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Abstract

This paper presents a robust parsing algorithm and semantic formalism for the interpreta-
tion of utterances in spoken negotiative dialogue with databases. The algorithm works in
two passes: a domain-specific pattern-matching phase and a domain-independent seman-
tic analysis phase. Robustness is achieved by limiting the set of representable utterance
types to an empirically motivated subclass which is more expressive than propositional
slot–value lists, but much less expressive than first-order logic. Our evaluation shows that
in actual practice the vast majority of utterances that occur can be handled, and that the
parsing algorithm is highly efficient and accurate.

1 Introduction

The need for spoken dialogue with databases is rapidly increasing as more and more
people access information through various voice-activated terminals. A key issue in
the design of such dialogue systems is how to achieve the robustness necessary
to cope with spoken language input. Typically, existing systems have been built
by taking an off-the-shelf speech recognizer and using one of the following two
approaches:

1. If the expected variation in spoken input is small, a grammar-based language
model for the speech recognizer is used. The vast majority of deployed com-
mercial systems falls into this category. Since the grammar rules can also
encode the interpretation of an utterance, the output from the speech recog-
nizer can be a semantic structure of some kind, rather than just a string of
words.

2. If the expected variation in spoken input is great (for example, if there are
open prompts), it is generally too difficult to hand-code a grammar that covers
the input. In those cases, a statistical language model for the speech recog-
nizer should be used instead. However, this requires a subsequent processing
step which maps the recognition result to a semantic representation. Early
examples of work in this direction are Ward (1989) and Jackson et al. (1991).
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Both of these approaches have been highly successful, as judged by the large
number of systems deployed. The development time for either grammars or parsers
in Approach 1 and 2, respectively, is usually on the order of a few person-weeks,
and yet the end result is at least as good as that of large-scale, linguistically-based
parsers. What makes this possible is a suitable combination of system-directed dia-
logue (putting sufficient constraints on what the user can say at a given point) and
simplicity of the semantic representation. Generally, the semantic representation is
limited to variable-free slot–value structures capturing the propositional contents
of words and phrases critical to the domain.

However, these slot–value structures are not well-suited for representing utter-
ances in negotiative dialogue, in which several alternative solutions to a problem
can be simultaneously discussed and compared (Larsson 2002). Here, in addition
to specification utterances such as “I’d like an apartment with a balcony”, the sys-
tem must be able to represent requests for additional information about an already
mentioned object, like “Does that apartment have a balcony?”, and even references
to different objects in the same utterance, like “Is there anything cheaper than that
apartment on King’s Street?”. (See further Section 2 below.) The following question
then presents itself: Is it possible to design a robust parser which is applicable to
spoken negotiative dialogue, but which retains the robustness and efficiency of the
simpler approaches outlined above? We claim that the answer is yes, and will spend
the rest of the paper trying to substantiate this claim.

In essence, our solution is as follows: First, the amount of user initiative and
variation involved in spoken negotiative dialogue demands that a statistical lan-
guage model for the speech recognizer be used. Our solution therefore starts off
from Approach 2 above, and more specifically has the following characteristics:

1. The semantic representation is more expressive than variable-free slot–value
structures, but still much more restricted than first-order logic, and hence also
than general-purpose, logic-based formalisms like that of Minimal Recursion
Semantics (Copestake et al. 1999), the cle (Alshawi 1992) or team (Grosz
et al. 1985).

2. No particular design of the speech–language interface is presupposed. Our
current implementation uses the simplest design possible, namely, picking the
top hypothesis from the N -best list.

3. Parsing is deterministic in the sense that only a single analysis is produced
for each utterance.

4. Surface-syntactic analysis (the first step of the parsing algorithm) is guided
by patterns motivated by the particular domain model, and is hence domain-
dependent.

5. Semantic analysis (the second step of the parsing algorithm) is driven by a
small set of domain-independent, heuristic rules.

The goal of the paper is thus to find an empirically motivated trade-off between
robustness and expressiveness in spoken, negotiative database dialogue: By delib-
erately restricting the expressiveness of the semantic representation formalism —
keeping it sufficiently coarse-grained — we make it suitable for robust parsing. At
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the same time, we keep the representation sufficiently fine-grained to be able to
capture the distinctions actually made in spoken, negotiative database dialogue.
Because of this trade-off, we are able to retain efficiency both with respect to de-
velopment effort and execution time.

Our approach has been used successfully in adapt (Bell et al. 2001), a multimodal
dialogue system in an apartment domain. A forerunner was used in the travel-
planning system SmartSpeak (Boye et al. 1999).

The rest of this paper is organized as follows: Section 2 gives an illustration of ne-
gotiative dialogue by way of an example. Section 3 describes how information about
the domain is specified in our system. Section 4 and 5 constitute the heart of the pa-
per, describing the semantic formalism and robust parsing algorithm, respectively.
Section 6 provides the evaluation of the parser. Section 7 discusses the changes that
would be needed to encode more complex domains than adapt. Finally, Section 8
gives an overview of related work and Section 9 provides the conclusions.

2 Negotiative dialogue

The following piece of dialogue with the adapt system gives an illustration of the
kind of negotiative dialogue that we are aiming to handle.

1. User: Are there any two-room apartments on the South Side that cost less
than two million?

2. System: Do you have any other requirements?
3. User: A balcony would be nice.
4. System: There are seven such apartments. They are shown on the map.
5. User: I see. . . this apartment on Horn Street. . . how much does it cost?
6. System: The apartment on Horn Street costs 1,900,000 kronor.
7. User: Okay. . . is there anything cheaper?
8. System: The apartment on Blekinge Street costs 1,500,000 kronor.
9. User: Eeh. . . please tell me more about that apartment.

In utterances 1 and 3, the user homes in on the kind of apartment he wants to
consider (the specification phase). The system briefly presents a number of results
(in utterance 4) by indicating their position on the map, after which the user starts
asking questions about the individual apartments, comparing their relative merits
(utterances 5, 7 and 9). This negotiation phase is what distinguishes negotiative
dialogue systems from simpler systems.

Thus, as mentioned in Section 1, the system must be able to distinguish specifica-
tion utterances like “I’d like an apartment with a balcony” from utterances seeking
information about a particular apartment, like “Does that apartment have a bal-
cony?”. The system must also be able to handle references to different objects in
the same utterance, like “Is there anything cheaper than that apartment on King’s
Street?”.
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3 Domain models

We assume that from the user’s point of view, the purpose of a dialogue as exhibited
in Section2 is to retrieve information about a set of interrelated objects, such as
apartments, prices and addresses. The set of all such objects in the domain, together
with their relations, constitutes the domain model of the system. From the system’s
point of view, the goal is then to translate each user utterance into an expression
denoting a subset of the domain model (namely, the subset that the user is asking
for), and to respond by either presenting that subset or ask the user to change
the constraints in case the subset cannot be readily presented. (Naturally, this is
somewhat idealized, as there are meta-utterances, social utterances, etc. that are
not translatable to database queries. Still, 96% of the utterances in our adapt

corpus, briefly described in Section 6.3, correspond to database queries.)
We will assume that each object in the domain model is typed, and to this

end we will assume the existence of a set of type symbols, e.g. apartment, integer,
street name, money etc., and a set of type variables t1, t2, . . . ranging over the set
of type symbols. Each type symbol denotes a set of objects in an obvious way, e.g.
apartment denotes the set of apartments. Both type symbols and type variables will
be written with a sans serif font, to distinguish them from symbols denoting indi-
vidual objects and variables ranging over individual objects, which will be written
using an italicized font. The expression bt is taken to mean the assertion “b is of
type t”.

Objects are either simple, scalar or structured. Objects representable as numbers
or strings are simple (such as objects of the type money or street name). Scalar
objects are sets of objects, for instance set(apartment). Structured objects have a
number of attributes, analogous to C structures or Java reference objects. Typically,
structured objects correspond to real-world phenomena on which the user wants
information, such as apartments in a real-estate domain, or flights and trains in a
travel planning domain. In the domain model used in the adapt system, only the
apartment type is structured (but see Section 7 for possible extensions).

We will use the notation b.a to refer to attribute a of a structured object b. For ex-
ample, an apartment has the attributes size, number of rooms, price, street name,
accessories, etc., with the respective types square meters, integer, money, street name,
set(accessory), etc. Hence if bapartment is a true assertion, then so is (b.size)square meters.

Thus, a (structured) object o1 might be related to another (simple, scalar or
structured) object o2 by letting o2 be the value of an attribute of o1. For instance, an
apartment a is related to “King’s Street” by letting a.street name = Kings street .
There is a standard transformation from this kind of domain models into relational
database schemes (see e.g. Ullman 1988, p. 45), but domain models can also be
represented by other types of databases.

For each type, we will assume the existence of a set of variables x1, x2, . . ., ranging
over the objects of the type. For a variable x, we will take the expression xt to mean
“x can assume values of type t”.

We will further assume that types are arranged in a subtype hierarchy. The type
t1 is a subtype of t2 (written as t1 � t2) if xt2 is a true assertion whenever xt1 is a
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true assertion. For instance, in the adapt domain model, money � integer, since in
that domain, x is an integer whenever x is a sum of money.

4 Semantic representation formalism

Utterances may contain explicit or implicit references to other objects than the set
of objects sought. For example, when the user says “A balcony would be nice” in
utterance 3 of the dialogue fragment of Section 2, the effect is to further restrict the
context (the set of apartments) which was obtained after utterance 1. Obviously, an
utterance cannot be fully interpreted without taking the context into account. The
context-independent interpretation of an utterance is thus a function, mapping a
dialogue context (in which the utterance is made) to the final interpretation of the
utterance. In our case, a dialogue context is always an object or a set of objects (a
subset of the domain model), and the final interpretation denotes the set of objects
that are compatible with the constraints imposed by the user. This section describes
expressions called “utterance descriptors”, which formalize this notion.

4.1 Constraints

Constraints express desired values of variables and attributes, by means of equali-
ties, inequalities and statements expressing membership in (finite) sets. Constraints
are built from expressions denoting simple, scalar or complex objects, and variables
ranging over such objects. Suppose each of x1 and x2 is such an expression or vari-
able, and suppose xt1

1 and xt2
2 , where either t1 � t2 or t2 � t1. Then the set of

constraints are defined as follows:

• x1 = x2 is a constraint.
• If both t1 and t2 are subtypes of integer, then x1 < x2, x1 ≤ x2, x1 ≥ x2 and

x1 > x2 are constraints.
• If y is of type set(t1), then x1 ∈ y is a constraint.

The following are all examples of constraints:

• x .street name = King street
• x .price < 2, 000, 000
• balcony ∈ x .accessories
• x .street name ∈ {King street ,Horn street}

Note that the definition of constraint disallows the relating of values of incompatible
types (such as x.street name = 2).

To define what it means for a variable-free constraint to be true, we assume the
existence of a function eval which evaluates expressions containing dot-notation
(e.g. so that eval(b.price) = 2000000 if b is an apartment object whose price at-
tribute has the value 2000000). For expressions not containting dots, eval is the
identity function (e.g. eval(2000000) = 2000000).

• a = b is true iff eval(a) and eval(b) are identical.
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• a < b is true iff eval(a) is strictly smaller than eval(b). The truth of other
kinds of numerical constraints (a ≤ b, a > b, a ≥ b) is defined analogously.

• a ∈ b is true iff eval(a) occurs among the members of eval(b).

A conjunction C of constraints is satisfiable if there exists a binding σ, mapping
the variables in C onto variable-free expressions, such that all constraints in σ(C)
are true.

4.2 Set descriptors

Set descriptors are expressions denoting subsets of the domain model. They have
the form ?x t (P), where P is a conjunction of constraints in which the variable x

occurs. Such a set descriptor denotes the set of all objects x of type t such that P

is a true assertion of x. Thus,

?x apartment (x .area = South side ∧ x .number of rooms = 2 )

denotes the set of all apartment objects whose area attribute has the value South side
and whose number of rooms attribute has the value 2.

We may also add existentially quantified “place-holder” variables to a set de-
scriptor without changing its semantics. For instance, the set descriptor above is
equivalent to:

?x apartment ∃y integer (x .area = South side ∧ x .number of rooms = y ∧ y = 2 )

Thus, set descriptors can also have the form ?x t1 ∃y t2 (P), where P is a conjunction
of constraints in which x and y occur.

4.3 Representing context: Utterance descriptors

As mentioned above, the context-independent interpretation of an utterance is a
function, mapping the dialogue context in which the utterance is made to the final
interpretation of the utterance. In our case, a dialogue context is always an object
or a set of objects (a subset of the domain model), and the final interpretation is a
set descriptor, denoting the set of objects that are compatible with the constraints
imposed by the user.

Accordingly, the context-independent interpretation of “A balcony would be nice”
is taken to be

λS set(apartment) ?x apartment (balcony ∈ x .accessories ∧ x ∈ S )

where S is a parameter that can be bound to a subset of the domain model. Thus
the expression above can be paraphrased “I want an apartment from S that has
a balcony”. The idea is that the ensuing stages of processing within the dialogue
interface will infer the set of objects belonging to the context, upon which the
functional expression above can be applied to that set, yielding the final answer.
In the dialogue example of section 2, S will be bound to the set of apartments
obtained after utterance 1.
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An utterance may contain more than one implicit reference to the context. For
example, “Is there a cheaper apartment?” (utterance 7 of the dialogue fragment
of section 2) contains one implicit reference to a set of apartments from which the
selection is to be made, and another implicit reference to an apartment with which
the comparison is made (i.e. “I want an apartment from S which is cheaper than
the apartment y”). Hence the representation is:

λyapartment λS set(apartment) ?x apartment (x .price < y .price ∧ x ∈ S )

The contextual reasoning carried out by the adapt system then amounts to apply-
ing this expression to suitable arguments. The system employs a straightforward
recency principle when searching for individual objects to be used as arguments. In
our example, the most recently mentioned apartment is the apartment mentioned
in the preceding utterance (no. 6). As for determining the relevant subset of the
domain model (the parameter S), the system assumes that the user is referring to
the set of apartments currently indicated on the map. In the example above, this
is the set of apartments introduced by utterance 4. If no apartments are currently
indicated on the map (as at the beginning of the dialogue), the system assumes
that the user is referring to the set of all apartments.

The type discipline employed in the adapt system effectively rules out contex-
tual interpretations that make no sense in the domain. For instance, consider the
following dialogue fragment:

1. User: Does the apartment on Horn Street have a balcony?
2. System: Yes.
3. User: How much does it cost?

In this example, the system interprets the last question as an inquiry of the value
of a “price” attribute. In the adapt type discipline, objects of type apartment have
a “price” attribute, whereas balconies do not. Thus the last mentioned compati-
ble object (having a “price” attribute) would not be the balcony but rather the
apartment on Horn Street.

We thus define an utterance descriptor as an expression of the form λX1 · · ·λXn U ,
where Xi is either a set variable or a typed variable xt, and where U is a set descrip-
tor in which the variables of X1, . . . , Xn occur free. Thus, an utterance descriptor
is a function taking n arguments (representing the context), returning as result a
subset of the domain model.

Yet an example is given by the utterance ”How much does the apartment on
King’s Street cost?”, which is represented by

λyapartment ?xmoney (y .price = x ∧ y .street name = King street)

To resolve the reference, the adapt system would search for the most recently
mentioned apartment y which is compatible with the constraint y.street name =
King street .

Utterance descriptors can also contain type variables when sufficient type infor-
mation is lacking. For instance, “What does it cost?” would be represented by
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λy t ?xmoney (y .price = x )

Here, the target for reference resolution would be the most recently mentioned
object y of any type that has a price attribute (otherwise the constraint y.price = x
would be non-sensical).

4.4 Minimization and maximization

In many situations one is interested in the set of objects that are minimal or maxi-
mal in some regard, for example, the “biggest apartment” or the “cheapest ticket”
(this is usually a singleton set). To cater for this, we will further extend the notion
of utterance descriptor, and introduce a limited form of universal quantification.
For instance, “Which is the cheapest apartment?” would be represented as:

λS set(apartment) ?x apartment µprice(x ∈ S )

which is used as shorthand for

λS set(apartment) ?x apartment (x ∈ S ∧ ∀yapartment ∈ S : x .price ≤ y .price)

When applied to a context set S, the function above returns an expression denoting
the set of apartments in S whose price attribute has the minimal value.

The general form of this construction is ?x t µattribute(P), where attribute is an
attribute of x, and P is a conjunction of constraints. For instance, by replacing
x ∈ S by x ∈ S ∧ x.street name = King in the first expression above, we get an
expression denoting the (singleton set of the) least expensive apartment on King’s
Street.

The maximization operator is defined analogously to the minimization operator
(“≤” is replaced by “≥”; otherwise the definition is the same).

4.5 Expressive power

Many current commercial spoken-dialogue interfaces rely on a system-driven “slot-
filling” dialogue strategy (e.g. “System: Where do you want to go? , User: To Stock-
holm, System: What date? , User: May seventh, etc.). In such cases, the user’s utter-
ances can be represented by lists of slot–filler pairs (e.g. [destination = Stockholm]
or [departure date = 7May ]).

The expressiveness of the formalism outlined in the preceding sections goes be-
yond that of variable-free slot–filler lists, motivated by the phenomena seen in
Section 2. For instance, “I’d like an apartment with a balcony” is represented by

?x apartment (balcony ∈ x .accessories)

whereas “Does that apartment have a balcony?” is represented by

λx apartment ?balconyaccessory (balcony ∈ x .accessories)

The slot–filler list [balcony ∈ x .accessories] fails to make this distinction. Also
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utterances involving (implicit) references to several objects, like “Is there a cheaper
apartment?” are unrepresentable using variable-free slot–filler lists.

On the other hand, our formalism can only represent a subset of possible database
search (SQL) commands. For instance, the only universal quantification allowed
is the one provided by the maximization and minimization operators. A limited
kind of disjunction is provided by the membership relation, otherwise disjunction is
disallowed (the utterance “I want an apartment on Horn Street or on King’s Street”
can be represented using the constraint x .street name ∈ {King street ,Horn street},
whereas the utterance “I want an apartment that costs less than two million or has
a balcony” cannot be represented). In this sense, the formalism is less expressive
than quantifier-free predicate logic.

As previously mentioned, our choice of formalism is motivated by a trade-off
between robustness and expressiveness. Section 6.3 discusses to what extent we
have found a suitable trade-off.

5 Robust parsing

This section describes a parsing algorithm that maps speech recogniser output to the
utterance descriptors just described. The algorithm consists of two phases, pattern
matching (Section 5.2) and rewriting (Section 5.3). In the latter phase, heuristic
rewrite rules are applied to the result of the first phase. When porting the parser
to a new domain, one has to rewrite the pattern matcher, whereas the rewriter can
remain unaltered.

5.1 Meta-constraints

The pattern matching rules in the pattern matcher associate a sequence of con-
straints and meta-constraints to each pattern. The constraints will eventually end
up in the body of the final utterance descriptor, while the sole purpose of the
meta-constraints is to guide the rewriting phase. The most commonly used meta-
constraint has the form obj (x t) stipulating the existence of an object x of type t

which the user has referred to, either explicitly or implicitly. For instance, in the
adapt parser, the pattern ”apartment” would yield

obj (x apartment
1 )

whereas the pattern ”King’s Street” would yield

obj (x apartment
2 ), x2 .street = Kings street

where x1 and x2 are variables. The pattern-matching rule stipulates the existence
of the object xapartment

2 , since in the adapt domain model, streets can only occur
in the context of the street attribute of the apartment type. If the domain model
would include also another type (restaurant, say) that also has an attribute street ,
the pattern-matching rule could instead be defined to yield:

obj (x t
2 ), x2 .street = Kings street
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obj (x t)

An object x of type t has been
explicitly or implicitly referred to

head obj (x t)

Same as above; additionally, the object
denoted by x is the object sought

x 6= y x and y denote different objects

ambiguous(x, {a1, a2, . . . , an}, default(ai))

x is one of the objects
a1, a2, . . . , an. Unless evidence to

is the contrary, x should be equal to ai

Fig. 1. Different kinds of meta-constraints

where t is a type variable.
The different kinds of meta-constraints are summarized in Figure 1. We will

illustrate their use in the next section.

5.2 Pattern matching phase

The purpose of the pattern matching phase is to generate a sequence of constraints
and meta-constraints based on the syntactic patterns that appear in the input. Pat-
tern matching rules are encoded using a Definite Clause Grammar (see e.g. Sterling
and Shapiro 1994, chapter 19). An example showing such rules is given below (in
which we adopt the standard logic programming convention that expressions with
an initial capital letter are variables).

apartment hints([obj(Xapartment), obj(Ystreet name),X.street name = Y | Tail],Tail) →
apartment phrase(X),
[on],
street(Y).

apartment hints([obj(Xapartment) | Tail],Tail) →
apartment phrase(X).

street hints([obj(Ystreet name), obj(Zapartment),Z.street name = Y | Tail],Tail) →
street(Y).

street(king street) →
[kings, street].

The algorithm first tries to match an initial segment of the input with the right
hand side of such a rule. If a match is possible, the semantic constraints on the left
hand side are appended to the result list, the matched input segment is discarded,
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and the process is repeated with the remaining input. If no match is possible, the
first word of the input is discarded, and the process is repeated with the remaining
input.

As an example, reconsider the utterance “I’m looking for an apartment on King’s
Street”. If the utterance has been correctly recognized, the first pattern would be
triggered, resulting in the constraints:

obj(xapartment), obj(kings streetstreet name), x.street name = kings street

However, the utterance might have been misrecognized as “I’m looking for an apart-
ment of King’s Street”, or the user might have hesitated (“I’m looking for an apart-
ment on ehh King’s Street”). In neither case the first rule would trigger; hence,
the pattern matching phase would fall back to the two non-contiguous fragments
“apartment” and “King’s Street”, yielding the constraints:

obj(xapartment), obj(kings streetstreet name), obj(zapartment),
z.street name = kings street

That is, the link between the apartment and “King’s Street” is missed (but will be
recovered in the second phase of the parsing algorithm, presented in section 5.3).

As can be seen from the example, longer syntactic patterns are likely to convey
more precise information, but on the other hand they are more brittle. Therefore
longer patterns are applied before shorter patterns, so the parser can use structure
whenever present in the input, and degrade gracefully on noisy input.

5.3 Rewriting phase

In the rewriting phase, a number of heuristic rewrite rules are applied (in a fixed
order) to the sequence of constraints and meta-constraints, resulting in an utterance
descriptor (after removing all meta-constraints). The most important rules are:

• Unify as many objects as possible.
• Resolve semantic ambiguities.
• Identify the object sought.
• Identify contextual references.

5.3.1 Object unification

The first rewriting rule to be applied is the object unification rule. Suppose pattern
matching has resulted in:

obj (x apartment
1 ), obj (x t

2 ), x2 .street = Kings street

Then checking whether the two objects x1 and x2 are unifiable amounts to checking
whether their types are compatible (which they are, as t is a type variable), and
checking whether an apartment has an attribute street (which is true). Therefore
the result after applying the rule is

obj (x apartment
1 ), x1 .street = Kings street
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In the list

obj (ymoney), obj (x apartment), x .price = y , obj (2000000 integer)

the expressions y and 2000000 are unifiable, since y is a variable of type money,
and 2000000 is of type integer, a supertype of money. The resulting expression is
2000000money. Application of the rewrite rule thus yields:

obj (2000000money), obj (x apartment), x .price = 2000000

Unification of two objects can be prevented by an explicit disequality constraint.
So, the following list would be unmodified by the the object unification rewrite rule:

obj (x apartment), obj (yapartment), x 6= y

An example where such a disequality constraint is useful can be found in section
5.4 below.

5.3.2 Resolution of semantic ambiguities

Some pattern matching rules give rise to semantic ambiguities. For instance, in
the adapt parser, the pattern “costs” yields the following constraints and meta-
constraints:

obj (x apartment), obj (ymoney), x .z = y ,

ambiguous(z , {price,monthly fee}, default(price))

The variable z represents the ambiguity in this case; z can either be the “price”
attribute or the “monthly fee” attribute of the apartment x. The ambiguity reso-
lution rewrite rule tries to resolve this ambiguity by unifying the equation x.z = y

with another equation in the list (if possible). Otherwise, the default value for z

(“price”) in this case is chosen. See Section 5.4 for an example of the application
of this rule.

5.3.3 Identification of the object sought

This rule identifies the object the user wants information about, using the following
heuristics.

1. Firstly, the object sought is assumed to be the leftmost head obj in the se-
quence of constraints and meta-constraints, if such an expression appears at
all in the sequence. For instance, in the adapt parser, the pattern “How
much” yields the following list of constraints:

head obj (ymoney), obj (x apartment), x .price = y

which would be rewritten into

?ymoney (obj (x apartment), x .price = y)
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2. If no head obj appears in the sequence, the next step is to look for a variable
which is not of a structured type (see Section 3 for the meaning of “structured”
objects), and which appears only once in the constraints. For instance, in the
sequence

obj (x apartment), obj (ymoney), x .price = y

the object sought would be assumed to be y, as y appears only once among
the constraints, in the equation x.price = y. (Although y also occurs in a
meta-constraint obj (ymoney), that occurrence does not count for the purpose
of this rewriting rule.) This case actually adds to the robustness of the parsing
algorithm (see the example in Section 5.4).

3. Finally, if none of the two cases above apply, the object sought is assumed to
be the leftmost obj in the sequence. So, if the sequence is

obj (x apartment), obj (2000000money), x .price = y , y < 2000000

the object sought would be assumed to be x, and the list would be rewritten
into

?x apartment (obj (2000000money), x .price = y , y < 2000000 )

5.3.4 Identification of contextual references

As explained in Section 4, contextual references are represented by means of lambda-
bound variables. This rewrite rule searches the list of constraints and meta-constraints
for expressions of the form obj (x t) where t is a structured type, in which case x is
made into a lambda-bound variable. For example, the expression

?ymoney (obj (x apartment), x .price = y)

is transformed into

λx apartment ?ymoney (x .price = y)

5.4 Example

We will now use the utterance “I’d like an apartment on Horn Street that is cheaper
than the apartment on King’s Street” to illustrate both pattern-matching and sev-
eral rewrite rules in the adapt system. First of all, “apartment on Horn Street”
yields

obj (x apartment
1 ), x1 .street = Horn street

Furthermore, the word “cheaper” yields the sequence

head obj (x apartment
2 ), obj (x apartment

3 ), x2 6= x3 ,

obj (ymoney
2 ), x2 .z = y2 ,

obj (ymoney
3 ), x3 .z = y3 , y2 < y3 ,
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ambiguous(z, {price,monthly fee}, default(price))

which is appended to the first sequence. Finally, the phrase “apartment on King’s
Street” causes the sequence

obj (x apartment
4 ), x4 .street = Kings street

to be appended.
In the rewriting phase, objects are first unified in a left-to-right order. Thus x1

and x2 are unified, but the meta-constraint x2 6= x3 prevents unification of x2 and
x3. Instead, x3 and x4 are unified. The ambiguity of z is then resolved using the
default (binding z to price). Next, the variable x2 is identified as the main object,
and the implicit contextual reference argument S is added:

λS set(apartment) ?x2
apartment (x2 .street = Horn street ,

x2 ∈ S, obj (ymoney
2 ), x2 .price = y2 ,

x2 6= x3, x3.street = Kings street ,

obj (ymoney
3 ), x3 .price = y3 , y2 < y3 )

Finally, the variable x3 is identified as a contextual reference. After removing meta-
constraints, this results in:

λx3
apartment λS set(apartment) ?x2

apartment

(x2.street = Horn street ∧ x2 ∈ S

∧ x3.street = Kings street ∧ x2 .price < x3 .price)

Because of the algorithm’s ability to infer relationships between pieces of infor-
mation gathered from different, possibly isolated, patterns, it is very robust in the
presence of speech recognition errors. In the example above, the algorithm really
only relies on the fragments “Horn Street”, “cheaper” and “King’s Street”.

6 Evaluation

To evaluate the parser, we used a corpus of utterances independently collected by
Edlund and Nordstrand (2002) with the adapt system. The corpus was collected
using 24 subjects who were given the task of finding an apartment in central Stock-
holm that they were potentially interested in acquiring. A majority of the subjects
said that they had used standard apartment search tools on the Web, but none of
them had used or seen adapt before. Also, none of them had professional knowledge
of speech technology.

6.1 Basic results

The evaluation is based on running the parser on a set of 300 randomly selected,
unseen utterances from the Edlund–Nordstrand corpus. To obtain a reference with
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Table 1. Parsing and recognition accuracy

Spoken input Recognized input Transcribed input

Speech recognizer
Sentence accuracy 39.7%
Word accuracy 65.6%

Parser
Semantic accuracy 66.6% 93.0%
Concept accuracy 83.7% 96.7%

which to assess the output of the parser, we manually constructed the correct
analysis for each of the 300 utterances. The results of the evaluation are shown in
Table 1.

The top half of the table shows the accuracy of the speech recognizer. Thus,
39.7% of the utterances were recognized perfectly, and the overall word accuracy
was 65.6% (that is, the word error rate was 34.4%). The bottom half of the table
shows the accuracy of the parser. By “semantic accuracy” we mean the proportion
of utterances for which the output of the parser completely matches the correct
analysis. (It is thus the semantic analogue of sentence accuracy.) “Concept accu-
racy” is defined as

CA = 100 (1− uS + uI + uD

u
) %

where uS , uI and uD is the number of semantic units that are substituted, inserted
and deleted, respectively, and where u is the total number of semantic units in
the reference. A semantic unit is here defined as a constraint in the body of an
utterance descriptor, a λ-bound variable or a ?-bound variable in the head of an
utterance descriptor. (Concept accuracy is thus the semantic analogue of word
accuracy; compare Boros et al. 1996.)

The middle column of the table shows how the parser performs on actual, rec-
ognized input. As can be seen, the parser produces completely correct results for
66.6% of the input sentences, in spite of the fact that only 39.7% of them were per-
fectly recognized. Similarly, the concept accuracy of the output is 83.7%, in spite
of the word accuracy being only 65.6%. Finally, the rightmost column shows how
the parser performs on transcribed input (perfect speech recognition).

A similar evaluation of a previous version of the system was reported in Boye and
Wirén (2003), based on another (distinct) set of 300 utterances from the Edlund–
Nordstrand corpus. The result of this evaluation was used for guiding several im-
provements to the pattern-matching rules as well as the addition of one heuristic
rewrite rule (namely, the one described in Section 5.3.3). However, no changes to
the algorithm as such or to any other parts of the system were needed.
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6.2 Robustness of the parser

The figures in Table 1 show that the parser is robust in the sense that it outputs
utterance descriptors with a significantly higher degree of accuracy than the strings
output by the speech recognizer, in effect reconstructing meaning from noisy input.
To arrive at a more in-depth analysis of these overall figures, we can compare the
sentence accuracy of the speech recognizer with the semantic accuracy of the parser.
By looking at the analysis of each recognized utterance, we obtain the following four
cases:

1. Wrong recognition, wrong analysis: This corresponds to lack of robustness
in the sense that the parser failed to (completely) reconstruct the correct
meaning from the incorrect recognition.

2. Wrong recognition, correct analysis: This shows instances of successful robust
analysis.

3. Correct recognition, wrong analysis: This corresponds to lack of coverage of
the parser or lack of expressiveness of the semantic representation.

4. Correct recognition, correct analysis: This shows basic coverage.

The distribution of the 300 parsed utterances and accompanying analyses with
respect to the four cases is as follows:

1. Wrong recognition, wrong analysis: 33.1%.
2. Wrong recognition, correct analysis: 27.1%.
3. Correct recognition, wrong analysis: 0.3%.
4. Correct recognition, correct analysis: 39.4%.

Clearly, Case 1 is most interesting if we want to understand why the parser
sometimes fails, and how robustness can be improved. A further analysis of the
recognized utterances in this case reveals that in the vast majority of instances, the
parser had no possibility of producing the right analysis due to some semantically
important word having been misrecognized. Altogether, there are only eight in-
stances of Case 1 (corresponding to 8% of Case 1) in which all the necessary words
were present in the input. In all of these instances, the reason for the incorrect
analysis was a coverage leak (and not a limitation of the formalism). Similarly, a
coverage leak is the reason for the single faulty analysis that constitutes Case 3.

It should be pointed out, however, that in most of the intances in which a seman-
tically important word had been misrecognized, the parser still produced a partially
correct result. A typical example is the following:

Spoken input: “Hornsgatan tjugonio”
(“Twenty-nine Horn Street”)

Recognized input: “Hornsgatan tjugo nu ja”
(“Twenty now yes Horn Street”)

Here, the parser produced an analysis where the street number is incorrect, but the
street name is correct.

Case 2 is most interesting if we want to understand how the parser actually
manages to achieve robustness. Most of the instances of Case 2 are utterances
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where the recognizer had misrecognized or erroneously inserted words that do not
belong to any semantically relevant pattern. A typical example is the following:

Spoken input: “Finns det n̊agon lägenhet i Gamla stan?”
(“Is there any apartment in the Old Town?”)

Recognized input: “Finns det det var lägenhet den Gamla stan mmm mmm?”
(“Is there there was apartment it Old Town mmm mmm?”)

There are some exceptions, however, like:

Spoken input: “Finns det en tv̊aa p̊a Kungsholmen?”
(“Is there a two-room apartment on Kungsholmen?”)

Recognized input: “Finns det en tv̊aa p̊a Kungsholmen eller fem?”
(“Is there a two-room apartment on Kungsholmen or five?”)

Here the fragment “or five” yields a semantic constraint which cannot be combined
with the other constraints resulting from the rest of the utterance. Consequently
it is discarded in the rewriting phase of the parsing algorithm, and hence does not
damage the analysis.

6.3 Expressiveness of the semantic representation formalism

The figures above indicate that the parser meets the basic goal of robustness in
the sense that it outputs utterance descriptors with a significantly higher degree of
accuracy than the strings output by the speech recognizer. The remaining question
is then whether the formalism is sufficiently expressive. Although the analysis in
Section 6.2 is a strong indicator that this is the case with the present data set, it
is interesting to consider utterances from other corpora, specifically the kinds of
utterances that cannot be represented by the formalism.

To get a handle on this, we have looked at two other database-oriented corpora,
one from the same domain and one from a different domain. The former is the
adapt corpus, comprising 1 858 user utterances (Bell et al. 2000), and the other
one is the SmartSpeak travel-planning corpus (Boye et al. 1999), comprising 3 600
user utterances. Both corpora are the results of Wizard-of-Oz data collections. In
both cases the wizards tried to promote user initiative as well as to simulate near-
perfect speech understanding.

Below is a list of sentence types that are not representable as utterance descrip-
tors, but instances of which are found in at least one of the corpora. The list was
obtained by manually checking several hundred utterances from each of the two
corpora and, in addition, searching the entire corpora for a variety of constructions
judged to be critical.

1. Constructions involving a function of more than one structured object: “How
many two- or three-room apartments are there around here?”

2. Complex and–or nesting: “A large one-room apartment or a small two-room
apartment.”

3. Selection of elements from a complementary set: ”Are there any other apart-
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ments around Medborgarplatsen that are about 50 square meters big and that
are not situated at the ground floor?”

4. Comparatives involving implicit references where the comparison is made with
a set of objects rather than with a single object. To illustrate, assume that
several flight alternatives and their departure times have been up for discus-
sion previously in the dialogue. The user then asks: “Is there a later flight?”,
requesting a flight which is later than all the previously mentioned ones. (To
determine whether such a comparison is made with a set of objects or with a
single object, it is in general not sufficient to look only at the last utterance.
Thus, to handle this, the context-independent representation of the utterance
must cater for both possibilities, thereby allowing contextual analysis to make
the final verdict.)

Altogether, the most common of these types is (1), which accounts for 0.4% in
the apartment corpus but does not show up at all in the travel corpus. In none of
the other cases do the number of occurrences exceed 0.05% of a single corpus. We
take this as a further indication that the expressiveness trade-off is a reasonable
one for the kind of task and domains that we have been considering.

As a comparison, team (Grosz et al. 1985) handles many constructions that
our parser cannot handle, such as “Is the smallest country the least populous”
(comparison involving two superlatives) and “For the countries in North America,
what are their capitals?” (“each” quantification). However, constructions like these
do not show up in our corpora of spoken negotiative dialogue.

We set out by claiming that negotiative dialogue demands that we go beyond
variable-free slot–filler structures. Indeed, even a quick look at the corpora reveals
that a substantial part of the utterances do require the added expressiveness. Thus,
in addition to trivial specification utterances such as “I’d like a two-room apartment
on the South Side”, one encounters in our corpora numerous instances like the
following that can be represented by our formalism, but not in general by variable-
free slot–filler structures:

1. Seeking information about a particular aspect of an apartment, like “Does
that apartment have a balcony?”, as opposed to specifications such as “I’d
like an apartment with a balcony”.

2. Comparative constructions involving explicit references to different objects in
the same utterance, such as “I’d like an apartment on Horn Street which is
cheaper than the apartment on King’s Street”.

3. Comparatives involving implicit references, such as “Is there anything cheaper?”.
4. Superlatives: “The cheapest apartment near Karlaplan.”
5. Combinations of a comparative and selection of a minimal element: “When

is the next flight?”, which can be paraphrased as “Give me the earliest flight
that departs after the flight that you just mentioned.”

6.4 Discussion

Based on the arguments of the previous section, we conclude that the expressiveness
of the semantic representation formalism can be narrowed down relative to first-
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order logic without harming its practical usefulness with respect to the kind of
application dealt with here (spoken negotiative dialogue with databases). Because of
the restrictions of expressiveness (in other words, the deliberate coarse-grainedness
of the formalism), we can use a form of robust parsing where we neither have to
analyse every word in the utterance, nor analyse all relations between the words in
the utterance.

As an illustration of this point, the system is unable to represent (and understand)
the utterance “Do all apartments that cost more than 2 million have a balcony?”.
The system would understand the utterance as a request for an apartment that
costs more than 2 million and has a balcony, by triggering on “apartments”, “more
than 2 million” and “balcony”, allowing recognition errors on all remaining words.
Thus robustness is increased.

As yet another illustration, a common source of error in spoken-language under-
standing is the recognition of function words, due to their typically being short and
non-prominent. Consider, for example, the utterance “How much does it cost?”,
which is frequently used in the adapt domain. Here, our parser achieves increased
robustness by not necessarily depending on correct recognition of the pronoun “it”
to infer that the utterance involves an anaphoric relation. Rather, the two crucial
patterns are “How much” and “cost”, which together allow the parser to draw the
required conclusion (for lack of more information).

7 Possible extensions

In the adapt domain model, the apartment type is the only structured type. How-
ever, in many interesting domains there would be a need for several different struc-
tured types. Consider for instance an extension of the apartment domain encoding
also the properties of the neighbourhood of the apartment (e.g. locations and other
properties of schools, metro stations, restaurants, etc.), or an extension of the do-
main encoding the properties of individual rooms of each apartment. Each of these
cases introduces new considerations. In the former case, utterances like “What street
is it?” would be ambiguous, since there would now be several kinds of objects that
have a street name attribute. In the latter case, a system should be able to correctly
interpret and respond to queries like “Is there an apartment with a living-room at
least 30 square meters big?”.

In the domain model used by the adapt system, all objects except apartments are
second-class in the sense that they can only appear in the context of an apartment.
If the user mentions a balcony, an adress or a price, the system always infers that
the balcony, the address or the price is an attribute of an apartment, even though no
apartment has been explicitly mentioned. Only apartments are first-class objects
in the sense that no such inference is called for. In the adapt domain model,
apartments (the first-class objects) are represented by means of structured objects,
and second-class objects are represented as simple objects or sets of simple objects
(for instance, a price is represented as an integer, and a kitchen is represented as a
set of atomic terms representing the equipment in the kitchen; stove, dishwasher,
microwave oven, and so on).
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The two extensions described above represent two different kinds of departures
from the adapt domain model. In the first case, there is more than one type of
first-class object. In the second case, also second-class objects may be structured
(i.e. second-class objects are no longer equated with simple objects or sets of simple
objects).

Using the notions of first-class and second-class objects, the two extensions would
be quite straightforward. Firstly, as briefly mentioned earlier, ambiguous utterances
like “What street is it?” are represented using type variables:

λy t ?x street name (y .street name = x )

Since there are several types of first-class objects that have a street name attribute,
the type of the inferred first-class object is ambiguous and therefore represented by
a variable. Here the first argument could be resolved against any object that has a
street name attribute.

In the case where also individual rooms are modelled as structured objects, “Is
there an apartment with a living-room at least 30 m2 big?” would be represented
using an existentially quantified variable y, as explained in section 4.2:

λS set(apartment) ?x apartment ∃y room (y ∈ x .rooms ∧ y .type = living room
∧ y.space > 30 ∧ x ∈ S )

Furthermore, we assume that only first-class objects (rather than only structured
objects) can be retrieved from the dialogue context, so lambda variables are always
of a first-class type. This is not a restriction, since second-class objects are always
associated with a first-class object. For instance, “I would like a bigger living-
room” would be seen as a constraint on the desired apartment (i.e. “I would like
an apartment that has a bigger living-room”). Such an utterance would thus be
represented as:

λS set(apartment) λz apartment ?x apartment ∃y room ∃w room

(y ∈ x.rooms ∧ y .type = living room ∧ w ∈ z .rooms
∧ w.type = living room ∧ y .space > w .space ∧ x ∈ S )

To make the parser correctly handle the extensions, two minor modifications of
the rewriting phase are required: In step 2 of Section 5.3.3, the algorithm should
look for variables of second-class types rather than objects of non-structured types.
In Section 5.3.4, free variables of first-class types should be made lambda-bound,
whereas free variables of second-class types should be made existentially quantified.

8 Related work

The study of text-based natural-language interfaces to databases has a long tra-
dition, going back at least to around 1970, and with a culmination already in the
1980s (for an excellent overview, see Androutsopoulos et al. 1995). The high-end
systems of this time, for example, team (Grosz et al. 1985), loqui (Binot et al.
1991) and cle/clare (Alshawi 1992, Alshawi et al. 1992) used deep syntactic anal-
ysis and powerful logical languages for semantic representation, and were able to
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engage in dialogue involving complex phenomena such as quantification, anaphora
and ellipsis. Naturally, the task was facilitated by the fact that no noise from speech
recognition was introduced.

When moving from written to spoken input, it is necessary to address the ro-
bustness problems suffered by the kind of systems mentioned above. One approach,
pioneered by Ward (1989), is to rely on shallow pattern matching, and to resort to
a relatively coarse-grained semantic formalism (essentially variable-free slot–filler
lists). Other examples in the same vein are Jackson et al. (1991) and Aust et al.
(1995). These approaches work well for system-directed dialogue in small domains,
but the semantic representation is too weak to serve as a vehicle for more advanced
forms of interaction, such as negotiative dialogue.

Several attempts at synthesizing or combining deep and shallow approaches have
been made. One possibility is to “robustify” a deep-processing method, either by
picking the largest grammatical fragment (Boye et al. 1999), or by trying to con-
nect the smallest set of grammatical fragments that span the entire utterance (for
example, van Noord et al. 1999 and Kasper et al. 1999).

Another possibility is to extend a shallow pattern-matching approach with the ca-
pability of handling general linguistic rules. For example, the parser of Milward and
Knight (2001) makes use of linguistically motivated rules, representing the analysis
as a chart structure. Semantic interpretation is carried out by mapping rules that
operate directly on the chart. These rules incorporate task-specific as well as struc-
tural (linguistic) and contextual information, and are hence domain-dependent. By
giving preference to mapping rules that are more specific (in the sense of satisfying
more constraints), grammatical information can be used whenever available. As a
comparison, our approach shares the trait of being able to combine constraints from
many fragments of the utterance. However, this is achieved by a general procedure
(unifying objects whose type information is compatible) rather than by using lots
of special-purpose mapping rules. Also, the semantic representation produced by
Milward and Knight’s parser is still limited to that of variable-free slot–filler lists.

A third possibility is to refrain from committing to a choice by letting shallow
and deep processing work in parallel. In translation, this has been achieved by
having different processors add partial translation results to a single chart structure
(Frederking and Nirenburg 1994, Rayner et al. 2000). Likewise, in dialogue systems
it has been achieved by letting one deep and one shallow processor output separate
semantic analyses obeying the same format, and to have a preference mechanism
that picks the best of these according to some metric (Boye et al. 1999).

A general approach to combining shallow and deep processing is provided by
Mimimal Recursion Semantics (MRS; Copestake et al. 1999, Copestake 2003) and
similar formalisms such as Hole Semantics (Bos 1995, Blackburn and Bos 2003).
Here, the idea is to use a flat, highly factorized representation of first-order logic
with generalized quantifiers as a means for representing analyses from both shallow
and deep processing. This opens up the possibility of combining results from deep
and shallow processing, for example, invoking deep processing whenever shallow
processing returns an underspecified semantic representation. A related notion is
used by Alexandersson et al. (2000).
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Similar to our utterance descriptors, MRS was developed in the context of a dia-
logue system (namely, Verbmobil). There is thus a large corpus that contains MRS
descriptions for utterances from face-to-face dialogues in an appointment-scheduling
and travel-arrangement domain (Oepen et al. 2002). Another similarity is that both
MRS and utterance descriptors constitute syntactically flat representations (in the
latter case, this is because constraints are never embedded within one another).
The crucial difference, however, is the expressiveness: MRS is as expressive as first-
order logic, and is explicitly designed to handle semantic composition in general
grammatical frameworks such as HPSG. In contrast, our utterance descriptors are
much less expressive than first-order logic, motivated by what we have found to
characterize spoken negotiative dialogue with databases (see Section 4.5).

As for contextual reasoning, Section 4.3 gives a detailed description of how this is
carried out in the adapt system. General semantic frameworks such as Discourse
Representation Theory (DRT; Kamp and Reyle 1993) and Centering Theory (Grosz
et al. 1995) use elaborate mechanisms in the form of accessibility relations and rank-
ing of forward-looking centers for establishing anaphoric relations. This is further
exploited in applications such as dipper (Bos et al. 2003). Again, however, our
approach is more restricted, and replaces these elaborate mechanisms with a few
very simple principles based on the typing of objects in the domain.

Finally, an interesting approach which is also based on trying to find an empir-
ically useful subclass of database questions is provided by the precise natural-
language database interface (Popescu et al. 2003). Here, a class of “semantically
tractable questions” is defined, each of which yields a provably correct answer. Ques-
tions outside of this class, on the other hand, are answered with an error message
indicating that the system does not understand the input question. Hence, precise

is “robust” in the sense that no incorrect answer will ever be produced; on the other
hand, it lacks graceful degradation, which is a property typically associated with
robustness. Also, since precise is text-based and has no dialogue capabilities, it is
not directly comparable to our approach.

9 Conclusion

As stated in Section 1, the goal of the paper has been to find an empirically mo-
tivated trade-off between robustness and expressiveness in spoken, negotiative di-
alogue with databases. To this end, we have designed a semantic formalism which
strikes a compromise between variable-free slot–filler lists and more powerful rep-
resentations, such as first-order logic. Our parsing algorithm is able to combine
information from many fragments of an utterance by a general heuristic procedure,
essentially consisting in unification of objects whose type information is compati-
ble. The evaluation has shown that this method is highly robust; it yields correct
results for a considerable amount of incorrectly recognized utterances, and it is
only rarely led astray. Since our algorithm does not engage in any complex gram-
matical analysis, it is also very fast. We have thus shown that it is possible to go
beyond variable-free slot–filler structures without having to revert to deep linguistic
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analysis. In other words, we have demonstrated that the applicability of shallow,
pattern-matching parsers is wider than one might have thought.
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