
Dialogue management for automatic troubleshooting and other

problem-solving applications

Johan Boye

TeliaSonera R&D
Vitsandsgatan 9

12386 Farsta, Sweden

johan.boye@teliasonera.com

Abstract

This paper describes a dialogue manage-
ment method suitable for automatic trou-
bleshooting and other problem-solving ap-
plications. The method has a theorem-
proving flavor, in that it recursively de-
composes tasks into sequences of sub-tasks
and atomic actions. An explicit objective
when designing the method was that it
should be usable by other people than the
designers themselves, notably IVR applica-
tion developers. Therefore the method has
a transparent execution model, and is con-
figurable using a simple scripting language.

1 Introduction

In what follows, we will consider problem-solving

dialogues with the following characteristics:

• The dialogue participants are a novice and
an expert.

• The novice has a problem he cannot solve,
but is able to make observations and per-
form actions.

• The expert has the required domain knowl-
edge to solve the problem, but has a limited
capacity to make observations and perform
actions.

• Because of this, the novice and expert need
to communicate (using natural language) to
jointly solve the problem.

Such dialogues appear, for instance, in the con-
text of over-the-phone technical support and trou-
bleshooting. Consider the situation where a service
agent is helping to restore a customer’s Internet

connection. The agent may perform some tests re-
motely (pinging the customer’s computer, check-
ing for network failures, etc), but for the most part
the agent tries to nail down the problem by asking
the customer to perform a number of actions: re-
starting the modem, restarting the computer, dis-
connecting routers and hubs, checking and chang-
ing network settings in the computer, etc. The cus-
tomer mostly acts as an answer supplier and the
executor of the actions proposed by the agent.

In this paper, we will consider the challenge of
automating the expert by means of a spoken dia-
logue system. Several issues need to be addressed.
First, because the system cannot perform all ac-
tions or make all necessary observations, ground-
ing and avoiding misunderstandings become very
important. The system must make the user under-
stand what action to perform next, and then itself
understand the outcome of that action.

Second, the system must be able to adapt to dif-
ferent users with different levels of domain knowl-
edge. This is particularly important in tech-support
domains. While some users are perfectly comfort-
able with terms like “modem”, “command win-
dow”, “IP number”, etc, many others don’t know
the technical terms, and indeed have very vague
conceptions of computers in general. Therefore the
system needs to adapt its explanations to the needs
of the specific user.

Third, the system must be readily configurable,
maintainable, and possible to port to new domains
by application developers who do not (need to)
know exactly how the system is implemented. To
this end, it is important that the system offers a
scripting language in which applications can be
coded. This scripting language must have a trans-
parent execution model, so that developers can

foresee all possible situations that can arise during
interaction with a user. (This last point is crucial
for achieving “VUI completeness” in the sense of
Pieraccini and Huerta (2005), and thus a prerequi-
site for a dialogue system to be useful in an indus-
trial setting).

This paper describes a configurable dialogue
manager for problem-solving dialogue applications.
It is currently being used in a prototype for provid-
ing automated broadband support to the customers
of TeliaSonera1, and we will use examples from
this domain throughout the article. An earlier ver-
sion of the model (not as easily configurable) was
used in the “Nice” fairy-tale computer game proto-
type (Boye and Gustafson 2005, Boye et al. 2006)
as a means to control the behavior of virtual game
characters (see Sect 8).

2 Problem-solving tasks and dialogues

Consider the Internet connection problem again.
The service agent knows that in order for the cus-
tomer‘s connection to work, several conditions
need to be satisfied: the network must be function-
ing, the user must have paid his bill, and the user’s
equipment must be functioning and set up appro-
priately. Put equivalently, if the Internet connec-
tion does not work, one of the conditions just men-
tioned must be unfulfilled. This latter formulation
suggests a procedure for finding the source of the
connection error; just check the prerequisite condi-
tions one at a time, until the error is uncovered. If
we find that one condition is fulfilled (e.g. the net-
work is working properly), we can cross it off our
check list and proceed to examining the other con-
ditions, as the problem surely must lie with one of
them.

Some of the conditions are complex, and can be
decomposed further into sub-conditions. For in-
stance, that “the user’s equipment is functioning”
involves checking that the modem, router, com-
puter, wires, etc. are all ok, and some of these sub-
conditions can be further broken down into sub-
sub-conditions, and so on. That is, the trouble-
shooting process takes the form of a hierarchical

task decomposition process.
The way propositions are expressed in terms of

sub-propositions as above is reminiscent of Prolog

1 TeliaSonera is the leading telecommunications provider in

the Nordic-Baltic region in Europe.

(Sterling and Shapiro, 1994). The problem could
also be viewed as one of finding a sequence of ac-
tions that transform the current state of affairs (in
which the Internet connection is not working) into
a desired goal state (in which the connection
works). On this viewpoint, the problem seems
amenable to AI planning approaches like STRIPS
(Fikes and Nilsson, 1971).

However, both Prolog and STRIPS-like ap-
proaches assume that full information is available
from the very beginning, and that problem solving
amounts to searching through known facts about
the domain. This is not the case in the problem-
solving domains we are considering. A further
complication is the fact that the agent cannot carry
out actions directly, and cannot foresee which in-
structions will be understood or not. This is evident
from the following fragment (taken from a longer
dialogue):

1. Agent: We will need to restart your mo-

dem. Do you know where your modem is?
2. User: Uh, no.
3. A: I’ll help you find it. Can you locate the

telephone plug in the wall?
4. U: Uh, yes.
5. A: One of the cables going from the tele-

phone plug should lead to a little box that
probably has some lights on it.

6. U: Ok.
7. A: That is your modem.
8. U: Ok, I see it.
9. A: Good! Now, the modem has a power

cord as well. I want you to unplug that
power cord in order to restart the modem.
Can you do that now?

The user cannot directly restart his modem since he
cannot locate it, so the agent needs to embark on a
longer explanation (utterances 3–8).

A striking feature of such troubleshooting dia-
logues is the amount of effort the agent spends on
grounding. In fact, the agent needs to have almost
every instruction acknowledged by the user (usu-
ally a brief “yes” or “OK” is sufficient). If the user
does not know how to carry out an instruction (as
in utterance 2 above), or rejects it for some other
reason, the agent will either explain further, or
abandon the current strategy altogether and try an
alternative way to proceed.

Smith and Hipp (1994) proposed the “missing
axiom theory” as the driving force in problem-
solving dialogue management. In this view, com-
pletion of actions is represented by theorems, and
making sure that an action has been completed in-
volves constructing a proof for the corresponding
theorem. If the proof can not be carried out be-
cause some needed axiom is missing, the theorem
proving process is suspended, and the user is asked
to provide the missing axiom (this amounts to a
request to the user to perform an action needed to
complete the overall task).

Since Smith’s system, several other researchers
have applied hierarchical task decomposition to
dialogue, notably Rich and Sidner (1996), Lemon
et al (2002), and Bohus and Rudnicky (2003). The
approach presented in this paper differs from
aforementioned approaches primarily by featuring
a much simpler way of scripting dialogue applica-
tions. Automated troubleshooting dialogue has re-
cently been addressed by Acomb et al (2007), and
by Williams (2007), who uses a statistical dialogue
management approach rather than hierarchical task
decomposition.

3 Encoding the domain

3.1 Speech acts

An analysis of a corpus of dialogues between hu-
man service agents and customers revealed that the
vast majority of the agent’s utterances can be de-
scribed using only six speech acts. These are “re-

quest action” (e.g. “Locate the telephone plug in
the wall”), “request info” (“What operating sys-
tem is your computer running?”), “request info

yes/no” (“Is your router wireless?”), “ground

status” (“Now a window should appear”), “in-

form” (“There may be a problem with your
router”), and “acknowledge” (“Good!”).

After having performed an “inform” speech act,
the agent is not really expecting any reply from the
customer; making an “inform” is just granting ex-
tra information concerning the state of the trouble-
shooting process (often used when a topic is intro-
duced (“We will need to disconnect your router”)
or when it’s closed (“Now we’ve disconnected
your router.”)). In contrast, the “request info”
speech act requires a reply from the customer, and
the agent cannot proceed without it. A “ground

status” is used when the agent wants to confirm a
certain result, for instance that the user can see the

“Start” menu appearing on his screen after having
clicked the “Start” button. The main purpose of a
“ground status” speech act, from the agent’s point
of view, is to make sure that the user has indeed
carried out and understood the effects of the latest
action, and is ready to receive the next instruction.

Similarly, the customers’ utterances can be clas-
sified using speech acts such as “inform” (typi-
cally as a reply to a “request info”), “inform-yes”
and “inform-no” (in response to a “request info
yes/no”), “acknowledge” (typically signaling un-
derstanding in response to a “request action” or
“ground status”), “please clarify” (signaling non-
understanding), and “please wait” (when the user
needs more time to carry out some action). Addi-
tionally, the customer usually states the problem at
the very beginning of the dialogue. We will not
consider this heterogeneous group of utterances in
this article, as they are dealt with using statistical
classification methods (see Boye and Wirén 2007
for a description of that system), quite unlike those
presented here.

We will also consider instantiations of the basic
speech acts. For instance, “locate the telephone
plug in the wall” is an instantiation of a “request

action”, which we will represent as requestAc-

tion(locate_telephone_plug). In general, we will
represent (the semantic value) of an utterance2 by
such an instantiated speech act f(a1, a2, …, an),
where f is the basic speech act, and the arguments
a1…an are terms representing the additional infor-
mation. As another example, “the IP number is
131.1.15.23” would be represented as in-

form(ipNumber, 131.1.15.23) whereas “no”
would be represented simply as inform-no.

We can now encode the entire dialogue example
of section 2, as follows:

1. Agent: inform(restart_modem);
 requestAction(locate-modem)
2. User: pleaseClarify
3. A: requestAction(locate-telephone-plug)
4. U: acknowledge
5. A: requestAction(follow-cable-from-

telephone-plug)
6. U: acknowledge
7. A: groundStatus(locate-modem)

2 In general, an utterance may be represented by a se-
quence of speech acts (and not necessarily a single
speech act).

8. U: acknowledge
9. A: acknowledge
 requestAction(unplug-power-cord-
from-modem)

3.2 Information state

Relevant information about the domain is stored as
attribute-value pairs. For instance, we may con-
ceive of an attribute ipNumber whose value is
131.1.15.23. A “proposition” is any statement of
the domain that can be either true or false. In par-
ticular, the expression valueOf(x,y) denotes the
proposition that the attribute x has the value y.
Some attributes can only take the values true,
false, or don’t know. If x is such an attribute, we
will take the expression x to mean the same thing
as valueOf(x,true). For instance, modem-

restarted means the same thing as val-

ueOf(modem-restarted, true). We will refer to
the ensemble of attribute-value pairs as the “infor-
mation state”.

A proposition is considered to be true, and
stored in the information state, as soon it is ac-
cepted by the user. For instance, the proposition
locate-telephone-plug is added after the user’s
acknowledgement in utterance 4, and follow-

cable-from-telephone-plug is added after utter-
ance 6.The proposition locate-modem is not added
after utterance 2 since the user does not acknowl-
edge, but is added after utterance 8. Thus, the
presence of a proposition like locate-modem in the
information state in this case means that the user
has confirmed that he has performed the action
“locate modem”. (One may argue that the user
having located his modem is an observation rather
than an action. However, the distinction between
verified executed actions and verified observations
is intentionally blurred.)

Non-Boolean values of attributes are added after
an inform reply from the user (as, for instance, in
the exchange: “What operating system is your
computer running?”, “Windows”). The presence of
the proposition valueOf(operating-system, win-

dows) in the information state means that the sys-
tem has already performed a speech act request-

info(operating-system), or obtained the informa-
tion by some other means. In any case, the ques-
tion needs not be asked again.

4 Deciding system actions

4.1 Dialogue rules: syntax and informal in-

terpretation

In what follows, we will use a rule-based approach
of representing the problem decomposition process
outlined previously. A rule for making the user
restart his modem might look like this:

satisfy(restart-modem) {

 satisfy locate-modem;

 perform requestAction(unplug-power-

cord-from-modem);

 perform requestAction(plug-power-

cord-into-modem);

 perform groundStatus(restart-

modem);

}

Informally, such a rule is to be interpreted: “In
order to have the modem restarted, first make sure
that the modem is located (by the user), then ask
the user to unplug the power cord, and then ask the
user to plug the power cord back in again. Finally,
ask the user to verify that the modem actually has
been restarted”. (We will return to the formal in-
terpretation of the rule shortly.)

That is, the process of satisfying a certain goal
can be broken down into a sequence of steps, each
of which is either a sub-goal to be satisfied, an ac-
tion to be executed, or a condition that should be
true. The general form of a rule is

satisfy(G) { B1; B2; …; Bn; }

where G is a proposition to be satisfied (“the
goal”), and each Bi is an expression of one of the
following forms:

• satisfy P (where P is a proposition)

• perform A (where A is an action, i.e.

either a speech act or a request for a non-
verbal action, such as pinging the user’s
computer)

• holds P (where P is a proposition)

(We will explain the holds construct in end of

this section.)
Continuing the example, there are two rules for

the sub-goal locate-modem, corresponding to

two alternative strategies for how the agent can
proceed. The simple way of making sure the user
has located his modem is simply to ask him:

satisfy(locate-modem) {

 perform requestAction(locate-

modem);

}

The speech act requestAction(locate-

modem) could for instance be verbalized as “Do
you know where your modem is?”, as in the sec-
ond sentence of utterance 1 in the example of sec-
tion 2. If the user okays this request, the system

will draw the conclusion that the goal locate-

modem is fulfilled (i.e. add that proposition to its
information state). Another strategy to fulfill the

goal locate-modem is to give a step-by-step
explanation:

satisfy(locate-modem) {

 perform requestAction(locate-

telephone-plug);

 perform requestAction(follow-

cable-from-telephone-plug);

 perform groundStatus(locate-

modem)

}

This is what the agent does in utterances 3-8 in the
example of section 2.

The informal interpretation of the construct
“holds P” is that the proposition P must be true

at that point in order for the rule to be applicable.
Usually, it is used as a pre-condition, as in the rule:

satisfy(check-network-settings) {

holds valueOf(operating-system,

windows);

. . . more . . .

}

Unless the system already knows that the user’s
operating system is Windows, this rule is not ap-
plicable.

We will also allow variables in rules, as in the
following rule (variables are prefixed with a “$”):

satisfy(valueOf(radio-button($x),$y){

 perform requestAction(tick(radio-

button($x, $y));

}

This rule states that one way of ensuring that the
alternative $y is ticked in the radio button $x is to
ask the user to tick it (whatever the values of $x
and $y). The use of variables is a notational con-
venience that reduces the number of rules by in-
creasing their applicability.

Rules such as these constitute a static specifica-
tion of how the automated agent can go about di-
agnosing and correcting the error (by “static” we
mean that the rules will not change during the
course of a dialogue).

4.2 The agenda and the formal interpretation

of dialogue rules

During the course of the dialogue, the system
makes use of the rules to construct and traverse a
dynamic tree-structure, the agenda, which at any
point in time represent current and future goals and
actions. The agenda is a tree-structure since goals
are represented as parent nodes of the sub-goals
and actions needed to fulfill them.

Agenda trees can be defined inductively as fol-
lows:

• if P is a proposition, then a single node la-
beled with “satisfy P” is an agenda;

• if A1 is an agenda, then A2 is an agenda if
A2 can be constructed from A1 by means
of the following expansion operation:
(1) choose a leaf node L which is labeled

“satisfy X”

(2) choose a matching dialogue rule
“satisfy Y { B1; … Bn }”,

where σ is a binding of the variables in

Y, such that σ(Y)=X. Add n children

to L, labeled σ(B1), …, σ(Bn).

As an example, the agendas in figures 1c and 1d
(found at the end of the article) are both obtained
by expansion (using two different rules) of the
agenda in figure 1b, which in its turn is an expan-
sion of the agenda 1a.

Note that it is also possible to transform agenda
1c into 1d by selecting the node labeled “satisfy

locate-modem”, pruning all children below that
node (we will refer to this operation as performing
a “cut-off” at that node), and then expanding that
same node using another rule.

Whenever the system needs to decide what to do
next, it searches, expands and transforms the
agenda in order to find the next action node. The

next action node is always labeled “perform A”,
where A is taken to be the action to be carried out
next.

In order to find the next action node, the agenda
is searched depth-first, left-to-right, starting from
the top node, ignoring already satisfied goals and

executed actions, until the first non-executed ac-
tion is encountered. More precisely, for each vis-
ited node n, the following decisions are made:

1. If n is labeled “perform A”:

a. If A has already been performed
(this is determined as described in
section 3.2), then proceed to the
next sibling node.

b. If A has not been performed, then
n is the next action node, and A is
the action to carry out next.

2. If n is labeled “satisfy P”:

a. If P is a true proposition then pro-
ceed to the next sibling node.

b. If P is not true, then proceed to the
leftmost child of n. If n is a leaf
node, then expand (using the ex-
pansion operation above), and then
proceed to the leftmost child of n.

3. If n is labeled “holds P”:

a. If P is a true proposition, then pro-
ceed to the next sibling node.

b. If P is not true, remove n and all of
n’s siblings. Then expand n’s par-
ent node, using another rule than
before, and proceed to the leftmost
child of n.

In cases 2b and 3b, the system currently uses the

Prolog-like strategy of using the rules in the order
they are listed. That is, in case 2b the first match-
ing rule is selected, and in case 3b the first unused
matching rule is selected.

To illustrate how the system uses the agenda,
suppose figure 1a is the starting point. The system
would expand the agenda twice, leading to figure
1c. The next action node is thus labeled “perform

requestAction(locate-modem)”, which is what the
system will say (verbalized as utterance 1 of the
dialogue example of section 2).

Since the user does not acknowledge but rather
asks the system to clarify (in utterance 2), the sys-
tem considers the chosen strategy to be no good.
As a reaction, the agenda is rebuilt into figure 1d.

5 Interpreting user input

Each speech act has an associated system utter-
ance, and most of them have an associated gram-
mar. Furthermore, all speech acts have an associ-
ated set of expectations that tells the system how

to interpret the user’s input. When a particular
speech act is chosen by the system as the next ac-
tion, the associated utterance is played, and then
speech recognition is performed using the associ-
ated grammar. If there is no associated grammar,
the system assumes that it is its turn to speak again.

After request action and ground status speech
acts, a grammar is used which is capable of recog-
nizing the user speech acts acknowledge, please

clarify, and please wait (speech recognition
grammars with semantic attachment rules are used,
so there is no need for a separate parsing step). As
explained in section 3.2, an acknowledgement
from the user makes the system consider the
proposition under discussion to be true (and add it
to the information state). This is what happens in
the utterances 3-8 in the dialogue example. Using
the algorithm described in section 4.2, the system
traverses the agenda (in figure 1d), and visits the
nodes marked A, B, and C, in that order.

On the other hand, if the user asks the system to
clarify, the system will abandon its current strat-
egy, and rebuild the agenda. That is what happens
after utterance 2, when agenda 1c is rebuilt into
agenda 1d. This is done by removing the current
action node and all its siblings, and re-expanding
the parent node (in this case labeled “satisfy lo-
cate-modem”) using the next applicable rule.

Some speech acts have specially developed as-
sociated grammars. For instance, the speech act
requestInfo(ipNumber) has a grammar recogniz-
ing IP numbers, and so on. The recognized utter-
ance will be interpreted as a value for the attribute
(ipNumber, in this case), unless the user makes a
please clarify or please wait speech act (these are
always among the user’s options).

6 Associating utterances with tree events

In the algorithm of section 4.2, the agenda is trav-
ersed, expanded and transformed in order to find
the next action. During this process, a number of
events are generated, notably

• When a satisfy node is expanded (a
“topic intro” event).

• When a cut-off is performed at a satisfy
node, and the node is expanded using the
next applicable rule (a “new strategy”
event).

• When a proposition P is first found to be
true, after it has previously been found to
be false (a “topic outro” event).

• When the system attempts to rebuild the
tree, but there are no more unused match-
ing rules (a “cannot solve” event).

Note that the first two events correspond

(roughly) to the “call” and “redo” entry points in
the Prolog “procedure box” control flow model
(Byrd 1980), whereas the two latter events corre-
spond, respectively, to the “exit” and “fail” points
in the same model.

A useful feature in the dialogue manager is that
it allows the dialogue designer to associate system
utterances to such events. If there is no associated
utterance, an event will just pass unnoticed, other-
wise the associated system utterance will be gener-
ated.

For example, the event topicIntro(restart-

modem) is generated when the agenda in figure 1a
is expanded into figure 1b, and the event topicIn-

tro(locate-modem) is generated in the transition
from 1b to 1c. Suppose we associate the utterance
“We will need to restart your modem” with the
former event (and no utterance with the latter
event); then this utterance is generated just before
the requestAction(locate-modem) utterance (“Do
you know where your modem is?”). Together,
these two make up the system’s first utterance in
the dialogue example of section 2.

In the same vein, we may associate the utterance
“Good!” with the event topicOutro(locate-

modem). When the user has finally located his
modem (in utterance 8), the proposition locate-

modem is added to the information state. At that
point in time, the agenda looks like figure 1d.
When the system traverses it and reaches the “sat-

isfy(locate-modem)” node, the topicOutro(locate-

modem) event is generated just before the system
moves to the next node and generates the re-

questAction(unplug-power-cord-from-modem)
utterance. Together, these two make up utterance 9
in the dialogue example.

7 Putting it all together

This is a summary of the execution model of the
dialogue manager:

1. The agenda is traversed (and possibly ex-
panded or transformed) using the algo-

rithm of section 4.2. All utterances asso-
ciated with the ensuing tree events are
generated.

2. The result of step 1 is an action or a
speech act (if there is no result, the dia-
logue is finished). Perform this action (in
the case of a speech act, generate the as-
sociated utterance).

3. If the speech act has an associated gram-
mar, perform speech recognition. Then in-
terpret the resulting speech act based on
the expectations associated with the sys-
tem’s latest speech act.

4. Go to 1.

8 Other kinds of problem-solving appli-

cations

We began the paper by considering dialogues fea-
turing an expert and a novice, trying jointly to
solve a problem. The endeavor here has been aim-
ing at automating the expert side of such a dia-
logue.

 Other configurations are also possible. In spo-
ken natural language robot control interfaces, such
as considered e.g. in Rayner et al. (2000), the hu-
man takes the role of the expert, having the respon-
sibility for long-term planning, whereas the robot
is the novice, responsible for executing actions and
making observations. If the robot or device has
some planning capabilities of its own, the expert-
novice distinction is not clear-cut, and plans may
be constructed jointly (see Rich and Sidner 1996,
Lemon et al 2002).

An interesting situation is when both the expert
and the novice are automated. This might be the
case in interactive entertainment (Cavazza et al
2002), or in computer games such “Nice” (Boye
and Gustafson 2005, Boye et al 2006). The Nice
game features two animated characters with whom
the user can talk; however they can also communi-
cate with each other and interfere in each other’s
plans.

The Nice game used the same dialogue man-
agement kernel as the one described in this paper.
However, free input was allowed (using a stochas-
tic language model for speech recognition, and a
separate robust parsing step), and the system was
also capable of performing some reference resolu-
tion. Another difference is that the tech-support

application described here has a fixed overall goal
with the dialogue (the top node of the agenda),
which is kept throughout. By contrast, the game
characters in the Nice game added new goals to the
agenda during the dialogue, as a result of the user’s
requests and questions.

9 Concluding remarks

In the introduction, we stated three important is-
sues: (1) grounding and avoidance of misunder-
standings, (2) on-the-fly adaptation to different
kinds of users, and (3) ease-of-use for application
developers.

Misunderstandings are avoided, or at least made
less probable, by not updating the information state
without a confirmation from the user. Rules that
encode action chains in several steps are best con-
cluded with a ground status speech act, which the
user has to confirm (“Now you’ve restarted your
modem.”, “Ok!”).

The system adapts to the user by rejecting the
current strategy and replacing it with an alternative
strategy (an alternative dialogue rule) as soon as
the user indicates that he does not understand. This
may amount to no more than replacing a direct re-
quest (“Can you restart your modem?”) with a
more elaborate step-by-step description to achieve
the same thing. But it may also mean trying an al-
ternative way to proceed. For instance, if the user
is unable to detect the “Start” button on the screen
of his Windows computer, the system may instead
ask him to press the “Windows” button on his key-
board.

Finally, as concerns ease-of-use for application
developers, our initial experiences are positive,
though the broadband tech-support prototype is
still under development. It is planned to be de-
ployed by the end of 2007.

Acknowledgement: The author would like to thank
Mats Wirén and the anonymous reviewers for valuable
comments. This work was supported by EU’s 6th
framework project “COMPANIONS”.

References

Acomb, K., Bloom, J., Dayanidhi, K., Hunter, P.,
Krogh, P., Levin, E. and Pieraccini, R. (2007) Tech-
nical support dialog systems: Issues, problems and
solutions. Proc. Naacl’07 Workshop on Bridging the

gap: Academic and industrial research in dialog

technologies, Rochester, NY.

Bohus, D., and Rudnicky A. (2003) RavenClaw: Dialog
Management Using Hierarchical Task Decomposi-
tion and an Expectation Agenda, Proc. Eurospeech,
Geneva, Switzerland.

Boye, J., and Gustafson, J. (2005) How to do dialogue
in a fairy-tale world. Proc. SIGDIAL.

Boye, J., Gustafson, J. and Wirén, M. (2006) Robust
spoken language understanding in a computer game.
Speech Communication, 48, pp. 335-353.

Boye J. and Wirén, M. (2007) Multi-slot semantics for
natural-language call routing systems. Proc.

Naacl’07 Workshop on Bridging the gap: Academic

and industrial research in dialog technologies,

Rochester, NY.

Byrd, L. (1980) Understanding the control flow of
Prolog programs, Proc. Logic Programming Work-

shop, Debrecen, Hungary

Cavazza, M., Charles, F. and Mead S. J. (2002) Charac-
ter-based interactive storytelling. IEEE Intelligent

Systems, Special issue on AI in Interactive Enter-
tainment, pp. 17-24.

Fikes, R. E., and Nilsson, N. (1971) STRIPS: a new
approach to the application of theorem proving to
problem solving, Artificial Intelligence, 2 (3-4),
pp.189-208

Lemon, O., Gruenstein, A. and Peters, S. (2002) Col-
laborative activities and multi-tasking in dialogue
systems. Traitement Automatique des Langues (TAL),
special issue on dialogue, 43(2), pp. 131-154

Pieraccini, R., and Huerta, J. (2005) Where do we go
from here? Research and commercial spoken dialog
systems, Proc. SIGDIAL

Rayner M., Hockey B.A. and James, F. (2000) A com-
pact architecture for dialogue management based on
scripts and meta-outputs, Proc. Applied Natural Lan-

guage Processing (ANLP).

Rich, C., and Sidner, C. (1996) When agents collaborate
with people, Proc. AGENTS’97, 1

st
 international

conference on autonomous agents.

Smith, R. and Hipp, R. (1994) Spoken natural language

dialog systems: A practical approach, Oxford Uni-
versity Press.

Sterling, L., and Shapiro, E. (1994) The art of Prolog,

2nd edition, The MIT Press.

Williams, J. (2007) Applying POMDPs to dialog sys-
tems in the troubleshooting domain. Proc. Naacl’07

Workshop on Bridging the gap: Academic and indus-

trial research in dialog technologies, Rochester, NY.

Figure 1(a): An agenda consisting of one node

Figure 1(b): An agenda which is an expansion of 1(a)

Figure 1(c): An agenda which is an expansion of 1(b)

Figure 1(d): Another agenda which is an expansion of 1(b)

satisfy restart-modem

satisfy restart-modem

satisfy locate-modem

perform requestAction(unplug-power-cord-from-modem)

perform requestAction(plug-power-cord-into-modem)

perform groundStatus(restart-modem)

satisfy restart-modem

satisfy locate-modem

perform requestAction(unplug-power-cord-from-modem)

perform requestAction(plug-power-cord-into-modem)

perform groundStatus(restart-modem)

perform requestAction(locate-modem)

satisfy restart-modem

satisfy locate-modem

perform requestAction(unplug-power-cord-from-modem)

perform requestAction(plug-power-cord-into-modem)
(13) (11)

perform groundStatus(restart-modem)

perform requestAction(locate-telephone-plug) (A)

perform requestAction(follow-cable-from-telephone-plug) (B)

perform groundStatus(locate-modem) (C)

