
Path Clustering with Homology Area

J. Frederico Carvalho1, Mikael Vejdemo-Johansson2, Danica Kragic1 and Florian T. Pokorny1

Abstract— Path classification has found many applications
in recent years. Common approaches to this problem use
aggregates of the distances between points to provide a measure
of dissimilarity between paths which do not satisfy the triangle
inequality. Therefore, such distance measures need to be used
with care to avoid cluster chaining. Furthermore, they do not
take into account the topology of the space where the paths
are embedded. To tackle this, we extend previous work in
path clustering with homology, by employing homology area
as a measure of distance between homologous paths in a
triangulated mesh. Further, we show that the resulting distance
satisfies the triangle inequality, and how we can exploit the
properties of homology to reduce the amount of pairwise
distance calculations necessary to cluster a set of paths by an
order of magnitude.

I. INTRODUCTION

Due to the prevalence of devices with access to positions
sensors such as GPS, large datasets of paths have become
increasingly available in the past few years [1]. Through path
clustering, this data can be partitioned into sets of similar
paths, from which motion primitives can be learned in order
to control a robot without explicitly programming it [2],
[3]. In this paper we present a new method of computing a
topologically inspired similarity measure for paths which can
be applied to path clustering.

Clustering is a machine learning technique used to classify
large sets of data into smaller subsets that are similar to
each other [4]. However, the domain of “popular” clustering
techniques, such as k–means and support vector machines, is
that of data points in a fixed dimension vector space. Because
paths have variable length, they cannot be easily represented in
finite dimensions. Therefore, commonly used path clustering
methods rely on calculating distances between paths and
applying clustering methods that use distance alone [5].

These methods have been successfully applied to different
problems, such as learning dynamic scene models, and car
trajectories [6]–[8] to name a few. Comparative surveys of
commonly used path distances can be consulted in [9], [10].
The aforementioned distances however, do not take into
account the topology of the space the paths are drawn from,
and therefore can not properly gauge the influence of obstacles
on the clustering produced [11]. To tackle this, in [11] we
proposed a method for path clustering that only takes the
obstacles into account.

In this paper we propose an extension of the framework
of clustering with relative homology we proposed in [11],

1 CAS/RPL, KTH, Royal Institute of Technology, Stocholm, Sweden.
{jfpbdc,dani,ftpokorny}@kth.se

2 Mathematics Department, CUNY College of Staten Island, New York,
USA. Mikael.VejdemoJohansson@csi.cuny.edu

Fig. 1: Triangulated region of the plane X (green and red) with two
holes (white). The region in red corresponds to a subset A ⊆ X that
are used as “goal regions” which contains the end points of the paths
being analyzed. We also depict two edge-paths p, q (in red and blue)
together with the minimum area bounding chain c in bright-green,
which intuitively corresponds to the area that is delimited by the
paths p and q. The area of the region c is interpreted as the distance
between paths p and q.

by using homology area [12]. Intuitively, this corresponds to
defining the distance between two paths as the area enclosed
between them (see an example in Figure 1). This method
allows us to obtain a more fine-grained control of how the
clustering takes place over only using relative homology. It
also ensures that the obtained distance function is compatible
with the results from homology clustering.

Further, we show how this path distance, even though
computationally expensive to compute, can be leveraged when
calculating a distance array to cluster a large set of paths,
outperforming DTW1 by an order of magnitude.

More details of our method can be consulted
in http://csc.kth.se/˜jfpbdc/projects/
homology_clustering.

A. Motivation and Related Work

The problem of learning by demonstration deals with ex-
tracting motion primitives for a robot from data collected from
a human demonstration, rather than explicit programming [2].
However if motion primitives are averaged from a diverse
enough set of trajectories, the resulting motion may not be a
good representative2 of the demonstrated motions. Therefore
path clustering can be used to split the space of paths into
cohesive sets of paths from which valid motion primitives
can be extracted [3].

1Dynamic Time Warping (DTW) is a popular path distance which can be
efficiently computed [13].

2If the distribution of paths is multimodal, then taking an average of the
motions may yield something that lies outside of the scope of the data.

Path clustering has been extensively researched since the
early 2000s and has found applications in surveillance, traffic
analysis, among others [6]–[9], [14]. In order to cope with
the high dimensionality of the space of paths on a vector
space, the employed methods use distance-based clustering
rather than other methods that require a finite dimensional
representation, such as k–means and support vector machines.
An exhaustive review of path clustering combining different
distances and clustering methods can be consulted in [15].
As mentioned before, the employed clustering methods rely
only on distance between paths, to assign them to a cluster,
therefore they need to compare each path to every other. This
implies that the path distance needs to be evaluated O(N2)
times where N is the number of paths. This fact puts a strain
on path clustering methods, since path distances need to be
evaluated fast in order to cope with large databases of paths.

Recently in [11] we proposed a clustering method for paths
based solely on their homology class. Intuitively, two paths
belong to the same cluster (in which case they are said to be
“homologous”) if there are no obstacles in the area between
them. The strength of this method, lies not only on the speed
with witch it can be evaluated, but also on the fact that it
only needs to do a single pass through the data, making it
significantly outperform other methods. However, since this
method only distinguishes paths based on topological features,
the paths in each cluster present a wide range of variability,
we therefore want to be able to cluster paths into more narrow
categories in a manner that is compatible with the homology
clusters. To this end we use the results from [12] where we
presented an efficient method for computing the area between
two closed paths as the region whose boundary is the union
of the two paths. This notion of distance has the convenience
of being compatible with the purely topological clustering
in [11].

In this paper we build upon the results in [11], [12] by
extending the notion of minimum area homology to quotient
complexes, and employing the area of the obtained region
as a path distance. Further, we note that in clustering a set
of N paths with k homology classes, the number of regions
that need to be computed can be brought down from O(N2)
to O(kN) in the worst case. We show in the experiments
section how this allows us to outperform DTW [13] when
clustering even relatively small datasets (circa 2000 paths).

B. Mathematical Background

We now provide a brief description of the mathematical
tools used in the remainder of the paper (an exhaustive
treatment can be found in [16]). To do this we begin by
introducing Homology, which is a general algebraic tool
that can be applied to understanding topological spaces,
particularly through Simplicial Homology which we explain
further on. Finally, we introduce relative homology and
homology area which will use to define our path distance.

1) Homology: A chain complex is a pair (C•, ∂•), where
C• = {Ci}i∈N is a sequence of vector spaces, and ∂• =
{∂i : Ci → Ci−1}i∈N is a sequence of linear maps (matrices)
called boundary maps (matrices) often depicted in a sequence

as in (1).

· · · ← Ci
∂i←− Ci

∂i+1←− Ci+1 ← · · · (1)

Where the boundary matrices are required to satisfy ∂i∂i+1 =
0. We call an element of Ci an i–chain; and when no
confusion arises, we denote all boundary maps as ∂, dropping
the index.

Given a chain complex, we define two further sequences
of vector spaces Z•, B• by:

Zi = ker(∂i) Bi = im(∂i+1)

We call elements of Zi and Bi; i–cycles and i–boundaries,
respectively. Further, since ∂i∂i+1 = 0 implies Bi ⊆ Zi, we
can define the quotient Hi = Zi/Bi, which we call the i–th
homology of the chain complex.

Given an i–boundary p and an (i+ 1)–chain c such that
p = ∂c we call c the bounding chain of p.

2) Simplicial Homology: Given k+1 affinely independent
points in a vector space {x0, . . . , xk} ⊆ Rn with n > k,
we form the k–simplex [x0:k] (where x0:k is a shorthand
for “x0, . . . , xk”). Each such simplex has an orientation that
is inherent to the ordering of its points or vertices. Two
simplices with the same vertices are said to have opposite
orientations if the ordering differs by an odd permutation.

Geometrically, we represent a simplex by the convex hull
of its vertices, and its boundary by

bd([x0:k]) =

k⋃
i=0

[x0:i−1, xi+1:k]

Given a topological space X ⊆ Rn, we can obtain a discrete
approximation of X by taking a discrete set X̃ ⊆ X and
using a triangulation T of X̃ (in the remaining we let T be a
subset of the Delaunay triangulation). From T , we can build
a chain complex as follows:

In order to construct a chain complex out of X̃ and T , we
denote the ordered set of i–simplices in T by T (i) = {σ1:bi},
and define Ci = Rbi . Furthermore, for each j = 1, . . . , bi we
set

∂iej =

i∑
k=0

±e′li,k

where e1:bi and e′1:bi−1
form the canonical basis of Ci and

Ci−1, respectively; and li,k is the index of the k–th face of
σj and the sign depends on the orientation.

Thus, we obtain a simplicial complex (see [16] for a
proof), which we denote by (C•(X), ∂•) and its homology
by H•(X).

In this setting, it can be observed that 1–cycles correspond
to sums of edges that form a closed path, and that 1–
boundaries correspond to those 1–cycles that form the
boundary of a closed region (see Figure 2 for an example).

3) Relative Homology: Given a chain complex (C•, ∂•)
we define a subcomplex as a complex (A•, ∂•) where for
each i, Ai is a subspace of Ci and ∂i is the boundary map of
(C•, ∂•) restricted to Ai. From such a subcomplex we can

Fig. 2 a: A cycle which is
a boundary (in red) and its
bounding chain (in blue).

Fig. 2 b: A cycle which is not
a boundary (in red).

define relative chain complex (D•, ∂
′
•), as Di = Ci/Ai and

∂′i as the map induced by ∂i on the quotient.
In the case of simplicial complexes, as introduced in

Section I-B.2, we are interested in subcomplexes A• such
that the generators of each Ai are a subset of the generators
of Ci. This ensures that A• can be seen as a closed subspace
A ⊆ X . In this case we denote the relative chain complex
by (C•(X,A), ∂•) and its homology by H•(X,A).

Now, taking the quotient Ci(X)/Ci(A) corresponds to
ignoring all topological features in A, and hence we expect
to see a relationship between the relative complex and the
quotient X/A (see Figure 3) which is made explicit in the
following Lemma:

Fig. 3: Representation of the quotient map on a simplicial complex.
The region in blue is unaffected whereas the region in red is collapsed
onto a single point and the region in green is distorted. In this
example, we have taken a space with no holes and have produced a
space with one hole.

Lemma 1 ([16]). Let X be a simplicial complex and A
be a subcomplex, then the relative homology Hi(X,A) is
isomorphic to Hi(X/A)

4) Homology area: We say that a simplicial complex is
k–dimensional if it has no simplices of dimension higher than
k. Let S be a two-dimensional simplicial complex, and let
S(2) = {σ1:b2}, then for any 2–chain c = (c1:b2) ∈ C2(X)
as

area(c) =
∑
i

|ci|Area(σi)

where Area(σ) denote the area of the 2–dimensional simplex
σ. Finally, we define the minimum area bounding chain3 of
a 1–cycle p as

c∗ = argmin
c∈C2(X)

area(c) subject to: ∂c = p (2)

3In [12] we call it a “minimum area homology”.

II. METHODOLOGY

We start this section by presenting and describing the
algorithms that make up the main contributions of this paper
as well as provide the complexity of Algorithm 2. In the
remainder of the section we introduce the theory that ensures
the correctness of our algorithms.

A. Algorithms

We now present the algorithm to compute the quotient
of a simplicial complex (Algorithm 1), and to compute the
homology-area of associated to a set of paths (Algorithm 2).

Algorithm 1: Computing a quotient where the support
of a characteristic function is collapsed to a single point

input : S /* simplicial complex */
input : q /* characteristic function */
/* q satisfies q(x) = 1 for x ∈ A, */
/* and q(x) = 0 otherwise. */
/* S = (points, tris) where: */
/* pts: list of 2D points. */
/* tris: list of triangles, each is */
/* a triple of indices in pts. */
output :Q /* simplicial complex */
/* Q is a representative of S/A */

1 qP ts = {Null};
/* 1st is the image of A */

2 for p ∈ pts do
3 if q(p) = 0 then
4 append p to qP ts;

5 qTris = {};
6 for tri ∈ tris do
7 qTri = {};
8 has0 = False;
9 for v ∈ tri do

10 if q(pts[v]) = 1 then
11 has0 = True;
12 else
13 qv = index of v in qP ts;
14 append qv to qTri;

15 if has0 then
/* include 0 at most once */

16 prepend 0 to qTri;

17 return Q = (qP ts, qTris)

In Algorithm 1 we assume the simplicial complex S is
given as a pair (points, tris) where points ⊆ R2 is a (finite)
set containing the vertices of the simplicial complex, and tris
is a triangulation of those points, i.e. tris = S(2). Similarly,
the quotient Q is represented by a pair of points and triangles
(qP ts, qTris).

The subset A ⊆ S so that Q = S/A is passed to
Algorithm 1 as a characteristic function q : R2 → {0, 1}
such that q(x) = 1 if and only if x ∈ A.

Fig. 4: Example of how given a bounding chain for p− q (orange
region) and one for p−r (green region) we obtain a bounding chain
for q − r (union of orange and green regions). The fact that the
bounding chains have signed area, ensures that when two regions
intersect, the area cancels out.

The algorithm proceeds by first letting qP ts have Null as
its first point, as this will be the image of every point in A
and therefore has no (unique) correspondence with a point in
S, and then adding every point that is not in A. Secondly in
the lines 6–16 it translates the triangles in tris to triangles
with the corresponding vertices in qP ts. This translation is
done in lines 9–14, where the indices in a triangle tri are
replaced in qTri by their counterparts from qP ts unless the
point is in A; subsequently if tri contains a point in A the
index 0 is added to qTri in line 16, so that it is added at most
once. The resulting simplex qTri is then added to qTris,
and Q = (qP ts, qTris) is returned.

Now we proceed to show how we can use the quotient
complex and bounding chains to efficiently calculate a
distance array using homology area in Algorithm 2. As we
note in Section III even though the process of calculating a
bounding chain is slow, calculating the distance array can be
done efficiently due to Corollary 1.

Algorithm 2 comprises two phases, phase one in lines
1–16 performs the heavy calculations (i.e. it computes the
necessary bounding chains). Phase two, in lines 17–27 uses
these bounding chains to compute the array of distances
between paths.

This algorithm uses the subroutine BoundingChain(p, q)
which, given two 1–chains p, q, calculates the bounding chain
of p− q in case they are homologous, and reports a failure
otherwise. In our implementation, we use a least squares
algorithm to solve equation (2) (which we justify in Section II-
B), and intuitively, given the innate sparsity of the boundary
matrix, an alternative would be to use a simple row-reduction
algorithm, but the associated change of base matrix will be
dense, making it more computationally expensive.

In phase one the algorithm builds up three lists
PathCluster, a list that at position i it has the homol-
ogy class of path Paths[i]; HomologyClusters, a list of
lists where the elements of HomologyClusters[i] are the
indices of paths in the i–th homology class. The third
list, BoundingChains, stores, at position i the results of
BoundingChain(p, q) where p is the first path in the i–th
homology cluster, and q ranges over the paths homologous
to p, in order of appearance in Paths.

In phase two, the algorithm uses lists built up in phase one

Algorithm 2: Distance array using homology area.

input : Paths /* a list of paths */
output : An array of pairwise distances

1 PathCluster = {};
2 BoundingChains = {};
3 HomologyClusters = {};
4 for i ∈ {0, . . . ,#Paths} do
5 for Cluster ∈ HomologyClusters do

/* check if the current path is
in any existing cluster */

6 p = Paths[i];
7 q = Paths[Cluster[0]];
8 j = Index(Cluster,HomologyClusters);
9 Chain = BoundingChain(q, p);

10 if successful then
11 append j to PathCluster;
12 append i to Cluster;
13 append Chain to BoundingChains[j];

14 if no cluster was found then
/* not homologous to any already

seen path, new cluster */
15 append {i} to HomologyClusters;
16 append {} to BoundingChains;

/* use the bounding chains to compute
pairwise distances */

17 Distarray = {};
18 for i ∈ {0, . . . ,#Paths} do
19 c = PathCluster[i];
20 for j ∈ {i+ 1, . . . ,#Paths} do
21 if PathCluster[j] = c then
22 k = index of i in HomologyCluster[c];
23 l = index of j in HomologyCluster[c];
24 Chain = BoundingChains[c, k − 1]−

BoundingChains[c, l − 1];
25 append area(Chain) to Distarray;
26 else
27 append ∞ to Distarray;

28 return Distarray

to produce the array of distances Distarray. To achieve this
it checks what is the homology cluster of path i (line 19) and
computes the distance to path j for every j > i by checking
if they have the same homology class; if they are, it uses
Corollary 1 (which is summarized in Figure 4) to calculate
the distance (lines 21–25), otherwise, it stores the value ∞
(line 27).

Now, note that finding the minimum area bounding chain
amounts to solving a k × l linear system, where k, l are
respectively the number of edges and faces of the simplicial
complex. If we let µ = max(k, l), such a system can
be solved by a linear solver in O(µ2). From analyzing
algorithm 2 we see that when analyzing each path, we need to
compute at most m bounding chains, where m is the number
of elements of HomologyClusters (line 5). Therefore, the

complexity of phase 1 is O(µ2Nm) here N is the number
of paths. Finally, in each iteration of phase 2, we perform
one vector adition, which has complexity O(µ) and compute
the area of the resulting chain. Recall that calculating the
area of a bounding chain, amounts to an inner product, and
therefore also has complexity O(µ). Since this is performed
for every possible pair of indices, the complexity of phase 2
is O(N2µ), which brings the total complexity of Algorithm 2
O(N2µ+ µ2NM).

In the next section we describe the results that guarantee
the correctness of our method.

B. Theoretical framework

Let p = p0, p1, . . . , pn be an edge path in X , that is, a list
of vertices of the X such that [pi, pi+1] ∈ X(1). Now we
observe, as pointed out in [11], that any such path can be
represented by a 1–chain in C1(X) = Rb1 , i.e. a vector of the
form p̃ = (p̃0, . . . , p̃b1) where p̃i is the number of times the
i–th edge is traversed in the path counted with orientation4.
Further, note that given two paths p = p0, . . . , pn, q =
q0, . . . , qm, if p0 = q0 and pn = qm then ∂(p̃− q̃) = 0.

So, given two edge-paths p, q on a simplicial complex X
we say that they are homologous if there exists a 2–chain
c such that ∂c = p − q, which brings us to the following
definition:

Definition 1. Define the homology area path distance on X
as

dH(X)(p, q) = min
∂c=p−q

area(c) (3)

where minx∈∅ x = +∞.

Proposition 1. Let X be a simplicial complex where each
2–simplex has non-negative area, then dH(X) is symmetric
and satisfies the triangle inequality, i.e.:
• dH(X)(p, q) = dH(X)(q, p)
• dH(X)(p, q) + dH(X)(q, r) ≥ dH(X)(p, r)

Proof: Let c be a bounding chain of p − q, then due
to linearity of ∂, ∂(−c) = q − p and area(c) = area(−c)
meaning that dH(X)(p, q) = dH(X)(q, p).

Assume p, q and r, q are homologous pairs of paths, then
there exist 2–chains cp,q and cr,q such that ∂cp,q = p− q and
∂cq,r = q−r. This implies that ∂(cp,q+cq,r) = p−q+q−r =
p− r and therefore c = (cp,q + cq,r) is a bounding chain for
p− r. Furthermore we see that ci 6= 0 only if (cp,q)i 6= 0 or
(cq,r)i 6= 0 and therefore area(c) ≤ area(cp,q) + area(cq,r),
which implies dH(X)(p, r) ≤ dH(X)(p, q) + dH(X)(q, r).
This defines a distance between edge paths that is only finite
for paths that are homologous. A shortcoming of this, is that
only homologous paths that have the same first and last points
may have finite area. However, this can be mitigated using
relative homology.

More specifically, we recall from [11], that by defining goal
regions A in the space X (associated to a subcomplex) and

4That is, if the i–th edge is of the form [e, e′] then p̃i = p+ − p− where
p+ is the number of times the edge is traversed from e to e′, and p− is
the number of times the edge is traversed in the from e′ to e.

computing the first relative homology group H1(X,A) we
define instead the homology class of 1–chains with boundary
contained in A, which correspond to paths beginning and
ending in A.

Remark 1. By Theorem 1 we can compute the homology
group H1(X/A) instead of H1(X,A) as these are canoni-
cally isomorphic. This has a practical advantage, since X/A
has less simplices then X , which reduces the dimension of
the boundary matrices C1(X/A), C2(X/A) relative to those
for C1(X,A) and C2(X,A), making the computation of
solutions to (3) more efficient.

Algorithm 1 shows how one can create a quotient complex
from a simplicial complex and the characteristic function of
a closed region A.

Now, given a 2–dimensional simplicial complex X and a
subcomplex A we note that, any 2–simplex in σ ∈ (X/A)

2

is a quotient of some 2–simplex σ′ ∈ X2 and hence we
can define Area(σ) = Area(σ′), which then allows us to
implement minimum area homology on X/A.

In [12] we presented a framework to compute a minimum
area bounding chain on a general simplicial complex by
computing the solution to equation (2), and propose several
methods by which this may be achieved. Particularly, com-
puting least squares solutions as this can be done efficiently
on sparse systems5. However, often fast methods, such as
least squares, may yield chains that do not have minimal
area. In what follows, we prove that if the chain complex
X can be embedded in R2, then for any 1–cycle there is at
most one bounding chain, thereby proving that in such cases
approximate methods yield exact solutions. In Proposition 2
we generalize to quotients over sets A with no holes.

Lemma 2. Any simplicial complex X which can be embedded
into R2 satisfies H2(X) = 0.

Proof: Let X be a simplicial complex that can be
embedded into R2 and Xc denote (a triangulation of the
closure of) its complement, then using the Mayer-Vietoris
sequence of R2 = X ∪Xc, we have:

· · · → H3(R2)→ H2(X ∩Xc)→
→ H2(X)⊕H2(X

c)→ H2(R2)→ · · ·

Now, recall that Hi(Rk) = 0∀i 6= 0 ([16]). Note also that
X ∩ Xc = ∂X is a 1–dimensional subcomplex of X and
Xc, so H2(X ∩ Xc) = 0 (as it has no 2–cells), hence we
conclude that the sequence:

0→ H2(X)⊕H2(X
c)→ 0

is exact, and H2(X) is a summand of 0 and hence H2(X) =
0.

Proposition 2. Let X be a simplicial complex which can
be embedded in R2, and A a subcomplex of X such that
H1(A) = 0. Then, given any 1–cycle c, there exists, at most
one 2–chain s, such that ∂s = c.

5using for example the LSQR algorithm [17].

Proof: To begin, consider the long exact sequence in
homology of the pair (A,X):

· · · → Hi+1(A)→ Hi+1(X)→
→ Hi+1(X,A)→ Hi(A)→ · · ·

Particularly for i = 1, Hi(A) = 0 and so we have:

· · · → H2(A)→ H2(X)→ H2(X,A)→ 0→ · · ·

So, using Lemma 2 we know that H2(A) = H2(X) = 0 and
so H2(X,A) = 0. Finally, given any 1–cycle c let s, s′ be
two 2–chains satisfying ∂s = ∂s′ = c, then t = s − s′ is
a 2–cycle, and since H2(X,A) = 0, we conclude that t is
the boundary of some 3–chain. However, since X can be
embedded in R2, it has no 3–simplices, from which we can
conclude that t = 0 and s = s′.
We now show how we can use this result to quickly calculate
bounding chains between paths.

Corollary 1. Let X be a two-dimensional simplicial complex
and A a subcomplex with H1(A) = 0, then for three one
chains p, q, r such that cp,q and cp,r are the minimum area
bounding chains of p− q and p− r, respectively, then (cp,r−
cp,q) is the minimum area bounding chain of q − r.

Proof: Recall from the proof or Proposition 1 that (cp,r−
cp,q) is a bounding chain of q− r, (this comes from linearity
of the boundary operator). Furthermore, from Proposition 2 if
there is a bounding chain of q− r then it is unique, therefore,
(cp,r − cp,q) must be the minimum area bounding chain of
q − r.
Finally, since our main goal is to cluster paths on a simplicial
complex, we note that many algorithms used for path cluster-
ing rely on computing distances between all pairs of paths.
Specifically, if we want to cluster the paths p0, p1, . . . , pN
with a distance function d, then we need to compute:

Distarray = [d(p0, p1), . . . , d(p0, pN), d(p1, p2), . . .

. . . , d(p1, pN), . . . , d(pN−1, pN)]

Which corresponds to the entries of the matrix [d(pi, pj)]
N
i,j=0

that lie above the main diagonal. In the case that the distance
function is hard to compute, as it often is in the case of
path distances ([18]), producing such a distance array can
take a long time. Corollary 1 provides a way to mitigate
this cost when using the homology area distance function,
and we exploit this fact in Algorithm 2 to avoid calculating
unnecessary bounding chains.

III. EXPERIMENTS

To test our framework we used two distinct environments.
First we created a synthetic dataset described in Section III-A
and tested our framework on it. Secondly, in Section III-B we
used our framework on real data, namely on the set of tracks
of pedestrians on the computer science forum at Edinburgh
University [19], a subset of which can be seen in Figure 6a.

A. Toy example

The space created for the synthetic dataset comprises a
bounded region of the plane with two holes. The simplicial
complex was obtained by random sampling on this area. The
relative region we chose comprises two rectangles along the
side so that we can observe different clusters of paths going
left to right.

In order to be able to observe the characteristics of
clustering by relative homology previously identified in [11],
as well as the distinction between different sub-clusters (using
minimum area homology), we synthesized paths satisfying:
• Each path begins in one of two small areas in the relative

region to the left (we call them O1 and O2).
• Each path ends in one of two small areas in the relative

region to the right (we call them T2 and T2).
• Each path passes through a preselected (randomly cho-

sen) point in a neighborhood of the middle vertical axis
of the space (comprising three connected components
which we call M1,M2, and M3).

Paths were then computed by randomly drawing a triple from
Oi×Mj×Tk, and interpolating these points with a Gaussian
process. By choosing the paths in this way we have access
to a ground truth model which is simply given by the triple
(i, j, k).

As expected, we observed that relative homology alone
was enough to detect the different clusters depending on
j, furthermore, using homology area we were able to fully
recover the ground truth, as seen in Figure 5. Homology
area allows us to distinguish between the four clusters with
j = 2 which cannot be separated with homology alone.
Furthermore, for comparison we used FastDTW [13] from
which we obtained similar results.

Fig. 5: Randomly generated simplicial complex with two holes (in
white), and a set of randomly generated paths connecting the relative
regions of the complex.

B. Edinburgh dataset

In this experiment we randomly selected 2000 paths from
the dataset of trajectories collected in the computer science
forum of Edinburgh University (as seen in Figure 6a). From
these paths we constructed a simplicial complex that fully
covered the area around them as shown in Figure 6b, and
the relative regions were chosen so that they contain the
endpoints of most paths (those that were not encompassed

Algorithm Average time (ms) Total time (h:m)

Homology Area 90.809 ms 0 h 17 m
FastDTW 5.301 ms 2 h 42 m
DTW 18.152 ms 10 h 21 m

TABLE I: Time elapsed in computing Distarray with DTW,
fastDTW, and Homology area. “Average time” denotes the average
amount of time to compute the distance between two paths, whereas
“Total time” denotes the total amount of time spent in computing
the distance array.

were discarded). In Figure 6b we also show the result
of clustering the paths of a single homology cluster by
homology area where we can observe 4 pronounced clusters
(green,red,purple, and light-blue) and 4 outliers (dark blue).

In order to test the performance of our algorithm we
computed the array of distances using DTW, FastDTW [13]
and our implementation of Homology area, and noted the
times in Table I. These tests were performed using a single
core of an Intel Core i7–4790K @ 4.00GHz with 32Gb
RAM. Our algorithms were fully implemented in Python,
and for comparison we used the implementations of DTW
and FastDTW from [20]. From these results we observe
that Homology area outperforms (in Total time) DTW and
FastDTW. The reason for this is that even though it takes
more time to calculate each individual pairwise distances with
Homology Area, by using Algorithm 2 most of the bounding
chains needed to compute the distance array are obtained as
linear combination of other bounding chains.

Fig. 6 a: Picture of the Edinburgh computer science forum overlayed
with a set of paths from the dataset. The areas shaded in red were
used to generate the relative region for the homology area clustering.

Fig. 6 b: One of the homology clusters of paths from [19] clustered
according to homology area. The dark blue paths are each in clusters
of their own, the remaining paths fall mainly into 4 clusters.

IV. CONCLUSIONS

In this paper we were able to show that we can extend
topological methods for path clustering to provide a compati-
ble path distance. Furthermore, we were able to observe that
the proposed method is able to cope with large numbers of
paths by leveraging the fact that not every distance needs to
be computed from scratch, thereby reducing the time needed
to produce a full distance array (essential for distance-based
clustering) by an order of magnitude.

Acknowledgements: The authors would like to thank
Erin Wolf Chambers for her valuable contribution to the
research and structure of this paper.

REFERENCES

[1] OpenStreetMap. [Online]. Available: https://www.openstreetmap.org
[2] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot Program-

ming by Demonstration,” in Springer Handbook of Robotics. Springer
Berlin Heidelberg, 2008.

[3] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena, “From
perception to decision: A data-driven approach to end-to-end motion
planning for autonomous ground robots,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA), May 2017.

[4] C. M. Bishop, Pattern recognition and machine learning. New York:
Springer, 2006.

[5] D. Müllner, “Modern hierarchical, agglomerative clustering algorithms,”
arXiv:1109.2378 [cs, stat], Sep. 2011.

[6] L. Brun, A. Saggese, and M. Vento, “Dynamic Scene Understanding
for Behavior Analysis Based on String Kernels,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 24, no. 10, Oct.
2014.

[7] S. Atev, G. Miller, and N. Papanikolopoulos, “Clustering of Vehicle
Trajectories,” IEEE Transactions on Intelligent Transportation Systems,
vol. 11, no. 3, Sep. 2010.

[8] D. Makris and T. Ellis, “Learning semantic scene models from
observing activity in visual surveillance,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, vol. 35, no. 3, Jun. 2005.

[9] B. Morris and M. Trivedi, “A Survey of Vision-Based Trajectory
Learning and Analysis for Surveillance,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 18, no. 8, Aug. 2008.

[10] E. J. Keogh and M. J. Pazzani, “Scaling Up Dynamic Time Warping for
Datamining Applications,” in Proceedings of the Sixth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’00. New York, NY, USA: ACM, 2000.

[11] F. T. Pokorny, K. Goldberg, and D. Kragic, “Topological trajectory clus-
tering with relative persistent homology,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA), May 2016.

[12] E. W. Chambers and M. Vejdemo-Johansson, “Computing minimum
area homologies,” in Computer Graphics Forum, vol. 34. Wiley
Online Library, 2015.

[13] S. Salvador and P. Chan, “Toward Accurate Dynamic Time Warping
in Linear Time and Space,” Intell. Data Anal., vol. 11, Oct. 2007.

[14] S. Atev, O. Masoud, and N. Papanikolopoulos, “Learning Traffic
Patterns at Intersections by Spectral Clustering of Motion Trajectories,”
in 2006 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Oct. 2006.

[15] S. Aghabozorgi, A. Seyed Shirkhorshidi, and T. Ying Wah, “Time-
series clustering – A decade review,” Information Systems, vol. 53, oct
2015.

[16] A. Hatcher, Algebraic topology. Cambridge University Press, 2002.
[17] C. C. Paige and M. A. Saunders, “LSQR: An Algorithm for Sparse

Linear Equations and Sparse Least Squares,” ACM Trans. Math. Softw.,
vol. 8, no. 1, Mar. 1982.

[18] B. Morris and M. Trivedi, “Learning trajectory patterns by clustering:
Experimental studies and comparative evaluation,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2009. CVPR 2009, Jun.
2009.

[19] R. Fischer. [Online]. Available: http://homepages.inf.ed.ac.uk/rbf/
FORUMTRACKING/

[20] K. Tanida, “fastdtw.” [Online]. Available: https://pypi.python.org/pypi/
fastdtw

