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ABSTRACT
Route instructions for pedestrians are usually better understood if
they include references to landmarks, andmoreover, these landmarks
should be as salient as possible. In this paper, we present an approach
for automatically deriving a mathematical model of salience directly
from route instructions given by humans. Each possible landmark
that a person can refer to in a given situation is modelled as
a feature vector, and the salience associated with each landmark
can be computed as a weighted sum of these features. We use a
ranking SVM method to derive the weights from route instructions
given by humans as they are walking the route. The weight vector,
representing the person’s personal saliencemodel, determineswhich
landmark(s) are most appropriate to refer to in new situations.
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1. Introduction

Recently there has been an increasing interest in systems capable of providing natural
language route instructions to pedestrians in a city environment (Boye et al. 2014; Google
Inc. 2013; Janarthanam et al. 2012; Rehrl, Häusler, and Leitinger 2010). Such systems track
the pedestrian’s position using the GPS on his smartphone, and can therefore produce
real-time instructions like ‘Turn left here’ or ‘Now you should walk towards the cafe on the
corner’. Obviously, a recurring challenge for such wayfinding systems is to find the best
formulation of the next instruction, minimising the risk of a misunderstanding.

When giving route instructions to each other, humans tend to base those instructions
predominantly on landmarks, by which we understand distinctive objects in the city envi-
ronment (Denis et al. 1999; Lynch 1960). While it is appropriate to give relative directions
(‘Turn left/right’) in certain situations, where such an instruction is unambiguous (Götze
and Boye 2015b), the inclusion of landmarks is vital in more complex navigation situations.
It would therefore be desirable if route-giving systems could do the same. In fact, it has
been shown that the inclusion of landmarks into system-generated pedestrian routing
instructions raises the user’s confidence in the system, compared to a system that only
gives relative direction instructions (Ross, May, and Thompson 2004).

However, in each situation there will be a variety of landmarks to choose from, and it is
not obvious which landmark(s) to include in a particular route instruction. Humans choose
objects as landmarks that are salient in a particular situation, i.e. that are prominent in a
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48 J. GÖTZE AND J. BOYE

Figure 1. An example segment for the utterance: ‘I continue in this direction down the steps [L1] towards
the arch [L2]’ A indicates the pedestrian’s position.
Note: The arrows indicate the pedestrian’s walking direction. The photo on the right shows the view
from the pedestrian’s perspective.

way that makes them easily recognisable. Several researchers have proposed schemes for
automatically computing salience values for landmarks (Duckham, Winter, and Robinson
2010; Nothegger, Winter, and Raubal 2004; Raubal and Winter 2002). These schemes are
typically based on different features that are known to influence salience, like size, visibility
and shape, and are intended to be valid for all users. The extent to which each of these
features impacts the final salience score is determined by manually setting weights for
them, based on different heuristics.

In this article, we take a different approach. Our assumption is that salience is user-
dependent: different users would find different landmarks to be the most salient in a given
situation. Furthermore, our approach is data-driven: Our aim is to (semi-)automatically
derive saliencemeasures fromexamplesof usersdescribing theway themselves.Weassume
that when describing the way, pedestrians intuitively select the landmarks they find the
most salient in that particular situation. By analysing and generalising from such human
route descriptions, we aim to construct a mathematical model that can predict salience in
new, unseen situations. Note that at this point, we are only interested in the landmarks
themselves, not in how to verbalise a reference to them.

As an example, Figure 1 shows a situation with some of the landmarks that could be
referred to. Black squares indicate single entities such as shops or entrances to a building,
black lines indicate paths, such as streets or stairs and dark grey shading indicates buildings.
In this particular example, the personwalking from A to B referred to the landmarks labelled
as L1 and L2: ‘I continue in this direction down the steps towards the arch’. Assuming that
these landmarks are the most salient for the user, the system should preferably choose the
same landmarks when encountering this situation and thus reduce the cognitive load that
is needed to identify a landmark as far as possible.
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Note that whenever a person uses a landmark L in a description, he is preferring L over a
number of other candidates that could have been used in the description but were not. That
is to say that L has a higher score according to the person’s personal salience model than
any other candidate M. This observation will form the basis of our method, which we will
explain in Section 5.

To obtain landmark references that we can learn from, we have performed a study in
which pedestrians have walked a route in the city of Stockholm, describing the way as
they are walking along it. From these descriptions, we can obtain information about which
landmarks they refer to. An open geographic database (OpenStreetMap [OSM], Haklay
and Weber 2008) serves as the basis for computing relevant features. This article extends
previous work of ours (Götze and Boye 2013) where we computed salience models from
‘arm-chair’ data where pedestrians described a route posterior to having walked it. By
letting our subjects describe routes as they walk them, as in the study described here, we
are aiming to obtain more realistic references and, eventually, better salience models. Our
ultimate goal is then to enrich our present system for city navigation (Boye et al. 2014) with
personalised salience models.

2. Related work

Various research has investigated the way in which navigational knowledge is communi-
cated by and to pedestrians by means of natural language (Allen 1997, 2000; Couclelis
1996; Daniel and Denis 1998; Denis 1997; Denis et al. 1999; Mast et al. 2010; Rehrl et al.
2009). The majority of this research is done on instructions that are given prior to walking.
The instruction receiver needs to memorise the turning points and associated actions. This
implies a strong need on the instructions to be correct, as well as the turning points to be
easilymemorisable and recognisable. Landmarks are extensively used to achieveboth these
needs (Denis 1997; Denis et al. 1999; Lovelace, Hegarty, andMontello 1999). Some research
also focuses on guiding visually impaired or disabled pedestrians (Dodson et al. 1999; Helal,
Moore, and Ramachandran 2001), whose information needs and ways of communicating
the information differ from the results found in other studies.

The focus here is on spoken instructions that are given step by step, while the pedestrian
is walking. This allows for possible misunderstandings to be resolved on the spot in an
interactive way, as is the long-term goal for our navigation system.

2.1. Landmarks in pedestrian navigation

Landmarks are found toplay a vital role inbothgiving andunderstanding route instructions.
They are used to identify points at which actions are to take place, at points where actions
could takeplace, for confirmationalong the routeor asgeneral orientationpointswhen they
are farther away (Lovelace, Hegarty, andMontello 1999;Michon andDenis 2001). Ross, May,
and Thompson (2004) found that they increase the pedestrian’s confidence in an automatic
system, compared to a system that only gives relative direction instructions. Street names
and distance information (‘In 200 meters turn into High Street’) are dispreferred kinds of
information (May et al. 2003; Schroder, Mackaness, and Gittings 2011; Tom andDenis 2004),
as they result in more turning errors and lower confidence.
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50 J. GÖTZE AND J. BOYE

There are several definitions of the term ‘landmark’, all of which acknowledge an
element’s prominence in a particular situation and its potential to serve in a cognitive
representation of a route (Lynch 1960; Presson 1988; Sorrows andHirtle 1999). We are using
the term landmark to denote any structure (or set of structures) in the environment of the
speaker,1 such as buildings, areas like parks, shops, paths of any kind, intersections, etc.
We are explicitly not excluding streets as landmarks, because Tom and Tversky (2012) have
shown that it is not streets per se that are dispreferred as landmarks, but the usage of street
names because they can be hard to recognise. This is reflected in our data, in which subjects
frequently refer to streets.

2.2. Landmark salience

When choosing a landmark for use in a route instruction, people do not choose randomly,
but try to pick a salient landmark, i.e. a landmark that will be easily recognisable (and
memorisable in the case of giving instructions prior to walking) for the instruction receiver.

Several kinds of features are found to play a role in determining a landmark’s salience,
most of them contrast a landmark to its surroundings. The three types of salience features
that Sorrows and Hirtle (1999) identify are visual (the landmark stands in visual contrast
to its surroundings), structural (the landmark’s location is prominent) and cognitive (the
landmark’s function makes it salient). More recently, efforts have been undertaken to
automatically compute the salience of landmarks in given navigation situations.

Raubal and Winter (2002) propose a formal model of landmark salience based on the
three types of salience identified by Sorrows and Hirtle (1999). For each type of salience –
visual, cognitive and structural – theyproposemeasures that contribute to it, andproperties
that describe them. For instance, one measure of visual salience is the façade area of a
building, that can be described by its height and width. All measures are weighted and
combined into a final salience score by summing them. Except for visibility, which depends
on the pedestrian’s position, the properties are properties of the landmark itself. They
propose to use a statistical test to find significant differences between the target landmark
and surrounding landmarks, forwhich theyprimarily consider buildings. Nothegger,Winter,
and Raubal (2004) extend this work with an evaluation study in which human subjects are
shown panoramic views of intersections and they are asked to choose the most prominent
façade. The automatically computed salience measures reflect the human choices, thus
showing the suitability of their model.

Duckham, Winter, and Robinson (2010) move away from computing the salience of
individual landmarks, because the necessary data, such as detailed information about color
or shape, are often hard to obtain. They propose to measure salience on the basis of an
object’s category. They are using a heuristic to determine how suitable a certain category
is as a landmark: experts were asked to rate landmark categories according to a set of nine
factors that are proposed to describe the salience types of Sorrows andHirtle (1999). Ratings
were given on a five-point scale according to how suitable a specific instance of a category
would be as a landmark, and how frequently such an instance occurs. The final score of
a category is computed as the weighted sum of these rankings. The landmark categories
are manually defined and assumed to be different for different countries. A wide range of
objects is considered as candidate landmarks, such as buildings of many kinds, parks, or
smaller structures such as mailboxes.
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Elias (2003) approaches the task of determining the most salient building of a given set
in a different way. She uses semantic features about the buildings’ usage and function as
well as geometric features reflecting the position of the buildings. She applies a clustering
algorithm to find a landmark candidate. The approach is based on the idea that a suitable
landmark will be an outlier in terms of the used features and will not fit into the found
clusters. This approach works well for an artificial test data-set.

3. Data collection

For this study, we asked 10 subjects (9 male, 1 female, average age 27.3) to walk a specific
route and describe their path in a way that would make it possible for someone to follow
them. Thereby, instead of reading information from a two-dimensional map, we put the
subjects into the environment in which wewould later like to guide them, i.e. they can now
see the environment in the sameway as users of our route-giving system experience it later.

The study was set up as a Wizard-of-Oz study (Dahlbäck and Jönsson 1989) in which the
subjects were asked to describe the way to a spoken dialogue system. They were told that
the system, like them, had a three-dimensional and first-person view of the environment.
The subjects did not receive any particular instructions on how to interact with the system,
but were advised to talk in a way they thought was suitable. In this way, all subjects were
explaining to the same listener about whom they had no more knowledge than that it was
a machine, and we could restrict them somewhat in the way they would formulate their
instructions (cf. Kennedy et al. 1988). The role of the experimenter (the ‘wizard’ acting as
the machine) was to acknowledge the subjects’ descriptions by saying ‘okay’, or asking for
a repetition or clarification in the case that there was an interruption in the speech channel,
such as too much background noise from the traffic.

The descriptions were collected in English. All subjects reported to be fluent in English.
Two of them reported to be only slightly familiar with the area, four reported to be familiar
or very familiar (cf. Figure 3 in Section 6). All were able to complete the task.

3.1. Task and apparatus

The subjects were equipped with an Android mobile phone (Motorola Razr) that ran an
application which allowed us to record their GPS coordinates and speech signal (cf. Boye
et al. 2014; Hill, Götze, and Webber 2012). It also allowed to send messages from the
experimenter to the subject via text-to-speech. The experimenter sat in a laboratory and
used an interface which allowed him to see the subject’s position on a map and type
messages.

Speech signal and GPS coordinates were automatically logged and time-stamped,
thereby allowing to align speech transcriptions with a subject’s GPS coordinates.

The route that the subjects were asked to walk was a round tour that started and ended
outside the doors of our department. The route was approximately two kilometers long
andwas given to the subjects on an unlabelledmapwhich is shown in Figure 2, where start
and end points are indicated by ‘X’. The map had street and other names removed, as well
as common symbols, e.g. for churches or bus stops, in order to force the subjects to rely on
information that they could see in their physical environment rather than on the map.
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52 J. GÖTZE AND J. BOYE

Figure 2. The map of the route that the subjects were asked to follow.

3.2. Analysis

Two of the subjects deviated slightly from this given route, all others followed the path
shown on the map in Figure 2. Subjects could choose in which direction to start the tour,
six chose one direction and four the other. The subjects took on average 31min and 34 sec
to complete the tour.

The recorded speech was segmented, transcribed and annotated using the Higgins
AnnotationTool.2 Each segment constitutes anew route situation. Thepedestrian’s position
A is a GPS coordinate derived from the corresponding recording.

Each of these segments is annotated with all landmarks that the subject referred to. In
the example in Figure 1, the GPS coordinate indicates where the utterance was made. In
this example, the subject referred to two objects, ‘the steps’ and ‘the arch’ (for an overview
of the kinds of references that the subjects gave cf. Götze and Boye 2015a).

4. Problem encoding

4.1. Learning from route segments

For each of our 10 subjects, we thus have a number of annotated route situations, each
describing the position at which the subject is located, and at least one landmark that the
subject referred to (his preferred landmark(s) in this situation). Situations where the subject
did not refer to anything at all were excluded from this study.

From the pedestrian’s position A, we compute the candidate set, all landmarks in the
vicinity that the pedestrian could have referred to in a given situation. In Figure 1, a part of
this set is visualised as square-shaped icons (for nodes), wide lines (for roads, paths, etc.)
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or dark grey shading (for buildings). The candidate set for the segment was automatically
computed from the database and contains on average 33 landmarks.

The preferred landmarks might or might not be part of the candidate set. There are two
possible reasons for a preferred landmark not to be part of the candidate set: Either the
user referred to something that is not in the database at all, or he referred to something
that is farther away, and does not belong to the context of the subject’s position. If none of
the user-preferred landmarks is part of the candidate set, the route segment was removed
from the learning problem.

An instance of the salience model learning problem, then, is a candidate set together
with one or several preferred landmarks, at least one of which is part of the candidate set.

4.2. OpenStreetMap

For a geographic representation of the city, we are relying on theOSMgeographic database
(Haklay and Weber 2008). OSM is a freely available crowd-sourced database used in many
areasof research, e.g. in robotnavigation (Hentschel andWagner2010), in indoornavigation
(Goetz 2012) and in pedestrian navigation (Rehrl, Häusler, and Leitinger 2010). It has two
basic data structures:3 nodes and ways. Nodes can represent entities in their own right, e.g.
intersections, bus stops or house entrances, but they can also act as the building blocks of
ways (sequences of nodes). Ways are used to represent street segments, buildings or areas.
In what follows, we will avoid the ambiguous term ‘way’, and rather talk about buildings,
streets, etc.

OSM data is categorised according to an extensive scheme of tags4 that specifies, for
example, how an entity can be represented as a shop, how names are added, or how to
indicate speed limits on different parts of a road. Since the data are crowd-sourced on a
voluntarybasis, it tends to contain inconsistencies in theway tagsareused. Furthermore, the
large number of tags results in a different level of detail in different areas and a separation
of entities that cognitively belong together, e.g. different segments of the same street are
separate entities in OSM (each with its own identifier), because they have different speed
limits, or because a bus line is using part of the street. When selecting a landmark from
a set of available objects we want to treat such objects as one. In a candidate set, their
representations are therefore combined into one.

4.3. Features

The method described in Section 5 requires every landmark L to which the user can refer
to be modelled as a vector of features. In this study, we use a vector of features that are
automatically computable, most of them on the basis of the geographic database. Note
that we are not making any explicit assumptions about what feature values will positively
(or negatively) influence salience. This will instead be reflected in the learned weights.

The following features are used:

4.3.1. Positional features
• Distance The distance from the pedestrian to a landmark is capturing both structural
and visual aspects of the scene. Landmarks that are closer to the speaker are more
likely to take up a larger field of view. In the case where the landmark is a road or
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54 J. GÖTZE AND J. BOYE

building, distances are computed as the minimum of the distances to each of the
nodes that make up the road or building.

• Angle The angle in which the landmark is located with respect to the pedestrian’s
previous walking path gives us structural information. In the case where the landmark
is a building, the angle is computed as the average of the angles when using each of
the nodes in the building. The values for this feature range between 0 (‘straight’) and
180 (‘behind’). ‘Left’ and ‘right’ are collapsed, a value of 20 can mean left or right.

4.3.2. Type features
The type features are binary features. An entity either is of a certain type and has value
1 for this feature, or it has value 0 if it is not of that type. As type features, we are using
the full OSM tag set from our city model and are referring to wiki.openstreetmap.org/wiki/
Map_Features5 as ‘the (wiki) specification’. OSM tags are used in the following way: Each
tag is split into its tag key and tag value, each is its own binary feature, with the following
exceptions:

(1) For tag keys with values that are specific for each entity, such as name, website,
wikipedia, opening_hours, only the tag key is added as a feature (It is meaningful to
know that an entity has a name, but not its specific value).

(2) For tags that have binary values (yes/no), tag key and tag value are merged into one
feature. For example, <tag k="steps" v="yes"/> becomes steps:yes.

(3) Some tags are excluded altogether. These tags are specifying information that is not
relevant for pedestrians (e.g. maxspeed, oneway), or not relevant for the task (e.g.
source). Tags are excluded on the basis of their description in the wiki specification.
That means that other, user-defined tags that also carry non-relevant information,
are not excluded from the feature set (see the discussion in Section 4.3.5).

The obtained set is then further processed:

(4) If there are two features f and f:yes, they aremerged into one. This situation can arise
when parts of a tag are used in different ways, e.g. for the tags
<tag k="highway" v="steps"/> and <tag k="steps" v="yes"/>,
which become the features highway, steps, and steps:yes. The latter two express
the same concept, so they are merged to avoid duplication.

This procedure amounts to 427 type features.

4.3.3. Context features
• The feature duplicates counts how many other objects there are in the candidate set
that have the same values for all type features. The intuition is that if there are several
objects of the same type, more effort is needed to distinguish one from the other
because none of them can be described unambiguously in a simple way. This may
play a role in deciding whether to refer to the landmark in question.

4.3.4. Example landmark representation
Consider again the route situation shown in Figure 1. Landmark L2 (‘the arch’), has the
following set of tags in the city model:

<tag k="highway" v="footway"/>
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<tag k="layer" v="-1"/>
<tag k="source" v="yahoo; survey"/>
<tag k="tunnel" v="yes"/>

The distance feature will have a value of 6 (the 2-logarithm of the distance to the closest
node of the object). The angle will be 13.62. The object will have a value of 1 for the type
features highway, footway, layer and tunnel:yes, and 0 for all other type features. The value
for duplicates is 0, because there are no other objects available as landmarks in this situation
that have the same type feature specification.

4.3.5. Discussion of the type features
OSM tags are crowd-sourced. They follow a certain specification, but rules are sometimes
interpreted in different ways, and nothing prevents a contributor from adding their own
tags. A way to ensure more consistency and less noise in the data is to create some
intermediate categories that function as bins for several OSM tags that express similar
concepts, e.g. a street feature that collects all entities that have the highway key.

This however requires a great amount of pre-processing to ensure that all possible
tags are covered and sorted into the correct bin. Bins could be created on the basis of
the wiki specification, which would exclude many user-defined tags that contain possibly
useful information. On the other hand, creating bins on the basis of the specific city model
(including user-defined tags) requires repeating the process for each new data-set. Such
bins alsodonot completely removenoise, as someentitieswill alwaysbe tagged incorrectly.

We have previously created such bins based on our data (cf. Götze and Boye 2013), but
are now suggesting to skip this step for the above named reasons. The above processing
steps are simpler and can be automatically applied. Comparing the results for a subset of
our experiment data, we also get better results for this higher dimensional data (427 instead
of 8 type features).

Instead, we use whatever tags there are available in the city model with only few
exceptions but including user-defined tags. The steps that do require manual processing
are steps 1 and 3 (deciding from which tags only to use the key and which tags to exclude
altogether). The definition of which tags fall into these categories can however be re-used
for newdata-sets. Note also that we are not using the complete set of distinct OSM tag keys,
which is currently (Oct 2015) larger than 56, 000. Those tags that do not occur in our study
area would have the same value for all objects (namely 0) and thus not influence the result
in any way.

5. Saliencemodels

Previously we noted that whenever a person uses a landmark L in a description, he is
preferring L over a number of other candidates that could have been used in the description
but were not. That is to say that the person (probably unconsciously) finds L more salient
than any other available candidate M. Our goal is now to create a mathematical model of
salience that generalises from these observations. This model can then be used to select a
suitable landmark to use in routing instructions in new, hitherto unseen situations.

First, note that the availabledata cannot be interpretedas ameasureof absolute salience.
The preferred landmark Lmight be perceived as very salient or perhaps not very salient at
all; all we know is that it is more salient than the other available candidates. Therefore it
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56 J. GÖTZE AND J. BOYE

would be inappropriate to, say, use a binary classification method where L is tagged as
‘salient’ and the other candidates as ‘not salient’. Rather, we want to create a model that
ranks the landmarks from ‘best’ to ‘worst’. Such a model will attach a numerical score to
each available landmark indicating its salience, and the landmark with the highest score is
considered to be themost salient one. However, it should be emphasised that the numbers
themselves are unimportant; they are just a means to get to the ranking, and the numbers
do not represent salience in any absolute way. In particular, we cannot compare salience
scores between different situations.

For learning such ranked salience models, we use the Ranking SVM Algorithm described
by Joachims (2002). This algorithmhas beenused for various non-linear ranking tasks, e.g. in
NamedEntity Recognition (Bunescu andPaşca 2006) and Sentiment Classification (Kennedy
and Inkpen 2006).

As described in the previous section, each landmark can be represented as a vector of
numerical features, x = (x1, . . . , xn) specifying scores along n dimensions. The dimensions
might represent scalar attributes such as distance, or categorical attributes (e.g. 1 if the
landmark is a restaurant, 0 if it is not). The salience s(x) of a landmark is a linear combination
w · x, where w = (w1, . . . ,wn) is the salience model that specifies the relative importance
of the different features for the user. Naturally we do not assume that the user knows the
values of his salience model, or indeed even knows that such a model exists. Instead we
automatically infer the model as follows:

When a person uses a landmark L in a description rather than landmark M, we can
represent this as the inequality w · (xL − xM) > 0, where xL and xM are the vectors
representing L, andM, respectively. This inequality expresses the fact that L is more salient
than M according to the model represented by w. Each route description from the user
involving a landmark thus generates a number of inequalities. Let m be the total number
of inequalities for all route segment descriptions. Then we want to find a weight vector w
such thatw · (xLi − xMi) > 0, for 1 ≤ i ≤ m. (For brevity, we will use the notation di for the
difference xLi − xMi ). Our goal is to find appropriate values for the weights inw that satisfy
as many of the inequalitiesw · di > 0 as possible.

This can be done by solving the following optimisation problem:

minimize 1
2w · w + c

m∑

i=1
ξi

where w · di + ξi ≥ 1, i = 1 . . .m
ξi ≥ 0, i = 1 . . .m

Assuming that a person is not always consistent in his preferences, this formulation of the
problem introduces slack variables ξi and adds a penalty c on those variables (see Joachims
2002; 2006, for details).

6. Results

Recall that an instance for our ranking problem is a candidate set together with one or
several preferred landmarks (see Section 4.1), that give rise to a number of inequalities
as explained above. For evaluation, we perform fivefold cross-validation on the set of all
instances for a particular subject. Each training set was used to derive a salience model
w according to the method presented in Section 5. To evaluate w, the salience of each
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Figure 3. Evaluation measures for the derived salience models: First Hit Success (FHS), Mean Reciprocal
Rank (MRR).
Note: The numbers represent averages obtained using fivefold cross-validation. ‘Average’ are averages
over all subjects. ‘All’ are measures for combined models, i.e. not distinguishing between subjects.
Numbers in parentheses are self-rated familiarity scores (max=6). POS uses only positional features,
OSM only type features. OSM+POS+CONTEXT uses all features.

member of each instance of the test set was computed. A successful instance is one in
which one of the user-preferred landmarks had the best salience according to themodelw.

The results are presented in Figure 3 and show the following evaluation measures:

FHS First Hit Success is the proportion of route segments in which a user-preferred
landmark was ranked highest by the inferred model, i.e. the proportion of successful
instances.
MRR Mean Reciprocal Rank (cf. Radev et al. 2002): If a user-preferred landmark is
ranked as the nth landmark by the inferred model, its reciprocal rank is 1/n. The total
reciprocal rank is the sum of the reciprocal ranks of all user-preferred landmarks in
the segment. For the mean, this number is divided by the number of user-preferred
landmarks.

On average, in 39% of the instances, the inferred salience models rank a user-preferred
landmark highest. Themean reciprocal rank is on average 0.61, which can be interpreted as
‘an average rank better than 2’. As a baseline for comparison, the figure also shows results
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Table 1. Comparing the feature order for two subjects’ models (Subjects G and H): The 10 highest and
lowest weights for the type features and weights for positional and context features.

Subject D Subject G
Weight Feature Feature Weight

1.529 lit:yes steps:yes 1.383
1.499 name secondary 0.914
0.901 housenumber fountain 0.768
0.901 street name 0.738
0.709 service layer 0.603
0.633 residential tunnel:yes 0.603
0.624 unclassified residential 0.596
0.429 secondary education 0.504
0.418 lane christian 0.449
0.396 lcn:yes church 0.449
... ...

−0.303 psv:yes ramp:no −0.278
−0.309 operator motorcar:no −0.343
−0.341 up website −0.349
−0.368 footway unclassified −0.377
−0.377 amenity hospital −0.390
−0.379 website junction −0.456
−0.503 layer roundabout −0.456
−0.503 tunnel:yes track −0.491
−0.540 junction psv:yes −0.612
−0.540 roundabout secondary_link −0.624
−0.395 distance distance −0.495
0.001 angle angle −0.007
0.015 duplicates duplicates 0.012

for using only the positional features distance and angle (POS, cf. Section 4.3.1) and for only
using the type features (OSM, cf. Section 4.3.2).6 Recall that choosing at random means
choosing from on average 33 landmarks.

We can see that for most subjects, combining the features and including the context
feature (POS+OSM+CONTEXT) improve the outcome of the ranking, the only exception
being subject D. The two right-most sets of bars show the results for averaging over all
individual models as well as from computingmodels from combining all the subjects’ data,
i.e. from building a general model instead of personal models.

Table 1 shows two example feature vectors, i.e. parts of two salience models, sorted
by the values of the weights. These weights were obtained when training on all instances
of subjects G and H, respectively. The different ordering of the features reflects different
preferences of these two subjects when choosing landmarks. The highest type features of
subject D are features associated primarilywith streets, while for G,we can also findbuilding
features such as church, and entities of other types, e.g. fountain.

For all subjects, many type features are not contributing to the salience scores at all,
they have a weight of 0. The number of type features that have non-zero weights ranges
between 66 and 96. The positional and context features always have non-zero weights.
The distance feature generally has a low weight value, meaning that closer landmarks will
have higher salience scores. The angle features have weight values close to 0, both positive
and negative. For the duplicates feature, the method generally learns weights around or
below 0.
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7. Discussion

The SVM Ranking method manages to mimic the user’s salience preferences in 39% of
the tested instances. How good is this result? Recall that we are aiming for an interactive
guiding scenario, where the system has the option of first confirming with the user that
he can identify the landmark, before using it in an instruction. Moreover, since all available
landmarks are ranked, the system can use the next best ranked landmark if the user is
unable to recognise the top-ranked one. Another possibility would be for the system to
change to a different navigation strategy, such as asking the user to identify what he can
see. Such information could be used to further tune the ‘personal’ weights of this user.

We can see that for some users, the ranking produces better results than for others and
this seems to be unrelated to the amount of available training data (which was four-fifths of
the total number of segments). For example, subject G’s models were successful in 60% of
the test instances. On average, theMean Reciprocal Rank is 0.77 for this subject. For subject
H, where many more training instances were available, the method achieved a FHS rate of
39% and a Mean Reciprocal Rank of 0.60. A possible explanation for this is that a subject
might have changed his strategy for choosing landmarks along the route, thus introducing
more inconsistencieswhen evaluating the set of references as awhole. Such a change could
depend on a (perceived) change of environment, e.g. by entering an unknown area where
the pedestrian has to rely more on visual features while in familiar situations he can refer to
familiar places by their name. As a reference, we are reporting the subjects’ self-rated scores
of overall familiarity with the area in Figure 3.

Table 1 shows parts of the salience models of two subjects that differ in which of
the features contribute most to a ranking, suggesting that the models should indeed be
computed per person rather than having only one model for all.

In order to further assess whether a combined model, containing landmark preferences
from several subjects, can be useful instead of personal models, we also built such amodel.
The right-most part of Figure 3 shows the evaluationmeasures for training amodel on four-
fifths of all available data. We can see no improvement, which strengthens the plausibility
of a personal salience model for each user.

Although the type features seem to differ in how they contribute to the salience scores,
the distance feature shows a more clear tendency. All subjects are preferring landmarks
close to their position. We expected the duplicates feature to have rather low weights,
preferring objects that have unique type features. This expectation is generally met. That
this weight is not as low as the lowest type features follows from the possible values for
these features. Type features can only have a value of 1 or 0, while the duplicates feature
can have any value from 0 to C−1 where C is the size of the candidate set.

8. Conclusion

We have presented an approach to learn individual salience models for landmarks that
are used in navigation instructions, using landmark features that are computable in real-
time from crowd-sourced, readily available data. Instead of hand-tuning the weights in a
salience function, we are learning a weight model that is individual to each of our subjects
and reflects the contributionofdifferent features in selectinga landmark in agiven situation.

The evaluation of these models shows promising results. When ranking the available
landmarks in a navigation situation, they can often predict the landmark that was chosen
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by the user and generally ranks the user-preferred landmark high. While the overall results
still leave room for improvement, we believe that the described ranking method will be
a useful addition to existing methods that compute salience on a variety of features. As
discussed in Section 2.2, several methods use weights to account for the impact of different
salience features. These weights are hand-tuned on the basis of theoretical research about
salience (e.g. Raubal andWinter 2002). The rankingmethodweproposeallows to learn these
weights from data, e.g. from landmark information as collected in a recently developed
application by Wolfensberger and Richter (2015). Note that instead of user preference
ratings it would also be possible to learn from data that a deployed system collects: the
system can collect information about which landmarks worked well in a situation (and
should be ranked higher), and which ones did not (and should be ranked lower than all
others). A general model derived fromprevious users can be a good start. While our general
model did not improve the individualmodels, it also is not considerably worse, ranking 40%
of the landmarks correctly and scoring a mean reciprocal rank of well above 0.5.

The features we used in this work are simple features that can be easily computed from
OpenStreetMap. However, the features are independent of how a landmark was referred
to. Only the geographic representation is taken into account, regardless of whether the
corresponding featurewas alsomentioned in the description. For example, an object canbe
a building or have a namewithout the reference containing theword ‘building’ or the name
of the object. Likewise, the subjects mention features that we currently cannot compute
from the OSM database, such as size (‘the smaller fountain’), color (‘a yellow building’),
material (‘a brick building’) or slope (‘a slight incline’). We plan to further investigate how
the features mentioned by the describer can be used in computing salience.

The next step in this work will be to incorporate the learned models in our pedestrian
navigation system and try them out on new situations.

Notes

1. We leave the incorporation of global landmarks for future research.
2. http://www.speech.kth.se/hat/
3. We are disregarding OSM relations for the time being.
4. http://wiki.openstreetmap.org/wiki/Map_Features
5. The page was accessed on Oct 5th 2015.
6. The results for using the type features combined with the duplicates feature are similar to

using the type features alone.
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