J, X): (List, List) = X : List

which is obviously true. To show that the second clause is well-typed, we
have to prove that

([E|L],R): (List, List) = (L, R):(List, List)
and that
([EF|L],R): (List,List) A LR: List = [F|LR]: List

Both of these type judgements are easily proven true; thus the append/3
program is well-typed.

2.3 Proof trees

We now summarize a uniform framework for discussing both the operational
and the declarative semantics of definite programs. This will allow us to
discuss 10 correctness without taking the operational model into account.
The framework originates from Deransart and Maluszynski [9], and is based
on the notion of proof tree.

In our view, the resolution process can be viewed as the stepwise construc-
tion of a skeleton (by “pasting” together instances of clauses), intertwined
with equation solving (unification).

Definition 2.2 A skeleton is a tree defined as follows:

o if (¢ is an (atomic) initial query, then the node labeled (G, 1) is a
skeleton;

o if 5 is a skeleton, then 55 is a skeleton if S5 can be obtained from 5
by means of the following extension operation:

1. choose a node n in 51, labeled (A4, L);

2. choose a clause Ag : — Ay,..., A in P, such that A and Ay have
the same predicate symbol and the same arity;

3. change n’s label into (A, 0(Ap)), (where o is a renaming to fresh
variables), and add k children to n, labeled (o(A1), L), ., (o(Ag), L).

A node is incomplete if its label contains L, and complete otherwise. A
skeleton is incomplete if it contains an incomplete node, and complete other-
wise. a

Definition 2.3 The set of equations associated to the node n is denoted by
E(n), and is defined as follows:

e if n is an incomplete node, then E(n) = 0;

o if n is labeled with (p(sy,...,sk),p(t1,-..,1k)), then E(n) = {51 =
tiyeooy8p = tg). d

For example, an LD-resolution® step corresponds to choosing the leftmost
node n (in preorder of the skeleton), expanding it as described in definition
2.2, and computing a solved form of E(n) (i.e. performing unification). A
proof tree is a complete skeleton, together with a solution of all the associated
equations. Fvery successful LD-derivation corresponds to a proof tree, and
the obtained mgu of the set of equations restricted to the variables of the root
label of the skeleton is the computed answer substitution.

One of the advantages of this view on operational semantics is that we
can make fine-grained adjustments to the resolution process. For instance,
for some node n, we may choose not to solve all equations in F(n) at once
(this corresponds to partly delaying unification). This is in fact exactly what
we will do in the type of resolution introduced in Sect. 6.

?SLD-resolution with Prolog’s computation rule.

2.4 Dependencies

For the rest of this section, we assume that we have some unambiguous way of
referring to the atoms in the program, and let A be the atom p(ty,...,#) in
some clause C'. The argument positions in A are denoted by A(1),..., A(k).

Definition 2.4 The set of clause positions in C is defined as

U {AG)]1<i < arity(A))

Ais an atom in C

If no confusion can arise, we will refer to “clause positions” simply as
“positions”. We will not always make a distinction between clause positions
and terms filling in clause positions, i.e. we may make statements like “A(%)
is a variable” instead of “the term filling in A(7) is a variable”.

Note that, when proving well-typedness, the terms occurring in the conse-
quents of the type judgements always occur at output positions in the head,
or at input positions of the body. For convenience, we introduce a name for
these positions:

Definition 2.5 A(:¢) is an exporting clause position of C' if either
o Ais the head of ', and the ¢:th argument of p is an output position, or
o Ais abody atom in €, and the #:th argument of p is an input position.
A clause position is importing if it is not exporting. a

Within a clause €', we think of data as flowing from the importing positions
to the exporting positions. This is reflected by the following relation.

Definition 2.6 For each clause C, its local dependency relation ~»¢ is defined
as follows:

A1) ~c B(j)
iff A(¢) is an importing clause position in C', B(j) is an exporting clause
position in C', and A(7) and B(j) have at least one common variable. 0

A skeleton is obtained by pasting together instances of clauses. To model
the dataflow in a complete skeleton T', we construct a compound dependency
graph ~7 by pasting together the local dependency graphs for the clauses
used in T (for a formal definition, see the full version of the paper [5]).

The idea of the type-driven resolution introduced in Sect. 6 is that we solve
the equations of the skeleton in accordance with the ~»7 relation. Therefore
it is absolutely essential that the ~»7 relation is a partial ordering. This
motivates us to introduce the following concept.

Definition 2.7 If the relation ~»7 is a partial ordering for every skeleton T,
then the program is said to be non-circular. a

The non-circularity concept stems originally from the field of attribute gram-
mars. It is well-known that this property is decidable (see e.g. [9]).

3 An informal example

In this section, we give an example of a program which is IO correct but not
well-typed. We claim that such directional types often are of practical inter-
est, especially for programs using incomplete data structures. The interested
reader can find more examples in the full version of the paper [5].

Consider the following task: Given a binary tree T" whose nodes are labeled
with integers, compute a binary tree with the same structure as T', but where
every node is labeled with the maximal integer in 1. For example, given the
tree

N N\
VAN N\,

Conceptually this is a two-pass problem; first traverse T to find the maxi-
mal integer n, and then construct the output tree where every node is labeled
with n. However, the following program solves the problem in one pass.

we expect the answer

maxtree(Tree, NewTree) :-
maxtree(Tree, Max, [], Labels, NewTree),
max (Labels, Max).

maxtree(void, _, L, L, void).
maxtree(tree(Lbl,Lft,Rgt) ,Max,In, [Lbl|0ut],tree(Max,NLft ,NRgt)):-
maxtree(Lft, Max, In, IO, NLft),
maxtree(Rgt, Max, IO, Out, NRgt).

maxtree/5 traverses the input tree, collects all labels in a list, and builds
a new tree where all nodes are labeled with the same logical variable. This
variable is then unified with the maximal label, as computed by max/2 (the
definition of max/2 is straightforward and therefore omitted).

Note that upon success of maxtree/5, the fifth argument is bound to a
non-ground binary tree. The variables in this binary tree are instantiated to
an integer by max/2, so that upon success of maxtree/2, the second argument
is bound to a ground binary tree. Thus, the most precise correct directional
type for the program (using the types in Sect. 2.1) is as follows:

maxtree/2: (| GBinTree, | GBinTree)
maxtree/5: (| GBinTree, | Any, | GList, | GList, | BinTree)
max/2: (| GList, | Gnd)

However, the clause defining maxtree/2 is not well-typed, since

Tree: GBinTree A
(Labels, NewTree) : (GList, BinTree) A
Maz : Gnd =

NewTree: GBinTree

is not true. The problem is caused by the variable NewTree: one can not
conclude that NewTree is a ground binary tree just from the fact that it is
a binary tree. Thus we cannot use the well-typing condition to conclude that
the program is correctly typed.

Now consider changing the directional type for maxtree/5 as follows (the
other predicates are typed as before):

maxtree/5: (| GBinTree, | Gnd, | GList, T GList, T GBinTree)

The idea is that if maxtree/5 is called with its second argument bound to
a ground term, then the last argument will be bound to a ground binary
tree upon success. Now the directional type for the program as a whole
is not call correct under LD-resolution; the maxtree/5 predicate is called
with the second argument being a variable, not a ground term. However, the
directional type remains IO-correct, as will be shown by the method presented
in Sect. 4.

4 Proving IO correctness

The problem whether a given directional type is IO correct or not is indepen-
dent of a particular computation rule. Thus the problem can be discussed
in terms of proof trees of a program rather than in terms of computations.
The method for proving IO correctness of directional types presented in this
section is a special case of the annotation method for proving properties of
proof trees, introduced in [8] (see also [9]). For brevity, we introduce our
method directly, instead of deriving it from the annotation method, as done
in the full version of the paper [5].

The well-typing condition of section 2 requires (among other things), that
the types of terms at exporting clause positions in the body can be inferred
from the types at importing clause positions in preceding literals. The reason
for only looking at preceding literals is that Prolog’s computation rule is
assumed. If we abstract away from the computation rule, this restriction is
no longer necessary; Given an exporting clause position e, we may use all
importing positions in the clause to infer the type of e (to be more exact,
we will only regard those importing positions which share a variable with e).
This line of reasoning motivates the definition of sharing-based well-typing
(S-well-typing):

Definition 4.1 Let 7 be a directional type for a program P, and let C' be a
clause of P. Denote by ~+¢ the dependency relation determined by 7 on the
positions of C'.

e For a given exporting position e in "

— let ¢ be the term occurring in C' on e, and let T" be the type asso-
ciated to e by 7.

— let 41, ..., 7% be all importing positions of €' such that ¢; ~¢ e, and
let tq,...,t, be the terms on these positions of C' typed, respectively,
Tl, ,Tn by 7.

The position e is S-well-typed ift

Ety:Ty AN oo ANt Ty = T

o The clause C' is S-well-typed iff all its exporting positions are S-well-
typed.

o The program P is S-well-typed iff it is non-circular and all its clauses
are S-well-typed.

Theorem 4.2 Every S-well-typed program is correctly 10-typed.

Consider the maxtree program of Section 3 with the second directional type,
ie.:

maxtree/2: (| GBinTree, | GBinTree)
maxtree/5: (| GBinTree, | Gnd, | GList, | GList, | GBinTree)
max/2: (| GList, | Gnd)

It is easy to verify that each clause is S-well-typed. By methods used in the
field of attribute grammars, the program can automatically be proved non-
circular [9]. Hence the program is IO correct, and we may conclude that the
second argument of maxtree/2 will be a ground binary tree upon success.

5 Call correctness under LD-resolution

We now consider the problem of call correctness. It may turn out that for a
given directional type the input assertions of certain predicate positions are
call invariants under a given computation rule, while the others are not. In
this section we give a sufficient condition for an input position to be a call
invariant. We restrict our discussion to the Prolog computation rule, but the
idea presented can also be extended to other computation rules.

Reconsider the maxtree program in Sect. 3 with the directional type
above. When executed with LD-resolution, in every call to the recursive
clause for maxtree/5, the first and third position (but not the second) are
correctly typed. Upon success, the fourth position (but not the fifth) is cor-
rectly typed. Intuitively, the reason is that the dataflow to these positions
follows the execution order of LD-resolution. We say that these positions are
well-typed.

Definition 5.1 Let P be a program. W is a set of well-typed clause positions
in P if it satisfies:

(1) Let H be a head of some clause in P. If H(7) is an input position, and
H(7) € W, then for all body atoms B that unify with H, B(i) € W.

(2) Let B be a body atom in some clause in P. If B(7) is an output position,
and B(7) € W then for all heads H that unify with B, H(¢) € W.

(3) Let A;(7) be an input position in the clause H : — Ay,...,A,. If
A;(1) € W, then its type can be inferred from the types of input posi-
tions in H which are elements of W, and the types of output positions
in Ay,...,A;_1 which are elements of W.

(4) Let H(i) be an output position in the clause H :— Ay,..., A,. If H(7) €
W, then its type can be inferred from the type of input positions in H
which are elements of W, and the types of output positionsin A4,..., 4,
which are elements of W. a

It is easily realized that there exists a largest set of well-typed clause
positions (see [5] for a proof). A clause position of P will be called well-typed
if it belongs to this set.

Definition 5.2 Let p be a predicate, and let Ay,...A, be all atoms in P
which have p as a predicate symbol. The z:th predicate position of p is well-
typed if A1(7), A(7),...A,(7) all are well-typed. 0

Let us exemplify definition 5.2 on the maxtree program. Consider the
clause defining maxtree/2. The second clause position of the first body atom
is not well-typed. Since this position is an input position in the body, we
check case (3). We note that the type of the term filling in this position (Max)
cannot be inferred from the types of the input positions in the head.

Now consider the recursive clause for maxtree/5. The second position in
the head is not well-typed, since (1) is not satisfied. This is due to the fact
that the position considered in the previous paragraph is not well-typed. As
a consequence, the fifth position in the head, and the second position in the
two body atoms are not well-typed, and so on.

The maxtree program, with its well-typed clause positions underlined, is
shown below. (By also considering the definition of max/2, we would perhaps
be able to show that also the second clause position of max/2 is well-typed).

maxtree(Tree, NewTree) :-
maxtree(Tree, Max, [], Labels, NewTree),
max(Labels, Max).

maxtree(void, _, L, L, void).

maxtree(tree(Lbl,Lft,Rgt),Max,In, [Lbl|0Out],tree(Max,NLft ,NRgt)):-
maxtree(Lft, Max, In, Outil, NLft),
maxtree(Rgt, Max, Outl, QOut, NRgt).

We conclude that the first argument of maxtree/2, the first, third and fifth
arguments of maxtree/5, and the first argument of max/2 are well-typed.

10

Definition 5.3 Given a directional type 7 of a program P, we obtain Ty,
the strongest well-typing compatible with T, as follows: For every predicate
position e:

o if e is well-typed under 7, it is given the same type by 7y as by 7;

e otherwise, e is given the type Any by Ty . O

Recall the maxtree program, and let 7 be the previous directional type.
Then Ty is the following directional type:

maxtree/2: (| GBinTree, | Any)
maxtree/5: (| GBinTree, | Any, | GList,| GList,| BinTree)
max/2: (| GList,| Any)

Theorem 5.4 Let 7 be a directional type for P. Then 7y is a well-typing
for P.

Corollary 5.5 Let P be a program, and let G be an atom which is correctly
typed in its input positions. Let H :— Aq,..., A, be a clause in P. Then in
every LD-derivation starting from G if the query o(A;,..., Ay, B1,...,By)
is reached, then the well-typed input positions in o(A;) are correctly typed.

Thus we may conclude (for instance) that the types of the first and third
arguments of maxtree/2 are call invariants.

Corollary 5.6 Let P be a program, and let G be an atom which is correctly
typed in its input positions. Then for every computed answer substitution o,
o(G) is correctly typed in its well-typed output positions.

6 Type-driven resolution

This section presents a model of computation where directional types are
used for controlling execution. This is formalized as a notion of type-driven
resolution (T-resolution for short). The idea is to suspend unification when
the arguments are not correctly typed. In contrast to some Prolog systems
(e.g. SICStus [7]), the suspension is argument-wise rather than atom-wise.
An interesting question is whether the computation may reach the deadlock
situation where no resolution can be performed, even though the set of the
suspended unifications is not empty. We show that S-well-typedness is a
sufficient condition for a program to be deadlock-free under T-resolution.

Definition 6.1 [Query] A query is a either the atom fail or a pair (G F),
where (G is a sequence of atoms, and F is a set of equations. For an initial
query (given by the user), we require that F = (). O

11

Definition 6.2 [Eligible equation] Let p/n be a predicate with an associ-
ated directional type. We denote the type of the :th position with 7;. Let
p(s1,...,5,) = p(t1,...,t,) be an equation. The equation s; = ¢; is eligible
if either

e the j:th argument of p is an input position, and |= s; : T, or
o the j:th argument of p is an output argument, and |=¢; : T}. O

Definition 6.3 [T-derivative] Let) = (G E) be a query. A T-derivative
Q' is a query obtained from () as follows:

1. If E contains a trivial equation ¢ = ¢, then @' = (G; F — {t = t});

2. Otherwise, if I contains a non-trivial equation of the form p(sy,...,s,) =
p(ty,...,1,), where s; = t; is an eligible equation, and s; and ¢; unify
with mgu o, then Q' = (0(G),0(F)). If s; and ¢; do not unify then
Q' = fail.

3. Otherwise (if there is no eligible equation in F), if G = Ay,..., A,
where Ay = p(sy,...,8,), and H : — By,...B, is a (renamed) clause,
where H = p(t4,...,t,), then

Q' =(Bi,...,Bn,Agy. o Ap s EU{p(s1y...ypn) = p(te, .. oytn)})
4. Otherwise,) has no T-derivative. a

Definition 6.4 [T-derivation] A T-derivation is a query sequence @1, Qs, . . .
such that ¢;41 is a T-derivative of ¢);. Consider a finite T-derivation which
ends with a query for which no T-derivative exists. The T-derivation is:

o successful if it ends with (€ 0);

o deadlocked if it ends with (e; '), where F is a non-empty set of equa-
tions;

o failed otherwise, i.e. if it ends with fail or a query of the form (G F),
where (G is a non-empty sequence. a

For successful derivations we can compute answers in the ordinary way by
composing all the substitutions obtained in the derivation. The soundness of
T-resolution follows directly from the soundness of LD-resolution, since the
same equations are solved, albeit possibly in a different order. T-resolution
is not complete since some derivations may deadlock, but theorem 6.5 consti-
tutes a restricted completeness result.

With the “proof tree view” on resolution, a successful derivation corre-
sponds to the case where we can construct a complete skeleton and solve all
the associated equations. A deadlocked derivation corresponds to the case

12

where we can construct a complete skeleton, but there is at least one equa-
tion which cannot be selected for solving, due to that the terms therein are
not instantiated to the right type.

We illustrate this resolution process on an example, Reconsider the maxtree
program in Sect. 3. We now type it as follows:

maxtree/2 : (| GBinTree, | GBinTree)
maxtree/5 : (| GBinTree, | Gnd, | GList,| GList,| GBinTree)
max/2: (| GList,| Gnd)

Consider the initial query
(maxtree(tree(5,void,void), N); {})

We resolve it against the only possible clause, but we keep one equation
unsolved, yielding the query:

(maxtree(tree(5,void,void) ,Max1,[],Labelsl,NewTreel),
max(Labels1,Max1);
{ N=NewTreel })

We can depict this with the incomplete proof tree shown in figure 1. (Two
terms stacked upon each other indicate an unsolved equation.) We continue
by resolving the leftmost atom in the query (expand the node Ny).

NewTree
maxtree |tree(5,void,void) ,
NewTreel
NO
maxtree(tree(5,void,void), Maxl, [], Labelsl, NewTreel) max (Labelsl, Maxl)
N1 1 N2 N

Figure 1: An incomplete proof tree

Some derivation steps later we obtain the tree shown in figure 2.

When we now resolve the atom max([5], Max1), the variable Max1 be-
comes instantiated to 5. We can now solve the equation Max1=Max2 at node
Ny, since Max1 now is instantiated to the right type (Gnd). We can then solve
the equation NewTreel=tree(Max2,void,void) at node Ny, and finally the
equation NewTree=NewTreel at node Ng.

Hopefully this example has conveyed the general idea of type-driven res-
olution: unification is performed argumentwise in “dataflow order”.

The possibility of deadlock when executing a program with T-resolution,
raises the question if it is possible to detect the cases where T-resolution really
computes all answers, i.e. where deadlock does not occur. It turns out that
the notion of S-well-typedness is a sufficient condition for that.

13

NewTree
maxtree |tree(5,void,void) ,

NewTreel
NO
Maxl NewTreel
maxtree | tree(5,void, void), , 1, (51, max([5] , Maxl)
Max2 tree (Max2,void,void)
N1 N2 _l_
maxtree (void,Max2, [], [],void) maxtree(void,Max2, [], [],void)

Figure 2: Another incomplete proof tree

Theorem 6.5 Let P be a program which is S-well-typed, and let G be an
atom which is correctly typed in its input positions. Then no T-derivation
starting from (G 0) will deadlock.

Theorem 6.6 Let P be a program which is S-well-typed, and let G be an
atom which is correctly typed in its input positions. Then for every answer
o computed by T-resolution, o((G) is correctly typed in its output positions.

7 Discussion and Conclusions

We have separated two aspects of directional types: the input-output charac-
terisation of the program, which is independent of the computation model, and
the characterisation of the call patterns, which strongly depends on the execu-
tion rule. By abstracting away from the computation rule, we have obtained
a relatively simple sufficient condition (S-well-typedness) for 10 correctness.
This condition enables us to prove 10 properties of interesting programs, for
which the well-typedness criterion does not apply.

We also considered directional types as a means for controlling execution
of logic programs. The idea of such execution is to enforce the types speci-
fied by a given declaration, by argument-wise delaying the unification of the
arguments which are not correctly typed. The idea of delaying the resolution
of an equational constraint until it becomes sufficiently instantiated resem-
bles the concept of the ask primitive in concurrent constraint programming
[13]. We formalized the model of execution by the concept of T-resolution.
T-resolution is sound but not complete in general, since the computation may
deadlock. We have shown that S-well-typedness is a sufficient condition for
deadlock-free execution under T-resolution.

The notion of S-well-typedness uses a concept of dependency relation sim-
ilar to that introduced for attribute grammars, and refers to the techniques
of attribute grammars for checking properties of this relation. Data flow
in S-well-typed programs is well characterized by the dependency relation,

14

and therefore the delays under T-resolution are predictable in compile time.
Consequently, they can be compiled out (at least in some cases) by source-
to-source transformations similar to those described in our previous work [4],
where the resulting logic program is executed without delays under the Prolog
computation rule.

The usefulness of T-resolution is an open question. In this paper we use
it more as an illustration of the thesis that the methods for directional types
apply not only to Prolog. It is an interesting question whether a variant of the
technique used here for deriving a sufficient condition for deadlock-freeness of
T-resolution, may be of interest for concurrent constraint programming.

Our future work aims at automated checking of S-well-typedness of pro-
grams, as well as extending the conditions for well-typing and S-well-typing
to types which are not closed under substitution.

References

1. A. Aiken and T. K. Lakshman. Directional type checking of logic programs. Proc.
of SAS’94, pp. 43-60. Springer-Verlag, 1994.

2. K.R. Apt. Declarative programming in Prolog. In Proc. of ILPS’93, pp. 12-35.
The MIT Press, 1993.

3. K.R. Apt and E. Marchiori. Reasoning about Prolog programs: from modes
through types to assertions. Technical report CS-R9358, CWI Amsterdam, 1993.

4. J. Boye. Avoiding dynamic delays in functional logic programs. In Proc.
PLILP’93, pp. 12-27. Springer-Verlag, 1993.

5. J. Boye and J. Maluszynski. Directional types and the annotation method. Report
RR2471, INRIA Rocquencourt, 1995.

6. F. Bronsard, T. K. Lakshman and U. Reddy. A framework of directionality for
proving termination of logic programs. In Proc. of JICSLP’92, pp. 321-335. The
MIT Press, 1992.

7. M. Carlsson, J. Widén, J. Andersson, S. Andersson, K. Boortz and T. Sjoland.
SICStus Prolog user’s manual. SICS, Box 1263, S-164 28 Kista, Sweden.

8. D. Courcelle and P. Deransart. Proofs of partial correctness for attribute gram-
mars with application to recursive procedures and logic programming. Informa-
tion and Computation 2(1988).

9. P. Deransart and J. Maluszynski. A grammatical view on logic programming. The
MIT Press, 1993.

10. W. Drabent and J. Maluszynski. Induction assertion method for logic programs.
Theoretical Computer Science 59, pp. 133—155, 1988.

11. D. Pedreschi. A proof method for run-time properties of Prolog programs. In
Proc. of ICLP’94, pp. 584-598. The MIT Press, 1994.

12. Y. Rouzaud and L. Nguyen-Phoung. Integrating modes and subtypes into a Pro-
log type checker. In Proc. of JISCLP’92, pp. 85-97. The MIT Press, 1992.

13. V.A. Saraswat. Concurrent constraint programming languages. The MIT Press,
1990.

15

