
Quinductor: a multilingual data-driven method
for generating reading-comprehension questions
using Universal Dependencies

Dmytro Kalpakchi∗
Division of Speech, Music and Hearing,
KTH Royal Institute of Technology,
Stockholm, Sweden

Johan Boye
Division of Speech, Music and Hearing,
KTH Royal Institute of Technology,
Stockholm, Sweden

We propose a multilingual data-driven method for generating reading comprehension questions
using dependency trees. Our method provides a strong, mostly deterministic, and inexpensive-to-
train baseline for less-resourced languages. While a language-specific corpus is still required, its
size is nowhere near those required by modern neural question generation (QG) architectures.
Our method surpasses QG baselines previously reported in the literature and shows a good
performance in terms of human evaluation.

1 Introduction

We are interested in question generation (QG) – the task of automatically generating reading
comprehension questions and their correct answers from given declarative sentences. Numerous
methods have been proposed for solving this task, most of which have been aimed at the
English language. Recent methods are based on neural networks and rely on the availability
of large-scale datasets, such as SQuAD (Rajpurkar et al. 2016) – a question-answering dataset
repurposed for QG – or large-scale pretrained models, such as GPT-3 (Brown et al. 2020). Early
methods, mostly based on context-free grammars, relied on the strict word order and the limited
inflectional morphology of English. These traits made it relatively straightforward to craft hand-
written templates based on these grammars. The above mentioned idiosyncracies and the unique
availability of large-scale resources for English leave a number of open challenges for developing
QG methods applicable to languages other than English.

The first challenge is the lack of large-scale training datasets, and a prohibitively high cost
of obtaining such resources. State-of-the-art QG methods for English train their models on the
previously mentioned SQuAD dataset, which contains more than 100,000 questions. Obtaining
a good-quality dataset of a similar size is very expensive, especially for languages with fewer
native speakers around the world.

The second challenge is knowing how well available methods developed for English would
generalize to other languages, especially synthetic ones with richer inflectional morphology and
less strict word order (e.g., Finnish, Turkish or Russian). To the best of our knowledge, not much
research has been done on QG for these kinds of languages.

The third challenge is assessing the obtained performance results. Evaluation results in
isolation do not provide a comprehensive picture of the method’s performance, especially when
using only automatic evaluation metrics, such as BLEU (Papineni et al. 2002). Researchers that
developed the first statistical QG methods for English could compare their results to baselines

∗ E-mail: dmytroka@kth.se

© 2021 Association for Computational Linguistics

ar
X

iv
:2

10
3.

10
12

1v
2

 [
cs

.C
L

]
 1

6
A

pr
 2

02
1

Computational Linguistics Volume 47, Number 1

that relied on context-free grammars. However, most other languages lack QG baselines, leaving
researchers to wonder if the obtained performance is worth the spent computational resources on
training the model.

In this article we are addressing all three challenges by proposing a novel, mostly determin-
istic method, called Quinductor1 (Question inductor), for automatically generating question-
answer pairs from data. Quinductor is based on dependency trees and can also be used for
languages other than English, due to the Universal Dependencies (UD) framework (Nivre et al.
2020) offering more than 200 treebanks in 100 languages. The method does require a language-
specific QA dataset, but its size can be orders of magnitude smaller than SQuAD. Hence we
believe that Quinductor can serve as a strong QG baseline for less-resourced languages.

2 Related work

Rus, Cai, and Graesser (2008) broadly defined QG as automatic generation of questions from
inputs such as text, raw data or knowledge bases. In this article, we are interested in generating
reading comprehension questions from textual data, with their respective correct answers, and
we want to do this in multiple languages. We exclude Yes/No-questions and fill-in-the-blank
questions, as those can be generated with less sophisticated methods (Gates 2011; Mostow and
Jang 2012; Agarwal, Shah, and Mannem 2011). Hence we limit the scope of related works only
to articles exploring a similar QG setup.

To the best of our knowledge, no other work has proposed an automatic multilingual QG
method relying on dependency parsing. The closest by spirit is the work by Afzal and Mitkov
(2014), where sentences are matched against a set of automatically extracted semantic patterns
from the GENIA Event Annotation corpus using a Named Entity Recognizer (NER). These
patterns are used to extract relevant parts of the dependency tree, which are then transformed
into the question by abstracting away the information constituting the correct answer (which
should not be a part of the question). The method requires resources that are often lacking for
other languages, such as, a NER system and a corpus which would be very expensive to annotate.

Mazidi and Nielsen (2015) also relied on a dependency parser, a semantic role labeler and
discourse cues. However, their method only generated questions without the correct answers, re-
quiring the manual creation of question templates, and relying on language-specific information.
Similarly, Khullar et al. (2018) proposed a method using a dependency parser and three manually
crafted rule sets for transforming statements into questions (without exploring the generation of
correct answers).

Other non-neural QG methods utilised hand-written templates based on context-free gram-
mars. One example is the work by Heilman and Smith (2009), which used an overgenerate-
and-rank strategy for QG without generating correct answers. Another example is the work
by Bernhard et al. (2012), which is based on constituent trees and a NER system to generate
questions (and their correct answers) in French. Such methods require linguists to create context-
free grammars, which is an expensive process, especially for languages with less strict word order
and a richer morphology than English.

The most recent QG methods are based on neural networks, and thus require both large-scale
datasets in the language of interest, as well as vast computational resources to train the models.
Impressive performance for English have been demonstrated by both Transformer-based masked
language models (Chan and Fan 2019; Liao, Jiang, and Liu 2020; Dong et al. 2019) and auto-
regressive models based on encoder-decoder architectures (Kim et al. 2019; Liu et al. 2019; Du,
Shao, and Cardie 2017; Song et al. 2018; Zhao et al. 2018; Bahuleyan et al. 2017). Note that

1 The code is available at https://github.com/dkalpakchi/quinductor

2

https://github.com/dkalpakchi/quinductor

Dmytro Kalpakchi Quinductor

0: root

_

1: Tim

PROPN

Number=Sing

2: plays

VERB

Mood=Ind

Number=Sing

Person=3

Tense=Pres

VerbForm=Fin

3: basketball

NOUN

Number=Sing

4: with

ADP

5: friends

NOUN

Number=Plur

6: and

CCONJ

7: family

NOUN

Number=Sing

8: every

DET

9: Tuesday

PROPN

Number=Sing

nsubj

root

obj case

obl

cc

conj

det

obl:tmod

Figure 1
The dependency tree for the sentence “Tim plays basketball with friends and family every Tuesday”

neural models typically do not generate correct answers, but instead use them as an input along
with the sentence to generate questions. However, we are not going into more details on the
neural methods, as our proposed method is not neural.

To the best of our knowledge, only a very limited number of neural methods explore QG in
other languages than English, or multilingual QG. One such example is the work by Kumar et al.
(2019) exploring joint cross-lingual training aimed at reusing the large-scale SQuAD dataset for
Hindi and Chinese.

3 Methodology

Let D be a dataset consisting of triples (ci, qi, ai), where ci is a context (a text passage), qi is a
question created based on ci, and ai is a contiguous phrase in ci, answering qi. A pair of (qi, ai)
will be referred to as a question-answer pair (QA-pair). The aim is then to be able to generate
QA-pairs (q′j , a

′
j) given a previously unseen context c′j .

Our method, Quinductor, automatically induces QA-templates from the dataset D using
dependency parsing based on the UD framework. More formally, let si be the sentence from
the context ci in which the answer ai appears (si can be found using a sentence segmenter, a
tokenizer, and simple string matching). The QA-pair (qi, ai) is recast into a template in a specific
formal language (defined in Section 3.1), using parts of the dependency tree for the sentence si.
For instance, suppose si is “Tim plays basketball with friends and family every Tuesday” (with
its dependency tree shown in Figure 1), and qi is “When does Tim play basketball with friends
and family?”. Assuming r represents the root of the dependency tree (i.e. the dependent of the
“root” pseudonode; the word “plays” in this example), qi can now be expressed using the question
template (1) and the answer “every Tuesday” could be expressed using the answer template (2).
For a formal definition of these expressions we refer to the Section 3.1.

(1) When does [r.nsubj#1] [r.lemma] [r.obj#3] <r.obl#5>?

(2) <r.obl:tmod#9>

Such a transformation can be applied only if certain conditions are met, and therefore each
QA-template has an associated guard (described in its own formal language defined in section
3.2). After inducing both QA-templates and associated guards, we can then apply them to any
previously unseen context c′ by processing its every sentence s′ using the following procedure.

3

Computational Linguistics Volume 47, Number 1

Step 1: Perform dependency parsing on s′ and get a dependency tree T ′.

Step 2: Find all satisfied guards for T ′ and get a set of corresponding QA-templates QAT ′ .

Step 3: Apply all templates from QAT ′ to s′, in order to get a set of generated question-answer
pairs QA′. Note that many QA-pairs will be unsatisfactory, which is why the next step is
introduced.

Step 4: Rank QA′ so that a QA-pair (q′, a′) is ranked highly if it is likely to be relevant,
grammatical, and where a′ is likely to be the correct answer to q′. The ranking is done according
to the method presented in Section 3.5.

As an example of this procedure, consider s′ to be the sentence “Ericsson pays dividends to
the shareholders every first quarter of the year” (with a dependency tree in Figure 2), then using
the question template (1) and the answer template (2), the following QA-pair can be generated:

(3) When does Ericsson pay dividends to the shareholders? – Every first quarter of the year

The key to our method is to make templates as generic as possible to allow a certain amount
of variation in their dependency structures. For instance, we want to avoid using adverbial clauses
word by word, but instead matching adverbial clauses more generally. This generalization is
addressed by a novel shift-reduce algorithm, described in Section 3.3. Automatic induction
of guards is described in 3.4. However, before describing the induction algorithms, let us first
explain and motivate the designed template and guard languages. In the sections below we use a
bold font in the expression definitions to indicate metalinguistic variables which are not part of
the defined languages.

3.1 Template language

Let T be an arbitrary dependency tree and r denote the root of the dependency tree, i.e. the
dependent of the “root” pseudonode of T . In the example sentence in Figure 1 r corresponds to
the word “play” (all further examples will also be given for this sentence). Let n be an arbitrary
node of T , then the following definitions are introduced.

0: root

_

1: Ericsson

PROPN

Number=Sing

2: pays

VERB

Mood=Ind

Number=Sing

Person=3

Tense=Pres

VerbForm=Fin

3: dividends

NOUN

Number=Plur

4: to

ADP

5: the

DET

Definite=Def

PronType=Art

6: shareholders

NOUN

Number=Plur

7: every

DET

8: first

ADJ

Degree=Pos

NumType=Ord

9: quarter

NOUN

Number=Sing

10: of

ADP

11: the

DET

Definite=Def

PronType=Art

12: year

NOUN

Number=Sing

nsubj

root

obj

case

det

obl

det

amod

obl:tmod

case

det

nmod

Figure 2
The dependency tree for the sentence “Ericsson pays dividends to the shareholders every first quarter of
the year”

4

Dmytro Kalpakchi Quinductor

• n.rel#id denotes a dependent of n with a dependency relation rel and index id of
this dependent of n (starting from 0 for the “root” pseudonode). For instance,
r.obj#3 denotes the node for the word “basketball”.

• n.rel1#id1.rel2#id2relN#idN denotes a node n’ such that there exists a
directed path between nodes n and n’ with each edge having a corresponding
dependency relation from a relation chain rel1#id1.rel2#id2relN#idN. The
node n’ will be referred to as a node at the end of the chain and a whole relation
chain will be shortened to relchain. For instance, r.obl#5.case#4 denotes
the node for the word “with”. This node can then be referred as the node at the end
of the chain obl#5.case#4. The ID of the last element of relchain is later
referred to as the ID of a template expression.

The IDs are included in the template expressions above to be able to distinguish between
different dependents having the same dependency relation. To illustrate when this could be
necessary, imagine the dependency relation between the words “plays” and “Tuesday” is obl
instead of obl:tmod (an inaccuracy that could be produced by the dependency parsers in
practice, especially for languages other than English). Then the question “When does Tim play
basketball with friends and family?” with the answer “every Tuesday” would result into the
following QA-template (assuming IDs are excluded):

(4) When does [r.nsubj] [w.lemma] <r.obl>?

(5) <r.obl>

It is impossible to distinguish <r.obl> in the question template (4) from the one in the answer
template (5). However if the IDs are introduced, then one immediately understands that those
expressions correspond to different nodes. Note that differentiating between nodes with the same
dependency relations is the only purpose of IDs, i.e. we do NOT require the new sentences using
QA-templates to have exactly the same IDs, as it would obviously hinder generalization.

Let us define the following operators for selecting substructures from a dependency tree T :

• [n] extracts the token at the node n (for instance, [r] extracts the token “plays”);

• [n.relchain1] extracts the token of the node at the end of relchain1 (for
instance, [r.obl#5.conj#7] extracts the token “family”);

• [n.lemma] ([n.relchain.lemma]) extracts the lemma of the token at the
node n (the node at the end of relchain1). Either of these will be referred to as a
lemma-expression. For instance, [r.lemma] extracts the string “play” and
[r.obl#5.lemma] extracts “friend”.

• <n> extracts the text string of the subtree rooted at the node n (for instance, <r>
extracts the whole sentence);

• <n.relchain1> extracts the text string of the subtree rooted at the node at the end
of relchain1 preserving the linear order (for instance, <r.obl#5.conj#7>
extracts the string “and family”);

• <n.relchain1 - relchain2> extracts the text string of the subtree rooted at the
node at the end of relchain1 except the text string of the subtree rooted at the node
at the end of relchain2 (if such a subtree exists). Relchains that are subtracted in
any template expression will be referred to as negatives. For instance,

5

Computational Linguistics Volume 47, Number 1

<r.obl#5.conj#7 - cc#6> extracts the string “family”. However,
non-existing negatives do not influence the result, hence <r.obl#5.conj#7 -
case#6> extracts the string “and family”, since there is no child of
r.obl#5.conj#7 with a dependency relation case.

• <n.relchain1 - relchain2*> extracts the text string of a subtree rooted at the
node at the end of relchain1 except the contents of the node at the end of
relchain2 (if it exists). For instance, <r.obl#5 - conj#7*> extracts the
string “with friends and”. Note that the extracted string is not guaranteed to be a
contiguous substring of the sentence.

Template expressions surrounded by square brackets ([]) will be referred to as node-level
expressions, and those surrounded by angle brackets (<>) as subtree-level expressions.

To distinguish the answer from the question, we use an additional binary infix operator
q => a, denoting that the first operand is the question template, and the second one is the
answer template. For instance, the question “When does Tim play basketball with friends and
family?” with the answer “every Tuesday” could be represented as the following QA-template.

(6) When does [r.nsubj#1] [r.lemma] [r.obj#3] <r.obl#5>? =>
<r.obl:tmod#9>

Note that words from the question that do not appear in the original sentence will not form any
template expressions. Instead, they will be considered constant and rendered as a plain text, e.g.,
“When” and “does” in the template (6).

3.2 Guard language

Recall that a guard is an expression specifying conditions for using a specific template. Formally,
let T be an arbitrary dependency tree, and n denote a node in T . Then:

• n.pos denotes the part-of-speech (POS) tag assigned to the word associated
with n (below referred to as a pos-property);

• n.morph denotes a set of morphological features, as defined by UD, associated
with n (below referred to as a morph-property).

Each guard consists of clauses separated by a comma operator (,) denoting logical AND. Let us
introduce operators defining the conditions for the guard clause to be satisfied:

• the unary operator exists can be applied exclusively to relchains in order to
only accept sentences having a specified relchain;

• a binary operator is (is_not) can be applied merely to pos-properties to only
accept sentences with a specific node having (lacking) a specified POS-tag;

• a binary operator has (has_not) can be applied to morph-properties exclusively
to only accept sentences with a specific node having (lacking) specified
morphological properties (in the UD format).

To specify which template should be used if all guard clauses are satisfied, we use an
additional infix operator guard -> t denoting that if the first operand (guard) is satisfied,
the template found by the unique identifier t can be used.

6

Dmytro Kalpakchi Quinductor

To exemplify, the guard for the template (6) could look as follows.

(7) n.pos is VERB, n.nsubj exists, n.obj exists, n.obl exists,
n.obl:tmod exists -> template3

Note that no requirement on the exact IDs of the nodes is present in the guards, since the IDs are
only used during the template induction phase.

After having described both template and guard languages, we are now ready to explain the
algorithms for automatically inducing templates (Section 3.3) and guards (Section 3.4).

3.3 Template induction

Recall that a datapoint is a triple (ci, qi, ai), where ci is a context, qi is a question asked on the
basis of ci, and ai is a contiguous phrase in ci constituting the correct answer to qi. The goal is to
induce templates for every (qi, ai) ∈ D, allowing to generalize to syntactically similar QA-pairs
(q′j , a

′
j) 6∈ D. This is achieved by merging template expressions into subtree-level expressions as

much as possible, using the novel shift-reduce algorithm described below.
The preprocessing step is to find all triples (si, qi, ai) such that ai is a contiguous phrase in

si ∈ S(ci), where S(ci) is the set of sentences of the context ci. Recall that this step is trivially
performed using a sentence segmenter, a tokenizer, and simple string matching.

The next step is to select only satisfactory triples, where si and qi have at least one word
in common (if not, then generalization is impossible). After obtaining a number of satisfactory
triples (si, qi, ai), the induction of a template for transforming si into a pair of (qi, ai) can be
described as the following 3-step process applied twice (once for qi and once for ai).

1. Sentence transformation. Describe every word of qi (ai) in terms of dependency
structures present in si using the formal template language presented in Section
3.1. When finished, proceed to step 2.

2. Shift-reduce. Simplify the template obtained at the previous step using the novel
shift-reduce algorithm described in Section 3.3.2. In the rare case when the
resulting template consists only of a single template expression (and would
therefore generalize poorly), return the sentence transformation from step 1 as the
final template, otherwise, proceed to step 3.

3. Merging negatives. If possible, merge negatives (the subtracted relchains) in
every template expression using the algorithm described in Section 3.3.3. Return
the template with merged negatives as final.

Recall that words from the question that do not appear in the original sentence will be
considered constant and rendered as a plain text. Templates containing only constants will not
generalize and are thus removed after all templates have been induced. The remaining templates
(i.e., with at least one non-constant template expression) are post-filtered to exclude templates
with rare words (since those will not generalize well). We define a word as rare if it appeared in
less than 25% of the documents and detect it based on the inverse document frequency (IDF), i.e.
we exclude all templates with a maximal IDF among their constants exceeding log(N

N
4

) = log(4),
where N is the number of documents in the corpus.

7

Computational Linguistics Volume 47, Number 1

3.3.1 Sentence transformation
The goal of this step is to describe every word in qi and ai in terms of dependency structures
of si. For instance, consider the QA-pair “When does Tim play basketball with friends? – Every
Tuesday”, created based on the example sentence (see Figure 1). Sentence transformation applied
to the question would then look as follows:

(8) When does [r.nsubj#1] [r.lemma] [r.obj#3] [r.obl#5.case#4]
[r.obl#5]

Whereas sentence transformation applied to the answer would take the following form:

(9) [r.obl:tmod#9.det#8] [r.obl:tmod#9]

To perform sentence transformation, first, both si and qi should be parsed to get the
dependency trees Tsi and Tqi respectively. Tqi is then traversed in linear order LTqi

, skipping
the question word, which is assumed to be the first word from the beginning or the end of the
sentence, depending on the language of interest. For each node nq inLTqi

, the algorithm attempts
to find a matching node in Tsi with the same token. If no matching nodes are found, nq is replaced
by its token. If matching nodes are found, nq is replaced by the list of template expressions
corresponding to those nodes in Tsi (using the template language presented in Section 3.1). This
list is sorted in the ascending order by the distance from the root node of si in edges. The resulting
list of lists of template expression will be referred to as LLTE. Note that generation of lemma-
expressions (e.g., [r.lemma]) is subject to the availability of a lemmatizer, in the absence of
which the algorithm will simply insert a constant expression (i.e., the token itself).

A template will generalize if many syntactic structures can be merged into subtree-level
expressions, which is the goal of the shift-reduce step of Quinductor. Hence, the result of sentence
transformation should contain as many long contiguous phrases as possible. With this goal in
mind, after all nodes in LTqi

have been processed, the combination of template expressions
with longest contiguous spans is selected. This can be achieved by finding template(s) with the
smallest sum of absolute ID differences between every two neighboring template expressions.

For instance, consider the sentence “The longest river in Brazil is the Amazon river” with a
dependency tree shown in Figure 4. Assume that the question in the dataset which is based on
this sentence is “What is the longest river in Brazil?”. The LLTE for this question is shown in
Figure 3, assuming w refers to the root of the original sentence, namely the word “river”.

What is the longest river in Brazil
What w.co#6 w.de#7 w.ns.am#2 w#9 w.ns.nm.ca#4 w.ns.nm#5

w.ns.de#1 w.ns#3

Figure 3
LLTE for the question “What is the longest river in Brazil?”. Each column represents all available
alternatives for the given word. For the sake of brevity, the [·] operator is omitted, since all template
expressions are node-level, the first two letters of dependency relations are used, and only the IDs of the
last dependency relations in relchains are specified.

As we can see, only the words “the” and “river” have multiple possible representations (i.e.,
w.det#7 and w.nsubj#3.det#1 for “the” and w#9 and w.nsubj#3 for “river”). The
sums of absolute ID differences for different combinations of representations for the words “the”
and “river” are presented in Table 1. The first representation from LLTE with the minimal sum
of absolute ID differences is [w.det#7] for “the” and [w.nsubj#3] for “river”, resulting in
the following sentence transformation

8

Dmytro Kalpakchi Quinductor

0: root

_

1: The

DET

Definite=Def

PronType=Art

2: longest

ADJ

Degree=Sup

3: river

NOUN

Number=Sing

4: in

ADP

5: Brazil

PROPN

Number=Sing

6: is

AUX

Mood=Ind

Number=Sing

Person=3

Tense=Pres

VerbForm=Fin

7: the

DET

Definite=Def

PronType=Art

8: Amazon

PROPN

Number=Sing

9: river

NOUN

Number=Sing

det

amod

nsubj

case

nmod

cop

det

com
pound

root

Figure 4
The dependency tree for the sentence “The longest river in Brazil is the Amazon river”

(10) What [w.cop#6] [w.det#7] [w.nsubj#3.amod#2] [w.nsubj#3]
[w.nsubj#3.nmod#5.case#4] [w.nsubj#3.nmod#5]

As can be seen, the algorithm chose the right expression for the word “river” and the wrong one
for the word “the”. Such errors depend on the order of lists in LLTE and there’s no universal
order that will result in choosing the right expressions all the time for all the languages.

3.3.2 Shift-reduce
The goal of this step is to make templates generalizable, which is achieved by merging tem-
plate expressions into subtree-level expressions as much as possible using a novel shift-reduce
algorithm. At every algorithm step, a current template (starting with the template obtained after
the sentence transformation) is divided into a LIFO stack, where all seen items reside, and a
FIFO buffer, containing the remainder. Depending on the stack-buffer configuration, one of the
following two actions can be chosen:

• SHIFT, that removes the top expression from the buffer and adds it to the stack.

• REDUCE, that checks the topmost and the second topmost expressions on the
stack and merges them into a subtree-level expression.

Table 1
Sums of absolute ID differences for alternative representations of the words “the” and “river” for LLTE in
Figure 3

Representation of “the” Representation of “river” Sum of absolute ID differences

[w.det#7] [w#9] 19
[w.det#7] [w.nsubj#3] 9
[w.nsubj#3.det#1] [w#9] 19
[w.nsubj#3.det#1] [w.nsubj#3] 9

9

Computational Linguistics Volume 47, Number 1

While SHIFT action is self-explanatory, REDUCE can be described as a 3-step procedure,
operating on the topmost (stackTop) and the second topmost (stackTop2) template expres-
sions on the stack.

Step 1: Extract relchains from stackTop and stackTop2 and then find the longest common
prefix for them, later referred to as the common relchain. The node at the end of the com-
mon relchain is the closest common ancestor of the nodes corresponding to stackTop and
stackTop2.

Step 2: The second step is to ensure that the two merging conditions are satisfied:

1. the common relchain is not empty;

2. the common relchain differs from either relchain of stackTop or stackTop2
by at most one dependency relation.

We have empirically found that these merging conditions increase chances of generalization.

Step 3: If the aforementioned conditions are met, stackTop and stackTop2 can be replaced
by the template expression of their common relchain with a number of subtracted negatives
corresponding to all tokens of the induced subtree except those necessary to keep: stackTop,
stackTop2, any node from the sentence transformation, and any whole subtree containing any
of these nodes.

To illustrate the algorithm, consider turning the phrase “friends and family” from the
sentence in Figure 1 into a template. Initially the stack is empty and the buffer contains the
sentence transformation of the phrase, resulting in the configuration shown in Figure 5.

Stack Buffer
[r.obl#5]
[r.obl.#5.conj#7.cc#6]
[r.obl#5.conj#7]

Figure 5
Initial stack-buffer configuration for the shift-reduce algorithm applied on the sentence transformation of
the phrase “friends and family” from the sentence in Figure 1.

First, two SHIFTs are required to ensure that the stack has at least two expressions, leading
to the configuration in Figure 6.

Stack
[r.obl.#5.conj#7.cc#6]
[r.obl#5]

Buffer
[r.obl#5.conj#7]

Figure 6
Stack-buffer configuration after 2 SHIFT actions.

The top two template expressions on the stack are neither constants nor lemma-expressions,
so the REDUCE action can be invoked. The common prefix for relchains is obl#5, meaning
both merging conditions are satisfied and the expressions can be merged into <r.obl#5 -
conj#7*>. This new expression replaces the top two expressions on the stack, resulting in the
configuration in Figure 7.

10

Dmytro Kalpakchi Quinductor

Stack
<r.obl#5 - conj#7*>

Buffer
[r.obl#5.conj#7]

Figure 7
Stack-buffer configuration after 2 SHIFT and 1 REDUCE actions

The next step is SHIFTing the last expression of the buffer into the stack, resulting in the
configuration in Figure 8.

Stack
[r.obl#5.conj#7]
<r.obl#5 - conj#7*>

Buffer

Figure 8
Stack-buffer configuration after 3 SHIFT and 2 REDUCE actions

The top two template expressions on the stack are neither constants nor lemma-expressions,
so the REDUCE action can be invoked again. Following the same logic as before, the expressions
can be merged into <r.obl#5>, resulting in the configuration in Figure 9.

Stack
<r.obl#5>

Buffer

Figure 9
Stack-buffer configuration after 3 SHIFTs and REDUCE

The buffer is empty, which means shift-reduce is finished. The final template is on the stack.

3.3.3 Merging negatives
Recall that negatives are relchains subtracted in any template expression. The goal of this step
is to merge negatives in the resulting template after the shift-reduce step, in order to make
templates even more generic and generalizable. For instance, sentence transformation (8) would
be converted to the following template after shift-reduce:

(11) When does [r.nsubj#1] [r.lemma] [r.obj#3] <r.obl#5 -
conj#7.cc#6 - conj#7*>

The downside of this template is that it presupposes that by subtracting conj#7.cc#6
and conj#7* it effectively removes the whole subtree corresponding to conj#7. However,
conjuncts vary in structure and thus this template will generalize poorly to sentences with
syntactically similar structures. To avoid this, the negatives of each template expression should
be merged as much as possible to their common parent.

To perform this step, create a mapping between each node and its direct children. Then, for
every template expression, check if any subset of negatives matches any set of children from
the mapping. In case of a match, swap all matched negatives for the corresponding subtree root.
After these steps expression (11) transforms into:

(12) When does [r.nsubj#1] [r.lemma] [r.obj#3] <r.obl#5 -
conj#7>

11

Computational Linguistics Volume 47, Number 1

3.4 Guard induction

A template can have multiple guards. Consider two sentences “John is playing basketball” and
“John has played basketball”. Both questions “What is John playing?” and “What has John
played?” would result in the same template (supported by the previously mentioned sentences).
However, the morphological properties of the root of each sentence (“playing” and “played”
respectively) are different. Hence, there are 2 different cases when this template could be applied,
and thus 2 guards.

Motivated by the example above, guards consist of a base guard and complementary guards.
A base guard contains the requirements for using templates and its creation involves the
following 3 steps:

1. Create an exists-clause for the relchain of every template expression present in
the question or answer (excluding the negatives).

2. If a template for the answer contains a nominal subject (nsubj) as a non-negative
expression, add the clause n.nsubj.morph has_not PronType=Rel
ensuring that the subject is not a relative pronoun (e.g., “which”). This is
motivated by the fact that no reading comprehension question would ask about a
relative pronoun.

3. If a root is involved in the creation of a template, and it is a verb without an
auxiliary verb, add a clause n.aux not_exists. The rationale behind this
step is to separate templates for questions with either copula or tenses requiring a
modal verb, from those questions that do not exhibit these features.

Complementary guards contain requirements specific to the sentences supporting the generated
template. Complementary guards are induced by creating an is-clause for the pos-property and
has-clause for the morph-property of the root of every sentence from the corpus supporting the
current template.

To get a final set of guards for the template, add the base guard to each complementary guard
and use an infix operator -> to point each guard from the induced set to the template of interest.

For instance, the guard for the template (12) would look as (13), where props equals to
Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin, and n.morph
has props, n.pos is VERB is the only auxiliary guard.

(13) n.morph has props, n.pos is VERB, n.nsubj exists, n.obj
exists, n.obl exists, n.nsubj.morph has_not PronType=Rel,
n.aux not_exists -> template7

3.5 Ranking and filtering

After all templates and guards have been generated, they can be applied to unseen data to
produce a number of QA-pairs. With the purpose of down-voting undesirable QA-pairs we use
the following two models, that serve as a proxy to grammaticality of the questions for ranking
and filtering.

1. An n-gram model based on any pos-morph-tagged UD-compliant corpus. For
instance, we use a 3-gram model, which could give the following probability
P (NOUN/Number=Sing|DET/Definite=Def, ADJ/Number=Sing).

12

Dmytro Kalpakchi Quinductor

2. A question-word model calculating the count c(qw, r) for each pair of question
word qw and pos-morph expression of the root r of the corresponding answer,
e.g., (when,NOUN/Number=Sing).

Both models operate on pos-morph expressions (i.e. words are substituted by their POS-tag
together with UD morphological features, if applicable). For instance, the pos-morph expression
for the word “basketball” is NOUN/Number=Sing and for the word “on” is ADP.

The first step is to filter out QA pairs with a single-word answer, whose pos-morph ex-
pression has never occurred in the training corpus as an answer. This step prevents generating
single-word answers containing only function words (e.g., “the”, “himself”, “to”).

The second step is to rank every remaining QA pair j according to the score r(j)
qa using

equations (1) - (3). Equation (1) is a convex combination using the n-gram model, where p∗

denotes the backoff probability, in which each wordwi is substituted by its pos-morph expression
(or by a POS-tag only if the former does not exist). Nj is the number of trigrams in the question
qj , since we use a 3-gram model.

r(j)
ng =

1

Nj

Nj∑
i=1

λ1p
∗(wi|wi−2, wi−1) + λ2p

∗(wi|wi−1) + λ3p
∗(wi) + λ4 (1)

Equation (2) uses the question-word model to get the frequency of the pair of the question
word qw and the root token of the answer raj

.

r(j)
qw =

c(qw, raj
)∑

i c(qw, ri)
(2)

Equation (3) provides the final score, which is a linear combination between the scores
calculated in Equations (1) and (2). α is a constant, which we set to 0.8 in our experiments.

r(j)
qa = α · r(j)

ng + (1− α) · r(j)
qw ; (3)

Using the aforementioned n-gram and question-word models, a generated QA-pair is given
a high score rqa if the question is made of a likely sequence of pos-morph expressions, and the
question word (e.g., "when") matches the answer well.

The final step is referred to as mean filtering. This step ensures that only questions scoring
higher than the mean of the scores for all generated questions for all sentences will be returned.
Such filtering allows Quinductor to drop generated questions of potentially poor quality, and thus
sometimes choose not to generate any QA-pairs for a given sentence.

4 Data

To evaluate Quinductor in a multilingual setting we have utilized a dataset called TyDi QA
(Clark et al. 2020). The dataset is a question-answering benchmark based on Wikipedia articles
for 11 typologically diverse languages. 8 of these languages have available UD treebanks and
trained dependency parsers in Stanza package (Qi et al. 2020), which we have utilized for
inducing templates in all languages. For both training and evaluation we have excluded Yes/No-
questions resulting in the training/development sets of the sizes reported in Table 2. Due to
limited resources, we have performed a human evaluation only on a subset of languages, while
reporting automatic evaluation metrics for all languages with the available UD treebanks.

13

Computational Linguistics Volume 47, Number 1

Table 2
Language-specific information along with the sizes of training and development splits (in the number of
QA-pairs along with a proportion of the original training set) and the associated UD treebanks (UDT size,
in tokens) used by the pre-trained Stanza parsers for the languages in the TyDi QA dataset. Question
phrase positions are either obligatorily initial (OI), or not OI, or mixed, as defined by Dryer (2005).

Language QP position Training set Dev. set UDT size Human eval.

Finnish (fi) OI 7132 (47%) 1129 (52%) 397K 4
Russian (ru) OI 6425 (50%) 902 (56%) 1289K 4
English (en) OI 3837 (42%) 644 (62%) 648K 4

Japanese (ja) Not OI 4506 (28%) 705 (41%) 1676K 8
Telugu (te) Not OI 5680 (23%) 724 (29%) 6K 8
Arabic (ar) Not OI2 14771 (64%) 1016 (74%) 1042K 8
Indonesian (id) Mixed 5587 (37%) 728 (40%) 169K 8
Korean (ko) Not OI 1638 (15%) 427 (25%) 446K 8

Bengali (bn) Not OI 2506 (23%) 129 (39%) NA NA
Thai (th) Not OI 4150 (37%) 1161 (52%) NA NA
Swahili (sw) Not OI 2372 (16%) 661 (29%) NA NA

To compare Quinductor to previous work we have also used the SQuAD dataset (Rajpurkar
et al. 2016) for English, specifically the training/validation/test split provided by Du, Shao, and
Cardie (2017).

5 Evaluation

Essentially, automatic evaluation metrics, such as BLEU (Papineni et al. 2002), ROUGE (Lin
2004), METEOR (Agarwal and Lavie 2008), CIDEr (Vedantam, Lawrence Zitnick, and Parikh
2015), rely on comparing word overlap between a generated question and a reference question.
Such metrics can yield a low score even if the generated question is valid but just happens to be
different from the reference question, or a high score even though the question is ungrammatical
but happens to have a high word overlap with the reference question (see the article by Callison-
Burch, Osborne, and Koehn (2006) for a further discussion). Nonetheless, Amidei, Piwek, and
Willis (2018) report that 32% of the surveyed papers on automatic QG used only automatic
evaluation metrics, although Nema and Khapra (2018) found that there is only a weak correlation
between the automatic evaluation metrics and human judgements on answerability of the gener-
ated questions. For a broader discussion on the relationship between automatic evaluation metrics
and human judgements an interested reader is referred to (Gatt and Krahmer 2018, Section 7.4.1).
In this article, we report automatic evaluation metrics for the following two reasons: Firstly, for
the sake of comparability to other results reported in the literature, and giving a point of reference
to researchers lacking resources to conduct human evaluations. Secondly, to assess the degree of
the word overlap of the questions generated by Quinductor and the reference questions, as well
as the quality of this overlap (e.g., if it contains mostly stop words).

The conducted human evaluation aims at providing insights about strengths and weaknesses
of Quinductor as well as directions for future research. Unfortunately, there exist no standardized

2 The exception is Syrian Arabic, in which the interrogative phrase is obligatorily initial.

14

Dmytro Kalpakchi Quinductor

questionnaires and/or guidelines for human evaluation of automatically generated questions and
answers. Amidei, Piwek, and Willis (2018) report 22 different criteria used by researchers
to evaluate QG systems. Evaluations differ both on the number of criteria used and on the
granularity of the rating scales for human judgements, see (Amidei, Piwek, and Willis 2018,
Table 7) for more details. The number of human judges ranges from 1 to 364 (with an average of
4 and a mode of 2) and the number of sampled questions to be evaluated ranges from 60 to 2186
(with an average of 493). Amidei, Piwek, and Willis (2018) note that often the papers provide
only little information about the evaluation guidelines as well.

For this article, we have tried to combine best practices from the reported evaluation
guidelines for QG, notably (Heilman and Smith 2009; Rus et al. 2010), and more generally, best
practices in human evaluation for NLG, as consolidated by van der Lee et al. (2020). On that
basis, we propose to conduct human evaluation using a 9-item questionnaire. Each questionnaire
item is rated on a 4-point Likert-type scale (see more information and design motivation in
Appendix A).

A subset of automatic evaluation metrics (BLEU-N, ROUGE-L and CIDEr) were calculated
using the nlg-eval package (Sharma et al. 2017), and METEOR using METEOR-1.5 package3

(Denkowski and Lavie 2014). For all experiments we have used dependency parsers trained on
UD treebanks as a part of Stanza package (Qi et al. 2020). All templates were induced and then
processed using UDon2 (Kalpakchi and Boye 2020) – an efficient package for manipulating
dependency trees, written in C++ with Python bindings.

5.1 Multilingual setting

In order to support the claim about Quinductor’s applicability to multiple languages, we have
performed an evaluation on the TyDi QA dataset (see more information about the dataset in
Section 4). Different languages required somewhat different pre-processing steps, which are
documented in Appendix B.

5.1.1 Automatic evaluation
We have evaluated Quinductor on all languages present in the TyDi QA dataset with available UD
treebanks and pre-trained dependency parsers in Stanza. The templates were induced using the
training sets and the questions were generated on the development sets of the TyDi QA dataset.
Only the top-ranked generated question (if any) was considered for automatic evaluation with
the respective automatic evaluation metrics reported in Table 3.

Quinductor was able to induce templates for all of these languages, but failed to generate any
questions on the development sets for Telugu and Korean. The main reason is that QA-pairs for
these languages contain answers that use smaller parts of some words (dubbed subwords) in the
original sentence. As can be seen in Table 4, such cases constitute 53% and 60% of the training
QA-pairs for Telugu and Korean respectively, whereas the corresponding proportions for other
languages are much lower. For instance, the word “이스라엘” (“Israel”) is used as the answer
for one of the QA-pairs in Korean, whereas the original sentence contains the word “이스라엘
의” (“Israeli”). Given that the number of possible questions not using subwords in the provided
answers is only 19%, and the dataset for Korean is the smallest (only 1638 QA-pairs), it is no
surprise that Quinductor managed to generate only 9 templates. The same proportion for Telugu
is 35%, resulting in a larger number of templates, but only 1 generated question. This can most

3 METEOR-1.5 does not fully support all languages used in TyDi QA dataset, so we set language to “other” for all
languages other than English)

15

Computational Linguistics Volume 47, Number 1

Table 3
Automatic evaluation on the filtered TyDi QA development sets only for generated questions ranked first.

Metric fi ja te ar id ko ru en

BLEU-1 18.25 25.12 0 14.23 17.55 0 30.23 20.23
BLEU-2 10.04 12.03 0 8.35 10.06 0 19.99 12.16
BLEU-3 5.81 5.25 0 4.87 6.12 0 14.47 7.57
BLEU-4 3.42 2.30 0 2.90 3.74 0 11.23 4.72
METEOR 11.75 12.03 0 13.12 11.67 0 19.02 12.46
ROUGE-L 21.69 32.54 0 24.69 22.43 0 32.61 27.55
CIDEr 7.0 22.29 0 22.70 26.51 0 63.69 21.35

probably be attributed to the small size of Telugu’s treebank (only 6K tokens), which might result
in a less generalizable dependency parser.

While it is no surprise that subwords are used in agglutinative languages (e.g., Telugu,
Korean, Japanese, Finnish, Indonesian) or fusional languages (e.g., Arabic), such cases are
more surprising for English and Russian. For these languages, the cases are due to differences
in tokenization between the original sentences and the provided answers (which can happen,
since Stanza’s tokenizers are based on neural networks). For example, the answer “$102 million”
was tokenized as “$102”, “million” for the answer and as “$”, “102”, “million” in the original
sentence.

Russian and Japanese are two best performing languages in terms of BLEU-1 scores,
meaning the induced questions have the highest word overlap with the reference questions.
However, while Russian performs the best in terms of BLEU-4 (4-grams overlap), Japanese
performs the worst (the other agglutinative languages, Finnish and Indonesian, perform similarly
to Japanese in terms of BLEU-4).

Performance in METEOR scores (which have been shown by Agarwal and Lavie (2008)
to correlate with human judgements better than BLEU scores) is roughly similar between all
languages except a considerably higher score for Russian. This shows that while 4-gram precision
is lower for some languages, the number of aligned matches is comparable.

Performance in ROUGE-L scores varies significantly with Japanese and Russian performing
on-par at the top of the list, while Indonesian and Finnish are at the bottom of the list. While

Table 4
Descriptive statistics of the TyDi QA training data for different languages, as well as templates and
questions produced using this data. Recall that “satisfactory questions” have at least one word in common
with the original sentence.

fi ja te ar id ko ru en

(1) Satisfactory questions 74% 96% 68% 90% 83% 44% 62% 91%
(2) Answer uses subwords 9% 10% 53% 14% 5% 60% 10% 5%
(1) but not (2) 68% 86% 35% 78% 79% 19% 56% 87%
Number of induced templates 496 25 48 1104 340 9 85 254
Number of generated questions 611 97 4 462 558 0 93 409

16

Dmytro Kalpakchi Quinductor

this clearly indicates that the length of the longest common matched subsequence varies across
languages, the reasons behind this variation are unclear.

The final metric, CIDEr takes into account if the matched words are frequent or rare (and
thus more informative) using inverse document frequency (IDF). The more rare the matched
words, the higher the score. The CIDEr score for Russian is significantly higher than for all
other languages meaning that word overlap with reference questions contains more rare words.
By contrast, the score CIDEr for Finnish is significantly lower than for all the other languages,
meaning that most of the matched words are frequent ones (such as, question words, prepositions
or common verbs). This makes both Russian and Finnish interesting candidates for human
evaluation to see whether such significant difference in CIDEr scores results in significant
difference in the quality of the questions according to human judges.

The only available fusional language, Arabic, exhibits similar performance to the aggluti-
native languages (except CIDEr in Finnish). The notable difference is the significantly higher
number of induced templates. It is also interesting that no templates could be generated without
the prior removal of punctuation as a pre-processing step. This calls for additional investigation
of the quality of the output of Arabic’s dependency parser and potentially further tweaks of
Quinductor to suit fusional languages better.

Finally, the performance for Indonesian is on-par with Arabic, which is interesting, given
that Indonesian is the only language in TyDi QA with a mixed question phrase position (meaning
that some question phrases are obligatorily initial and some are not). However, the templates for
Indonesian have been induced assuming that the first word of the reference question is a question
word. Hence the obtained performance might be due to specific properties of the dataset and
requires further investigation on other datasets.

5.1.2 Human evaluation
As mentioned previously, Finnish and Russian were interesting candidates for human evaluation,
and were chosen along with English. For evaluation, we randomly sampled 50 sentences for each
language, and generated QA-pairs for them using the induced templates. 50 generated QA-pairs
were combined with 50 original QA-pairs from the corpus (later referred to as gold QA-pairs),
corresponding to the same sampled sentences, and presented for evaluation in a random order to
5 human judges via the Prolific platform4. Each triple of a sentence and a QA-pair was judged
using a questionnaire comprising 9 criteria (formulated as statements) to be evaluated on a 4-
point Likert-type scale (from “Disagree” to “Agree”). Further details about the questionnaires,
guidelines and evaluation process in general are provided in Appendix A.

The score of each judge per criterion is treated as a judgement on an ordinal scale, instead
of treating all criteria together as an interval scale. The rationale behind such treatment is that a
single aggregated quality score of questions and/or answers (over judgement criteria) is not very
informative and will not help in pinpointing the exact problems observed in generated QA-pairs.

Following the work of Amidei, Piwek, and Willis (2019) we assess inter-annotator agree-
ment (IAA) using Fleiss’ κ (Fleiss 1971) and Goodman-Kruskall’s γ (Goodman and Kruskal
1979). However, keeping in mind that we deal with ordinal data, the following two slight
differences from (Amidei, Piwek, and Willis 2019) are introduced in our approach.

Firstly, Fleiss’ κ (Fleiss 1971) measures the level of agreement compared to agreement by
chance, originally defined by Fleiss through the marginal distribution of scores over categories
(hence another name of this statistics – fixed-marginal κ). However, using Fleiss’ κ is appropriate
only if judges know a priori how many cases should be distributed into each category (see
(Randolph 2005) for an extensive discussion on the matter). In our case, it would not make sense

4 https://www.prolific.co/

17

https://www.prolific.co/

Computational Linguistics Volume 47, Number 1

Table 5
Inter-annotator agreement per criterion. Q stands for “Question” and SA – for “Suggested answer”

Criterion IAA Metric en fi ru
gold gen gold gen gold gen

Q is grammatically correct Randolph’s κ 0.34 0.12 0.75 0.22 0.76 0.58
GK γN 0.53 0.63 0.83 0.83 0.71 0.87

Q makes sense Randolph’s κ 0.25 0.17 0.67 0.29 0.76 0.61
GK γN 0.55 0.72 0.78 0.82 0.79 0.93

Q would be clearer if more
information were provided

Randolph’s κ 0.15 0.09 0.49 0.35 0.40 0.42
GK γN 0.44 0.47 0.53 0.62 0.46 0.56

Q would be clearer if less
information were provided

Randolph’s κ 0.41 0.36 0.85 0.78 0.59 0.81
GK γN 0.47 0.54 0.86 0.88 0.65 0.93

Q is relevant to the given
sentence

Randolph’s κ 0.21 0.19 0.38 0.18 0.32 0.54
GK γN 0.64 0.55 0.67 0.70 0.79 0.81

SA correctly answers the
question

Randolph’s κ 0.25 0.23 0.54 0.32 0.30 0.57
GK γN 0.75 0.73 0.83 0.82 0.61 0.86

SA would be clearer if
phrased differently

Randolph’s κ 0.03 0.05 0.59 0.35 0.29 0.31
GK γN 0.27 0.42 0.62 0.47 0.56 0.49

SA would be clearer if more
information were provided

Randolph’s κ 0.16 0.06 0.55 0.33 0.31 0.35
GK γN 0.38 0.42 0.59 0.62 0.58 0.61

SA would be clearer if less
information were provided

Randolph’s κ 0.53 0.55 0.87 0.96 0.83 0.86
GK γN 0.67 0.66 0.92 0.90 0.74 0.82

to require judges to rate in this way, making the original Fleiss’ κ inappropriate for our purposes.
Instead the free-marginal alternative κ, introduced by Randolph (2005) and later referred to as
Randolph’s κ, should be used. In Randolph’s κ the probability of agreement by chance is assumed
to be uniform and thus suitable in our case.

Secondly, Goodman-Kruskall’s γ (GK γ) was designed to measure rank correlation between
ordinal judgements of two judges. Amidei, Piwek, and Willis (2019) averaged GK γ over pairs of
judges, which is not interpretable from a statistical perspective, given that correlation coefficients
are not additive (see Appendix C for a discussion on the matter). Instead of computing the mean,
we propose a generalization of GK γ to multiple raters, dubbed γN (derived in Appendix C).

ΠN = {(i, j)|i ∈ U, j ∈ U, i < j} (4)

CN =
∑

(i,j)∈ΠN

Cij ; DN =
∑

(i,j)∈ΠN

Dij ; γN =
CN −DN

CN +DN
(5)

where U is the set of indices corresponding to human judges, Cij (Dij) is the number of
concordant pairs (i.e., ranked in the same order) or discordant pairs (ranked in the reversed order),
between judges i and j.

Inter-annotator agreement (IAA) for the conducted human evaluations are reported in Ta-
ble 5 per criterion for gold and generated QA-pairs separately. On the scale for Fleiss’ kappa

18

Dmytro Kalpakchi Quinductor

proposed by Landis and Koch (1977), there is a slight agreement between judges for most of
the criteria for English, and a moderate agreement for Finnish and Russian. Following Amidei,
Piwek, and Willis (2019) we use the scale for GK γN proposed by Rosenthal (1996). On this
scale, there is a large correlation between the judgements on most of the criteria for English,
and a very large correlation for Finnish and Russian. A notable observation is that IAA for
English is substantially lower on all criteria, no matter the IAA metric, or whether the QA-pairs
were generated or gold. Another observation of interest is that the generated QA-pairs get lower
Randolph’s κ, but higher GK γN compared to the gold ones in the vast majority of cases. This
means that the exact scores for generated questions differ more than for gold ones, but the ranking
order is more consistent.

To break down the results even further, we report the aggregated scores per each criterion
using bi-variate histograms in Figure 11. Recall that we treat human judgements as ordinal data.
Valid measures of central tendency for ordinal data are median (the value separating a higher half
from the lower half of a sample), and mode (the most frequent value of a sample), whereas mean
is not a valid measure for ordinal scales (see (Blaikie 2003, Chapter 3) for more information).
Hence the scores have been aggregated by median (on x-axis) and mode (on y-axis) over all
5 judges. If there are multiple modes, the worst one was taken, meaning if the ideal value for
a criterion is “Agree” (corresponding to the numeric value of 4), then the smallest mode was
considered, otherwise the largest. The rationale behind this handling of multi-modal distributions
is to penalize cases where the human judges could not come to a definite agreement. To aid reader
in understanding this presentation format, we provide an annotated histogram in Figure 10.

1 2 3 4
median

1

2

3

4

m
od

e

9 8 3

6 2

7

2 13

evaluation criterion

number of QA-pairs
(all proportions should sum to 50)

cases of high agreementcases of high agreementcases of high agreementcases of high agreement

The question is grammatically
correct.

0

10

20

30

40

50

Figure 10
An annotated example of a bi-variate histogram

As established before, GK γN is higher than Randolph’s κ, meaning we should trust the
exact ratings less and the relative rankings more. Then we are interested in QA-pairs ranked
better than all other pairs by most of the judges, preferably that both median and mode for these
QA-pairs are either equal to 4 if the best rating for the given criterion is 4, or to 1 if the best
rating is 1. The proportion of such cases per criterion per language is presented in Table 6.

The majority of generated questions for English and Finnish are borderline (given 2 or 3) in
terms of grammaticality, whereas the majority of questions in Russian were given a 4. It should
be noted, though, that a considerable number of questions were evaluated as being grammatically
incorrect (see Section 5.1.3 for error analysis). A similar pattern holds as to whether the question
makes sense. The vast majority of the questions are not over-informative across all languages,
and would not benefit from more information (except for English). Most of the cases for English

19

Computational Linguistics Volume 47, Number 1

1

2

3

4

m
od

e

1

5

3 41

The question is grammatically
correct.

1 1

1 2

7

1 37

The question makes sense.

31

6

2 4

4 2 1

The question would be clearer
if more information were

provided.

1

2

3

4

m
od

e

43 2

3

1

1

The question would be clearer
if less information were

provided.

4

5 3

10

28

The question is relevant to
the given sentence.

4

5 1

6

3 31

The suggested answer correctly
answers the question.

1 2 3 4
median

1

2

3

4

m
od

e

13 4

17

5 7

1 3

The suggested answer would be
clearer if phrased

differently.

1 2 3 4
median

24 4

7

4 10

1

The suggested answer would be
clearer if more information

were provided.

1 2 3 4
median

47

1

1 1

The suggested answer would be
clearer if less information

were provided.

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

English (gold)

1

2

3

4

m
od

e

9 8 3

6 2

7

2 13

The question is grammatically
correct.

12 5

7 4

10

12

The question makes sense.

14 2

4

7 8

3 3 9

The question would be clearer
if more information were

provided.

1

2

3

4

m
od

e

43

6

1

The question would be clearer
if less information were

provided.

3 2

4 2

17

22

The question is relevant to
the given sentence.

13 3 1

8 2

9

14

The suggested answer correctly
answers the question.

1 2 3 4
median

1

2

3

4

m
od

e

17 2

4

1 5

4 6 11

The suggested answer would be
clearer if phrased

differently.

1 2 3 4
median

19 2

9

4 5

2 5 4

The suggested answer would be
clearer if more information

were provided.

1 2 3 4
median

49

1

The suggested answer would be
clearer if less information

were provided.

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

English (generated)

1

2

3

4

m
od

e

1

2

1 46

Kysymys on kieliopillisesti
oikea.

1

1

1

2 45

Kysymys on järkevä.

44

1

3

1 1

Kysymys olisi selvempi, jos
annettaisiin lisätietoja.

1

2

3

4

m
od

e

49 1

Kysymys olisi selvempi, jos
annettaisiin vähemmän tietoja.

4 3

3

8

1 31

Kysymys on merkityksellinen
annetulla lauseella.

9 2 3

3

33

Ehdotettu vastaus vastaa
kysymykseen oikein.

1 2 3 4
median

1

2

3

4

m
od

e

44 1

1 2

2

Ehdotettu vastaus olisi
selkeämpi, jos se muotoillaan

eri tavalla.

1 2 3 4
median

43

2

1 4

Ehdotettu vastaus olisi
selvempi, jos annettaisiin

lisätietoja

1 2 3 4
median

48

1

1

Ehdotettu vastaus selvempi,
jos annettaisiin vähemmän

tietoja.

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

Finnish (gold)

1

2

3

4

m
od

e

7 3

8

14

2 16

Kysymys on kieliopillisesti
oikea.

10 4

6 5

8

17

Kysymys on järkevä.

34 3

2

8 3

Kysymys olisi selvempi, jos
annettaisiin lisätietoja.

1

2

3

4

m
od

e

44 1

2

1

2

Kysymys olisi selvempi, jos
annettaisiin vähemmän tietoja.

7 2 2

5 2

11

3 18

Kysymys on merkityksellinen
annetulla lauseella.

13

3 1

13

20

Ehdotettu vastaus vastaa
kysymykseen oikein.

1 2 3 4
median

1

2

3

4

m
od

e

38 1

1

1 2

3 1 3

Ehdotettu vastaus olisi
selkeämpi, jos se muotoillaan

eri tavalla.

1 2 3 4
median

28 1

2

4

1 3 11

Ehdotettu vastaus olisi
selvempi, jos annettaisiin

lisätietoja

1 2 3 4
median

50

Ehdotettu vastaus selvempi,
jos annettaisiin vähemmän

tietoja.

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

Finnish (generated)

1

2

3

4

m
od

e

2 1

47

.

2 1

1

46

 .

42 2

3 1 2

 ,
 .

1

2

3

4

m
od

e

46 2

1 1

 ,
 .

22 3 2

3 1

19

.

15 2 5

4

4 20

.

1 2 3 4
median

1

2

3

4

m
od

e

32

1

1 3 13

,

 - .

1 2 3 4
median

32 2

2

3 3 8

,

 .

1 2 3 4
median

50

,

 .

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

Russian (gold)

1

2

3

4

m
od

e

15 1 1

2

1 30

.

13 3

1

1 32

 .

32

4

2 3 9

 ,
 .

1

2

3

4

m
od

e

46

1

3

 ,
 .

9 2 2

1 36

.

17 1

2

2

1 27

.

1 2 3 4
median

1

2

3

4

m
od

e

29

1

5 1 14

,

 - .

1 2 3 4
median

30

2

3 15

,

 .

1 2 3 4
median

50

,

 .

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

Russian (generated)

Figure 11
Bi-variate histograms of human judgements (the order of criteria is the same for all languages)

20

Dmytro Kalpakchi Quinductor

Table 6
Proportion of generated QA pairs where both median and mode are the same

Criterion Best if en fi ru
1 4 1 4 1 4

Q is grammatically correct 4 18% 26% 14% 32% 30% 60%

Q makes sense 4 24% 24% 20% 34% 26% 64%

Q would be clearer if more
information were provided 1 28% 18% 68% 6% 64% 18%

Q would be clearer if less
information were provided 1 86% 0% 88% 4% 91% 6%

Q is relevant to the given
sentence

4 6% 44% 14% 36% 18% 72%

SA correctly answers the
question 4 26% 28% 26% 40% 34% 54%

SA would be clearer if
phrased differently 1 34% 22% 76% 6% 58% 28%

SA would be clearer if more
information were provided 1 38% 8% 56% 22% 60% 30%

SA would be clearer if less
information were provided 1 98% 0% 100% 0% 100% 0%

and Finnish were borderline, whereas a substantial majority of questions were judged as relevant
to the given sentence for Russian.

Focusing on the suggested answers, the majority of them have been reported to answer
the question correctly for Finnish and Russian, whereas most of the cases were borderline for
English. It should be noted that a substantial number of the suggested answers did not answer
the question correctly. A breakdown of such cases is presented in Section 5.1.3. A considerable
number of answers would benefit from rephrasing for English and Russian, whereas the majority
of answers for Finnish would not (which is surprising given that Finnish is an agglutinative
language with rich inflectional morphology). Almost none of the suggested answers are over-
informative, and a majority of them would not benefit from more information either (except for
English).

5.1.3 Error analysis
Exploring the questions that obtained a mode of 1 or 2 for the grammaticality criterion, we
have identified three most frequent types of errors, which are summarized in Table 7. As can be
seen, the types of errors are different across languages, suggesting that Quinductor’s performance
might be boosted for each individual language by applying language-specific post-processing
(e.g., determiner correction for English). Some of the errors are connected to the errors in
dependency parsing, such as split proper names in Russian, calling for a principled error analysis
for these parsers beyond the provided development treebanks.

Another interesting issue pertains to questions that were judged grammatically correct (mode
and median of 4 on the grammaticality criterion), but exhibited problems with respect to other
criteria. Such cases are presented in Tables 8 and 9.

21

Computational Linguistics Volume 47, Number 1

Table 7
Three most frequent types of grammatical mistakes for questions that received a mode of 1 or 2 for the
criterion “The question is grammatically correct”

Lang. Problem Freq. Example

en

Wrong question word 17.8% Who is the poorest state in the United States of
America?

Underspecified 17.8% Who finished career?
Wrong article 14.3% Which is a largest hub?

ru

A transitive verb lacks
object

47.1% Когда архиепископ признал на ландтаге в
городе?

A split of a proper
name

11.8% Когда Кеи» исключена компания «Мэри?

Unresolved
coreference

11.8% Когда состоялся третий шаг?

fi

Wrong question word 61.1% Mikä oli genovalainen tutkimusmatkailija?
Question is nonsensi-
cal

16.7% Milloin määrä olisi euroa?

Missing parts of ques-
tion

16.7% Minä vuonna ensimmäinen elokuva Spring of
Birth sai?

As can be seen in Table 9, most of the questions also make sense, but would benefit from
including more information. The suggested answers exhibit much more variation in human
judgements, both in terms of them being correct, requiring rephrasing or more information. Most
of the suggested answers are not over-informative, as also illustrated by the provided samples in
Table 9.

Table 8
Examples of QA-pairs judged grammatically correct (median and mode of 4), but exhibiting problems in
other criteria.

Lang. ID Question Suggested answer

en EN1 Who served 18 months? Susan McDougal
EN2 Where was the Nobel Peace Prize awarded? Frédéric in 1901

ru

RU1 Когда была основана компания? тремя
RU2 Когда скончался Эдуард? 5 января 1066
RU3 Когда был закрыт монастырь? 1924

fi

FI1 Minä vuonna erä päättyi? 2.58
FI2 Mitä sijamuodot ovat? nominatiivi
FI3 Mikä on tartuntatauti eli infektiotauti (morbus

contagiosus)?
infektiosairaus

22

Dmytro Kalpakchi Quinductor

Table 9
Human judgements of the examples in Table 8. If only one number is specified, then mode and median are
equal, otherwise the format is median/mode

Criterion EN1 EN2 RU1 RU2 RU3 FI1 FI2 FI3

Q is grammatically correct 4 4 4 4 4 4 4 4

Q makes sense 3 4 4 4 4 2/1 4 4

Q would be clearer if more
information were provided 4 4 1 4 2 2/1 1 1

Q would be clearer if less
information were provided 1 1 1 1 1 1 1 1

Q is relevant to the given
sentence

4 4 4 4 4 1 3/4 4

SA correctly answers the
question 4 1 1 4 2 1 1 3

SA would be clearer if
phrased differently 1 4 1 1 4 1 1 4

SA would be clearer if more
information were provided 2 4 1 1 4 1 4 4

SA would be clearer if less
information were provided 1 1 1 1 1 1 1 1

5.2 Comparison to other methods

To support the claim of Quinductor being a strong baseline we compare our method to previously
reported results for both state-of-the-art and baseline methods. Most of the previous work is done
for the SQuAD dataset (Rajpurkar et al. 2016), although the training/development/test split varies
among articles, since the original SQuAD test set is hidden. We have found a number of articles
relying on the SQuAD split5 made by Du, Shao, and Cardie (2017) and others relying on the
split made by Zhou et al. (2017). In this article use the former split and hence compare only
to the articles that have explicitly reported to use of the same split to ensure a fair comparison
between the methods. CIDEr is not provided in all other publications and is thus not reported. We
induce templates based on the provided training set, and evaluate on the test set using automatic
evaluation metrics only. The rationale for this is that some articles did not perform human
evaluation at all (Kim et al. 2019; Song et al. 2018; Dong et al. 2019; Zhao et al. 2018), and
others (Du, Shao, and Cardie 2017; Bahuleyan et al. 2017) used different criteria and evaluation
guidelines making a fair comparison impossible.

As can be seen our method performs better than all reported baselines in terms of METEOR
and ROUGE-L, and substantially better on BLEU-4 compared to the vanilla seq2seq model
reported by Du, Shao, and Cardie (2017).

5 The SQuAD split is available at https://github.com/xinyadu/nqg
6 The result fot this model is taken from (Du, Shao, and Cardie 2017)

23

https://github.com/xinyadu/nqg

Computational Linguistics Volume 47, Number 1

Table 10
Comparison to state-of-the-art QG methods and other reported baselines (shown in italics) on the test set
of the SQuAD split made by Du, Shao, and Cardie (2017)

Article BLEU-1 BLEU-4 METEOR ROUGE-L

(Dong et al. 2019) NA 22.12 25.06 51.07
(Kim et al. 2019) NA 16.2 19.92 43.96
(Zhao et al. 2018) 45.07 16.38 20.25 44.48
(Song et al. 2018) NA 13.98 18.77 42.72
(Du, Shao, and Cardie 2017) 43.09 12.28 16.62 39.75
(Bahuleyan et al. 2017) 30.87 5.08 NA NA

Vanilla seq2seq6 31.34 4.26 9.88 29.75
H&S6 38.50 11.18 15.95 30.98

Ours 30.56 9.71 16.70 31.71

5.3 Cross-dataset evaluation

In this final part of the evaluation, we explore how the induced templates for English are
generalizing across datasets. We use 4889 templates induced from the SQuAD training set (from
the split by Du, Shao, and Cardie (2017)), and 254 templates induced from the TyDi QA training
set for English, to generate QA-pairs on the SQuAD test set (from the split by Du, Shao, and
Cardie (2017)) and the TyDi QA development set. The results of this cross-dataset evaluation
using automatic metrics are presented in Table 11.

Table 11
Automatic cross-dataset evaluation for first-ranked generated questions in English.

Training - test BLEU-1 BLEU-4 METEOR ROUGE-L CIDEr

SQuAD - SQuAD 30.56 9.71 16.70 31.71 7.69
SQuAD - TyDi QA 13.47 2.22 10.79 23.09 11.33
TyDi QA - TyDi QA 20.23 4.72 12.46 27.55 21.35
TyDi QA - SQuAD 34.31 11.12 14.83 30.61 8.84

As can be observed, QA-pairs generated based on TyDi QA templates generally perform
better than those based on SQuAD (except METEOR and ROUGE-L for the TyDi QA-SQuAD
setup). This means that the word overlap is larger and of higher quality (i.e., consists of less
common words) for the TyDi QA dataset. One reason for such performance difference is that
mean filtering during the ranking step was designed for less-resourced languages, when only a
few questions are generated. However, mean filtering is substantially weaker if many QA-pairs
are generated, especially if most of them have low ranks (which is likely for SQuAD).

6 Discussion

We have shown that the Quinductor method is a strong baseline method, outperforming baselines
for English reported previously in the literature in terms of METEOR and ROUGE-L scores and

24

Dmytro Kalpakchi Quinductor

performing better (or not far behind) some of the previously proposed QG methods. In addition,
our method is inexpensive to train both in terms of time and textual resources, and thus applicable
to languages other than English.

Quinductor has been successfully applied to 5 typologically diverse less-resourced languages
with limited training data. Most agglutinative languages (with a rich morphology and a free word
order) performed similarly in terms of automatic evaluation metrics. Agglutinative languages
with datasets relying on subwords in either questions or answers are proven to not work well
with Quinductor (e.g., Korean and Telugu in TyDi QA dataset). Generated questions for Finnish
performed better than English in terms of human judgements. Russian performed substantially
better than all other languages both in terms of automatic evaluation metrics and human judge-
ments, which might be a merit of a specific dataset and requires further investigation.

However, Quinductor has a number of limitations. Our method relies on the correctness
of the dependency parser’s output, or rather on the consistency of its errors. This assumption,
although weaker than correctness, is still a limitation and does not always hold. We have noticed
that some language-specific preprocessing techniques make the output of dependency parsers
more consistent, but this requires further investigation.

Our method also incorporates a number of heuristics, such as mean filtering, selecting of
contiguous template expressions in sentence transformation and ranking models, which seems to
result in a comparable performance across languages. While only empirical evidence supports the
applicability of these heuristics, we believe it is enough to make Quinductor a strong multilingual
baseline, and set the lower bar for neural methods.

Another limiting property of Quinductor is that it lacks knowledge about semantics, since
encoding such knowledge requires a large enough corpus that might not be available for all lan-
guages. While lack of semantic knowledge degrades the quality of questions, a surprisingly large
number of them remain grammatically correct and make sense according to human evaluation.

It might be said that Quinductor still requires the use of a dependency parser to be trained
on a sizeable dataset, and thereby moving the problem rather than solving it. However, firstly,
the Universal Dependencies framework includes 200 treebanks for over 100 languages (and
counting). Secondly, we have shown that Quinductor could induce templates even for Telugu,
whose dependency parser is trained on a treebank with only 6K tokens. Thirdly, less-resourced
languages have much smaller corpora of raw text, making pretraining of large-scale neural
language models challenging (let alone fine-tuning them for QG). Finally, Quinductor method
is a yet another use case for a dependency treebank, adding to the motivation of expanding UD
to other languages.

Appendix A: Human evaluation details

Human evaluation has been conducted on the Prolific platform7. We used Prolific’s pre-screening
feature and required each human judge to have the language of interest as the first language and
hold at least a high school diploma (A-levels).

The exact guidelines for human evaluation are presented in Figures 1, 2, 3. The instructions
and 9 evaluation criteria are the same, but are translated into every language. Each criterion is
evaluated on a 4-point Likert-type scale with the ends labeled as “Disagree” and “Agree”. A
neutral option is excluded, to force judges to make a decision. We opted out of a more typical
“Strongly disagree” – “Strongly agree” scale to give judges some alternatives in the middle, such
as, “Somewhat (dis)agree”. Otherwise, the scale would be interpreted as “Strongly disagree” –
“Disagree” – “Agree” – “Strongly agree”, which effectively collapses it to a binary scale.

7 https://www.prolific.co/

25

Computational Linguistics Volume 47, Number 1

Figure 1
Evaluation guidelines and questionnaire for English

Figure 2
Evaluation guidelines and questionnaire for Finnish

26

Dmytro Kalpakchi Quinductor

Figure 3
Evaluation guidelines and questionnaire for Russian

Appendix B: Data pre-processing steps

The applied pre-processing steps for every language are specified in Table 1. Note that Arabic is
written from right to left, whereas Quinductor processes sentences from left to right. Hence the
assumed question word position for Arabic is the first processed word, which is effectively the
end of the sentence for Arabic.

Table 1
Language-specific pre-processing steps before template induction. S denotes start of the sentence, E – end
of the sentence.

Preprocessing step fi ja te ar id ko ru en

Lowercase 4 NA NA NA 4 NA 4 4
Remove punctuation 8 4 4 4 8 8 8 8
Remove diacritics 8 8 8 8 8 8 4 8
Assumed question word position S E E S S E S S

Appendix C: Derivation of multi-rater Goodman-Kruskall’s γN

Let us start by presenting the original derivation of GK γ, proposed by Goodman and Kruskal
(1979), applied to the case of human evaluation. Assume we have two judges independently
assigning scores from 1 to α to the same set of M items. Let saj denote a random variable
associated with scores of judge a to the item j. Let c1,2 denote the event that a randomly
selected pair of items will be ordered in the same way by judges 1 and 2 (such pair is called

27

Computational Linguistics Volume 47, Number 1

concordant). The probability of such event can then be calculated using Equation (C.1), given
that the judgements are independent.

P (c1,2) =
∑

(i,j)∈ΠM

P (s1i < s1j)P (s2i < s2j) + P (s1i > s1j)P (s2i > s2j) (C.1)

Let d1,2 denote the event that a randomly selected pair of items will be ordered differently
by judges 1 and 2 (such pair is called discordant). The probability of such event can then be
calculated using Equation (C.2), given that the judgements are independent.

P (d1,2) =
∑

(i,j)∈ΠM

P (s1i < s1j)P (s2i > s2j) + P (s1i > s1j)P (s2i < s2j) (C.2)

Let t1,2 denote the event that a randomly selected pair of items will be get the same scores with
each other (be tied) by both judges. Then the probability of ties is calculated using Equation
(C.3) given that the judgements are independent.

P (t1,2) =
∑

(i,j)∈ΠM

P (s1i = s1j) + P (s2i = s2j) (C.3)

In all equations above ΠM is a 2-combination of the set of item indices between 1 and M . The
conditional probability of concordant orders given no ties (t̃12) then equals to:

P (c1,2|t̃1,2) =
P (t̃1,2|c1,2)P (c1,2)

P (t̃1,2)
=

1 · P (c1,2)

1− P (t1,2)
=

P (c1,2)

1− P (t1,2)
(C.4)

Similarly, the conditional probability of discordant orders given no ties equals to P (d1,2|t̃1,2) =
P (d1,2)

1−P (t1,2) . GK γ was then proposed by Goodman and Kruskal (1979) to be computed as

γ1,2 =
P (c1,2)− P (d1,2)

1− P (t1,2)
(C.5)

Observe that P (c1,2|t̃1,2) + P (d1,2|t̃1,2) = 1, since if there are no ties, there can be either
concordant or discordant orders, then the following derivation holds:

P (c1,2|t̃1,2) + P (d1,2|t̃1,2) = 1 (C.6)

P (c1,2)

1− P (t1,2)
+

P (d1,2)

1− P (t1,2)
= 1 (C.7)

P (c1,2) + P (d1,2)

1− P (t1,2)
= 1 (C.8)

P (c1,2) + P (d1,2) = 1− P (t1,2) (C.9)

Using this observation, GK γ1,2 can be rewritten to a more familiar form:

γ1,2 =
P (c1,2)− P (d1,2)

P (c1,2) + P (d1,2)
(C.10)

28

Dmytro Kalpakchi Quinductor

Now assume we have a third judge as well and we calculate γ1,2, γ1,3, and γ2, 3. Then to
evaluate the agreement between three judges we simply take an average of them. Let us see what
it amounts to.

γ1−3 =
γ1,2 + γ1,3 + γ2,3

3
(C.11)

=

P (c1,2)−P (d1,2)
P (c1,2)+P (d1,2) +

P (c1,3)−P (d1,3)
P (c1,3)+P (d1,3) +

P (c2,3)−P (d2,3)
P (c2,3)+P (d2,3)

3
(C.12)

The quantity in Equation C.12 cannot be simplified further resulting neither in a valid probability
nor in a generalized version of GK γ.

Instead the derivation process can easily be extended to N judges (N > 2), as follows,
resulting in a generalized version of GK γ, dubbed γN . Let cN , dN and tN be the events that
a randomly selected pair of items is concordant, discordant or tied (respectively) by any pair
selected from N judges, then the following holds.

P (cN) =
∑

(a,b)∈ΠN

∑
(i,j)∈ΠM

P (sai < saj)P (sbi < sbj) + P (sai > saj)P (sbi > sbj)

(C.13)

P (dN) =
∑

(a,b)∈ΠN

∑
(i,j)∈ΠM

P (sai < saj)P (sbi > sbj) + P (sai > saj)P (sbi < sbj)

(C.14)

P (tN) =
∑

(a,b)∈ΠN

∑
(i,j)∈ΠM

P (sai = saj) + P (sbi = sbj) (C.15)

P (cN |t̃N) =
P (cN)

1− P (tN)
(C.16)

P (dN |t̃N) =
P (dN)

1− P (tN)
(C.17)

γN =
P (cN)− P (dN)

P (cN) + P (dN)
=

∑
(a,b)∈ΠN

P (ca,b)−
∑

(a,b)∈ΠN

P (da,b)∑
(a,b)∈ΠN

P (ca,b) +
∑

(a,b)∈ΠN

P (da,b)
(C.18)

ΠM is a 2-combination of the set of item indices between 1 and M , ΠN is a 2-combination of
the set of judge indices between 1 and N ,

Appendix D: Samples of generated questions

Here we present samples of generated questions for English, Finnish and Russian. All sentences,
questions and suggested answers are lowercased, since we have empirically found Stanza’s
tokenizers and dependency parsers to perform more consistently when text is lowercased. Both
QA-pairs and sentences were also lowercased for human judges during evaluation.

Sentence: diphenhydramine was first made by george rieveschl and came into commercial use
in 1946
Question: who made diphenhydramine?
Suggested answer: george rieveschl

29

Computational Linguistics Volume 47, Number 1

Sentence: parallax (from ancient greek παράλλαξις (parallaxis), meaning ’alternation’) is a
displacement or difference in the apparent position of an object viewed along two different lines
of sight, and is measured by the angle or semi-angle of inclination between those two lines.
Question: what is a displacement in the apparent position of an object viewed along two
different lines of sight?
Suggested answer: parallax

Sentence: the lowest temperatures are registered in july and august (18°c - 64°f) and the highest
in february (maximum temperature 28°c - 82.4°f [1]), the summer season in the southern
hemisphere.
Question: where are the lowest temperatures registered?
Suggested answer: july

Sentence: the nobel peace prize was first awarded in 1901 to frédéric passy and henry dunant —
who shared a prize of 150,782 swedish kronor (equal to 7,731,004 kronor in 2008) — and, most
recently, to denis mukwege and nadia murad in 2018
Question: where was the nobel peace prize awarded?
Suggested answer: frédéric in 1901

Sentence: in 1986, the first statute aimed at defense contractor employee whistleblower
protection was enacted.
Question: when was the first statute aimed at defense contractor employee whistleblower
protection enacted?
Suggested answer: 1986

Sentence: кхл была образована в 2008 году и объединяла в себе первоначально 24
команды.
Question: когда была образована кхл?
Suggested answer: 2008 году

Sentence: салли маргарет филд родилась в пасадине, калифорния, 6 ноября 1946
года в семье киноактрисы маргарет филд и армейского офицера ричарда
драйдена[1].
Question: когда родилась салли маргарет филд?
Suggested answer: 6

Sentence: 14 июня 1952 в сша была заложена первая в мире апл «наутилус»
(english: uss nautilus), и она была спущена на воду 21 января 1954 года[1][2][3].
Question: когда была заложена первая в мире апл «наутилус» (english : uss
nautilus)?
Suggested answer: 14 июня 1952

Sentence: санатана родился в 1488 году в бенгальской деревне в провинции
джессор.
Question: когда родился санатана?
Suggested answer: 1488

Sentence: металлургический завод был основан николаем второвым несколькими
месяцами позже снаряжательного
Question: когда был основан металлургическии завод?
Suggested answer: несколькими

Sentence: jäämerentie oli valmistuessaan 531 kilometriä pitkä ja viisi metriä leveä.
Question: kuinka pitkä jäämerentie oli?
Suggested answer: 531 kilometriä

30

Dmytro Kalpakchi Quinductor

Sentence: fennomania, suomenmielisyys, suomenkiihko[1] oli suomalaisten kansallisen
heräämisen liike, joka syntyi 1800-luvun alkupuolella ja vaikutti erityisesti saman vuosisadan
jälkipuolella.
Question: mitä fennomania oli?
Suggested answer: liike

Sentence: kaupungin väkiluku on noin 118000, ja sen pinta-ala on km2, josta km2 on
vesistöjä.[1] kuopion keskustaajama sijaitsee kallaveteen etelästä työntyvällä kuopionniemellä,
joka jakaa kallaveden kahteen toisistaan lähes erilliseen osaan.
Question: paljonko on kaupungin väkiluku?
Suggested answer: 118000

Sentence: sen konsentraatio 25°c:n lämpötilassa on noin 1,004·10-7mol/l eli sen ph-arvo on 7,0
Question: paljonko on sen konsentraatio 25°c:n lämpötilassa?
Suggested answer: 1,004·10-7mol/l

Sentence: pegaso oli ajoneuvojen tuotemerkki, joka kuului vuonna 1945 generalissimus
francisco francon valtiollistamaa espanjan ajoneuvoteollisuutta yhdistämällä vuonna 1946
syntyneeseen, madridissa kotipaikkaansa pitäneeseen enasa:an [empresa nacional de
autocamiones s.a.).
Question: mitä pegaso oli?
Suggested answer: tuotemerkki

Acknowledgements

This work was supported by Vinnova (Sweden’s Innovation Agency) within project 2019-02997.
We would also like to thank Lisse-Lotte Hermansson for helping with translating instructions
for human evaluation in Finnish, Kristiina Savola for help in assessing results of human evalu-
ation for Finnish and Bram Willemsen for helpful comments and discussions on the matter of
evaluation.

References
Afzal, Naveed and Ruslan Mitkov. 2014. Automatic generation of multiple choice questions using

dependency-based semantic relations. Soft Computing, 18(7):1269–1281.
Agarwal, Abhaya and Alon Lavie. 2008. Meteor, m-bleu and m-ter: Evaluation metrics for

high-correlation with human rankings of machine translation output. In Proceedings of the Third
Workshop on Statistical Machine Translation, pages 115–118.

Agarwal, Manish, Rakshit Shah, and Prashanth Mannem. 2011. Automatic question generation using
discourse cues. In Proceedings of the 6th Workshop on Innovative Use of NLP for Building Educational
Applications, pages 1–9, Association for Computational Linguistics.

Amidei, Jacopo, Paul Piwek, and Alistair Willis. 2018. Evaluation methodologies in automatic question
generation 2013-2018.

Amidei, Jacopo, Paul Piwek, and Alistair Willis. 2019. Agreement is overrated: A plea for correlation to
assess human evaluation reliability.

Bahuleyan, Hareesh, Lili Mou, Olga Vechtomova, and Pascal Poupart. 2017. Variational attention for
sequence-to-sequence models. arXiv preprint arXiv:1712.08207.

Bernhard, Delphine, Louis De Viron, Véronique Moriceau, and Xavier Tannier. 2012. Question generation
for french: collating parsers and paraphrasing questions. Dialogue & Discourse, 3(2):43–74.

Blaikie, Norman. 2003. Analyzing quantitative data: From description to explanation. Sage.
Brown, Tom B, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Callison-Burch, Chris, Miles Osborne, and Philipp Koehn. 2006. Re-evaluating the role of bleu in
machine translation research. In 11th Conference of the European Chapter of the Association for
Computational Linguistics.

31

Computational Linguistics Volume 47, Number 1

Chan, Ying-Hong and Yao-Chung Fan. 2019. A recurrent bert-based model for question generation. In
Proceedings of the 2nd Workshop on Machine Reading for Question Answering, pages 154–162.

Clark, Jonathan H, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and
Jennimaria Palomaki. 2020. Tydi qa: A benchmark for information-seeking question answering in ty
pologically di verse languages. Transactions of the Association for Computational Linguistics,
8:454–470.

Denkowski, Michael and Alon Lavie. 2014. Meteor universal: Language specific translation evaluation for
any target language. In Proceedings of the ninth workshop on statistical machine translation, pages
376–380.

Dong, Li, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou, and
Hsiao-Wuen Hon. 2019. Unified language model pre-training for natural language understanding and
generation. arXiv preprint arXiv:1905.03197.

Dryer, Matthew S. 2005. 93 position of interrogative phrases in content questions.
Du, Xinya, Junru Shao, and Claire Cardie. 2017. Learning to ask: Neural question generation for reading

comprehension. arXiv preprint arXiv:1705.00106.
Fleiss, Joseph L. 1971. Measuring nominal scale agreement among many raters. Psychological bulletin,

76(5):378.
Gates, Donna Marie. 2011. How to generate cloze questions from definitions: A syntactic approach. In

2011 AAAI Fall Symposium Series.
Gatt, Albert and Emiel Krahmer. 2018. Survey of the state of the art in natural language generation: Core

tasks, applications and evaluation. Journal of Artificial Intelligence Research, 61:65–170.
Goodman, Leo A and William H Kruskal. 1979. Measures of association for cross classifications.

Measures of association for cross classifications, pages 2–34.
Heilman, Michael and Noah A Smith. 2009. Question generation via overgenerating transformations and

ranking. Technical report, Carnegie-Mellon Univ Pittsburgh pa language technologies insT.
Kalpakchi, Dmytro and Johan Boye. 2020. Udon2: a library for manipulating universal dependencies

trees. In 28th International Conference on Computational Linguistics, COLING 2020, 8-13 December
2020, pages 120–125.

Khullar, Payal, Konigari Rachna, Mukul Hase, and Manish Shrivastava. 2018. Automatic question
generation using relative pronouns and adverbs. In Proceedings of ACL 2018, Student Research
Workshop, pages 153–158.

Kim, Yanghoon, Hwanhee Lee, Joongbo Shin, and Kyomin Jung. 2019. Improving neural question
generation using answer separation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 6602–6609.

Kumar, Vishwajeet, Nitish Joshi, Arijit Mukherjee, Ganesh Ramakrishnan, and Preethi Jyothi. 2019.
Cross-lingual training for automatic question generation. arXiv preprint arXiv:1906.02525.

Landis, J Richard and Gary G Koch. 1977. The measurement of observer agreement for categorical data.
biometrics, pages 159–174.

van der Lee, Chris, Albert Gatt, Emiel van Miltenburg, and Emiel Krahmer. 2020. Human evaluation of
automatically generated text: Current trends and best practice guidelines. Computer Speech &
Language, page 101151.

Liao, Yi, Xin Jiang, and Qun Liu. 2020. Probabilistically masked language model capable of
autoregressive generation in arbitrary word order. arXiv preprint arXiv:2004.11579.

Lin, Chin-Yew. 2004. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pages 74–81.

Liu, Bang, Mingjun Zhao, Di Niu, Kunfeng Lai, Yancheng He, Haojie Wei, and Yu Xu. 2019. Learning to
generate questions by learningwhat not to generate. In The World Wide Web Conference, pages
1106–1118.

Mazidi, Karen and Rodney D Nielsen. 2015. Leveraging multiple views of text for automatic question
generation. In International Conference on Artificial Intelligence in Education, pages 257–266,
Springer.

Mostow, Jack and Hyeju Jang. 2012. Generating diagnostic multiple choice comprehension cloze
questions. In Proceedings of the Seventh Workshop on Building Educational Applications Using NLP,
pages 136–146.

Nema, Preksha and Mitesh M Khapra. 2018. Towards a better metric for evaluating question generation
systems. arXiv preprint arXiv:1808.10192.

Nivre, Joakim, Marie-Catherine de Marneffe, Filip Ginter, Jan Hajič, Christopher D Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and Daniel Zeman. 2020. Universal dependencies v2: An
evergrowing multilingual treebank collection. arXiv preprint arXiv:2004.10643.

32

Dmytro Kalpakchi Quinductor

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for
Computational Linguistics, pages 311–318.

Qi, Peng, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D Manning. 2020. Stanza: A python
natural language processing toolkit for many human languages. arXiv preprint arXiv:2003.07082.

Rajpurkar, Pranav, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250.

Randolph, Justus J. 2005. Free-marginal multirater kappa (multirater k [free]): An alternative to fleiss’
fixed-marginal multirater kappa. Online submission.

Rosenthal, James A. 1996. Qualitative descriptors of strength of association and effect size. Journal of
social service Research, 21(4):37–59.

Rus, Vasile, Zhiqiang Cai, and Art Graesser. 2008. Question generation: Example of a multi-year
evaluation campaign. Proc WS on the QGSTEC.

Rus, Vasile, Brendan Wyse, Paul Piwek, Mihai Lintean, Svetlana Stoyanchev, and Cristian Moldovan.
2010. Overview of the first question generation shared task evaluation challenge. In Proceedings of the
Third Workshop on Question Generation, pages 45–57.

Sharma, Shikhar, Layla El Asri, Hannes Schulz, and Jeremie Zumer. 2017. Relevance of unsupervised
metrics in task-oriented dialogue for evaluating natural language generation. CoRR, abs/1706.09799.

Song, Linfeng, Zhiguo Wang, Wael Hamza, Yue Zhang, and Daniel Gildea. 2018. Leveraging context
information for natural question generation. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 569–574.

Vedantam, Ramakrishna, C Lawrence Zitnick, and Devi Parikh. 2015. Cider: Consensus-based image
description evaluation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4566–4575.

Zhao, Yao, Xiaochuan Ni, Yuanyuan Ding, and Qifa Ke. 2018. Paragraph-level neural question generation
with maxout pointer and gated self-attention networks. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages 3901–3910.

Zhou, Qingyu, Nan Yang, Furu Wei, Chuanqi Tan, Hangbo Bao, and Ming Zhou. 2017. Neural question
generation from text: A preliminary study. In National CCF Conference on Natural Language
Processing and Chinese Computing, pages 662–671, Springer.

33

34

	1 Introduction
	2 Related work
	3 Methodology
	3.1 Template language
	3.2 Guard language
	3.3 Template induction
	3.4 Guard induction
	3.5 Ranking and filtering

	4 Data
	5 Evaluation
	5.1 Multilingual setting
	5.2 Comparison to other methods
	5.3 Cross-dataset evaluation

	6 Discussion
	A AppendixA
	B AppendixB
	C AppendixC
	D AppendixD

