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Abstract

In this thesis, a utility based model for hedging European options is derived when
the volatility of the underlying is stochastic and when transaction costs are present.

Davis, Panas & Zariphopoulou5@M J. Control and Optimization. 31(2):470—

493) and Hodges & NeubergeRdy. Futures and Markets. 8:222-239) have ear-

lier presented such a model for constant volatility of the underlying, which implies
solving athree-dimensional free boundary problem for the option price. An opti-
mal hedging strategy for the option writer is also given by the boundaries of the
problem. Since solving this free boundary problem is computationally demanding,
Whalley & Wilmott (Mathematical Finance. 3:307—324) suggested using asymp-
totic analysis in the case of small transaction costs to reach simple expressions for
the hedging strategy. Although Whalley & Wilmott based their work on Datvis

al, the authors proposedftirent hedging strategies.

Following the approach of Davigt al in the presence of a stochastic volatility
gives a similarfour-dimensional free boundary problem for the option price, and
hedging strategies are derived using asymptotic analysis. The dimensionality of
the problem is further reduced by using a technique presented in Fouque, Papan-
icolaou and Sircarl(t. Journal of Theoretical and Appl. Finance. 3:101-142),

and the solutions are given as correction terms to the hedging strategies proposed
by Whalley & Wilmott and Davist al. The new stochastic volatility parameters
used in these correction terms can be estimated from observed implied volatility
surfaces and historical volatilities on the market.



Optionshedgning

Optimala strategier med stokastisk volatilitet och
transaktionskostnader

Sammanfattning

| detta exjobb harleds nyttobaserad modell fér hedgning av Europeiska képoptio-
ner, da volatiliteten for underligganden &r stokastisk och da transaktionskostnader
tas i beaktande.

Davis, Panas & ZariphopoulouSAM J. Control and Optimization. 31(2):470—

493) och Hodges & NeubergeRév. Futures and Markets. 8:222—-239) har tidi-

gare presenterat en sadan modell for konstant volatilitet, dar optionspriset ges av
ett tredimensionellt fritt-randvardesproblem. Ré&nderna till detta problem ger &ven
en optimal hedgningstrategi for optionen. Eftersom detta fria-randvardesproblem
ar berakningsmassigt svart att bemastra foreslog Whalley & WilnhédtHema-

tical Finance. 3:307-324) en I6sning av problemet via asymptotisk analys giltig
for sma transaktionskostnader. Denna asymptotiska analys ger latthanterliga ut-
tryck for randerna och dérmed den optimala hedgningstrategin. Trots att Whalley
& Wilmott baserar sin analys pa Davis o. a. féreslar dock forfattarna olika hedg-
ningsstrategier.

Genom att utveckla modellen i Davis o. a. till att innefatta stokastisk volatilitet
for underligganden far vi istallet ett fyrdimensionellt fritt-randvardesproblem dér
optimala hedgingstrateger harleds genom asymptotisk analys. Dimensionaliteten
kan dock ytterligare reduceras och via en teknik foreslagen av Fouque, Papanico-
laou and Sircarlqt. Journal of Theoretical and Appl. Finance. 3:101-142) erhalls
slutligen uttryck bestdende av korrektionstermer till strategierna i Whalley & Wil-
mott och Davis 0. a. Dessa termer korrigerar for den stokastiska volatiliteten hos
underligganden och kan enkelt skattas fran implicita volatilitetsytor och historisk
volatilitet observerad pa marknaden.
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Chapter 1

| ntroduction

Writing or buying an option always implies some exposure to financial risk. In
the case of a European call option, the buyer of a contract pays for the right to
buy a given amount of the underlying at a strike priceat the date of expir{'.

If the market price for the commodity exceeds the strike price, the buyer will of
course buy at the strike price and then sell the commodity on the market, and make
a profit. Since the contract gives the buyer the right, but not the obligation to buy,
he thus has the chance make an infinite profit and only faces the risk of losing what
he initially paid for the contract.

The writer, on the other hand, has an obligation to deliver the commodity to the
buyer at the contracted price and thus faces the risk of having to buy the commodity
at market price and sell cheaply to the buyer. This can in theory lead to infinite
losses, and the simplest method for a writer to reduce his/her risk is to own some
amount of the underlying him/herself.

Option theory thus focuses on how to determine a fair price of an option and how
the writer should hedge his risk via trading in the underlying. To determine what
a buyer is willing to pay, and how much a writer should charge, for an option, it
seems that something about the buyer’s and the writer’s attitude towards risk has
to be known. Thus, no unique price for an option can exist. However, the pub-
lication of Black-Scholes formula in 1973 [3] showed that, under certain assump-
tions, a unique option price and a hedging strategy that completely hedges away the
writer’s risk, does exist. Such a hedging strategy is referred to as being "perfect"”
and it turns out to be equal to holding the numhes % i.e. the derivative of the
option price with respect to the stock price, of underlying assets.

Although the theory, upon which Black-Scholes formula is based, has an appealing
simplicity, it has a main drawback: It is based upon continuous trading in the
underlying without any transaction costs. In real life transaction costs are always
present, and continuous trading will thus imply unbounded costs for the writer,
which no longer makes perfect hedging possible. Option valuation then has to be



preference-dependent.

Hodges & Neuberger [8] and Daves al [4] proposed a model, using measures of
risk preference, which gives an option price and hedging strategy based on max-
imizing utility. Their approach thus finds an option price that can be hedged in
an optimal sense to maximize the writer’s utility. The proposed hedging strategy
involves a band, centred on an ideal value, where the number of the underlying
asset is allowed to vary. This type of hedging techniques is often referred to as a
move-based-strategies.

The model presented in [8] and [4] involves solving a computationally demanding
three dimensional free-boundary problem, and to give a simple expression for the
hedging strategy, Whalley & Wilmott [14, 15] made an asymptotic expansion of
the problem valid for the case of small transaction costs. This revealed explicit
expressions for the boundaries of the problem.

In [2] the performance of the move-based-strategy presented by [14, 15] was com-
pared with the strategies of Black-Scholes [3] and Leland [11]. The strategy pro-
posed by Leland is built upon Black-Scholes model using a modified volatility.
Both [2] and [13], who also tested a dynamic programming approach by Lee [10],
concluded that Whalley & Wilmott’s strategy gave better results in a mean-variance
framework.

In the discussion above we primarily focus on traded commodities, but we can
also have a non-traded underlying such as a stock index or weather outcomes. The
writer will then simply pay the buyer an amount, depending on some index, at time
of maturity.

The theory presented here will solely treat European call options. This approach is
simple and can in many cases be extended to options with otheff fagiotions
as well as path-dependent options.

1.1 Constant vs. Stochastic Volatility

1.1.1 Black-Scholes Model and Delta Hedging

The most popular model for pricing and hedging derivatives was developed in the
early 1970s by Fisher Black, Merton Scholes and Robert Merton [3]. For their
contribution, Merton and Scholes received, in 1997, The Bank of Sweden Prize in
Economic Sciences in Memory of Alfred Nobel.

The Black-Merton-Scholes model is based on the following assumptions:
1. The underlying, for example a stock, has a price process described by an
[t6-process

dS(t) = uS(t)dt + o S(1)dZ (1) (1.1)
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where the constantg and ¢ are the drift and volatility of the stockZ(¢)
is a Brownian motion. Equation 1.1 states that prices are log-normally dis-

tributed i.e.
S(1)

109(5rgy) ~ #((k - o%/2)t, o%t) (1.2)

whereg(m, n) denotes the normal distribution with mearand variance:.

2. The price of an option is given bg(sS, ) and at the date of maturity= T,
we have a payfé function f (S, T) = g(5). For a European call option with
strike priceK the paydf function is given as

f(S.T) =max(§ - K, 0). (1.3)
That s, if S(T) > K, we make a profit o — K.

3. The market has no arbitrage opportunities. That is, given an interest rate
r, there can be nosk-free investments with a dlierent rate of return. The
amount in risk-free asseB(r) follows the deterministic process

dB(t) = rB(t)dt. (1.4)

From these assumptions one can construct a weighted risk-free portfolio of stocks
and options. The model states that for each written option one has to keep, at all
times,t € [0, T,

af

A(t) = %

stocks in the portfolio to make it risk-free. This technique is catlelda hedging
and assumes continuous rebalancing of the portfolio.

The derivation, which can be found in Appendix A, also gives the so called Black-
Scholes partial dierential equation for the option prigg.S, 1)

Uy rS% + TL6282=rf  0<1<T
(1.5)
f(S.T) =g(S).
For a European call option the simple solution to this equation is
f(S.1) = SN[d1(S.1)] — e "T DK N[da(S, 1)] (1.6)
whereN is the cumulative standard normg{0, 1) distribution and
2
di(S.1) = —={In(Z) + (r + ZNT - 1)}
a.7)

d2(S,1) = d1(S, 1) —ovVT —1t.
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The main drawback of this model is that it assumes continuous trading and con-
stant, or at least deterministic volatility. In real life all trades are associated with
transaction costs and continuous trading would imply unbounded hedging costs.
Several studies, for example [6, 7, 12], have also showed that the market tends to
have some features which can be better explained asswtotigstic instead of
constant volatility in the price process from Equation 1.1.

1.1.2 Implied Volatility

One of the main reasons for discarding the assumption of constant volatility is the
observation of an implied volatility surface. Estimating implied volatility involves
looking atobserved option pricesf,,s; on the market and solving the equation

f(S: t,o,T, K) = fobs (18)

for c. Here, f denotes the Black-Scholes price for the option.

Looking at diferent maturities and strike prices will in reality reveaffelient
volatilities (see Dumast al [5]), which clearly contradicts the assumption of con-
stant volatility. A solution surface to 1.8 would normally look as in Figure 1.1. If
the assumptions of Black-Scholes model were true, ploti{y 7) would yield a
constant surface. It is thus necessary to make some adjustments to the model.

Implied volatility surface

0.35
0.3
0.25

0.2

sigma

T-t (yrs) SIK

Figure 1.1. Example of an implied volatility surface.

One approach is “implied deterministic volatility” where volatility is modelled as

12



a deterministic function of the price proces§)

dS(t) = uS(t)dt + o(S,1)S()dZ(2). (1.9
This gives the generalized Black-Scholes equation

2
Y+ rS%+Lo(S.028%=rf
(1.10)
f(8.T) = g(S)
which has the advantage of both taking implied volatility into account and making
it possible to hedge away the risempletely by trading only in the underlying (see

[5D).

The main disadvantage of this approach is thé&allilty to produce stable implied
volatility surfaces that can be used over time. It absby uses derivatives data

and not price data to estimate the model parameters. Neither can it simulate the
behaviour of clustering volatility which is a phenomena observed on most stock
markets (see [6, 7, 12]). In real life volatility tends to have periods of high volatility
followed by periods of low volatility, so called volatility clusters or changes of
regimes.

1.1.3 Stochastic Volatility

Another way to simulate market behaviour more accurately is to adopt a mean
reverting stochastic volatility model as in [6, 7, 12].

In short, such a model can be described by the processes

dS(t) = uS@)dt + f(Y)S(1)dZ1(t)
(1.12)
dY (1) = a(m =Y (1))dt + BdZ(t)

whereZ(¢) is a Brownian motion correlated t6,, defined as

Z(1) = pZa(t) + V1= p2Z5(0) (1.12)
wherep is the correlation, an&'1(¢r) and Z»(¢) are independent Brownian motions.

The volatility process (Y) is here a positive increasing function of the mean re-
verting Ohrstein-Uhlenbeck proceggr).

This model has the following nice features that reflect observed market behaviour:

1. \olatility is positive

2. \olatility is fast mean-reverting but persistent, i.e. the volatility drift is pulled
towards the mean value and the volatility itself is clustering. An example
of clustering volatility can be seen in Figure 1.2.

13



3. \olatility changes are correlated to asset price changes. When volatility goes
up prices typically goes down. This is reflected by a negativehis correla-
tion causes a skew in the asset price distribution, which better reflects market
data than the ordinary lognormal distribution from Equation 1.1. In Figure
1.3 distributions of returns for fierent volatility processes can be seen. It

is evident that longer tails and thus a higher skew can be observed for the
stochastic volatility process.

Dotted line — constant volatility, solid line - stochastic volatility

S(t)

60
0

I I
0.05 0.1 0.15 0.2 0.25

sigma(t)

Figure 1.2. Example of stochastic volatility proces&=200, s =0.95,v=0.25,m =
log(c) — v2. T = 0.25 years.

Assuming stochastic volatility, and following the derivation of the ordinary Black-
Scholes formula in Appendix A, it is obvious that it is impossible to form a risk

less portfolio by trading only in the underlying. This follows from the use of two
independent Brownian motions.

In theory, one could hedge away the risk completely if volatility itself was a traded
asset. In the case of a constant market price of volatility yjgken it is possible
to derive a PDE corresponding to (1.11) for the pri€e .S, Y) (see [7]).

14



Distribution of returns: constant volatility case
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S(E+1)/S(t)

Distribution of returns: stochastic volatility case
600 T T T T

No. of hits

0.85 0.9 0.95 1 1.05 11 1.15 12
S(t+1)/S(t)

Figure 1.3. Distributions of returns

1.2 Hedging with Transaction Costs

As mentioned above, continuous hedging would involve enormous or even infinite
trading costs. Hence, it is necessary to rebalance in discrete time steps, which
violates the assumptions of the models above and results in a hedging error. The
gain from lower transaction costs thus results in an increased risk.

The framework for hedging in the presence of transaction costs can be divided into
two main categories, time-based and move-based strategies. The general objective
is to minimize the variance of the hedging error given some accepted level of trans-
action costs. The hedging error is defined as tffiedince between the replicating
portfolio and the payk of the option.

Time-based strategies involve rebalancement of the portfolio at equally distant
dates, while the rebalancing in move-based strategies is controlled by moves in
the underlying asset.

We will here focus on a move-based method proposed by Davis, Panas and Za-
riphopoulou [4] and further developed by Whalley & Wilmott [14, 15]. We will
briefly present the method in the following sections, and the method will be thor-
oughly derived for the stochastic volatility case, in the next chapter.

15



1.2.1 Utility Theory

The model presented by [4] is based on a maximized utility approach, that is, the
writer wants to find a hedging strategy that maximizes the expected utility of his fi-
nal wealthi?”. In order to make things clearer we will here discuss some important
properties in utility theory.

A utility function U is used as a measure to make a rational choice between the
different strategies available to the writer, and ranks the alternatives according to
the motto “more is better”. This motto places one general restriction on the utility
function: it has to be an increasing continuous function.

Now, consider that we face two alternatives of wealth: One with a deterministic
outcomeW, and one with a stochastic outcomi&;. Also assume thalV/, =
E(W;). Which alternative should we choose?

In utility theory, this answer can only be determined by the concept of risk aversion.

Risk aversion tells us if someone is “risk-seeking”, “risk-neutral” or “risk-averse”.

The definitions are:

1. Arisk-seeker has a utility function such tHa(E(W)) < E(U (W)).
The risk-seeker prefers the stochastic alternative.

2. Arisk-neutral person has a utility function such tbd (1)) = E(U (W)).
The risk-neutral is indferent between the two alternatives.

3. Arisk-averse person has a utility function such tHiae(W)) > E(U(W)).
The risk-averse prefers the deterministic alternative.

To determine the degree of risk aversion, we define the absolute risk aversion func-
tion, which measures the risk aversion for a given level of wealth,
U//(W)

uw)

ARA(W) = (1.13)

In the future we will only use the constant risk aversive exponential utility function
UWw)=1-e"". (1.14)

The degree of risk aversion here equyalnd is independent of the level of wealth.
A largey thus indicates a higher degree of risk aversion.

1.2.2 The Utility Maximization Model

Consider an optimal control problem, where the writer of an option has to allo-
cate money between risk-less investmeB(g) and the underlying security, here

16



a stock,S(r) over the time interval [OI'] to maximize his expected utility of final
wealth. The number of shares invested in the underlying is described by the control
functiony(.S, #), which is restricted to a set of all possible trading stratefjieEhe
problem can then be described as

maxE[U (W (T))]. (1.15)
yeT

To derive an option price we define two portfolios. One containing stocks and risk
free assets, and one containing stocks, risk free assets and a short position in a calll
option. We denote the respective portfolios with indeandwo, indicating “with”

or “without” an option position. For each portfolio we then have a value function

Ji(t, S, B;,yi) = maTXE[U(I/V,-(T))] i =w,wo. (1.16)
ye

This is actually a conditional expectation givélir) = S, B(r) = B, y(t) = v,
but to keep the notation as simple as possible we will just write as in (1.16) in the
future.

The final wealth of the portfolios, in the case of writing a European call option with
strike price K, are

yiS+ B —k(S,y;)) ,i=wo
Wi(T) = (1.17)
y,-S+B,-—k(S,y,-)—maX{S—K,O} Ji=w

where the variablé& (S, y;) denotes the transaction cost when tradipghares at
the pricesS.

We now define the minimum initial wealth that delivers a non-negative maximum
expected utility of final wealth as

Bi=inf{B:J,(tr=0,S B, y=0)>0}. (1.18)

If the writer starts with a portfolio only containing money invested in the risk-free
asset, and possibly a short position in an optiBp,is the invested amount for
which the writer isindifferent between doing nothing and following the optimal
strategy. Davi®t al [4] proposed that the option value then could be expressed as
(see Section 2.6 for proof)

P =B, - B,, (1.19)
and the hedging strategy proposed by [4] to achieve this price is then
y(S.1) = yu(S.1) (1.20)

wherey, is the optimal control strategy for the portfolio with an option obligation.
In [14, 15] the control strategy proposed is

V(8. 1) = (S, 1) — ywo(S. 7). (1.21)

17



The reason for taking theftierence is unclear, and we will later compare these two
strategies against each other.

Using the exponential utility function (1.14) it can be shown that Equation 1.16
give rise to a Hamilton-Jacobi-Bellman equation. The original derivation in [4] is
almost identical to the one found in next chapter. From the HIJB equation three
optimal strategies can then be determined. This is summarized in a variational
equation

min{ V, = (S + %), [V, = (S + ¥)].
(1.22)
2¢2
Vi—rV + uSVs + 5-(Vss — 5 V<)) = 0

where V' is the maximized utility of wealth held in stocks only, aé¢, 7) =
e~"T1 is a discount factor.

The boundary values to (1.22) are given as

yi(S, T)S(T) — k(S,y:(S,T)) ,i=wo
Vi(T) = (1.23)
yi(S. T)S(T) — k(S, y;(S.T)) —max{.S — K,0} ,i=w.

This variational equation is a free boundary problem, consisting of thfferett
solution regions in.§, y)-space at time, as seen in Figure 1.4. One where it is
optimal to sell stocks, one where it is optimal to buy stocks and one where it is
optimal to do nothing. The proposed option value is now

P=Vy—V,. (1.24)

Solving a free boundary problem in three dimensions is computationally expensive,
and [14, 15] hence proposed making an asymptotic expansidhtofreduce the
complexity of the problem. Assuming proportional transaction costs

k(S.t,y) = kSy(S, 1) (1.25)
of order 4, the proposed expansion is

V(S.t.y) = yS+Vo(S.t.y) + AY*V(S.1,y) + ... (1.26)

which reveals the option price

P(S.t) = VES(S,0) + A2 = V) + ... (1.27)

whereV 25 is the solution to the ordinary Black-Scholes equation with boundary
value
VBS(S,T) = max{S — K, 0} (1.28)

18
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30! Sell-region

0 10 20 30 40 50 60 70 80 90 100

Figure 1.4. Solution regions: If §, y) is located outside the non-transaction region
the number of shareg, will change until a boundary is hit. The dashed line in the
middle indicates the ideal number of shares when no transaction costs are present.

and Vzi is the solution to a perturbed Black-Scholes equation.

The main result from the asymptotic expansion is that it yields expressions for the
boundaries between the solution regions. The optimal hedging strategy, found by
[14, 15], for each portfolio is to do nothing if

Yi+ 07 <yi(S. 1) <y +0f (1.29)

whereQ; andQ; denotes the upper and lower boundaries ghdenotes the ideal
strategy in case of no transaction costs. The ideal strategy is

VSI?S + 5(1,T)(u—r)

ySo? d=w
VIS 1) = (1.30)
s T
and the boundaries are given by
« \1/3
O =0 = <3Ks§y(z,r) %y) . (1.31)
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According to the strategy presented by Dastisl [4] in Equation 1.20, the center
of the non-transaction region is

6(t. T)(u—r)

o :VBS+
y yW S }’SUZ

(1.32)

and the boundaries by

0 =0y. (1.33)
On the other hand, according to the Whalley-Wilmott strategy [14, 15] in Equation
1.21 the center is given by

k

Y =y = Ve = V;?S (1.34)
and the boundaries are
Q = Qw - Qwo~ (135)

In Figure 1.5 an example of hedging according to the strategy proposed by [14, 15]
is showed.

Stock process
104 T T

s@)

0 0.05 0.1 0.15 0.2 0.25
t(yrs)

Hedging strategy
T

15 T

y(t)

— WW-strategy
— - Boundaries
BS-delta

0.05 0.1 0.15 0.2 0.25
t(yrs)

Figure 1.5. Example of hedging between boundaries. We see that for Whalley-
Wilmott's strategy hedging strategy the number of shares, vy, is held constant until a
boundary is hit.

It is worth noting that ag goes to infinity the price equals the Black-Scholes price,
and the hedging ratio is equal to the option delta.

More about the expansion can be found in Chapter 3.
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Chapter 2

Utility Theory

In this chapter we will derive the “utility maximized” approach introduced in sec-
tion 1.2, but assuming that volatility is in fact stochastic and mean-reverting.

2.1 TheModd

Consider the problem of how a writer of an option should hedge his position in
the underlying to minimize his risk. If he does not hedge his position by holding
some amount of the underlying he will face a great risk of losing money at the time
of delivery. On the other hand, if he hedges continuously he will in practice get
enormous trading costs.

A model to face this problem for European stock options was, as mentioned in
Chapter 1, proposed by Davis, Panas and Zariphopoulou [4] in 1993 by using a
maximal utility approach along with the concept of stochastic control. We will
here derive a similar technique but also assume that the stock price process has a
mean-reverting stochastic volatility contrary to the constant volatility assumption

of [4]. The volatility is given as a functiorf (Y) of a stochastic volatility process

Y (1).

First, define as in [4]:
1. One portfolio with value functiori,,, containing y,,,(¢) stocks and the

amountB,,,(¢) in riskfree assets (cash). The stock price is driven by a
stochastic proces$(z).

2. One portfolio with value functio®,, containingy,,(t) stocks, the amount
B, (?) in riskfree assets and a short position in an option with strike Kice

3. A concave increasing utility functioti with U (0) = 0. The utility function
defines the writer’s attitude towards risk.
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Indexw andwo thus indicates if the portfolios contain a short position in an option
or not.

The final value at time of delivery for each of the two portfolios is given as

B+c(y.S) i =wo
W(T, S, B,y.Y)=14 B+1s<kjc(y.S) (2.1)
+1lissk)lc(y - L S)+K] .i=w

wherec(y, S) denotes the cash value of liquidating our stock positions. The cash
value is given as:

_J X+x)yS .y<O0
C(y’S)_{(l—K)yS >0 (2.2)

Note that this expressionftirs slightly from the boundary values given in (1.17),
since we have restricted the transaction costs to be proportional.

The model by [4] tries to maximize the writer’s utility of wealth at time of delivery
by finding an optimizing trading strategy fe(r) and B(r) over the time interval
[0,T]. To achieve this we have to know the state dynamics of the problem.

2.2 Market Dynamics

The state dynamics of our market model are given as

dB = rBdt — (1 + k) SdLpyy + (1 — €)SdLyen
dy = dLbuy — dLgey
dS = uSdr + f(Y)SdZ,

dY = a(m—Y)dt + f(pdW + /1 - p2dZ,)

where the variables are:

B(t) - amount invested in bank (cash) with interest rate r,

y(t) - number of stocks,

S(¢) - stock price process,

f(Y) - volatility,

Y (¢) - volatility driving process,

Ly (1), Lge(t) - cumulative number of stocks bought or sold up to time
Z1(t) and Z»(r) are independent Brownian motions.

(2.3)

and the constants are:

Kk - bid/ask spread i.e. the transaction cost per unit of traded stock,
u - drift of stock price process,

« - rate of mean reversion af(),
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p - volatility of the volatility driving proces¥ (¢) and
p - correlation betweet; () andZ = (pZ1 + V1 — p2Z>).

Note that the pairB(r),y(r)) is the solution to the first two equations in (2.3) corre-
sponding to the processeby(, (t), L. ()) which can be seen as control processes.

Ly,y (1) and Ly, (r) are both monotone increasify -valued controls with ;(07) =
0. The index,j, here belongs to the sétell, buy}. A jump in the beginning is pos-
sible soL;(0) can be positive.

2.3 Admissible Controls

To ensure a solution to our control problem we must put two restrictions on the
control processes;(t).

1. L;(r) must be non-decreasing right continuous processes adapigdite
c-algebra generated by the price proc8¢s.

2. Due to the existence of transaction costs, the number of sp@jemnd con-
sequently the controls ;(r) must have finite variation.

2.4 Value Function

Our objective is now to find a trading strategy, i.e. to fiB@) andy(r) (or equiv-
alently L;(r)) over the time interval [OI'], that maximizes the terminal utility of
each of the value functions.

This is carried out by defining the following value functions for the portfolios
Ji(t, S, B;,y;,Y)= sup E[UW;(T)] i=w,wo. (2.4)
Lbuy:Lsell

So far nothing else other than the inclusion of an extra varighd#fers from the
original problem derived in [4].

2.5 Hamilton-Jacobi-Bellman Equation

From Equation 2.4 we see that the dynamic programming principle gives rise to
a Hamilton-Jacobi-Bellman equation. To derive the HIB-equations, [4] defines a
smaller class of trading strategies such thafr) are absolutely continuous pro-
cesses given by
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Lj(l) :J;dlj(f)’ 0S11<k (25)

where!; are uniformly bounded by < co. Whenk — oo this set of admissible
controls will approach the set of admissible controls defined in Section 2.3.

From (2.4) we see that the portfolios have the same corresponding Hamilton-
Jacobi-Bellman PDE but with fierent boundary values.

The PDE is given by

max {[Jy — L+ &) STpllhy = [Ty — (1= K)SJB]ISQH}

OSlbuy:lseHSk

2¢2
+J;+rBJp+ uSJs + @Jss (2.6)

2
+a(m—Y)Jy + f(Y)pBSJIsy + L Jyy =0

and the boundary values by
J(T.S,B,y,Y)=W{(T,S,B,y.Y) (2.7)

for each portfolio.

We can easily derive three optimal trading strategies:

1. [J, - (1-x)SJg] <0and [, — (1 +)SJ5] <0
= Iy =0, lsen = k

2. [J,-(1-«)SJg]>20and |, — (1+«)SJp] >0
= Ly =k, lsey =0

3. [/, —-(1-«x)SJg] <O0and P, — (1 +«)SJg] >0

= lbuy = lsen = 0

The first case implies selling stocks at the maximal kative second buying stocks
at the maximal raté, and finally doing nothing. All other strategies are non-
optimal since they imply buying and selling at the same time.

From Equation 2.6 we see that Rs— oo the three trading strategies imply an
equation valid for each strategy:

1. Selling is optimaks> J, — (14 «)SJp =0

24



2. Buying is optimaks> J, — (1 -«)SJp =0

3. Doing nothing is optima&

2
Jss+a(m—Y)JY+f(Y)PﬁSJSY+ﬁ—JYY =0

Ji+rBJp+uSJs+ 5

f(Y)2S?
2

Since none of these equations can hold at the same time they will form a free
boundary problem dividing theS( y)-space into three regions, the sell region, the
buy region and the non-transaction region. This can be summarized in the form of
a variational equation

max{ Jy— (L+x)STp. —[J, — (1 — k)SJ5].
J,+rBJg+ puSTs+ L0 yo (2.8)

+a(m—Y)Jy + f(Y)ppSTsy + ﬁ—,jJYY} =0
with boundary value
J(T.S,B,y,Y)=W(T.S,B,y.Y) (2.9)

for each of the two portfolios.

2.6 Option Pricing

To determine the option price we define as in [4]
B; =inf{B;|J:(0, S, Bi.yi =0,Y) > 0}. (2.10)

which is the minimum initial wealth which delivers a non-negative maximum ex-
pected utility of final wealth for each of the portfolios (following an admissible
trading strategy starting with initial capit#; andy; = 0 shares).

B; has the following interpretation:

1. For the portfolio containing a short position of an option the writer is indif-
ferent between “doing nothing” and “acceptilg and writing the option”.

2. While for the portfolio containing only stocks and riskfree assets the writer
is indifferent between “investing the amounB,,, and following the utility
maximizing trading strategy” and “doing nothing”. Note ti}, is negative
sinceJ;(t, S, B;,y;,Y) > 0.
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The option writing price proposed by [4] is then given by

P =B, — B,,. (2.11)

The primary justification for this price is that, for constant volatility, it coincides
with the Black-Scholes price in the case of no transaction costs. [4] also showed
that if a self-financing replicating portfolio exists, i.e. a strategy starting with
(B(0), ¥(0)) = (B, 0) and ending withB(T'), »(T')) = 1;s>k}(—K. 1), the price is
given by P = B. The proces¥ (¢) does not ffect this result.

To see this we give a heuristic proof:
1. Letz be an element of the fornB(z), y(¢)) belonging to the space of admis-

sible strategie§ (B) starting with (B(0), y(0)) = (B, 0). Assume thaf (B)
is a linear space anfj(B) are continuous and strictly increasing functions.

2. SinceT(B) is a linear space a strategye T(B) can be divided into two
arbitrary separate strategies= =1 + 7, wherer; € T(B1) andz; € T(B2)
with B = B; + Bo.

Let z; be a self-financing replicating strategy, i.e. a strategy starting with
(B1.0) and ending with {s-x(—K, 1), and letB,, = B.

This gives that

0 = J(B) = sup.ey(p) E[U(B(T) + 1s<k)c(yw(T), S(T))
+1s>k) (K + c(yw(T) — 1, 5(T))))]
= SUR,cq(p-py) E[U(BL(T) + Bao(T) + 1is<k)c(ya(T) + y2(T), S(T))
+1is>k) (K +c(yu(T) + y2(T) = 1, 5(1))))]
= SUR,e7(s-By EIU(B2(T) — Klis>k) + Lis<kyc(y2(T), S(T))
+1is>k) (K + ¢(y2(T), S(T))))]

= SUR,e7(p-B,) E[U(B2(T) + c(y2(T), S(T))]

Jwo(B — B1)

SinceJ,,(B) = J,,,(B — B1) = 0 andB = B,,, we haveB — B; = B,,, and

P = B,,— B,, = B1. The price of the contract is thus the same as the amount
invested in the replicating portfolio. We also see that the stratgegyhich
leads to the priceBy is given byr; = 7 — 72 = 7y — Tyo-
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Another explanation for the price proposed by [4] is that the cash holdings when
writing an option involves one component to hedge the claim and one to play the
market. The second component must thus be subtracted to achieve the correct
price.

2.7 Reducing Dimension

Summarizing the last sections, we now have a free boundary problem in five di-
mensions. To reduce the problem one dimension we let the utility function to be
U(x) = 1- e 7 and rewriteJ; according to [14] in the form

__Tr (B d .
Ji(t, S, Bi,yi, Y) = 1= ¢ wm Batis3.0) (2.12)

whereV; is the expected value of the utility maximized wealth of the risky asset
discounted to time, ands(t, T) = e~ is a discount factorB; is the amount
held in the risk-free asset at time

This transforms the problem to

min{ V, — 1+ )8, —[V, — (1— x)S].
2¢2
V,—rV+,uSVS+%(VSS—ﬁV§)+a(m—Y)VY (2.13)

2
+F IS WVsy = sty VsV) + 50y — V) | = 0
with boundary values
c(y. S) Ji=wo

Vi(T, S,y Y) = 4 Lis<kje(y. S) (2.14)
+1isskylc(y —LS)+K] .i=w

From (2.12) it is evident that iffB;|J; (0, S, B;, y; = 0,Y) > 0} is achieved only
by letting B, = —V;. Thus we haveB; = —V; and the following option price

P =B, — By = Vyo — V. (2.15)
Note that ify(T) is restricted to be positive we get

(1-x)yS i =wo

(1-x)yS—max{S— K.0} + Lissk)kS ,i=w (2.16)

V,-(T,S,y,Y)={

and
VWO(T, S, y, Y) - VW(T, S, y, Y) = max{S - K, 0} - 1{5>K}KS. (217)
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Chapter 3

Asymptotic Expansion

In the asymptotic expansion we focus on the non-transaction region for each port-
folio i.e.

2¢2
Vo=V + usVs + L5 (Vs — 5LV + a(m = Y)Wy
(3.1)
2

+f(V)pBSVsy — stzVsVv) + 5 vy — s Vi) = 0.
In Section 3.1 we will make an asymptotic expansion in the transaction costs, to
find a hedging interval which determines whether it is necessary to rebalance or
not for all times [0T]. In Section 3.2 an expansion in the rate of mean-reversion
is made to eliminate the non-observable quantity For the interested reader,

the complete derivation of the results presented in this chapter can be found in
Appendix B.

3.1 Asymptotic Expansion in A
To reduce the dimension of the problem we will try an asymptotic expansidn in

The A term is introduced to measure the size of transaction costs. When rebalancing
there is an associated caqtS, y) = «Sy of sizeO(4).

As in [14, 15] we propose the following expansionin
V(S.t.y.Y) =yS+Vo(S.1.y.Y) + AY* V(S 1, y.Y) + ... (3.2)
From (2.16) we also note, by comparing ordersi gfhat

0 i=wo

(T, S, yi.Y) = {—max{S—K,O} Ji=w 53
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so the boundary value ferl})’ is the same as in the Black-Scholes valuation of a
European call option.

The reason for expanding in orders of 44 may seem somewhat unclear, but

it has be shown to be appropriate in Atkinson & Wilmott [1] among others. An
expansion in fractions of less thari/4 will cancel out terms leaving us with the
same expansion as here. One explanation for this is that the width of the hedging
interval around the ideal amount of shares held in absence of transaction costs is of
orderO(AY4).

3.1.1 Changeof Variables

Since, as mentioned above, the hedging interval is of apdet/*) it is suitable to
make the transformation

y(S, 1) = y*(S. 1) + 140 (3.4)

around the ideal amount of stocks,, in our portfolio. The variabl® is a dimen-
sionless and measures théelience between the number of shares actually held in
the portfolio and the ideal amount held in the absence of transaction costs. We also
rescale our transaction cost function as

k(S, AY*Q) = AK(S, Q) (3.5)
so that the transaction cost functi&f(S, Q) = kSQ is of sizeO(1).
As in [14, 15] the change of variabl@s(S,t, v, Y) — V(S,t, Q,Y) implies that

9, a-Ua %

dy
x — &AMy x=0S
2 2 2 2 (3.6)
d 9 —1/4 f) d —2/4( %x\2 &
352 7 52 / (J’ikg*g;@‘i'ZYiks‘aQas)‘i'/l / (ys) 202
92 92 -1/4 0 92
3557 = sy — A (Vsy 30 + Ys3005)
which transforms (3.2) to
V(S.1,0.Y) = (3" + AY*0)S + Vo(S5.1,0,Y)
(3.7)

+AY4V(S,1,0.Y) + ...

Denoting the boundary between the sell region and non-transaction reg@h as
and similarly the boundary between the non-transaction region and the buy region
asQ~, one sees from (2.13) and the change of variables that

Vo(S.1,0%,Y) = (AY* + Ak)S (3.8)
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and
Vo(s 1,07, Y) = (AY* - Ax)S. (3.9)

One also has a smoothness condition at the boundary

VQQ(S, t, Q+, Y) = VQQ(S, t,0", Y) =0. (310)

3.1.2 Comparing Ordersof 4

Changing variables in (3.1) according to (3.6), and inserting (3.7) followed by
comparing orders of yields the following main results (the complete derivation
is found in appendix B):

1. From theO(4~%/%) equation we see thaf, V1, V> and V3 are independent
of Q and thus

V(.S 0,Y)= (v +A4Q)S + Vy(S,1,Y)
+AYAVL(S. 1, Y) + AY2V5(S. 1, Y) (3.11)

+A343(S. 1, Y) + AV4(S.1,0.Y) + ...

2. From theO(4Y#) equation we get an expression for the ideal number of

stocks
6(t, T)(u—r)

yS(F(Y)?)
We have here used the averaged volatility with respect to the invariant distri-
bution ® of the OU-process

V(S 1) = =(Vos(S.1,Y)) + (3.12)

(e <]

(f(Y)) = J f(N®(Y)dY = 0.

—0o0

The 0(4%*) equation also states thit = O.

3. TheO(4%*) combined with¥; = 0, can be solved fo¥,;. The boundary
conditions (3.8), (3.9) and (3.10) will then reveal the boundaries between
the solution regions

3860 T)(v5)2 \ /3
0" =-0 = < (IZZ)(yS) ) . (3.13)

Thusify* + O~ < y(S,1) < y* + Q*, we are in the non-transaction region.
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3.2 Asymptotic Expansion in /e

We now focus only on th&p term to achieve a complete expression for the hedging
interval, and expan#fy ine = 1/« as

Vo = Voo + VeVor + Voo + €3/2V03 + ... (3.14)

By inserting (3.14) in the equation derived from comparing terme@f) in our
A-expansion we reach the following conclusions (see Section B.2 for details):

1. Voo andVp; are independent af.

2. Voo is the solution to Black-Scholes equation plus the particular solution

st.T)(u—-r)> 1

Voo = —Vps + (T —1) 2 <f(Y)2> (3.15)
with boundary values
i 0 =
VaoT. 8.y, Y) = { _ max(s — K0} i _ ::0 (3.16)

derived from Equation 2.16.

3. DefiningVy; = veVo1, the solution td/ is given as

L2(0)Vo1 = A1(25%Vooss + SVoosss) + Az(u — r)S?Voosss

ST (u=r)® _ S(T)(u=r)?, 1 (3.17)
) H—F ) H—T
HAsT =~ T o)
with boundary valud701(T, S,y:,Y)=0,and
_ PV ’
Ay = =[P
Ap = 2 (&y (3.18)
V2a\ T -
Az = Z=(%).

The definition ofVp; may seem unclear, but it simply moves 1/« to the terms

A1, Az and A3z on right side of (3.17). In Section 4.2 we shall see that this step
has a big advantage: It is no longer necessary to give an estimate of the stochastic
volatility parametek to calculate the first two terms ¥y. Instead one can estimate

the parameterd 1, A, and A3 from implied volatility data.
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3.3 Summary

In conclusion, from the asymptotic expansions, we derived the optimal number of
shares to hold in our portfolios to be

i (¢, T)(u—r) .
_VOS + )/S—Ez , =W

yi(S.1) = (3.19)
8(t.T)(u=r)
ySo?

wheres = /{f(Y)?) is the dfective volatility, and where

, I =wo

Vos = Voos + Vors + - - (3.20)
From the asymptotic expansiondrwe saw that

s(t.TY(u—-r)?, 1

Véo =—Vgs + (T - l‘) 2y <f(Y)2

) (3.21)

with boundary value

; 0 i =wo
VoolT S i) = { —max{S—-K,0} ,i=w (322)
Vi, is given by the equation
= st T)u—-r)® 60T (u-r?, 1
L@V = H(S, 1) + As - ( ) (3.23)
o1 2rya f(Y)?

with boundary value& (T’ S, y;) = 0, and

H(S.1) = A1(25%V{oes + SWVinss) + A2(u — r)S? Vg (3.24)

This is a perturbed Black-Scholes equation, and the solution is simply

5. T)(u—=r)® 80 T)(u— r)2< 1
2rva f(¥)?

Vi = —(T—t)(H(S, £)+ As >). (3.25)
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Chapter 4

The Complete Model

We will here summarize the results from previous chapters.

4.1 TheOptimal Strategy

For the writer of an European call option we have derived an optimal hedging
strategy based on the price moves of the underlying asset. The strategy is based on
the assumption that the volatility of the underlying stock price is mean-reverting.
This is shown to be the case in studies on both the S&P500-index (see [6, 7]) and
the Swedish OMX-index (see [12]).

Assuming that the writer has a risk aversion fagt@nd invests iry shares, it is
optimal to trade so that

Y +0 < y(S.1) <y + 0" (4.1)

Thus, at each moment, we have to calculate the boundaries and the ideal amount
to be held in our portfolio in the case of no transaction costg.dbes not satisfy

the above criteria we change via selling or buying shares, until we reach the
boundaries and condition above is satisfied. This procedure has to be carried out
throughout all times [0].

Now, remember that [4] and [14, 15] derivedfdrent hedging strategies (see Sec-
tion 1.2.2). In [14, 15] a hedge according to théelience between the two port-
folios was proposed, while [4] only uses the hedge for the portfolio with an option
obligation.

The ideal amoung*, proposed in [14, 15], using theffBrence between portfolios,
is then given by

YIS ) = VES(S ) - V(S 1) + ... (4.2)
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while the ideal amount, proposed in [4], given by the portfolio with an option
obligation is

6. T)(u—r)

“(8.1) = VES(S 1) — V(S 1) +
V(8. 1) =V (S. 1) = Vs(S.1) 562

(4.3)

The first term in the two equations is the Black-Schad¢s, r) calculated from the
Black-Scholes equation with averaged volatility ~—

ovES 1, ,0%VBS oV Bs
~o%S S =rVBS, 4.4
o 277 sz T T (44)

with boundary value

VB3 (S, T) = max{.S — K, 0}. (4.5)

The second term is given by

0H (S, 1)

Vs =—(T —1) -5 (4.6)
where
H(S,1) = —A1(2S?VES + SPVES) - Ao(u—r)S?VES (4.7)
and
= @(fqb >
(4.8)
= 2L,

Using only the first two terms in (4.2) and the first three terms in (4.3) , the respec-
tive boundaries are given by

_ [ 3eSs(T) ()2 \ Y3
0" =-0 = (2—y~V>

(4.9)
1/3 _
<3xsgy(rT)> <|V£§S—VSS 5(%)(5 n2/3 _ |5(ty?(f,' r)|2/3>
and
. _ (kS50 T2\ Y3
0" = = (2P
(4.10)

1/3 — ) \2/3
_ <3Ks£sy(z,r)> (IVES — Vg - 8(t.1) (u— )I) /3

52_2

In reality one will have to us@2*| and|Q~| in (4.1) since the boundaries in (4.9)
occasionally may change place with each other.
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4.2 Using Implied Volatilities

To calculate a strategy for a given level of risk aversion we would, according to
(4.7) and (4.8) need to estimate the parameieranda in the stochastic volatility
process, and calculate {f¢') and<%’). This is a cumbersome procedure which
will result in inaccurate and unstable estimates.

Luckily, in real life, we only need to estimate the parametersl; and A, from
market data. To see this we follow a method from [6, 7] where using implied
volatility yields estimates for botd; and A».

From (1.6) and (1.7) we can derive the following expressions

vES = N(dy) (4.11)
BS e_di/z 2
| — 4.1
55 Sen2a(T —1) (*4.12)
_,—d%/2 d
BS ° 1 L 4.13
Vsss SZE\/Zn(T—t)< * E\/T—t> (449
where _2
1 S c
di(S. 1) = E\/ﬁ{ln(f) +(r+ 7)(T -1}. (4.14)
Inserted into (4.7) this gives
—Se~i/2 dy
H(S )= ———(A1(1- ———) + Ao(u — 4.15
(5.1) Em( (1-==)+ak=-n) @19
and
_ —Se~ /2, g,
V(S.1) = ﬁ@l? — VT —1(Ay+ Ag(u - r))). (4.16)

Now, remember that the implied volatility, was derived from the equation

V(S,t,I,T,K) = Vs (4.17)

and expand = c++/el1+. .. inthe left-hand side and use the approximated price
V = VBS + v on the right-hand side to get

oV BS

— .. =Ves+V +... (4.18)
do

VEBS 4+ Vel

which leads to
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o aVBS -1
Vely = V( _ ) (4.19)
(o}
and the expansion
_ =0V BS\1
I=a+V< — ) o (4.20)
(o
Using (4.16) and
VES  Se~ /2T 7 4.21)
oc V2 ’
leads to
— n(S 2( Ar+ Az (u—r
I :G—%—%<r+§>+w+0(€)
(4.22)
_ ln(%) b+ O
=aq—y +b+ (e)
where
_ _2A4
a=-7
(4.23)

— 2 o
b =0—%<r+7>+6%(A1+A2(;4—r)).

c

Up to orderO(e), I is thus an #ine function of the log-moneyness-to-maturity-
ratio (LMMR), anda andb can be fitted to implied volatility datad; and A, can
then easily be calculated from (4.23).

4.3 Estimating c and u

In previous section a procedure for estimatiigand A, was presented. The only
parameter left to estimate is now the averaged volatlignd the difusion factor

u.

From (1.11) the stock price values can be approximated as realizations of the Euler
discretization

AS, = Spy1 — S = Sn(uAr, + f(Yn)"l% V Aty) (4.24)
and the volatility process as realizations of the backwards Euler discretization
AY, = Y1 — Y, = a(m — You1)At, + p(ont + /1 p2p2)\/At,  (4.25)

wheren! and#? are independent sequences of independéftt 1) random vari-
ables. The timesteps of the data grewheren = 0,1, 2... N with uniform spac-
iNgSAt, = ty1 — ty.
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The dtfusion factoru can the be estimated by

L 1Nz‘:l AS,
=N
n=0

and the averaged historical valadoy

whereD, is the normalized fluctuation sequence

n -

(AS,,

—AAz>
S, HAt,
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(4.28)



40



Chapter 5

Numerical Simulations

To determine theféciency of the diferent methods, they were tested against each
other in a mean-variance framework.

5.1 TheMean-Variance Framework
The methods were tested in a mean-variance framework in the following manner:

1. The stochastic volatility parametersv, p, m andY (0), the stock process
and option parametens, r, S(0), K and the cost parametexrsandy were
set.

2. N time steps were simulated f8i(r) andY () according to (4.24) and (4.25)

3. An exponential volatility functiory (Y) = e was assumed. This is a com-
mon assumption, used in [6, 7, 9], but other positive volatility functions can
be used as well.

4. The premium for writing an option was set to the Black-Scholes value using
the averaged volatility = ¢. In fact, the premium depends on the particular
hedging strategy, but using the same premium for all methods is better for
comparison.

5. For all times,r € [0,T], the claim was hedged according to the chosen
strategy and the total hedging cost was calculated for each path.

Monte Carlo simulation of step 1-5 was then performed to calculate mean and
variance of the total hedging cost overealizations.
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5.2 Exponential Volatility

From assuming exponential volatilitg(Y) = ¥ in Equation 1.11 some useful
properties from the mean-reverting Ohrstein-Uhlenbeck process emerge:
1. The average volatility can be derivedas: e+

2. Our implied volatility parameters are given as

_ PV N PV (L 3m+5v2 /2 _ 3m+9v?/2
AL = B (f¢) = L=(e e )

(5.1)
\% / v 2 2
Az = \55(% = fﬁ(emw /2 o /2)

Thus, to make things simpler, we use theoretical expressions,fdr and A,
when calculating correction terms in the simulations.

5.3 Reaults

For all tests, if not otherwise mentioned, the parameters were set according to Table
5.1 and 5.2. We are thus hedging a short position in a European at-the-money call
option with three months to maturity.

Parameter Value
a | 200
v | 0.25
p | -0.5
c|0.1
m | log(c) — v?
Y(O) | m

Table 5.1. Stochastic volatility parameters: The parameters are similar to observed
values from OMX-data (see [12]). Note that we have a negative correlation factor

5.3.1 Constant Volatility and No Transaction Costs

First we compared the methods proposed by Whalley & Wilmott [14, 15] and
Davis, Panas & Zariphopoulou [4] for constant volatility € 0). We refer to

the method in [14, 15] as the WW-method (see Equation 1.34 and 1.35), and to the
method in [4] as the DPZ-method (see Equation 1.32 and 1.33).

In Figure 5.1 a comparison of the two methods when= 0 is shown. When
no transaction costs are present the WW-method simply equals the Black-Scholes
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Parameter| Value
T | 0.25
N | 250
u| 0.1
r | 0.05
S(0) | 100
K | 100
x | 0.005

Table 5.2. Stock and option parameters for a European in-the-money call with three
months to maturity. 250 time steps were used in all simulations.

5000 realizations,250 timesteps (u=0.1, k=0, 0=0.1, v=0)
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Variance of total hedging costs

Figure5.1. The dfective frontier whernv = k = 0 ando = 0.1. The DPZ-method
converges to the WW-method whemgoes to infinity.

method, and is thus independent of the risk-avergiomhe DPZ-method, on the
other hand, is sensitive to changeg iand will converge to Black-Scholes method
asy goes to infinity.

It is clear that the DPZ-method allows us to choose what risk we are willing to
take. A smally-value leads to an increased risk, but also a greater average profit.
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5.3.2 Constant Volatility and Transaction Costs

In Figure 5.2 the ffective frontiers for the two methods, when transaction costs
are presentK = 0.005) and the volatility is constant (= 0), are shown. One

can clearly see that the DPZ-method produces lower average costs for a given level
of variance than the WW-method, and that th&eatence between the methods
decreases with an increasing degree of risk aversigithough the DPZ-method

has lower variance it is not necessarily the best method to use practically as we
shall see later on.

We also see that there is a clear tradiebetween average cost and risk for both
methods. An increasingleads to reduced risk but greater average cost. Note that
when transaction costs are present we can never make an average profit as in Figure
5.1. It always comes down to reducing our costs instead of increasing our profit.

In Figure 5.3 the skew (third moment) and curtosis (fourth moment) for the two
methods are plotted. A positive skew indicates that the distribution has longer tails
to the right of the mean value and the curtosis measures the size of the tails. The
symmetric normal distribution has curtosis equal to three. The DPZ-method has
both longer and heavier tails to the right than the WW-method. This means that,
even though a smaller variance, the expected value of the largest, say 5%, losses
(so called expected shortfall) can be higher for the DPZ-method. Which method to
use therefore depends on what kind of risk one wants to minimize. We here focus
primarily on minimizing variance, but one should be aware that there are also other
risk measures to consider.

Sensitivity to Drift and Volatility

For both methods, only two parameters, dyifand volatility 5, need to be esti-
mated. It is thus necessary for us to know something about how important it is to
use good estimates. In Figure 5ffeets on the methods due #50% changes in

u can be observed. The WW-method is, contrary to the DPZ-method, quite insen-
sitive to changes im, and since producing stable and accurate estimateg ifor
usually quite dificult, the WW-method should be preferred over the DPZ-method,
even though the latter is better from a mean-variance point of view.

In Figure 5.5 it can be seen that estimating volatility significanffgets the results,
but no method is better than the other. A 5% change here produces more or
less the same changes in the results.

5.3.3 Stochastic Volatility and Transaction Costs
Figure 5.6 shows a mean-variance plot of the methods with correction terms pre-

sented in Section 4.1 versus the original WW-method and DPZ-method, for the
case of stochastic volatilityy(= 0.25). All curves in Figure 5.6 have higher vari-
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10000 realizations,250 timesteps (u=0.1, k=0.005, 0=0.1, v=0)

1.22 T T T T T
—— WW-method
—O- DPZ-method

Mean of total hedging costs

1.06

1.04 I I I I I
0.15 0.16 0.17 0.18 0.19 0.2 0.21

Variance of total hedging costs

Figure 5.2. The fective frontier when = 0, x = 0.005 ands = 0.1 (Bars show
95% confidence intervals): The DPZ-method gets closer to the WW-methed as
increases.

ance than for the case of constant volatility (see Figure 5.2). We refer to the method
presented in (4.2) and (4.9) as the Corrected WW-method, and the method in (4.3)
and (4.10) as the Corrected DPZ-method.

Itis here evident that the corrected methods will a have lower average total hedging
cost than the the original methods for any given variance. Also, one can see from
Figure 5.7 that the corrected methods have slightly larger tails to the right. We once
again have to think of what kind risk we want to minimize.

Sensitivity to Drift and Volatility

The question is now how the corrected methods behave when giving poor estimates
of volatility and drift. As shown in Section 5.3.2 both the WW and DPZ methods
are sensitive to the volatility estimate, but only the DPZ-method is sensitive to the
estimated drift. To see if the correction ternfeet the sensitivity, the Corrected
WW-method was compared with the original one, fdifetient estimates of drift

and volatility.

The sensitivity when changing the dri#50% for the Corrected WW-method was
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10000 realizations,250 timesteps (u=0.1, k=0.005, 6=0.1, v=0)
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Figure 5.3. Skew and curtosis whem = 0, x = 0.005 ands = 0.1 (Bars show

95% confidence intervals). Positive skew indicates that the distribution has longer
tails to the right of the mean value. Curtosis measures the size of the tails (the normal
distribution has curtosis equal to three).

tested to be of the same order as the ordinary WW-method in Figure 5.4. The cor-
rection terms do not significanthffect the sensitivity to drift. Also, the sensitivity
when changing volatility was observed to be of the same order as in Figure 5.5.
In Figure 5.8 an example of the sensitivity to changes in volatility and drift can be
seen.
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from a+5% change i Tor the DPZ-method and the WW-method. Changes are of
the same magnitude for both methods.
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50000 realizations, 250 timesteps (u=0.1, k=0.005, 0=0.1, v=0.25)
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Figure 5.6. The dfective frontier whers = 0.1, v = 0.25 andx = 0.005 (95%
confidence intervals). The corrected methods outperform the original WW-method
and DPZ-method.
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Figure 5.7. Skewness and curtosis when= 0.1, v = 0.25 andx = 0.005 (95%
confidence intervals). The corrected methods have slightly heavier tails to the right.
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Figure5.8. D indicates the absolute percentage change in variance of the total costs.
In the top graph, a5% change i for the Corrected WW-method is shown. Changes
are of the same magnitude as in Figure 5.5 (bottom graph). In the bottom graph, a
+50% change inu is shown. Changes are of the same magnitude as in Figure 5.4
(bottom graph).
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Chapter 6

Conclusions

We have in this thesis compared the delta-move-based theories presented by Whal-
ley & Wilmott [14, 15] and Davis, Panas & Zariphopoulou [4] in a mean-variance
framework. The performed tests concluded that the results achieved by the method
presented in [4] gave lower variance for a given level of average total cost, but
were highly sensitive to the estimated drift. The method presented by Whalley &
Wilmott was almost insensitive to estimated drift. Since estimates of the drift usu-
ally are poor and unstable, the Whalley-Wilmott method is more appealing to use
in practice.

Also, the delta-move-based theory presented in [14, 15] and [4] was extended,
via correction terms, to include fast mean-reverting stochastic volatility for the
underlying. Numerical simulations showed that the new corrected method, in a
mean-variance framework, gave strategies with lower variance than the original
methods in [4] and [14, 15].

Testing the strategies showed that estimating volatility is a crucial factor to produce
good results, but the correction terms do not themselves add to the sensitjvity to
ando. Using the correction terms to adjust for stochastic volatility will thus give
lower variance withoutféiecting the sensitivity to the estimates.
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Appendix A

Black-Scholes M odel

1. Assume that we have a self-financing portfdlic= « f + S of « options
and g stocks wheredll = adf + pdS. Self-financing is thus defined as
daf +dps = 0.

2. The market has no arbitrage opportunities. That is, given an interesgt rate
there can be no risk-free investments with a higher rate of returdll lis
riskless we will havelll = rIldt = r(af + pS)dt.

We can from these assumptions derive a partigédgntial equation for the option
price:

1. From Itd’'s lemma we have

0 of 02 0
o s+2L 4 —fazSz)dt + ﬁanW (A.1)

df =
4 (aS” or ' 952

2. Now construct a riskless portfolio whe##l is deterministic:

dIl = adf + pdS = a( (% uS + 4 + Tho?S2)dr + FoSaw )

+p(nSdt + 6 SdW) A2
A.2

2
= a (%S + % + SL62S2)dt + puSdt
of
+(aﬁaS+ﬂaS)dW
of

—aaS.
This combined with no arbitrage opportunities gives

The only way to makeII deterministic is to lep =

0 of 02 0
(a(ﬁﬂs + a_j: + a—S’;azsz) + ﬂ,uS)dt = ra(f — %)dt (A.3)
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or

of  of  *f 5
R R R § A.4
o Tas tos2° rf (A4)

which is the Black-Scholes partialftérential equation.
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Appendix B

Asymptotic Expansion

B.1 Asymptotic Expansionin A

Changing variables in (3.1) according to (3.6), and inserting (3.7) followed by
comparing orders of yields the following calculations:

B.1.1 TheO(4%*) Equation

For theO(41~%/4) term we get an ordinary fferential equation fo¥, with inde-
pendent variabl@

14 2
Vooo = ——=V,. B.1
000 5(1, T) 00 ( )

Using our boundary conditions above we conclude #gt= 0. As in Whalley-
Wilmott we can arrive at similar expressions 1ar, V», andV3 which together with
the boundary conditions revedigy = Vo = V30 = 0 and thus

V(.S 0Y) = (y+ iAY4Q)S + Vo(S.1,Y)
+AY4 (S, 1, Y) + AY2V5(S, 1Y) (B.2)

+A34V3(S. 1, Y) + AV4(S.1,0.Y) + ...
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B.1.2 TheO(1) Equation
TheO(1) equation is
Vor = r(y*S + 10) + uS(y* + Vos)+

3/ (Y)2S?(Voss — sty (0" + Vos)?) + a(m = Y)Voy (B.3)

. 2
+/(V)pBSVosy — 5gm (v + Vos)Vor) + 5 (Vory — 5¢Vy) = 0

B.1.3 The O(4¥%) Equation
Deriving our O(AY*) equation we see that it contains both terms proportional to

and independent a@@. Since these must be independent of each othe®ti&/'4)
equation splits up into the two equations

Vie — rVi+ uSVis + 3 £(Y)25%(Vass — %(J’* + Vos)Vis)
+a(m =Y)Woy + f(Y)pBS (Visy — 5y (0* + Vos)Vay + VisVor))  (B.4)

2
+ﬂ7(V1YY - —5(%) VorVir) =0

and
4

6(t, T)

(u-r)S - F(Y)2S2(y* + Vos) = 0. (B.5)

From the term proportional t@ we have

5(t. T)(u—r)

y(S, 1) = —Vos(S,1,Y) + S f(V)?

(B.6)

We have thus reached an expression for the ideal number of stocks we would hold
in our portfolio in the absence of transaction costs. This expressiorfféesetit

from the one proposed by [14, 15] since it depends on our tracking volafi(ity)

and a option gammEys depending ofY. Note also that our controlsandy™ only

can depend on the measurable proceg¥ and notY (z).

In practice we can not rely on the tracking volatility siri¢g) is an unmeasurable
quantity so we have to use the averaged volat{ljfgy)) *.

1The average with respect to the invariant distributioaf the OU-process is given as

(g(¥)) = r ((V)D(Y)dY =0

—00
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From equation (B.5) we see that

(u—r)sS (" + (Vos)) = (B.7)

5( T)
and

6(r. T)(u—r)

(S, 1) = =(Vos(S,1,Y .
y(S.1) = =(Vos(S.1.Y)) + SO

(B.8)

We will use this property later on.

(B.6) inserted in ouD(1) equation gives us
Voo +rSVos — rVo+ 3 £(Y)25?Voss

—r 2
+% +a(m—Y)Voy + f(Y)pSSVosy (B.9)

- 2
li’(de) Wor + 5 (Vory - Vo) =0
while theO(AY/#) term independent a® is
Vi +rSVis — rVi+ 3 £(Y)28?Vigs + a(m — Y)Viy

+HfNPBSVasy = S Var = sty VasVor) (B.10)

2
+5 (Viyy = 2555 Vor Var) = 0
After some tedious calculations one can see Hat 0.

B.1.4 The O(4%*) Equation

Defininge = 1/a, the variance from the OU-process\&s= #2/2a, and using the
operators

2
Lo = 2(;;,2 + (m— Y)aY
L1 = V2u(pSf(Y)-L- + =) 2 (B.11)
1- v(pS f( )asay + Witad aY) )
Lo =%+ 3/(Y)25%5 2+r(S -)

we get for the0 (41%/4) equation ¥; = 0)

59



2
(%Lo + %Ll + L)V, = V? 5(?9) Voy Vay

F(N)pV2vS
++ﬁVoszs (B.12)

Y)2s2 * 2
—LOPS ((y5)?Vaoo — 537 0?)
whereV, = V4(S. 1, 0, Y).

Solving this equation fo¥, and fitting it to the boundary conditions (3.8), (3.9)
and (3.10), assuming a symmetric hedging inte@al= —Q~, reveals

) w2\ 1/3
0* = -0~ = (E3nuiry (8.13)

B.2 Asymptotic Expansionin e

Equation (B.9) can using the operators defined above be written as

1 1 2 5@, T)(u — r)?
(CLo+ —=Li+L)Vo = Y e STk —r) (B.14)

Ve es(t.T) O 2yf(Y)?

and correspondingly

2vy V2vpSy
VoyViy + ————
oy Viy Ve T)

1 1
(;LO + _€Ll + L) = Voy Vis (B.15)

Ve es(t,T)
for (B.10).

Now assume that each teffh can be expanded inas

Vi =Vio+ VeVir + €Vio + €2V + ... (B.16)

and insert (B.16) in (B.14) and compardfdient orders of.

B.2.1 TheO(e™t) Equation

For the O¢~1) equation we get

_.2_7 2
LOVOO =V WVOOY' (Bl?)

To see thatyp doesn't depend oy we follow an argument in [9] wher& is
assumed to be smooth and of controlled growth.
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Sincev? 5le Vioy > 0 we have the ordinary fferential inequality
LoVoo >0 (B.18)

and by integrating with respect 1o we get

(Y —m)?
Voor (1. S.Y) > Voor (1, S,m)e 22 Y >m
(Y —m)?

Voor (2, S.Y) < Voor (¢, S, m)e 22 )Y < m.

(B.19)

SinceYy is of controlled growth we conclude thEgoy (¢, S, m) = 0 and further on
Voor (¢, S, Y) = 0. ThusVyo = Voo(z, .S)

B.2.2 TheO(e V?) equation

Using this ourO(e~1/2) equation is toloVp1 = 0 andVy = Vou(t, S).

B.2.3 TheO(1) Equation

TheO(1) equation becomes
8 T)(u—r)?
2rf(Y)?

Following [6] we see that givelpy = Voo(z, S, Q) this is a Poisson equation for
Vo2 and a solution exists only if the so called centering condition is achieved

LoVoz + L2Voo = (B.20)

5(1. T)(pu — r)?

oot = vy

y=0 (B.21)
or
st.TY(u—-r)?, 1

2y <f (Y)?

wheres = 1/(f(Y)?2) is the dfective volatility. Vo is thus simply the solution to
Black-Scholes equation plus the particular solution

L2(o)Voo = — ) (B.22)

s(t.TY(u—-r)?, 1

Voo=—Vps + (T —1) 2 <f(Y)2> (B.23)
with boundary value

Vi sy vy=14"° B=wo (B.24)

oott 2 Vi )= —-max{S—-K,0} ,i=w '
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from equation 2.16.
Satisfying the centering condition we can write

LoVoz = —(L2Voo + 5022?;)5) )

= —(L2 — £2(5)) Voo — 2= (B.25)

1
f(Y)2 B <f(Y)2>)

= -3(f(Y)? - 6 S?Vooss — & T)(ﬂ 2 (Y)2 B <f(%/)2>)

or

Voz = ~3(@(Y) + c1(S. 1)5Vooss — LI (4 (V) + eo(S. 1)) (B.26)

Whered;(Y) is given as the solution to the ordinar)ffé'rential equatiolop(Y) =
f(Y)? — 6% andy(Y) is the solution taoy (Y) =

1
(Y)2 B <f(Y)2> '

B.2.4 TheO(e¥?) Equation

SinceVy andVp, are constant with respect to Y the () term reduces to

8(t. T)(u—r)?
rf(Y)?2

This is a Poisson equation féf3 with respect toLy and the centering condition
gives

LoVoz + L1Voo + LoVor = — (B.27)

(. T)(u —r)?
2rf(Y)?
Inserting (B.26) and definingp, = v/€Vp1 gives

(L1Voz + LaVo1 + ) =0. (B.28)

Lo(6)Vor = A1(25%Vooss + S2Voosss) + Az(u — r)S?Vooss
(B.29)

50T (u=r)® _ 5(tT)(u=r)’
tAs= = — -~ (ap)

where

2L (B.30)




