
Proceedings of the Fourth Workshop on Universal Dependencies (UDW 2020), pages 120–125
Barcelona, Spain (Online), December 13, 2020

120

UDon2: a library for manipulating Universal Dependencies trees

Dmytro Kalpakchi and Johan Boye
Division of Speech, Music and Hearing

KTH Royal Institute of Technology
Stockholm, Sweden

dmytroka@kth.se, jboye@kth.se

Abstract

UDon2 is an open-source library for manipulating dependency trees represented in the CoNLL-U
format. The library is compatible with the Universal Dependencies. UDon2 is aimed at develop-
ers of downstream Natural Language Processing applications that require manipulating depen-
dency trees on the sentence level (to complement other available tools geared towards working
with treebanks).

1 Introduction

Universal Dependencies (UD) is a framework unifying ways of annotating grammar for different human
languages (Nivre et al., 2020). To date, the UD community has produced more than 150 treebanks in 90
languages and a number of UD-compatible tools for processing data. Most of the available tools focus
on working with treebanks, e.g. annotating textual data, validating existing treebanks or making simple
edits. However, many downstream Natural Language Processing (NLP) applications require researchers
to manipulate individual dependency trees. For instance, finding all subordinate clauses in the sentence
might help in performing text simplification, finding all objects connected to a verb in the passive form
might be useful for creating a list of candidate referents for co-reference resolution, and being able to
remove certain subtrees might assist in generating reading-comprehension questions.

Some of those tasks are easy to achieve with some simple scripting, but such ad-hoc solutions become
difficult to maintain over time. Furthermore, they tend to lack speed and hinder large-scale experimenta-
tion, since they are typically written in high-level programming languages in presence of time pressure.
To aid the community in solving these tasks, we present UDon2 - a library for manipulating UD depen-
dency trees optimized for querying. UDon2 has a user-friendly API allowing to perform routine tasks
with only a couple of lines of code. For instance, finding all nominal objects in singular requires only a
code snippet below.

1 import udon2
2 nodes = udon2.ConllReader.read_file("example.conll")
3 sing = [obj for node in nodes for obj in node.select_by("deprel", "obj")
4 if obj.has("feats", "Number", "Sing")]

UDon2 is an open-source library written in C++ with Python bindings, combining the speed of C++
and the flexibility and ease-of-use of Python. UDon2 is hosted on Github (the source code is available at
https://github.com/udon2/udon2), and everyone is welcome to contribute.

2 Example use cases

UDon2 operates on dependency trees for individual sentences. Preparing a raw text for downstream
applications requires segmenting it into sentences and then parsing every sentence to get its dependency
tree stored in CoNLL-U format. The result of reading a CoNLL-U file is an instance of the Node class

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

https://github.com/udon2/udon2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


121

representing a ’root’ pseudonode of the dependency tree. The dependent of the ’root’ pseudonode will
be later referred to as a root word. In the section below, we present possible use cases along with the
manipulations available for a generic Node instance n, and exemplify using the dependency tree in
Figure 1 with its root word study being denoted as r.

root

ROOT

You

PRON

Case=Nom

Person=2

PronType=Prs

should

AUX

VerbForm=Fin

study

VERB

VerbForm=Inf

these

DET

Number=Plur

PronType=Dem

topics

NOUN

Number=Plur

or

CCONJ

you

PRON

Case=Nom

Person=2

PronType=Prs

will

AUX

VerbForm=Fin

fail

VERB

VerbForm=Inf

the

DET

Definite=Def

PronType=Art

exam

NOUN

Number=Sing

nsubj

aux

root

det

obj

cc

nsubj

aux

conj

det

obj

Figure 1: A dependency tree for the sentence “You should study these topics or you will fail the exam”,
obtained using the ewt-model of Stanza package (Qi et al., 2020) and visualized using UDon2.

2.1 Accessing basic properties

Each node n has a number of accessors and mutators for its word index, universal part-of-speech (POS)
tag, language-specific POS tag, lemma, form, dependency relation with its head node, universal morpho-
logical features (FEATS) or any other annotation (MISC). Each accessor can be called as n.<prop>
substituting <prop> for id, upos, xpos, lemma, form, deprel, feats and misc respectively.
The last two will be referred to as key-value properties. Each mutator can be called as n.<prop> =
val with the same values of <prop>. The parent node of n can be accessed by calling n.parent,
and the children of n can be accessed by calling n.children. While mutator for a parent is available
(by calling n.parent = n1), no direct mutator for children is. Instead, calling n.add child or
n.remove child is required to modify the list of children.

Let Tn denote a subtree rooted at n. Calling n.get subtree text() will return a textual repre-
sentation of Tn. For instance, calling r.get subtree text() will return the whole sentence.

Comments and enhanced dependency relations are currently not supported, since those are typically
not provided by existing dependency parsers.

2.2 Multiword and empty nodes

Multiword tokens are supported and can be accessed by calling n.multi word. If n belongs to any
multiword token, an instance of udon2.MultiWordNodewill be returned, otherwise the accessor will
return None. Mutators for multi-word nodes are currently not available. Getting a textual representation
of a subtree (by calling n.get subtree text()) accounts for the multiword nodes. Empty nodes1

are currently ignored while reading CoNLL-U files.

2.3 Querying

Querying a dependency tree for a specific type of node is useful, for instance, for finding all relative
clauses of a sentence, or finding the subject of a sentence. UDon2 allows issuing a variety of queries for
selecting the nodes in Tn:

• having a property with a specified value, by calling n.select by(<prop>, <val>). Here,
<prop> could be substituted for the same values as in the previous section, except key-value prop-
erties. <val> should be substituted for the desired value of the respective property. For instance,
r.select by("upos", "VERB") will return a list of Nodes corresponding to the verbs study
and fail;

1https://universaldependencies.org/format.html#words-tokens-and-empty-nodes

https://universaldependencies.org/format.html##words-tokens-and-empty-nodes


122

• having specified key-value properties in the universal feature format2 <key-val-str>, by
calling n.select having(<prop>, <key-val-str>), where <prop> is one of feats
or misc. For instance, the nodes for words You and you will be returned after calling
r.select having("feats", "Case=Nom|Person=2|PronType=Prs"));

• being direct children of n and having a specified non key-value property, by calling
n.get by(<prop>, <val>).

• having a specified chain of dependency relations, by calling n.select by deprel chain or
n.get by deprel chain (if the requirement of being a direct child is added). For instance,
r.select by deprel chain("obj.det") will return a list of Nodes corresponding to the
determiners these and the, whereas r.get by deprel chain("obj.det") will return only
the Node corresponding to the determiner these;

• being identical to another node n’, by calling n.select identical(n’);

• being identical to another node n’ except for properties props, by calling
n.select identical except(n’, props) with props being a comma-separated
string of property names (later referred to as a prop-string), e.g. pos, rel;

A number of simpler indicator queries to check whether a specified property is present are also avail-
able and described in our online documentation3.

2.4 Pruning

Suppose we want, as a step in text simplification, to split all coordinate clauses in a sentence into sep-
arate sentences. This requires identifying the nodes corresponding to the roots of coordinate clauses,
by using the querying functionality from the previous section. Each clause should then be converted
to a separate dependency tree, and all coordinate conjunctions should be removed. UDon2 makes this
possible via its n.prune(<rel>) and n.make root() functions, where rel corresponds to the
chain of dependency relations pointing at the node to be pruned. To exemplify the pruning operation,
r.prune("conj") will result in a subtree corresponding to the sentence “You should study these
topics”. r.make root() function will create a root pseudonode and assign it to be a parent of r.

If the same tree is going to be used multiple times, destructive pruning might not be a viable op-
tion. In order to avoid copying trees, which might be a time-intensive (currently not implemented)
operation, UDon2 allows ignoring individual nodes or subtrees by calling n.ignore(<label>)
(n.ignore subtree(<label>)), which assigns an ignore label label to n (all nodes in a subtree
induced by n). All ignored nodes (no matter the label) will be excluded for all the queries presented in
the previous section and during calling n.get subtree text().

Reverting to the original state, possible by calling n.reset(<label>)
(n.reset subtree(<label>)), will unignore only nodes with a matching ignore label. The
<label> argument defaults to 0 for all mentioned methods. If all nodes should be reset (no matter the
label), n.hard reset() or n.hard reset subtree() should be used.

2.5 Visualization

UDon2 is capable of visualizing the dependency tree and storing it as an SVG file. An example of such
visualization is shown in Figure 1 and the code for visualizing a tree with a root node is presented below.

1 from udon2.visual import render_dep_tree
2 render_dep_tree(node, "tree.svg") # node is an instance of udon2.Node

Providing support for other image formats is an ongoing work.

2https://universaldependencies.org/u/overview/morphology.html#features
3https://udon2.github.io

https://universaldependencies.org/u/overview/morphology.html##features
https://udon2.github.io


123

2.6 Transformations and convolution tree kernels
It is non-trivial to represent dependency trees as features to use in machine learning contexts. One option
was proposed by Moschitti (2006) in the form of convolution partial tree kernels that can be used with
Support Vector Machines (Cortes and Vapnik, 1995). In a nutshell, a partial tree kernel calculates the
number of common tree structures (not only full subtrees) between two trees. Unfortunately, tree kernels
cannot handle trees with labeled edges, which is why Moschitti (2006) applied kernels to dependency
tree containing only lexicals. An alternative solution, proposed by Croce et al. (2011) and implemented
in UDon2, is to re-format dependency trees to include the edge labels as separate nodes. Three possible
formats were proposed, depending on the order of inclusion:

• POS-tag Centered Tree (PCT) - each grammatical relation is added as the father of the POS-tag and
a lexical as a child (transformation is possible by calling udon2.transform.to pct(node));

• Grammatical Relation Centered Tree (GRCT) - each POS-tag is a child of a gram-
matical relation and a father of a lexical (transformation is possible by calling
udon2.transform.to grct(node));

• Lexical Centered Tree (LCT) - both a POS-tag and a grammatical relation are children of a lexical
(transformation is possible by calling udon2.transform.to lct()).

In UDon2, a partial tree kernel can be calculated in any of the aforementioned formats by substituting a
string tree format with any of PCT, GRCT or LCT in the code snippet below.

1 from udon2.kernels import ConvPartialTreeKernel
2 # ptk_lambda and ptk_mu are decay factors as defined by Moschitti (2006)
3 kernel = ConvPartialTreeKernel(tree_format, ptk_lambda, ptk_mu)
4 # prints a number of common tree fragments between trees rooted at root1 and root2
5 print(kernel(root1, root2)) # root1 and root2 are udon2.Node instances

3 Related work

Currently available UD processing tools for Python are geared towards working with treebanks and
making batch manipulations and edits. UDPipe (Straka and Straková, 2017) is a library written in C++
with bindings to other programming languages. UDPipe provides a trainable pipeline which performs
sentence segmentation, tokenization, POS-tagging, lemmatization and dependency parsing. The library
provides no built-in support for manipulations on dependency trees. A similar functionality is also pro-
vided by the Stanza package (Qi et al., 2020).

DepEdit (Peng and Zeldes, 2018) is a configurable tool for manipulating dependency trees in the
CoNLL-U format. The manipulations are specified in the configuration file using regular expressions for
selecting nodes of interest, and a custom syntax for specifying relations between the nodes, and actions
to perform on the matched nodes. The tool is geared towards performing batch operations and thus
operations like querying to get a list of matching nodes for performing further manipulations, getting
a text of the subtree induced by the node or implementing convolution tree kernels are impossible to
achieve, to the best of our knowledge.

Udapi (Popel et al., 2017) is one such framework providing the ability to parse dependency trees,
visualize them, convert between different representation formats (CoNLL-U, SDParse and VISL-cg),
applying batch queries and edits to treebanks, and validate the format and contents of treebanks. Udapi
is available as a command line tool, and has APIs for Java, Python and Perl. One of the reviewers has
brought to our attention that Udapi is capable of performing directly (or gives a possibility to implement)
the same transformations as UDon2.

Two smaller packages, pyconll4 and conllu5, provide an interface to the CoNLL-U annotation scheme
without the possibility of visualization, but with a possibility to reimplement the same transformations
as in UDon2.

4https://pyconll.github.io/
5https://github.com/EmilStenstrom/conllu/

https://pyconll.github.io/
https://github.com/EmilStenstrom/conllu/


124

In order to compare the last three mentioned packages, we provide the benchmark results for UDon2
and Udapi in Table 1 on the same CoNLL-U file6 as in (Popel et al., 2017) ran on the same machine
having Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz on Ubuntu (x86 64) and Windows 10 (win32).

Package OS Memory Load Save Read Write Text Relchain

pyconll
Ubuntu 1683.1 12.88* 6.32 0.34 0.23 NA 0.47
Windows 876.4 10.97 6.23 0.38 0.23 NA 0.54

conllu
Ubuntu 1208.7 16.83 4.28 0.19 0.1 NA 0.25
Windows 707.2 19.11* 5.23* 0.22 0.09 NA 0.3

Udapi-Python
Ubuntu 756.0 19.88* 6.86 0.19 0.14 0.94 0.16
Windows 421.6 19.09* 8.51* 0.2 0.11 1.01 0.15

UDon2
Ubuntu 772.0 3.27 3.34 0.75 0.42 0.24 0.14
Windows 439.7 4.44 5.53 0.83 0.42 0.41 0.15

Table 1: Speed and memory comparison on cs-ud-train-l.conllu from UDv1.2 (68 MiB, 41k
sentences, 800k words). Memory is in MiB and all other benchmarks provide average time in seconds
after 30 runs on the computer with Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz. Load refers to
loading from CoNLL-U file, Save - to storing to the CoNLL-U file, Read - getting a form and a lemma
for every node of every tree, Write - changing a deprel for every node of every tree, Text - computing a
textual representation of a subtree induced by every root node of every tree, Relchain - finding nodes at
the end of a relchain for every tree. The values with star indicate experiments with a standard deviation
of more than 1 second.

4 Discussion and conclusions

Most of the current UD-compatible tools are focused on treebank developers, whereas UDon2 aims
at helping researchers explore the use of dependency trees for downstream applications, and hence is
optimized mostly for querying and interacting with CoNLL-U files. To the best of our knowledge,
UDon2 is the first package providing the possibility to both perform manipulations on dependency trees,
perform advanced transformations (such as GRCT, PCT or LCT), and compute convolution tree kernels.

UDon2 provides a superior performance on the majority of the benchmarks, except for Read and
Write. The reason is that these two benchmarks require using Python’s for-loops for C++ objects, re-
quiring a lot of type conversions between Python and C++. UDon2 tries to avoid this by offering various
query methods for common tasks, where looping is done in C++ as well (e.g. Text, Relchain, Load and
Save benchmarks), which brings evident performance gains. Optimizing UDon2 for working better with
Python’s loops is an ongoing work and contributions are welcome. We hope that UDon2 is going to aid
researchers in experimenting with dependency trees, and that it will be expanded with the help of the UD
community.

Acknowledgements

This work was supported by Vinnova (Sweden’s Innovation Agency) within project 2019-02997. We
are also sincerely grateful to both reviewers for the incredibly useful comments (especially Reviewer 1
for the most thorough review we have ever seen). We would also like to thank Martin Popel for helpful
discussions on the matter of benchmarking.

References

Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine learning, 20(3):273–297.

6https://github.com/UniversalDependencies/UD_Czech-PDT/raw/r1.2/cs-ud-train-l.
conllu

https://github.com/UniversalDependencies/UD_Czech-PDT/raw/r1.2/cs-ud-train-l.conllu
https://github.com/UniversalDependencies/UD_Czech-PDT/raw/r1.2/cs-ud-train-l.conllu


125

Danilo Croce, Alessandro Moschitti, and Roberto Basili. 2011. Structured lexical similarity via convolution ker-
nels on dependency trees. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language
Processing, pages 1034–1046.

Alessandro Moschitti. 2006. Efficient convolution kernels for dependency and constituent syntactic trees. In
European Conference on Machine Learning, pages 318–329. Springer.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Jan Hajič, Christopher D Manning, Sampo Pyysalo,
Sebastian Schuster, Francis Tyers, and Daniel Zeman. 2020. Universal dependencies v2: An evergrowing
multilingual treebank collection. arXiv preprint arXiv:2004.10643.

Siyao Peng and Amir Zeldes. 2018. All roads lead to ud: Converting stanford and penn parses to english universal
dependencies with multilayer annotations. In Proceedings of the Joint Workshop on Linguistic Annotation,
Multiword Expressions and Constructions (LAW-MWE-CxG-2018), pages 167–177.

Martin Popel, Zdeněk Žabokrtskỳ, and Martin Vojtek. 2017. Udapi: Universal api for universal dependencies. In
Proceedings of the NoDaLiDa 2017 Workshop on Universal Dependencies (UDW 2017), pages 96–101.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D Manning. 2020. Stanza: A python natural
language processing toolkit for many human languages. arXiv preprint arXiv:2003.07082.

Milan Straka and Jana Straková. 2017. Tokenizing, pos tagging, lemmatizing and parsing ud 2.0 with udpipe. In
Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies,
pages 88–99, Vancouver, Canada, August. Association for Computational Linguistics.


	Introduction
	Example use cases
	Accessing basic properties
	Multiword and empty nodes
	Querying
	Pruning
	Visualization
	Transformations and convolution tree kernels

	Related work
	Discussion and conclusions

