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Abstract

This paper describes the creation and eval-
uation of a synthetic dataset of Swedish
multiple-choice questions (MCQs) for
reading comprehension using GPT-3. Al-
though GPT-3 is trained mostly on En-
glish data, with only 0.11% of Swedish
texts in its training material, the model still
managed to generate MCQs in Swedish.
About 44% of the generated MCQs turned
out to be of sufficient quality, i.e. they
were grammatically correct and relevant,
with exactly one answer alternative being
correct and the others being plausible but
wrong. We provide a detailed analysis of
the errors and shortcomings of the rejected
MCQs, as well an analysis of the level of
difficulty of the accepted MCQs. In ad-
dition to giving insights into GPT-3, the
synthetic dataset could be used for training
and evaluation of special-purpose MCQ-
generating models.

1 Introduction

OpenAI’s GPT-3 (Brown et al., 2020) is the cur-
rent state-of-the-art model for text generation.
One of the more impressive properties of this
model is the way it can perform natural-language
tasks without any labeled examples, with so-called
zero-shot learning. In the case of GPT-3, zero-shot
learning entails that the model receives a prompt
describing the task verbally (for example, “Trans-
late from English to Spanish”), some input data
for the task (a text in English in this example), and
then produces the output (the Spanish translation
in the example).

Most research using GPT-3 has focused on En-
glish, because the bulk of GPT-3’s training data
(92.6% of words) is English text. Only 0.11%
of the training data is Swedish text. This might

sound insignificant at first, but it actually amounts
to 220.9 million words, which is quite a sizeable
corpus! In addition, Swedish and English are
both Germanic languages, so it is likely that some
cross-lingual learning has taken place during train-
ing. Taking all this into account, we want to test
whether GPT-3 would be able to handle tasks in
Swedish in a zero-shot fashion. Specifically, the
article has the following two goals.

1. Provide a pilot evaluation of GPT-3’s ability
to generate multiple-choice questions (MCQ)
in a zero-shot manner.

2. Create the first synthetic dataset of MCQs,
called Quasi,1 for testing reading comprehen-
sion of adult language learners of Swedish.

An MCQ consists of a text, a question (called the
stem) on the text, and a set of answer alternatives,
of which exactly one is correct (called the key) and
all the others are wrong, but plausible (called dis-
tractors). As we will show, GPT3 is good but far
from perfect in generating Swedish MCQs from
a Swedish text: more than half of the generated
MCQs were incorrect, sometimes in subtle ways.
This means that GPT-3 does not provide an ul-
timate solution to the MCQ-generation task, and
that special-purpose models are still required. The
synthetic dataset presented here could potentially
be used as extra training material for such special-
purpose models.

In this paper, we provide a detailed analysis of
the errors and shortcomings of the rejected MCQs,
as well as an analysis of the level of difficulty
of the accepted MCQs, giving insights into the
strengths and weaknesses of GPT-3.

2 Related work

The idea of creating synthetic datasets is not new
both in NLP in general (Gessler et al., 2020; He

1Will be published upon acceptance of the paper
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et al., 2022), and for Question Answering specifi-
cally (Alberti et al., 2019). However, to the best of
our knowledge, no synthetic datasets of multiple
choice questions (MCQs) have been created either
for English or Swedish.

Question Answering for Swedish is an under-
researched area with very few existing datasets.
There has been an attempt to translate SQuAD
(Rajpurkar et al., 2016), which does not con-
tain MCQs, into Swedish2 with no information
on whether translations were manually checked.
There only existing MCQ datasets in Swedish
is SweQUAD-MC (Kalpakchi and Boye, 2021),
which has been manually constructed.

3 Data collection

3.1 Textual materials

We have collected 96 texts of varying length, type
and genre from the national tests of Swedish for
Immigrants courses (swe. SFI nationella prov)
using OCR. These texts have been specifically
adapted to test reading comprehension of adult
language learners of Swedish. The sought-after
synthetic data should consist of MCQs for each
given text, where each MCQ must fulfill a number
of requirements:

1. there must be 4 alternatives;

2. only one alternative must be correct;

3. the other 3 alternatives must be wrong, but
plausible;

4. the question must be answerable using the in-
formation in the given text.

For each text, a batch of MCQs fulfilling the re-
quirements above should be generated and the
number of MCQs in the batch should vary depend-
ing on the length of text: the longer the text, the
more MCQs should be available. Additionally, the
difficulty of MCQs in each batch should vary.

3.2 GPT-3 hyperparameters

We have employed OpenAI’s GPT-3 (Brown et al.,
2020), more specifically version text-davinci-003,
to generate synthetic data that fuifills the require-
ments from the previous section.

2https://github.com/Vottivott/
swedsquad

3.2.1 Prompt
Our approach to creating the prompt was to spell
out the aforementioned requirements as clearly as
possible. The results was the following prompt,
which has been fed to GPT-3 in Swedish.

Skriv Nq olika läsförståelsefrågor med
4 alternativ (a, b, c, och d) och ge varje
fråga en unik nummer (1, 2, 3, osv).
Första alternativet (a) ska alltid vara
rätt, medan de andra alternativen (b, c,
och d) ska vara felaktiga, men troliga.
Alla frågor måste kunna besvaras av den
följande texten. Ordna frågor från den
lättaste till den svåraste.

The number Nq was selected based on the length
of each text (the longer the text, the more MCQs
we asked for) using the heuristic detailed in Ap-
pendix A.

To help non-Swedish-speaking readers, we also
provide an English translation of the prompt be-
low, but we emphasize again, that all input to GPT-
3, including the prompt, was in Swedish.

Write Nq different reading comprehen-
sion questions with 4 alternatives (a,
b, c, and d) and give each question a
unique number (1, 2, 3, and so on). The
first alternative (a) should be always cor-
rect, while the other alternatives (b, c,
and d) should be wrong, but plausible.
All questions must be answerable of the
following text. Order questions from the
easiest to the hardest.

We did NOT perform any extensive experimen-
tation with prompt formulation. We have formu-
lated the prompt in a way that it includes all afore-
mentioned requirements in the most unambiguous
way possible. Some parts of the requirements are
ambiguous by necessity, for instance, the defini-
tions of MCQ difficulty vary among researchers
(see Section 4.1 for further discussion on the mat-
ter). The intention behind including the difficulty
requirement into the prompt was to check whether
GPT-3 could produce any variation at all when it
comes to MCQ difficulty.

3.2.2 Generation hyperparameters
We did NOT perform any systematic search for
the generation hyperparameters (e.g., temperature,
top P for nucleus sampling, etc). Instead we used

https://github.com/Vottivott/swedsquad
https://github.com/Vottivott/swedsquad
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the default settings (listed in Appendix B), except
for the extended maximum generation length to al-
low for longer texts and more MCQs.

The rationale behind this decision is that it is
impossible to define the degree to which we want
GPT-3 to generate repeated content. For instance,
if the text consists of one and only sentence:
“Stockholm is the capital of Sweden”, then one
of the few good reading-comprehension questions
would be “What is the capital of Sweden?”, with
the correct answer “Stockholm”. In this example,
all words from the text are repeated in the ques-
tion and the correct answer. One could, of course,
paraphrase the question to some degree, but then
that poses a risk of the question’s meaning “drift-
ing away”. For instance, the question “What is the
administrative center of Sweden?” is still a valid
question, but it is neither equivalent to the original
question, nor answerable from the given text.

4 Evaluation methodology

We are interested to know how well GPT-3 fol-
lowed the instructions given in our prompt. For
each given text, we investigated the following
properties:

Q1. Were Nq MCQs generated?

Q2. Did every MCQ include a stem and 4 alterna-
tives?

Q3. Did the formatting conform to the requested
one (MCQs are numbered, alternatives are la-
beled with letters a, b, c, d, etc)?

Q4. Were all MCQs distinct?

The next group of questions is interesting only for
distinct MCQs with a stem and 4 alternatives. We
will mark these questions with “D” for “distinct”.

D1. Were all stems grammatically correct and an-
swerable after reading the text?

D2. For MCQs having stems compliant with the
requirements in D1, were all alternatives
grammatically correct and relevant?

The final 2 questions are interesting only for
those cases where the answer was yes for both D1
and D2. We will mark these questions with “R”
for “relevant”.

R1. Was only one alternative always correct,
while the others were always wrong, but
plausible?

R2. Was the correct alternative always a?

R3. Were the MCQs always ordered from the eas-
iest to the hardest?

Although requiring some manual annotation, the
questions above are all trivial to check, with the
exception of R3, which is non-trivial since the
concept of MCQ difficulty is not well-defined. In
fact, MCQ difficulty depends on many things that
are hard to keep constant, e.g., the reader’s skills
and background knowledge, whether the test is
taken under time pressure, etc. For the purpose
of this case study, we have relied on a definition of
difficulty outlined in the section below and further
detailed in Appendices C.1, C.2, and C.3.

4.1 MCQ Difficulty
For defining MCQ difficulty we take inspiration
from the methodology proposed by I. Kirsch and
P. Mosenthal, which served as one the bases for
the TOEFL 2000 (Jamieson et al., 2000) and PISA
2018 (OECD, 2019) reading literacy frameworks.
In particular we consulted Kirsch and Mosenthal
(1995), because this work specifically deals with
assessing difficulty of multiple-choice questions.

Kirsch and Mosenthal (1995) have used the per-
centage pc of students who answered the question
correctly3 as a proxy for the MCQ difficulty. In an
attempt to explain performance differences, they
have defined a number of readability and read-
ing process variables, and ran a regression using
these variables as predictors of pc. They found the
following three variables to be particularly strong
predictors (later referred to as core predictors):

• Type of Information (TOI)

• Type of Match (TOM)

• Plausibility of Distractors (POD)

Inspired by Kirsch and Mosenthal (1995), we eval-
uated each of the core predictors on a scale from 1
to 5 using the following scoring rules:

• TOI: The more abstract the stem, the higher
the score. Stems inquiring about concrete
things like places or people will get a score of
1, whereas those asking about more abstract
concepts will get increasingly higher scores,

3In Kirsch and Mosenthal (1995), this quantity is called
p-value, but should not be confused with p-values from sta-
tistical hypothesis testing, which are also reported using p-
notation
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up to 5 for the most abstract concepts, like
themes or patterns.

• TOM: The more inference required to match
the information in the stem and the key to the
text, the higher the score. This means a score
of 1 for MCQs requiring simple string match-
ing, up to a score of 5 for those matches re-
quiring reading between the lines.

• POD: The closer distractors are to the key in
the text, the higher the score. This means
a score of 1 for MCQs with no distractors
present in the text, up to a score of 5 in the
cases where two or more distractors are close
to the key in the text.

More precise definitions for scoring the core pre-
dictors are provided in Appendix C.1 for Type of
Information, Appendix C.2 for Type of Match, and
Appendix C.3 for Plausibility of Distractors.

5 Results

Recall that we collected 96 texts and asked GPT-
3 to generate Nq MCQs for each of them, where
Nq is calculated based on the length of each text
(the longer the text, the more MCQs we asked
for). In total, GPT-3 made 718 generation at-
tempts. To answer all questions posed in the pre-
vious section, we have made all required manual
annotations ourselves using an iterative annota-
tion process (annotating – discussing issues – re-
annotating).

Q1. Were Nq MCQs always generated?
Answer: No, but very often (for 89.6% of the
texts)

For 86 out of 96 texts, GPT-3 generated exactly
the requested Nq MCQs. The mismatch between
the number of generated MCQs Ngen and Nq is
shown in Figure 1.

As can be seen, most of the mismatch happens
for longer texts and there are mostly fewer MCQs
generated than requested. One possible explana-
tion could have been that GPT-3 simply did not
have enough tokens in its context window. How-
ever, Figure 1 illustrates that in the vast majority
of cases, GPT-3 stopped generating MCQs after
reaching the stop token. In fact, only in one case
was the generation interrupted because the context
window was too short (GPT-3 failed even to pro-
duce a stem for this example). This means that

0 100 200 300 400 500
Number of tokens

30

20

10

0

10

20

30

N
ge

n
N

q

Finish reason
length
stop

Figure 1: Scatterplot of the relation between the
number of tokens (as provided by NLTK) and the
size of MCQ number mismatch, Ngen −Nq

717 out of 718 generation attempts resulted in an
MCQ.

Q2. Did every MCQ include a stem and 4 alterna-
tives?
Answer: Yes

The only MCQ that did not was the one with the
id 0 28, which was the only failed generation at-
tempt discussed above. All other 717 MCQs con-
tained a stem with 4 alternatives.

Q3. Did the formatting conform to the requested
one (MCQs are numbered, alternatives are la-
beled with letters a, b, c, d, etc)?
Answer: Yes, with some minor variations.

The stems were always numbered using Arabic
numbers followed by a full stop. The alterna-
tives were always formatted in the same way both
within each MCQ and between all MCQs for each
text. The formatting itself has slightly differed be-
tween the texts, using either small or capital letters
from a to d, followed by either a right bracket or
a full stop. The distribution of different formatting
options is illustrated in Figure 2.

Q4. Were all MCQs distinct?
Answer: Mostly yes (around 4% duplicates).

MCQs can be duplicated to varying extents. We
define the following cases, which we call duplica-
tion levels:

• absolute – when both the stem and all alter-
natives are the same (ignoring the punctua-
tion), and the alternatives have been gener-
ated in the same order;
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Figure 2: Distribution of the formatting types for
the alternatives in each test (using the first alterna-
tive a as an example). All MCQs within the test
were formatted in the same way.
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Figure 3: Distribution of duplicated MCQs
(4.32% of all MCQs) per duplication level

• partial – when either only the stem is the
same, or both the stem and all alternatives
are the same, but the alternatives have been
generated in a different order;

• paraphrased – when the stem (and possibly
a subset of alternatives) is a paraphrased ver-
sion of the stem (and possibly a subset of al-
ternatives) of the other MCQ(s).

If one MCQ is a duplicate of more than one MCQ,
we take only the strongest duplication level into
account. For instance, if X and Y are paraphrased
duplicates, whereas X and Z are absolute dupli-
cates, we include X as the case of absolute dupli-
cates in the descriptive statistics.

31 (4.32%) MCQs turned out to be duplicates

wrong
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wrong
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Figure 4: Distribution of grammatical error types
for stems. “AGR” stands for “agreement”, and
“prep.” – for “preposition”

with a distribution of duplication levels provided
in Figure 3. As previously mentioned, all dupli-
cates are excluded from further analysis.

D1. Were all stems grammatically correct and an-
swerable after reading the text?
Answer: No (roughly 1 in 5 MCQs did not
conform to these requirements)

There are multiple kinds of problems related to
D1. The first problematic category includes un-
grammatical stems, which we have further clas-
sified further into the types of grammatical er-
rors, shown in Figure 4. In total, 43 (6%) MCQs
had ungrammatical stems with a more detailed de-
scription and examples for each grammatical error
type given in Appendix D.

The second problematic category concerns the
stems that are grammatically correct, but unan-
swerable for the given text. For the purpose of the
synthetic data at hand, we have defined the follow-
ing reasons to classify a stem as unanswerable.

• Contradictive, meaning that a presupposi-
tion in the stem contradicts what is written
in the text. For instance, suppose that in the
text it is written “John was very happy to fi-
nally resign”, and the stem is “Why was John
sad about resigning?”. Here the presupposi-
tion that John was sad is inconsistent with the
text. Another example could include the text
“John likes playing basketball, but his biggest
hobby is tennis” and the stem “What is John’s
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Figure 5: Distribution of reasons for being unan-
swerable.

hobby?”. This formulation of the stem pre-
supposes that John has one hobby, which is
not true and hence inconsistent with the text.

• Undiscussed, meaning that the text neither
provides the information necessary to find the
key for the stem, nor provides the way to re-
ject all but one alternative, while providing
some support for the remaining one. In either
case the information in the stem does NOT
contradict the text.

• Ambiguous, meaning that the information
provided in the stem is not enough to choose
one definite answer among the provided al-
ternatives, i.e., different alternative(s) could
be viewed as the key, depending on the inter-
pretation of the stem.

87 (12.13%) MCQs were deemed to have unan-
swerable stems with a more fine-grained distribu-
tion depicted in Figure 5.

The last, but not least problematic category in
D1 is that of grammatically correct stems that
could be answered without reading the text. This
category includes 20 (2.79%) MCQs.

D2. Were all alternatives grammatically correct
and relevant for the given stem and text?
Answer: No, but more than for stems
(around 3 in 20 MCQs did not conform to the
requirements above).

Similarly to D1, there are multiple kinds of prob-
lems related to D2. One problem is that of un-
grammatical alternatives, which uses exactly the

same categorization as for D1 (detailed and ex-
emplified in Appendix D) with one additional cat-
egory: “tautology”. In total 10 (1.39%) MCQs
with grammatically correct stems had at least one
ungrammatical alternative, with the error type dis-
tribution provided in Figure 6.

The other problem concerns cases when the al-
ternatives are grammatically correct, but irrelevant
for the given text. For the synthetic data at hand,
we have defined the following reasons to judge the
alternatives as irrelevant for the given text.

• Misfocused, meaning that at least one of the
alternatives does not provide the type of in-
formation, requested in the stem. One exam-
ple of such inconsistency would be the stem
“What is the capital of Sweden?”, accompa-
nied by the alternative “John Lennon”. Note
that even if the correct answer, “Stockholm”,
is within the provided 4 alternatives, but so is
“John Lennon”, the MCQ will still be catego-
rized as misfocused. The rationale is that in
such cases, the effective number of alterna-
tives becomes less than 4 and thus it becomes
easier to guess the correct answer.

• Heterogeneous, meaning that one or more of
the provided alternatives stick out and thus
provide a potential clue for the students. One
example would be the stem “Where is Nobel
Museum located?” and the alternatives “Stor-
torget 2, 103 16 Stockholm”, “Gothenburg”,
“Uppsala”, “Copenhagen”. The first alterna-
tive is clearly different from the others and is
also the correct answer in this case.

logical
error

wrong
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tautology

Type of grammatical error
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Figure 6: Distribution of grammatical error types
for alternatives.
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Figure 7: Distribution of reasons for being irrele-
vant.

• Unanimously wrong, meaning that neither
of the provided 4 alternatives can be consid-
ered correct (the key).

90 (12.55%) MCQs were judged to be irrelevant
with the distribution of reasons for irrelevancy de-
picted in Figure 7.

To summarize, the final two questions will be
evaluated only on the MCQs that didn’t have any
problems so far. This includes 717 − 31 − 43 −
87− 20− 10− 90 = 436 MCQs (60.81%).

R1. Was only one alternative always correct,
while the others were always wrong?
Answer: No, around 3 in 10 of the remaining
MCQs (or 3 in 20 in total) had problems.

119 (16.6%) of the remaining 436 MCQs had
more than one correct answer, which leaves us
with 317 MCQs (44.21%) to be tested for the re-
maining conditions.

R2. Was the correct alternative always a?
Answer: No, a bit more than 3 in 10 of the
remaining MCQs (or 3 in 20 in total) had b,
c, or d as the correct alternative.

The distribution of positions of correct alternatives
for the 317 MCQs remaining after R1 is provided
in Figure 8. For 213 MCQs (29.71%) the alter-
native a was correct, whereas all the other were
wrong.

R3. Were the MCQs always ordered from the eas-
iest to the hardest?
Answer: No, but for 27 texts they were!

a b c d
Alternative
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Figure 8: Distribution of the positions of correct
alternatives

For this part of the analysis, we have included all
317 MCQs with exactly one correct answer (no
matter a or not) and without any problems spot-
ted before R2. Notably, 6 texts have lost all their
MCQs, so these 317 MCQs are spread over 90 out
of the initial 96 texts.

We have then annotated each MCQ using the
MCQ difficulty scheme outlined in Section 4.1
(and detailed in Appendices C.1, C.2, and C.3).
The distribution of total MCQ difficulty is shown
in Figure 9. Recall that the minimum possible
MCQ difficulty is 3 points, whereas the maximum
is 15 points. Each column in Figure 9 represents
one of the 90 texts and each row is an MCQ gen-
erated for this texts. The MCQs are ordered in
the order of generation from bottom to top (so the
first row from the bottom indicates the first MCQ
generated by GPT-3). Grey cells indicate MCQs
excluded prior to R2.

If GPT-3 followed the prompt and ordered
MCQs from easiest to hardest, one would expect
the whole heatmap (except the grey cells) to fol-
low the same coloring as the legend. The easier
MCQs with difficulties close to the theoretically
minimal 3 points should be at the bottom of the
chart in light colors. The hardest MCQs should be
on top of every column in dark colors (with diffi-
culties close to theoretically maximal 15 points).
However, Figure 9 shows neither this pattern, nor
any pattern at all in a consistent manner. Never-
theless, if we consider texts which have more than
one survived MCQ (72 out 90 texts), then MCQs
were ordered in the non-decreasing order of diffi-
culty for 27 texts (marked with green stars in Fig-
ure 9).
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Figure 9: Heatmap of MCQ difficulty. Each column represents one of the 90 survived texts. Each cell in
a column represents an MCQ generated by GPT-3 for this text. Grey cells indicate the MCQs excluded
because of insufficient quality, whereas cells of other colors represent the accepted MCQs. Difficulty
ranges from 3 to 15 and is represented by colors according to the legend on the right. Texts are ordered
by their length (from the longest to shortest), which is directly proportional to the requested number of
MCQs. MCQs are ordered by their generation order (those generated first reside in the first row from
the bottom). The columns with green stars indicate the texts which had more than 1 accepted MCQ
generated by GPT-3 in the order of their difficulty (from easiest to hardest).

6 Discussion

GPT-3 has been able to generate around 30% of
MCQs that conformed to all criteria (excluding or-
dering by difficulty), and 44% of MCQs which
were of sufficient quality (also excluding the re-
quirement that a is the correct answer). Such level
of performance is impressive, given that (a) it is
zero-shot, and (b) only 0.11% of GPT-3’s train-
ing data was in Swedish. Although GPT-3 did
not manage to order MCQs from easiest to hardest
for most of the texts, the model could still gener-
ate MCQs of varying difficulty levels. The eas-
iest MCQ scored theoretically minimal 3 points,
whereas the hardest scored 14 (just 1 off from the
theoretical maximum!).

That said, the obtained result is still far from
being good enough to use the synthetic data di-
rectly for data augmentation without human con-
trol. Manual curation is not only desired, but is in
fact required, not least to identify the correct alter-
native among the given.

Why not ask GPT-3 to choose the correct al-
ternative? One counter-argument is that it would
consume more tokens, which leaves less tokens for
MCQs, and leads to higher costs. Another reason
is that there is no convincing argument why GPT-3

would be able to always provide the correct an-
swer. If it could, then it should have been able to
put it as alternative a all the time, which it did not.
Furthermore, it should have been able to always
generate only one correct answer, which it did not
do for 16.6% of MCQs. In fact, this finding is
in line with the previously published evaluation of
a BERT-based model for generating distractors in
Swedish (Kalpakchi and Boye, 2021), where the
authors reported that the most frequent reason for
rejecting distractors was that they were not wrong
(leading to more than 1 correct answer).

Could GPT-3 handle OCR errors, if there
were any? Yes, it could! To give an exam-
ple, one of the e-mail addresses in one of the
texts was incorrectly recognized by the OCR sys-
tem as “ifhs.info Qimh.se”, which we unfortu-
nately didn’t notice. GPT-3 was still able to gen-
erate “ifhs.info@imh.se” as one of the alterna-
tives. This is most probably, because there was “e-
post:” (eng. “e-mail:”) before this string, which
the GPT-3’s attention mechanism was able to cap-
ture. That said we didn’t do any rigorous eval-
uation to quantify how well GPT-3 can mitigate
OCR errors, so the caution is advised when trying
to generalize from this insight.
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A Heuristic for choosing the number of
generated MCQs

First we have calculated the average length of
the sentence in characters for different sources of
text (forum, news, blogs, etc), which could be
extracted by multiplying W̄ by C̄ from Table 1.

Then for each text T (belonging to category catT )
we have calculated NT

q as follows:

NT
q = α

CT∑
c∈catT W̄c · C̄c

, (1)

where CT is the number of characters in T , W̄c

(C̄c) is the average number of words (characters)
per sentence in the corpus c belonging to the cate-
gory catT (if a text did not belong to any category,
we set catT to all categories), α is the assumed
number of MCQs to be asked per sentence.

Choosing α is a bit tricky. In reality one can
ask way more than 1 MCQ per sentence, but then
not all sentences are worth asking even 1 MCQ.
In hopes that these two groups cancel each other
out, we have assumed α = 1, meaning 1 MCQ per
sentence, for the purpose of this article.

B Hyperparameter settings for GPT-3

We have used OpenAI’s text-davinci-003 model
with the following generation hyper-parameters:

• temperature of 0.7

• “top p” (for nucleus sampling) of 1

• frequency and presence penalties of 0

• “best of” being equal to 1

• no custom stop sequences

• maximum length of 2048

C Scoring rules for process variables
included in MCQ difficulty calculation

Recall that the core predictors found by Kirsch and
Mosenthal (1995) are Type of Information (TOI),

Corpus c Source |Wc| W̄c C̄c

Familjeliv forum 885M 12.56 4.51
Flashback forum 711M 12.92 4.67
Bloggmix blogs 375M 13.82 4.69

Webbnyheter news 87M 15.31 5.42
SVT news 179M 13.65 5.40
Wiki info 314M 10.67 5.63

Table 1: Corpus statistics for deciding the value
of Nq. |W | denotes a number of words in a corpus,
W̄ – the average number of words per sentence, C̄
– the average number of characters per word
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Type of Match (TOM), and Plausibility of Distrac-
tors (POD). The way these predictors were pro-
posed to be operationalized is different depend-
ing on the nature of the provided textual material.
More specifically, Kirsch and Mosenthal (1995)
distinguished between the following two types of
materials:

• prose, which refers to texts that consist of
sentences grouped into paragraphs, in partic-
ular narrative and expository texts were con-
sidered;

• documents, meaning any kind of material
where the structure of the document pro-
vides extra information for understanding the
contents, for instance, e-mails (with address
headers and footers), articles (with head-
lines), reports (with tables and graphs), ad-
vertisements, schedules, etc.

In the following section we discuss how we
adapted the scheme proposed by Kirsch and
Mosenthal (1995) to the needs of this article.

C.1 Type of Information
Kirsch and Mosenthal (1995) defined Type of In-
formation (TOI) as the nature of what the readers
are asked to identify in each given stem. The basic
rule is that the more concrete the TOI, the easier
the MCQ is, whereas more abstract TOI lead to
more complex MCQs. The scoring rules are as
follows.

• person, animal, or thing, score 1;

• amount, time, attribute, action, location,
score 2;

• manner, goal, purpose, condition, or predi-
cate adjective, score 3.

• cause, result, reason, evidence, or theme,
score 4.

• equivalent, score 5.

The same rules apply for both prose and docu-
ment materials.

C.2 Type of Match
Kirsch and Mosenthal (1995) defined Type of
Match (TOM) in terms of processes used to relate
information in the stem and the key to information
in the textual material (prose or document). This

is the most complex part of the scheme for eval-
uating MCQ difficulty, which we have simplified
and took only the core aspect of it.

For the sake of brevity, we denoted the rela-
tion between a stem and the textual material as
S-T, and the relation between a key and the tex-
tual material as K-T. For prose tasks, the majority
of which were multiple-choice questions (MCQs),
we have adopted the scoring rules of Kirsch and
Mosenthal (1995) as they are (see Table 2).

The scoring rules for document tasks were de-
fined using many special-case rules. However,
Kirsch and Mosenthal (1995) note that many of
the document tasks did not use a multiple choice
format, whereas in our case all tasks are guaran-
teed to be MCQs. Henceforth, instead of adopting,
we chose to adapt by keeping as many applicable
aspects of the rules for prose texts, as possible.

A clear similarity between prose and document
scoring rules is that tasks requiring literal or syn-
onymous match are still easier than those that need
low-level text-based inference, which, in turn, are
easier than those requiring a high-level text-based
inference. Hence we decided to keep the first 4
scoring rules as they are.

One clearly different thing is the definition of
the final level (when the MCQ should be awarded
5 points). We adopt this difference, but slightly
adapt it, as shown in Table 2.

Unfortunately, Kirsch and Mosenthal (1995) do
not provide clear definitions of what low-level or
high-level inference mean, or where the border be-
tween synonymous match and low-level inference
is. Hence, for the sake of this article, we have de-
vised the following definitions based on examples
of scoring MCQs, provided by Kirsch and Mosen-
thal (1995), and common sense.

Literal match (LIT) entails that the required
information exists in the given textual material
word-by-word. When applying this definition, it
is allowed to ignore:

• question words/phrases, for instance, “Vad”
(eng. “What”), “Hur mycket” (eng. “How
much”), “I vilket land” (eng. “In what coun-
try”);

• articles, for instance “en / ett”, “den / det /
de”, “denna / detta / dessa”;

• changes in the word form, when the word
stem4 remains the same (see examples in Ta-

4not to be confused with the stem of an MCQ
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Prose Document Score

when S-T and K-T are both LIT or SYN 1

when S-T or K-T requires LLTI, while the other requires LIT or SYN match 2

when S-T and K-T both require LLTI 3

when either S-T or K-T requires HLTI 4

when S-T and/or K-T requires HLTI, but
the nature of the corresponding relation(s)
needs to be defined by the reader

when S-T and/or K-T requires inferring a
causal pattern or trend, or making a unique
inference based on prior knowledge

5

Table 2: Scoring rules for Type of Match detailed for prose and document materials. S-T denotes
the relationship between the stem and the text, and K-T between the key and the text, LIT stands for
“literal”, SYN – for “synonymous”, LLTI – for “low-level text-based inference”, whereas HLTI – for
“high-level text-based inference”.

ble 3);

• changes between parts of speech (e.g., nom-
inalization, adjectivization) when the word
stem remains the same (e.g., “drömmar” and
“drömmer”, “samlas” and “samling”)

For documents, there is a special case of LIT
when matching information requires identifying
structural part(s) in a document with a widely ac-
cepted structure. Such documents include, but are
not limited to, e-mails, letters, blog posts, sched-
ules. To exemplify, the question “Who is the
sender of an e-mail?” requires the reader to locate
the signature at the end of the email.

Synonymous match (SYN) encompasses cases
when one word is substituted for another word
with a similar meaning and the same grammatical
features (part of speech, voice, inflection, num-
ber, etc). One or more such substitutions are al-
lowed. Additionally, the following cases are in-
cluded in this category, although they are not typ-
ically counted as synonyms in linguistics.

• Changes in the word form, when the word
stem becomes different (see examples in Ta-
ble 3).

• Using comparative and superlative adjec-
tives, e.g., “god / bättre / bäst” (eng. “good
/ better / best”.

• When a word is matched to a part of a
compound, e.g., “kurserna” in the stem and
“kursveckor” in the text.

• Using abbreviations, e.g., “tel.” for “tele-
fonnummer”, “kl.” for “klockan”, “Feb” for
“Februari”.

• When numbers are written as words and vice
versa, as well as colloquial names for num-
bers (“a pair” meaning 2).

Low-level text-based inference (LLTI) in-
cludes cases when:

• the required information needs to be “col-
lected” from multiple sentences (e.g., co-
reference resolution);

• requires local (within sentence) reasoning
(e.g., if the text says “John is older than
Mary”, while one of the alternatives is “Mary
is younger than John”);

• a word is substituted for another word with
a different word stem, but a similar mean-
ing, but different grammatical features (part
of speech, voice, inflection, number, etc);

• a word is substituted by a phrase or vice
versa;

• compounds (swe. sammansättningar) that
are split into separate words, for in-
stance, exchanging “grundutbildning” with
“grundläggande utbildning” (note that these
are very rare in English, but quite common in
Swedish);

• hierarchical relationships, e.g. “basketball”
and “sport”;
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TOM Description Example

LIT
conjugations of swe. vänta / väntar / väntade / väntat
regular verbs eng. wait / waits / waited / waited

LIT
conjugations of swe. gå / går, stå / står, ge / ger
some irregular verbs eng. go / go, stand / stand, give / give
to Present Simple

LIT noun inflections
swe. bil / bilen / bilar / bilarna / bils / bilens / bilars / bilarnas
eng. car / the car / cars / the cars / car’s / the car’s / cars’ / the cars’

LIT adjective inflections
swe. stor / stort / stora
eng. large / large / large

SYN
conjugations of swe. finna / finner / fann / funnit, bryta / bryter / bröt / brutit
strong verbs eng. find / find / found / found, break / break / broke / broken

SYN
most conjugations swe. går / gick / gått, står / stod / stått, ger / gav / givit
of irregular verbs eng. go / went / gone, stand / stood / stood, give / gave / given

Table 3: Examples of word form changes allowed different Type of Match levels

• the format needs to be recognized, e.g. that
“name@example.com” is an e-mail;

• a non-matching word denotes whether the
information should be included in/excluded
from a document (or a part of a document).

High-level text-based inference (HLTI) when
it is required to link multiple paragraphs of text.
These cases include, but are not limited to:

• counting entities (if they are not already
counted in the text), such as in the stem “How
many countries are represented in the event”;

• reading between the lines to find out the in-
formation, as in “Why did John write this let-
ter?”;

• using specific prior knowledge about content
or structure of the text, for instance, when one
writes “Otto, 27” at the end of the post on
social media means that “27” is most prob-
ably his age, or when it’s written “Opening
hours 11 - 21”, it means that the closing time
is 21:00;

• asking whether the information is included in
the text, e.g. “What is not a hobby of John?”.

The last level, for the score of 5, requires the
reader to define the nature of the S-T and/or K-T
relations. In particular, this included the cases
when the reader needs to

• provide an interpretation of a phrase based
on the information in the text, e.g., “Vem av

personerna i texten är mest förespråkare för
förbud?” (eng. “Which of the people in the
text advocates the most for the ban?”);

• recognize the stance of a person in the text,
e.g. “Hur resonerar Joel Marklund kring
ekologiska produkter?” (eng. “How does
Joel Marklund reason about the ecological
products?”).

For all TOM levels, pleonasms (meaning re-
dundant linguistic expressions that are unneces-
sary to comprehend the stem) should be ignored.
For instance, consider the key is “make demands
on the children but show them love”. The pro-
noun “them” is only there because of grammar,
otherwise it is apparent from the context that love
should be directed towards children, even with-
out the pronoun. Note that in MCQs expressions
might become pleonastic with respect to the given
alternatives. For instance, consider the sentence
“Welcome to the interview on Wednesday 6/2 at
15:00” and the following MCQ.

What is the date for the interview?

a) Thursday 7/2

b) Wednesday 6/2

c) Wednesday 15/2

d) Thursday 6/2

Obviously, the word “date” is not mentioned in
the text and one needs to know what the date is,
so this appears to be a case of HLTI. However,
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Prose Document Score

There is no distracting information in the text 1

DIS are LIT or SYN match to the information not in AN 2

DIS represent PII not based on information related to AN 3

One DIS contains information that is related to the information in AN 4

Two or more DIS contain information that is related to the information in AN 5

One or more DIS represent PII based on information outside of the text 5

Table 4: Scoring rules for Plausibility of Distractors detailed for prose and document materials. DIS
stands for “distractor(s)”, LIT – for “literal”, SYN – for “synonymous”, PII – for “plausible invitied
inferences”, and AN – for “answer node”.

given the alternatives, one doesn’t need to under-
stand the word “date” and suddenly the match be-
tween the stem and the text gets downgraded to
LIT.

To give another example consider the following
e-mail.

Hi,

I was forced to pay $20 extra for the de-
livery of the laptop, which I think is un-
acceptable!

Best regards, Martin Jones

If we analyze the MCQ below at a first glance,
“Martin Jones” is not mentioned in the sentence
about extra $20 payment. Instead “I” there should
be resolved to “Martin Jones”, so it seems like a
case of LLTI. However, Martin Jones is the only
person that is in fact mentioned in the text, so
mention of his name in the stem becomes pleonas-
tic and hence the MCQ again gets downgraded to
LIT.

How much was Martin Jones forced to
pay?

a) $20

b) $15

c) $40

d) $2

What these two examples show is that the judge-
ment of Type of Match level if extremely text-
dependent and one and the same MCQ could get
different TOM-score, depending on the text at
hand.

C.3 Plausibility of Distractors

Inspired by (Kirsch and Mosenthal, 1995), we
make use of an implicit tree structure for both
prose and document materials. Each node of
such a tree should contain a unit of information
that cannot be split further into independent units.
The only type of nodes in prose texts are para-
graphs, whereas nodes in documents are general-
ized paragraphs by nature, but could also contain
more structured and/or graphical material (such as
charts, tables, maps, lists, etc).

Given the surface form of the correct answer,
we define the answer node (AN) as the first node
in the BFS traversal of the tree corresponding to
the textual material, containing information sup-
porting the correct answer.

Since many of the document tasks did not use
a multiple choice format, as noted by Kirsch and
Mosenthal (1995), the rules for scoring POD for
document materials must be adapted. If the format
is not MCQs, then it is only relevant to look into
distracting information in the text, i.e., pieces of
text that provide plausible grounds, although they
are still not correct. In stark contrast, MCQs al-
ready provide a number of alternatives, which the
reader is forced to choose between. Hence the dis-
tracting information is only relevant if one of the
distractors in the alternatives relies on it. Keeping
that in mind, we have adapted the POD scoring
rules for prose texts to the document texts by gen-
eralizing from paragraphs to nodes (see Table 4).
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D Grammatical error types

The following is a list of grammatical error types,
which we adopted for this article. Note that this is
not an exhaustive list of grammatical error types,
but very much specific to the synthetic data at
hand.

• wrong verb forms, such as “meddelar” in the
stem “Vilka problem kan man meddelar om
man har ett akut problem?”;

• wrong noun forms, such as wrong case;

• wrong prepositions, such as “hos
anläggningen” instead of “i anläggningen”;

• wrong grammatical agreement (AGR), such
as “en krav” instead of “ett krav”, or “det
minst antalet” instead of “det minsta an-
talet”;

• syntax errors, most often errors in construc-
tions of sentences, e.g., “Är kursbok och ar-
betsmaterial ingår i kursavgiften?” (eng.
“Are the course book and work material in-
cludes in the course fee?”);

• spelling errors, such as “addressedes” in-
stead of “addresserades”, or “städt” instead
of “städat”;

• wrong lexical choice, when a word should
not be used in the provided context, for in-
stance the stem “Vilka huvudroller är med i
Lyckliga dagar?” (eng. “Which main roles
participate in The happy days”), or using the
pronoune “deras” instead of “sina”;

• logical errors, when a word/phrase is used
in a way that does not conform to its prop-
erties, for instance “cykelbana” in the stem
“I vilken sorts transportmedel finns en cykel-
bana?” (eng. “In what kind of transport does
the bicycle lane exist?”), or “lokalen” in the
alternative “lokalen tar för lång tid att spela”
(eng. “the premises take too long to play”);

• tautology, such as “poetiska dikter” (eng.
“poetic poems”).


	Introduction
	Related work
	Data collection
	Textual materials
	GPT-3 hyperparameters
	Prompt
	Generation hyperparameters


	Evaluation methodology
	MCQ Difficulty

	Results
	Discussion
	Heuristic for choosing the number of generated MCQs
	Hyperparameter settings for GPT-3
	Scoring rules for process variables included in MCQ difficulty calculation
	Type of Information
	Type of Match
	Plausibility of Distractors

	Grammatical error types

