
TESIS DOCTORAL/DOKTOREGO TESIA

High Performance Scientific
Computing in Applications with

Direct Finite Element
Simulation

AUTOR/EGILEA:
EZHILMATHI KRISHNASAMY

SUPERVISOR/IKUSKATZAILE:
JOHAN JANSSON

BCAM - Basque Center for Applied Mathematics

© Autor/Egilea:
Ezhilmathi Krishnasamy
Supervisor/Ikuskatzaile:

Johan Jansson

iii

This research was carried out at the Basque Center for Applied Mathematics
(BCAM) within the CFD Computational Technology (CFDCT) and also at the
School of Electrical Engineering and Computer Science(Royal Institue of Technol-
ogy, Stockholm, Sweden). Which is suported by Fundacion Obra Social “la Caixa“,
Severo Ochoa Excellence research centre 2014-2018 SEV-2013-0323, Severo Ochoa
Excellence research centre 2018-2022 SEV-2017-0718, BERC program 2014-2017,
BERC program 2018-2021, MSO4SC European project, Elkartek. This work has
been performed using the computing infrastructure from SNIC (Swedish National
Infrastructure for Computing).

iv

Abstract

To predict separated flow including stall of a full aircraft with Compu-
tational Fluid Dynamics (CFD) is considered one of the grand challenges
problem to be solved by 2030 according do NASA [1]. The nonlinear Navier-
Stokes equations provide the mathematical formulation for fluid flow in 3
dimensional spaces. However, classical solutions existence and uniqueness
are still missing. Since brute-force computation is intractable, to perform
predictive simulation for a full aircraft one can use Direct Numerical Simula-
tion (DNS), however, it is prohibitively expensive as it needs to resolve the
turbulent scales of order Re 9

4 . Considering other methods such as, statisti-
cal average Reynolds’s Average Navier Stokes (RANS), spatial average Large
Eddy Simulation (LES) and hybrid Detached Eddy Simulation (DES), which
require less number of degrees of freedom. All of these methods have to be
tuned to benchmark problems, and moreover near the walls the mesh has to
be very fine to resolve boundary layers (which means the computational cost
is very expensive). Above all, the results are sensitive to for e.g. explicit
parameters in the method, the mesh, etc.

As a resolution to the challenge, here we present the adaptive time re-
solved Direct FEM Solution (DFS) methodology with numerical tripping, as
a predictive, parameter-free family of methods for turbulent flow. We solved
the JAXA Standard Model (JSM) aircraft model at realistic Reynolds num-
ber, presented as part of the High Lift Prediction Workshop 3. We predicted
lift Cl within 5% error vs. experiment, drag Cd within 10% error and stall 1◦

within angle of attack. The workshop identified a likely experimental error of
order 10% for the drag results. The simulation is 10 times faster and cheaper
when compared to traditional or existing CFD approaches. The efficiency
mainly comes from: the slip boundary condition that allows coarse meshes
near walls, goal-oriented adaptive error control that refines the mesh only
where needed and large time steps using a Schur-type fixed-point iteration
method, without compromising the accuracy of the simulation results.

As a follow-up, we were invited to the Fifth High Order CFD Work-
shop, where the approach was validated for a tandem sphere problem (low
Reynolds number turbulent flow) wherein a second sphere is placed a certain
distance downstream from a first sphere. The results capture the expected
slipstream phenomenon, with appx. 2% error. A comparison with the higher
order frameworks Nek500 and PyFR was done. The PyFR framework has
demonstrated high effectiveness for GPUs with an unstructured mesh, which
is a hard problem in this field. This is achieved by an explicit time-stepping
approach. Our study showed that our large time step approach enabled appx.
3 orders of magnitude larger time steps than the explicit time steps in PyFR,
which made our method more effective for solving the whole problem.

We also presented a generalization of DFS to variable density, and vali-
dated against the well-established MARIN benchmark problem. The results
show good agreement with experimental results in the form of pressure sen-
sors. Later, we used this methodology to solve two applications in multiphase
flow problems. One has to do with flash rain water storage tank (Bilbao water

v

consortium), and the second is about designing a nozzle for 3D printing. In
the flash rain water storage tank, we predicted that the water height in the
tank has a huge influence on how the flow behaves downstream of the tank
door (valve). For the 3D printing, we developed an efficient design with fo-
cused jet flow to prevent oxidation and heating at the tip of the nozzle during
a melting process.

Finally, we presented here the parallelism on multiple GPUs and the em-
bedded system Kalray architecture. Almost all supercomputers today have
heterogeneous architectures, such as CPU+GPU or other accelerators, and it
is therefore important to develop computational frameworks to take advan-
tage of them.

For multiple GPUs, we developed a stencil computation, applied on ge-
ological folds simulation. We explored halo computation and used CUDA
streams to the optimise computation and communication time. The resulting
performance gain was 23% for four GPUs with Fermi architecture, and the
corresponding improvement obtained on four Kepler GPUs was 47%.

The Kalray architecture is designed to have low energy consumption. Here
we tested the Jacobi method with different communication strategies.

Additionally visualisation is a key area when we do the scientific simula-
tions. We developed an automated visualisation framework, where we could
see that task parallelization is more than 10 times faster than data paral-
lelization.

vi

Acknowledgement

I would like to thank my supervisor Johan Jansson for his guidance throughout my
thesis. I would also like to thank the La Caixa foundation for my PhD scholarship,
that has helped me to stay 3 years at KTH, Sweden. On the other hand BCAM
is very supportive and flexible, including directors and administrative staffs, I am
really thankful for that. I would like to thank all my friends and colleagues from
BCAM and KTH.

I wish to thank all the industrial collobrators from Bilbao and Sweden, which
also helped me to gain more knowledge in applied field. Finally, I would like to
thank my mom and sister for their love and support as always.

Ezhilmathi Krishnasamy
San Sebastian,
Basque Country, 2019

Contents

Contents vii

List of Figures ix

1 Introduction 1
1.1 Objectives of the thesis . 2
1.2 Why CFD . 3
1.3 Components of FEniCS-HPC . 3

2 Mathematical formulation and validation 7
2.1 Direct FEM Simulation and its methodoloy 7

2.1.1 The cG(1)cG(1) method . 7
2.1.2 The Adaptive Algorithm . 8
2.1.3 A posteriori error estimate for cG(1)cG(1) 9
2.1.4 The Do-nothing Error Estimate and Indicator 10
2.1.5 Boundary layers . 11

2.2 Time resolved adaptive direct FEM simulation 12
2.2.1 Background . 13
2.2.2 Introduction . 14
2.2.3 Simulation Methodology . 16
2.2.4 Results . 22
2.2.5 Aerodynamic Forces . 23
2.2.6 Pressure coefficients . 25
2.2.7 Flow and Adaptive Mesh Refinement Visualization 29
2.2.8 Conclusions . 34

2.3 Multi Phase Flow . 37
2.3.1 Mathematical model . 37
2.3.2 Direct FEM cG(1)cG(1) for variable-density 38
2.3.3 Validation . 38

2.4 Tandem sphere . 39
2.4.1 Drag Cd over time with adaptive mesh 42
2.4.2 Mesh convergence . 42

vii

viii CONTENTS

3 Applications 47
3.1 Turbulent Multiphase Flow in Urban Water Systems and Marine

Energy . 47
3.1.1 Overview . 47
3.1.2 Mathematical modelling . 48
3.1.3 The Bilbao Water Consortium storm drain problem 48
3.1.4 Simulation results . 50
3.1.5 Conslusions . 55

3.2 3D printing Nozzle design . 55
3.2.1 Objective . 56
3.2.2 Mathematical modelling . 57
3.2.3 Initial Design . 57
3.2.4 Optimized design . 57
3.2.5 Validation . 60
3.2.6 Results . 60
3.2.7 Summary and Conclusion . 65

4 High performance computing 67
4.1 CPU, GPU and Parallel archietecture 67

4.1.1 CPU architecture . 68
4.1.2 Parallel architecture . 69
4.1.3 GPU architecture . 71

4.2 Multiple GPU Implementation of parallel 3D sweeping 73
4.2.1 Background . 73
4.2.2 Mathematical background . 74
4.2.3 Data partition . 76
4.2.4 Data transfer . 77
4.2.5 CUDA implementations . 78
4.2.6 Experiments and measurements 80
4.2.7 Conclusion . 83
4.2.8 Future work . 84

4.3 Towards HPC-embedded;case study-Kalray and message-passing on
NoC . 84
4.3.1 Background . 85
4.3.2 Kalray Arhietecture . 86
4.3.3 Jacobi Method Implementation on Kalray 87
4.3.4 Performance Study . 91
4.3.5 Conclusions and Future Work 95

4.4 Visualization . 96

5 Outcomes and future work 99

Bibliography 101

List of Figures

1.1 FEniCS-HPC component dependency diagram. 5

2.1 Illustration of the difference between DNS, LES and RANS [source from
Nicoud Franck, dec 2007] . 13

2.2 Overview of the JSM aircraft model and starting mesh for the adaptive
method . 14

2.3 Lift coefficient, Cl, and drag coefficient, Cd, versus the angle of attack,
α, for the different meshes from the iterative adaptive method. 24

2.4 Time evolution of lift coefficient, Cl, and drag coefficient, Cd, and a table
of the value for the finest adaptive mesh with relative error compared
to the experimental results for α = 4.36 ◦. 25

2.5 Time evolution of lift coefficient, Cl, and drag coefficient, Cd, and a table
of the value for the finest adaptive mesh with relative error compared
to the experimental results for α = 18.58 ◦, untripped. 26

2.6 Time evolution of lift coefficient, Cl, and drag coefficient, Cd, and a table
of the value for the finest adaptive mesh with relative error compared
to the experimental for α = 18.58 ◦ with numerical tripping. 26

2.7 Diagram of the pressure sensor layout for the JSM configuration showing
where the pressure sensors are located and how they are denoted. 27

2.8 Pressure coefficients, Cp, versus normalized local chord, x/c, for the
angles of attack α = 10.48 ◦ (left), α = 18.58 ◦ (middle) and α = 22.56 ◦
(right) at locations A-A (top), D-D (middle) and G-G (bottom) for the
wing of JSM pylon on. 28

2.9 Pressure coefficients, Cp, versus normalized local chord, x/c, for the
angles of attack α = 10.48 ◦ (left), α = 18.58 ◦ (middle) and α = 22.56 ◦
(right) at locations A-A (top), D-D (middle) and G-G (bottom) for the
flap of JSM pylon on. 29

2.10 Pressure coefficients, Cp, versus normalized local chord, x/c, in the stall
regime for the angles of attack α = 10.48 ◦ (left), α = 18.58 ◦ (middle)
and α = 22.56 ◦ (right) at locations A-A (top), D-D (middle) and G-G
(bottom) for the slat of JSM pylon on. 30

ix

x List of Figures

2.11 Pressure coefficients, Cp, versus normalized local chord, x/c, for the
angle of attack α = 22.56 ◦ untripped (left), the same angle α = 22.56 ◦
tripped (middle) and α = 21.57 ◦ tripped at locations A-A (top), D-D
(middle) and G-G (bottom) for the wing of JSM pylon on. 31

2.12 Comparison between experimental oil film visualization (left) and sur-
face rendering of the velocity magnitude (right). 32

2.13 Instantaneous isosurface rendering at the final time of the Q-criterion
with value Q = 100. 33

2.14 Volume rendering of the time evolution of the magnitude of the adjoint
velocity ~ϕ magnitude, snapshots at t = (16, 18, 20). 35

2.15 Crinkled slice aligned with the angle of attack, α = 10.48° 36
2.16 Layout of dam breaking benchmark settings [source from K.M.T. Kleef-

sman et al.,2005] . 39
2.17 Density slice and isosurface for ρ = 0.5 at t = 0, 1, 2, 3, 4, 5s. 39
2.18 Pressure over time for simulation and experiment for the sensors P1 and

P7 in the MARIN benchmark. 40
2.19 Initial mesh for the DFS simulation with appx. 100k vertices. 41
2.20 M1P3 refined mesh at down stream side of sphere 1 and 2 and refined

mesh at upstream side of sphere 2. 41
2.21 M1P3 boundary layer is refined manually. 42
2.22 . 43
2.23 Time evolution of the drag coefficient for various iterations of our adap-

tive procedure. 44
2.24 Mesh convergence of the drag coefficients of the two spheres. 45
2.25 . 45

3.1 Schematic of the geometry of the tank, door and start of the tunnel
(top), and a 3D rendering (bottom). 49

3.2 Initial and boundary conditions set up. 50
3.3 Slice plot through the x-z plane (front view) of the mesh. 50
3.4 Density and velocity x-y and x-z at different height with different door

opening time. 51
3.5 Water isovolume at different height with different doot openning time. . 52
3.6 “Spending” flow rate through the door. 53
3.7 Average x-velocity in the door section. 54
3.8 Average flushing x-velocity in the first 10m-section of the tunnel. 55
3.9 Schematic 3D printing nozzle design. 57
3.10 Nozzle length (section c)is 2.5mm and velocities ={0.1, 0.25} m/s . . . 58
3.11 Nozzle length (section c)is 5.0mm and velocities ={0.1, 0.25} m/s . . . 58
3.12 Schematic 3D printing sheath model . 59
3.13 Adaptivity mesh for the single phase flow 59
3.14 Schematic 3D printing sheath model . 59
3.15 Adaptivity mesh for the single phase flow 60
3.16 Plot line positions = 0.0, 1.0, 2.0, 3.0, 4.0 and 5.0 mm 61

List of Figures xi

3.17 Pseu.Col.:Density; viscosity ν = 1e-04, inner inflow uinner = 0.75 and
sheath inflow usheath = 3.75. 61

3.18 Pseu.Col.:Density; viscosity ν = 1e-04, inner inflow uinner = 0.75 and
sheath inflow usheath = 4.75. 62

3.19 Pseu.Col.:Density; viscosity ν = 1e-04, inner inflow uinner = 0.75 and
sheath inflow usheath = 5.75. 62

3.20 viscosity ν = 1e-04, inner inflow uinner = 0.75 and sheath inflow usheath =
3.75. 63

3.21 viscosity ν = 1e-04, inner inflow uinner = 0.75 and sheath inflow usheath =
4.75. 64

3.22 viscosity ν = 1e-04, inner inflow uinner = 0.75 and sheath inflow usheath =
5.75. 65

4.1 The Von Neumann architecture. 68
4.2 Standard multi core CPU. 68
4.3 SIMD model. 69
4.4 Memory hierarchy. 70
4.5 Shared memory architectures. 70
4.6 left:CUDA device memory spec.; right: Kepler’s read cache memory. . . 72
4.7 2D plane sub-sweeping (a) in Z-direction, (b) in Y-direction and (c) in

X-direction. 75
4.8 An example of data dependency associated with sub-sweeps along the

z-direction. 76
4.9 A partitioning of the 3D Cartesian grid that suits parallelization of sub-

sweeps in both x and z-directions. 76
4.10 An example of volumetric data shuffle in connection with changing the

grid partitioning. 77
4.11 Plain 2-GPU implementation: the default synchronous CUDA stream

per GPU . 81
4.12 Improved 2-GPU implementation version 1: two CUDA streams per

GPU . 81
4.13 Improved 2-GPU implementation version 2: two CUDA streams and

one OpenMP thread per GPU . 81
4.14 The initial surface Γ0 (left plot) and the simulation result of (1) after

running 8 sweeps . 82
4.15 Data re-partition for the Y direction sub-sweeps. 84
4.16 Kalray MPPA many-core (left) and compute cluster (righ) architecture [2] 86
4.17 Master (Global Memory) ↔ Slave (Local Memory) Communication. . . 91
4.18 Pipeline (Bus) Communication. 93
4.19 Time consumption for the SM approach. 93
4.20 Time consumption for the NoC approach. 95
4.21 GFLOPS achieved by both approaches. 96
4.22 Marin simulation with no phase separation 97
4.23 Marin simulation with phase separation 97

xii List of Figures

4.24 task paralleization . 98

Chapter 1

Introduction

This thesis describes the mathematical prediction of turbulent incompressible Navier-
Stokes equations, a generalization to multi-phase flow, and its computational im-
plementation and real world applications in FEniCS-HPC [3]. FEniCS-HPC is
an open source framework for automated solution of partial differential equations
(PDE) on massively parallel architectures, providing automated evaluation of vari-
ational forms with a high-level description in mathematical notation, duality-based
adaptive error control, implicit paramemter free turbulence modeling by use of sta-
bilized Finite Element Method and strong linear scaling up to thousands of cores.
FEniCS-HPC is a branch of the FEniCS [4]framework focusing in high performance
on massively parallel architectures.

Numerical analysis focuses on approximating solutions to mathematical equa-
tions that arise in science and engineering. In general, these mathematical equa-
tions are in the form of Partial Differential Equations (PDE), describing physical
phenomena such as conservation, growth, etc. and quantities, such as, pressure,
velocity, density and force. Solving these PDE symbolically is seldom feasible, yet
it is predictive numerical approximation.

Numerical approximation brings down the partial differential equations into a
system of algebraic equations with finite number of unknowns by using a discretiza-
tion method that can be solved by numerical algebra methods [5]. This can be
automatable and effectively done on computers. There are three well known nu-
merical methods that solve PDE: Finite Volume Method (FVM), Finite Element
Method (FEM) and Finite Difference Method (FDM).

FEniCS-HPC is based on FEM, which is based on a variational form of the PDE.
In the Navier-Stokes Equations (NSE), if the method satisfies certain conditions on
stability and consistency, the FEM solutions converge towards a weak solution to
the NSE as the finite element mesh is refined [6]. Such methods are the General
Galerkin (G2) method or Direct Finite Element simulation (DFS), which is what
we use and develop in the thesis.

This thesis will explain and describe the basic structure and outline of FEniCS-

1

2 CHAPTER 1. INTRODUCTION

HPC, and the new mathematical formulations for incompressible flow and multi
phase flow along with efficient parallel algorithms. We also describe how the math-
ematical formulation is useful in real world applications and also give computational
proof of how our approach is efficient in terms of solution accuracy and computa-
tional cost.

We will explain, how one can predict the aerodynamic forces lift & drag and
stall on a full aircraft at realistic Reynolds number, posed as the grand challenge
problem in NASA Vision 2030 [1], and multiphase flow modelling. We will show
validation cases for the NASA HiLiftPW-3 full aircraft benchmark challenge, the
tandem sphere [7,8] and the MARIN benchmark problem [9]. And also we combine
the variable density method with Arbitrary Lagrangian-Eulerian Method (ALE) to
validate the HarshLab [10] offshore platform. Finally, we also show that applications
involving with rain water storage tank and 3D printing.

We will also show multiple GPU stencil computations and parallel algorithms
on the Kalray embedded architecture.

1.1 Objectives of the thesis

• The main hypothesis is that DFS for incompressible Navier-Stokes equations,
predicts general aerodynamic forces, in particular stall prediction. The main
work has been been focused development of the abstract methodology and
FEniCS formulations in an HPC setting, with benchmarking at the highest
level.

• A secondary hypothesis is that a simple variable-density extension of the DFS
formulation allows prediction in e.g. marine dam breaking, shallow water and
coastal engineering modeling.

• One objective is to to compare DFS with higher order frameworks, for low
Reynolds number turbulent flow, especially to investigate the state-of-the-art
of HPC and GPU performance in unstructured meshes.

• A third hypothesis is that to extend variable density method with Arbitrary
Lagrangian-Eulerian Method (ALE) for the HarshLab floating platform for
the offshore platform (for example, offshore generic construction and wind
turbine)

• One objective is to carry out parallel multiple GPU implementation, and
implementation on the Kalray embedded architecture.

• One objective is to develop applications related to the multiphase flow of a
rain water flash tank opening and 3D printing nozzle.

1.2. WHY CFD 3

1.2 Why CFD

Fluid Mechanics (FM) is an every day part of people’s lives it can be blood flow
in the human body, passenger aircraft, etc. In the beginning of the 18th century,
FM started to get its formal mathematical definitions by scientists like Leonhard
Euler, Daniel Bernoulli, Claude-Louis Navier and Sir George Gabriel Stokes. But
it’s progress was not very fast in the beginning and did not take off until the advent
of massive calculations with computers. In 1934 though Leray proved the existence
of weak solutions, not many classical solutions such as uniqueness exit for non linear
Navier-Stokes equations in 3 dimensional spaces.

In the past few decades, the field of fluid mechanics has expanded greatly. With
the pervasive penetration of software, a new subfield has emerged: Computational
Fluid Dynamics (CFD). In recent years, CFD has considerably replaced the experi-
mental results. This has a huge influence on the reduced cost, reduced pollution and
efficient and innovative designs in car, air planes, renewable and biomedical, etc. In
general it avoids the wind tunnel tests which would require the lots of resource in
terms of time, money and manpower. And for the biomedical applications it avoids
the clinical experiments and also enables to understand the blood flow behavior
inside human body. CFD also facilitates a low cost for the product design, deter-
mines the product performance and micro analysis where manual measurement is
not possible.

1.3 Components of FEniCS-HPC

FEniCS-HPC [3] is an open source framework for the automated solution of PDEs
on massively parallel architectures, providing automated evaluation of variational
forms whose description is given in a high-level mathematical notation, duality-
based adaptive error control, implicit turbulence modeling using stabilized FEM
and strong linear scaling up to thousands of cores [11,12]. FEniCS-HPC is a branch
of the FEniCS [4,13] framework focusing on high performance in massively parallel
architectures.

FEniCS is problem solving environment for the PDE using the FEM. FEniCS
has many components or subpackage to support the problem solving environment,
among them DOLFIN [14] is a core component. Which supports both C++ and
python programming languages, provides the core problem solving environment
to FEniCS, such as data structures, algorithms for computational meshes, finite
element assembly and numerical linear algebra package through the PETSc [15].

FEniCS-HPC is a problem-solving environment (PSE) for automated solution
of PDE by the FEM with a high-level interface for the basic concepts of FEM: weak
forms, meshes, refinement, sparse linear algebra, and with HPC concepts such as
partitioning, load balancing abstracted away.

FEniCS-HPC focuses on two components: DOLFIN-HPC and Unicorn. DOLFIN-
HPC has specific development supporting good parallel scaling in the linear algebra

4 CHAPTER 1. INTRODUCTION

interface to PETSc, parallel mesh distribution, refinement and load balancing on
the parallel computer architecture environment [16]. Unicorn provides a solving
environment for Unified Continuum modeling: Direct FEM Simulation for a gen-
eral continuum, e.g. incompressible NS equation or fluid-structure interaction with
goal-oriented error control estimation, robust stabilization, slip boundary condi-
tions, high-level mathematical abstraction for time-dependent PDE such as fluid-
structure interaction (FSI) problems. Figure 1.1 shows the typical workflow of the
FEniCS-HPC.

The framework is based on components with clearly defined responsibilities. A
compact description of the main components follows, with their dependencies as
shown in the dependency diagram in Figure 1.1:

FIAT: Automated generation of finite element spaces V and basis functions φ ∈ V
on the reference cell and numerical integration with FInite element Auto-
mated Tabulator (FIAT) [13,17]

e = (K,V,L)

where K is a cell in a mesh T , V is a finite-dimensional function space, L is
a set of degrees of freedom.

FFC+UFL: Automated evaluation of weak forms in mathematical notation on
one cell based on code generation with Unified Form Language (UFL) and
FEniCS Form Compiler (FFC) [13,18], using the basis functions φ ∈ V from
FIAT. For example, in the case of the Laplacian operator,

AKij = aK(φi, φj) =
∫
K

∇φi · ∇φjdx =
∫
K

lhs(r(φi, φj)dx)

where AK is the element stiffness matrix and r(·, ·) is the weak residual.

DOLFIN-HPC: Automated high performance assembly of weak forms and inter-
face to linear algebra of discrete systems and mesh refinement on a distributed
mesh TΩ [19].

A = 0
for all cells K ∈

TΩ
A += AK

Ax = b

Unicorn: Automated Unified Continuum modeling with Unicorn choosing a spe-
cific weak residual form for incompressible balance equations of mass and

1.3. COMPONENTS OF FENICS-HPC 5

momentum with example visualizations of aircraft simulation below left and
turbulent FSI in vocal folds below right [20].

rUC((v, q), (u, p)) = (v, ρ(∂tu+(u·∇)u)+∇·σ−g)+(q,∇·u)+LS((v, q), (u, p))

where LS is a least-squares stabilizing term described in [21].

Figure 1.1: FEniCS-HPC component dependency diagram.

Unicorn is solver technology (models, methods, algorithms and software) with
the goal of automated high performance simulation of realistic continuum mechan-
ics applications, such as drag or lift computation for fixed or flexible objects (FSI) in
turbulent incompressible or compressible flow. The basis for Unicorn is Unified Con-
tinuum (UC) modeling [22] formulated in Euler (laboratory) coordinates, together
with the General Galerkin (G2) adaptive stabilized finite element discretization
described above.

A user of FEniCS-HPC writes the weak forms in the UFL language, compiles it
with FFC, and includes it in a high-level “solver” written in C++ in DOLFIN-HPC
to read in a mesh, assemble the forms, solve linear systems, refine the mesh, etc.
The Unicorn solver for adaptive computation of turbulent flow and FSI is developed
as part of FEniCS-HPC.

FEniCS-HPC solves the PDE in distributed memory architectures (at the mo-
ment only with Message Passing Interface and Partitioned Global Address Space),
where users can define PDE at a higher level mathematical notation of FEM in
weak/variational form. This is compiled into low-level assembly functions with the
help of FEniCS components such as, FEniCS Form Compiler (FFC), The Unified
Form Language (UFL) and FInite element Automatic Tabulator (FIAT).

Chapter 2

Mathematical formulation and
validation

In this chapter, we will describe the general methodology of the Direct FEM simu-
lation and its further development in flow prediction for external flow (flow around
the aircraft and tandem sphere) and multi phase flow. Section 2.1 shows the gen-
eral mathematical formulation and its methodology. And section 2.2 shows the
flow prediction with numerical tripping phenomena. Tandem sphere simulation
and its validation is mentioned in section ??. Finally the section 2.3 shows the
mathematical modeling and validation against the dam breaking benchmark.

2.1 Direct FEM Simulation and its methodoloy

The Direct FEM Simulation (DFS) methodology is based on directly solving the
continuum model, e.g. Navier-Stokes equations, without an explicit turbulence
model, with a robust finite element method consisting of: residual based FEM
with stabilization, a posteriori error estimation, and a goal-oriented adaptive error
control algorithm.

2.1.1 The cG(1)cG(1) method
As the basic model for incompressible Newtonian fluid flow, we consider the NSE
with constant kinematic viscosity ν > 0, enclosed in Ω ⊂ R3, with boundary Γ,
over a time interval I = [0, T]:

~̇u+ (~u · ∇)~u+∇p− 2ν∇ · ε(~u) = f, (~x, t) ∈ Ω× I,
∇ · ~u = 0, (~x, t) ∈ Ω× I,
~u(~x, 0) = ~u0(~x), ~x ∈ Ω,

(2.1)

with ~u(~x, t) the velocity vector, p(~x, t) the pressure, ~u0(~x) the initial data and
f(~x, t) a body force. Moreover, σij = 2νεij(~u) − pδij is the stress tensor, with the

7

8 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

strain rate tensor εij(~u) = 1/2(∂ui/∂xj + ∂uj/∂xi), and δij the Kronecker delta.
The relative importance of viscous and inertial effects in the flow is determined by
the Reynolds number Re = ~UL/ν, where ~U and L are characteristic velocity and
length scales respectively.

The cG(1)cG(1) method is based on the continuous Galerkin method cG(1) in
space and time. With cG(1) in time, the trial functions are continuous, piecewise
linear and the test functions piecewise constant. cG(1) in space corresponds to
both test functions and trial functions are being continuous and piecewise linear.

Let 0 = t0 < t1 < ... < tN = T be a sequence of discrete time steps, with
associated time intervals In = (tn−1, tn) of length kn = tn − tn−1, and let W ⊂
H1(Ω) be a finite element space consisting of continuous, piecewise linear functions
on a tetrahedral mesh T = {K} of mesh size h(~x), with W~w the functions ~v ∈ W
satisfying the Dirichlet boundary condition ~v|Γ = ~w.

We seek ~̂U = (~U, P), continuous piecewise linear in space and time, and the
cG(1)cG(1) method for the NSE with homogeneous Dirichlet boundary conditions
reads: for n = 1, ..., N find (~Un, Pn) ≡ (~U(tn), P (tn)), with ~Un ∈ V0 ≡ [W0]3 and
Pn ∈W , such that:

((~Un − ~Un−1)k−1
n + ~̄Un · ∇ ~̄Un, ~v) + (2νε(~̄Un), ε(~v))− (Pn,∇ · ~v)

+ (∇ · ~̄Un, q) + SDn
δ (~̄Un, Pn;~v, q) = (f,~v), ∀~̂v = (~v, q) ∈ V0 ×W,

(2.2)

where ~̄Un = 1
2 (~Un+ ~Un−1) is piecewise constant in time over In, with the stabilizing

term

SDn
δ (~̄Un, Pn;~v, q) ≡ (2.3)

(δ1(~̄Un · ∇ ~̄Un +∇Pn − f), ~̄Un · ∇~v +∇q) + (δ1∇ · ~̄Un,∇ · ~v),

and

(~v, ~w) =
∑
K∈T

∫
K

~v · ~w dx,

(ε(~v), ε(~w)) =
3∑

i,j=1
(εij(~v), εij(~w)),

with the stabilization parameter δ1 = κ1h, where κ1 is a positive constant of unit
size. We chose a time step size kn = CCFL min~x∈Ω h/|~Un−1|, with CCFL typically
in the range [0.5, 20]. The resulting non-linear algebraic equation system is solved
with a robust Schur-type fixed-point iteration method [23].

2.1.2 The Adaptive Algorithm
A simple description of the adaptive algorithm, starting from i = 0, reads:

2.1. DIRECT FEM SIMULATION AND ITS METHODOLOY 9

1. For the mesh Ti: solve the primal and (linearized) dual problems for the
primal solution (~U, P) and the dual solution (Φ,Θ).

2. Compute the quantity EK for any cell K of Ti. If
∑
K∈Ti

EK < TOL and then
stop, else:

3. Mark 5% of the elements with highest EK for refinement.

4. Generate the refined mesh Ti+1, and go to 1.

Here, EK is the error indicator for each cell K, which we describe in Sec-
tion 2.2.3.3. For now, it suffices to say that EK is a function of the residual of
the NSE and of the solution to a linearized dual problem. The formulation of the
dual problem includes the definition of a target functional for the refinement, which
usually enters the dual equations as a boundary condition or as a volume source
term. This functional should be chosen according to the problem we are solving.
In other words, one needs to ask the right question in order to obtain the correct
answer from the algorithm. In this chapter, our target functional is chosen to be
the mean value in time of the aerodynamic forces.

The dual problem can be written as (see [24] for more details):
− ~̇ϕ− (~u · ∇)~ϕ+∇~U

>
~ϕ+∇θ − ν∆~ϕ = ψ1 (~x, t) ∈ Ω× I

∇ · ~ϕ = ψ2 (~x, t) ∈ Ω× I
~ϕ = ψ3 (~x, t) ∈ Γ× I
~ϕ(·, T) = ψ4 ~x ∈ Ω,

(2.4)

where we find that the structure is similar to the primal NSE equations, except
that the adjoint problem is linear, the transport is backward in time, and that we
have a reaction term (∇~U

>
~ϕ)j = U,j · ~ϕ, that is not present in the primal NSE.

The only other input required from the user is an initial discretization of the
geometry, T0. Since our method is designed for tetrahedral meshes that do not
require any special treatment of the near-wall region (no need for a boundary-layer
mesh), the initial mesh can be easily created with any standard mesh generation
tool.

2.1.3 A posteriori error estimate for cG(1)cG(1)
The a posteriori error estimate is based on the following theorem (for a detailed
proof, see chapter 30 in [6]):

Theorem 1 If ~̂U = (~U, P) solves (2.14), ~̂u = (~u, p) is a weak NSE solution, and
~̂ϕ = (~ϕ, θ) solves an associated dual problem with data M(·), then we have the

10 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

following a posteriori error estimate for the target functional M(~̂U) with respect to
the reference functional M(~̂u):

|M(~̂u)−M(~̂U)| ≤
N∑
n=1

[∫
In

∑
K∈Ti

|R1(~U, P)K | · ω1 dt

+
∫
In

∑
K∈Ti

|R2(~U)K | ω2 dt+
∫
In

∑
K∈Ti

|SDn
δ (~̂U ; ~̂ϕ)K | dt

]
=:

∑
K∈Ti

EK

with

R1(~U, P) = ~̇U + (~U · ∇)~U +∇P − 2ν∇ · ε(~u)− f,
R2(~U) = ∇ · ~U, (2.5)

where SDn
δ (·; ·)K is a local version of the stabilization form (2.15), and the stability

weights are given as

ω1 = C1hK |∇~ϕ|K ,
ω2 = C2hK |∇θ|K ,

where hK is the diameter of element K in the mesh Ti, and C1,2 represent in-
terpolation constants. Moreover, |w|K ≡ (‖w1‖K , ‖w2‖K , ‖w3‖K), with ‖w‖K =
(w,w)1/2

K , and the dot denotes the scalar product in R3.

For simplicity, here, we assumed that the time derivatives of the dual variables
ϕ̂ = (~ϕ, θ) can be bounded by their spatial derivatives. Using Theorem 2, we can
understand the adaptive algorithm. As mentioned above, the error indicator, EK , is
a function of the residual of the NSE and the solution of a linearized dual problem
(a detailed formulation of the dual problem is given in Chapter 14 in [6]). Thus, on
a given mesh, we must first solve the NSE to compute the residuals, R1(~U, P) and
R2(~U), and then a linearized dual problem to compute the weights multiplying the
residuals, ω1 and ω2. With that information, we are able to compute

∑
K∈Ti

EK and
check it against the given stop criterion. This procedure of solving the forward and
backward problems for the NSE is closely related to an optimization loop and can
be understood as the problem of finding the “optimal mesh” for a given geometry
and boundary conditions, id est, the mesh with the least possible number of degrees
of freedom for computing M(~̂u) within a given degree of accuracy.

2.1.4 The Do-nothing Error Estimate and Indicator
To minimize the loss of sharpness, we also investigated an approach where the weak
form is used directly in a posteriori error estimates without integration by parts to
the strong form using the Cauchy-Schwarz inequality and interpolation estimates.

2.1. DIRECT FEM SIMULATION AND ITS METHODOLOY 11

Here, we refer to this direct form of a posteriori error representation by duality as
the “do-nothing” approach.

In terms of the exact adjoint solution ~̂ϕ, the output error with respect to a weak
solution ~̂u can be represented as

|M(~̂u)−M(~̂U)| = |(R(~̂U), ~̂ϕ)| = |
∑
K∈Ti

(R(~̂U), ~̂ϕ)K | (2.6)

This error representation involves no approximation or inequalities. We thus
refer to the following error indicator based on the representation as the do-nothing
error indicator :

eK ≡ (R(~̂U), ~̂ϕ)K (2.7)

A computable estimate and an error indicator are again based on the computed
approximation ~̂ϕh of the dual solution:

|M(~̂u)−M(~̂U)| ≈ |(R(~̂U), ~̂ϕh)| (2.8)

eKh ≡ (R(~̂U), ~̂ϕh)K (2.9)

where we may lose reliability of the global error estimate by the Galerkin orthogo-
nality property, which states that the (R(~̂U), ~̂ϕh) vanishes for a standard Galerkin
finite element method if ~̂ϕh is chosen in the same space as the test functions. Al-
though, in the setting of a stabilised finite element method, this may not be the
case, see [25].

2.1.5 Boundary layers
2.1.5.1 Medium Reynolds number flow

If the Reynolds number is less than Re = 105, then we choose a no-slip boundary
condition, since it’s tractable to resolve it with the mesh. This has been verified for
numerous cases, such as cube [26], rectangular cylinder [27], sphere [28] and circular
cylinder [29]. In all these cases, the solution converges towards the reference output
quantities such as drag, lift and pressure output with less degree of freedom when
compared to standard LES methods, which are based on manual meshing.

2.1.5.2 Higher Reynolds number flow

In our work on high Reynolds number turbulent flows [30–32] we chose a skin
friction stress as the wall layer model. That is, we appended the NSE with the
following boundary conditions:

~u · ~n = 0, (2.10)
β~u · τk + ~nTστk = 0, k = 1, 2, (2.11)

12 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

for (~x, t) ∈ Γsolid×I, with ~n = ~n(~x) an outward unit normal vector, and τk = τk(~x)
orthogonal unit tangent vectors of the solid boundary Γsolid. We used matrix
notation with all vectors ~v being column vectors and the corresponding row vector
as denoted by ~vT .

With skin friction boundary conditions, the rate of kinetic energy dissipation in
cG(1)cG(1) makes a contribution to the form

2∑
k=1

∫ T

0

∫
Γsolid

|β1/2 ~̄U · τk|2 ds dt, (2.12)

from the kinetic energy, which is dissipated as friction in the boundary layer. For
high Re, we modeled Re → ∞ by β → 0, so that the dissipative effect of the
boundary layer vanishes with large Re. In particular, we found that a small β
does not influence the solution [30]. For the present simulations, we used the
approximation β = 0, which can be expected to be a good approximation for real
high-lift configurations, where Re is very high.

2.2 Time resolved adaptive direct FEM simulation

To predict separated flow, including the stall of a full aircraft with Computational
Fluid Dynamics (CFD) is of key importance to society, it is considered by NASA
as one of the grand challenges to be solved by 2030 [1]. This is a turbulent flow
problem. Brute-force computation is intractable, therefore, to do predictive sim-
ulation for a full aircraft, one can use Direct Numerical Simulation (DNS), but it
is prohibitively expensive as it needs to resolve the turbulent scales of order Re 9

4 .
The scales are extremely small when compared to the total length scale of the air-
craft, requires very small elements in an enormous domain. It is thus not feasible
to compute, even on the largest supercomputers today.

There are other methods that require less number of degrees of freedom, that
is, statistical average Reynolds’s Average Navier Stokes (RANS), spatial average
Large Eddy Simulation (LES) and hybrid Detached Eddy Simulation (DES). All of
these methods have to be tuned to benchmark problems, and, moreover, also near
the walls, the mesh has to be very fine to resolve boundary layers (which means
the computational cost is very expensive). Above all, the results are sensitive to for
e.g. explicit parameters in the method, the mesh, etc. Figure 2.1 shows the basic
illustration of DNS, LES and RANS.

In contrast to the statistical averages of RANS and the filtered solutions of
LES, our simulation method is based on the computational approximation of weak
solutions to the Navier-Stokes equations (NSE), that satisfy the NSE in variational
form integrated against a class of test functions.

Finite element methods (FEM) are based on a variational form of the NSE, and
if the method satisfies certain conditions on stability and consistency, the FEM
solutions converge towards a weak solution to the NSE as the finite element mesh

2.2. TIME RESOLVED ADAPTIVE DIRECT FEM SIMULATION 13

Figure 2.1: Illustration of the difference between DNS, LES and RANS [source from
Nicoud Franck, dec 2007]

is refined [6]. We refer to such FEM as a General Galerkin (G2) method, or a Direct
Finite Element simulation (DFS).

The resolution in DFS is set by the mesh size, and no turbulence model is
introduced. Dissipation of turbulent kinetic energy in under-resolved parts of the
flow is provided by the numerical stabilization of G2 in the form of a weighted least
squares method based on the residual of NSE.

The mesh is adaptively constructed based on a posteriori estimation of the error
in chosen goal or target functionals, such as drag and lift forces. The a posteriori
error estimates take the form of a residual weighted by the solution of an adjoint
problem, which is computed separately using a similar stabilized FEM method [6].
The adaptive algorithm starts from a coarse mesh, which is locally refined during
each iteration based on the a posteriori error estimates.

We used a free slip boundary condition as a model for high Reynolds number
turbulent boundary layers with small skin friction. This means that boundary
layers are left unresolved and that no boundary layer mesh is needed.

DFS is a unique approach as it does not require any explicit turbulence modeling
and boundary layer model. The computational mesh is refined based on the poste-
riori error estimation using an adjoint technique. There is no need for a boundary
layer mesh and no need to assume the flow behavior before the simulation and
refine the mesh manually in the fluid domain. The boundary layer is defined by the
wall stress in terms of the skin friction. As the Reynolds number goes to infinity,
the skin friction goes to zero. The consequence is the free slip boundary condition,
which facilitates an enormous computational efficiency.

2.2.1 Background
We present an adaptive finite element method for time-resolved simulation of aero-
dynamics without any turbulence model parameters, which is applied to a bench-
mark problem from the HiLiftPW-3 workshop to compute the flow past a JAXA
Standard Model (JSM) aircraft model at realistic Reynolds number. The mesh is
automatically constructed by the method as part of an adaptive algorithm based
on a posteriori error estimation using adjoint techniques. No explicit turbulence
model is used, and the effect of unresolved turbulent boundary layers is modeled
by a simple parametrization of the wall shear stress in terms of a skin friction. In

14 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

the case of very high Reynolds numbers we approximate the small skin friction by
zero skin friction, corresponding to a free slip boundary condition, which results in
a computational model without any model parameter to be tuned, and without the
need for costly boundary layer resolution. We introduce a numerical tripping noise
term to act as a seed for growth of perturbations, the results support that this trig-
gers the correct physical separation at stall, and has no significant effect pre-stall.
We show that the methodology quantitavely and qualitatively captures the main
features of the JSM experiment - aerodynamic forces and the stall mechanism - with
a much coarser mesh resolution and lower computational cost than the state of the
art methods in the field, with convergence under mesh refinement by the adaptive
method. Thus, the simulation methodology appears to be a possible answer to the
challenge of reliably predicting turbulent-separated flows for a complete air vehicle.

2.2.2 Introduction

The main challenge today in Computational Fluid Dynamics (CFD) for aerodynam-
ics is to reliably predict turbulent-separated flows [1,33], specifically for a complete
air vehicle. This is our focus in this chapter.

We present an adaptive finite element method without turbulence modeling pa-
rameters for time-resolved simulation of aerodynamics, together with results stem-
ming from the 3rd AIAA CFD High-Lift Prediction Workshop (HiLiftPW-3) which
was held in Denver, Colorado, on June 3rd–4th 2017. The benchmark was a high-lift
configuration of the JSM aircraft model shown in Figure 3.1 at a Reynolds number
realistic for flight conditions.

(a) Surface mesh (b) (Pylon)

(c) Volume mesh (d) Wing slice

Figure 2.2: Overview of the JSM aircraft model and starting mesh for the adaptive
method

2.2. TIME RESOLVED ADAPTIVE DIRECT FEM SIMULATION 15

The purpose of the workshop is to assess the capability of state of the art CFD
codes and methods.

Turbulent flows present features on a range of scales, from the scale of the
aircraft down to the Kolmogorov dissipation scale. Direct numerical simulation
(DNS) is not feasible for a full aircraft at realistic Reynolds numbers, instead the
Reynolds Averaged Navier-Stokes equations (RANS) have long been the state of
the art in industry [34]. RANS methods do not provide a full resolution of the
flow field but simulate the mean field and introduce turbulence models to make it
up for the unresolved dynamics. In particular, standard RANS do not resolve the
transient flow field, but a statistical average of the turbulent flow.

In contrast, Large Eddy Simulations (LES) [35] resolve the dynamics of a filtered
flow field, at the cost of higher mesh resolution than RANS, with subgrid models
for unresolved scales. Both RANS and LES, and hybrids such as DES, introduce
model parameters that need to be tuned to the problem at hand, and the results
are highly sensitive to the design of the computational mesh [36–40]. In particular,
turbulent boundary layers cannot be resolved and must be modelled. Boundary
layer models require tailored boundary layer meshes, which are expensive in terms
of both mesh density and manual work. Witherden and Jameson in [33] state that
“as a community we are still far away from LES of a complete air vehicle”.

The method we present is an adaptive finite element method without explicit
turbulence model and boundary layer model, thus without model parameters and
without the need for a boundary layer mesh. The mesh is automatically constructed
by the method as part of the computation through an adaptive procedure based
on a posteriori error estimation using adjoint techniques. Dissipation of turbulent
kinetic energy is provided by residual-based numerical stabilization. The method is
thus purely based on the Navier-Stokes equations, no other modeling assumptions
are made.

We model the effect of turbulent boundary layers by a parametrization of the
wall shear stress in terms of a skin friction. For very high Reynolds numbers we
approximate the small skin friction by zero skin friction, corresponding to a free slip
boundary condition, which results in a computational method without any model
parameters that need to be tuned, and without the need for costly boundary layer
resolution.

In this chapter we give the main components of the simulation methodology
and we present our results stemming from the HiLiftPW-3, where we highlight
the non-standard aspects of the methodology and discuss the results in relation to
the experiments. The HiLiftPW-3 specified two variants of the JSM, one without
pylon (or nacelle) and one with the pylon included in the geometry (“pylon on”).
The difference in the aerodynamic forces between the two variants measured in
experiments are small, typically less than 2 %. For this reason we will focus only
on the “pylon on” variant with the aim of validating our methodology.

The workshop guidelines prescribed the study of these two variants either with
a fixed mesh or, more interestingly, using mesh adaptation techniques. Considering
the nature of our method, which intimately depends on its adaptive procedure,

16 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

we concentrated on the latter study. We did not use the provided computational
meshes, but instead generated more suitable ones for our methodology starting from
the provided CAD files. We would like to point out that our adaptive methodology
does not require any ad-hoc meshing procedure aimed at helping the solver identify
flow features that are qualitatively known before starting the computations. Not
only does this simplify the meshing procedure, which can now be carried out by
non-specialized software (and scientists), but it also makes it faster: the only thing
that we need is an initial mesh that captures the geometry of the object; this is due
to the fact that the generated mesh loses memory of the underlying CAD model,
and therefore the refinement of boundary triangles cannot correct a rough initial
approximation of the CAD geometry. We plan to get rid of this constraint in the
near future, implementing the functionality to refine boundary cells with the new
vertices projected on the CAD model. Once we have a sufficiently accurate surface
description, however, we can let the mesh be coarse in the volume part, which will
be refined iteratively by the adaptive algorithm.

This convenient approach allows us to perform computations starting with
rather coarse meshes, increasing the number of cells only where needed in order
to best utilize the available computational resources. Our initial mesh for the JSM
case have about 2 5M cells.

We find that the simulation results compare very well with experimental data
for all the angles of attack that we studied; moreover, we show mesh-convergence by
the adaptive method, while using a relatively low number of spatial degrees of free-
dom. The low computational cost also allows for a time-resolved simulation, which
provides additional results that cannot be obtained from a stationary simulation,
such as the ones based on Reynolds-averaged Navier-Stokes equations (RANS).

Thus, the simulation methodology appears to be a possible answer to the chal-
lenge of reliably predicting turbulent-separated flows for a complete air vehicle. We
specifically here present simulation results reproducing the physically correct stall
mechanism of large-scale separation at the wing-body juncture, which is promising
for our continuing work on validating the methodology.

2.2.3 Simulation Methodology
In contrast to the statistical averages of RANS and the filtered solutions of LES,
our simulation method is based on computational approximation of weak solutions
to the Navier-Stokes equations (NSE), that satisfy the NSE in variational form
integrated against a class of test functions.

Finite element methods (FEM) are based on a variational form of the NSE, and
if the method satisfies certain conditions on stability and consistency, the FEM
solutions converge towards a weak solution to the NSE as the finite element mesh
is refined [6]. We refer to such FEM as a General Galerkin (G2) method, or a Direct
Finite Element simulation (DFS).

The resolution in DFS is set by the mesh size, and no turbulence model is
introduced. Dissipation of turbulent kinetic energy in under-resolved parts of the

2.2. TIME RESOLVED ADAPTIVE DIRECT FEM SIMULATION 17

flow is provided by the numerical stabilization of G2 in the form of a weighted least
squares method based on the residual of NSE.

The mesh is adaptively constructed based on a posteriori estimation of the error
in chosen goal or target functionals, such as drag and lift forces. The a posteriori
error estimates take the form of a residual weighted by the solution of an adjoint
problem, which is computed separately using a similar stabilized FEM method [6].
The adaptive algorithm starts from a coarse mesh, which is locally refined each
iteration based on the a posteriori error estimates.

We use a free slip boundary condition as a model for high Reynolds number
turbulent boundary layers with small skin friction. This means that boundary
layers are left unresolved, and that no boundary layer mesh is needed.

This methodology has been validated on a number of standard benchmark prob-
lems in the literature [27–29,41], including for an aircraft model for the HiLiftPW-
2 [42] and we find that also for the benchmark considered in this chapter the method
is very efficient and provides results close to the experimental reference data.

We have used a low order finite element discretization on unstructured tetrahe-
dral meshes, which we refer to as cG(1)cG(1), id est, continuous piecewise linear
approximation in space and time.

2.2.3.1 The cG(1)cG(1) method

As the basic model for incompressible Newtonian fluid flow, we consider the NSE
with constant kinematic viscosity ν > 0, enclosed in Ω ⊂ R3, with boundary Γ,
over a time interval I = [0, T]:

~̇u+ (~u · ∇)~u+∇p− 2ν∇ · ε(~u) = f, (~x, t) ∈ Ω× I,
∇ · ~u = 0, (~x, t) ∈ Ω× I,
~u(~x, 0) = ~u0(~x), ~x ∈ Ω,

(2.13)

with ~u(~x, t) the velocity vector, p(~x, t) the pressure, ~u0(~x) the initial data and
f(~x, t) a body force. Moreover, σij = 2νεij(~u) − pδij is the stress tensor, with the
strain rate tensor εij(~u) = 1/2(∂ui/∂xj + ∂uj/∂xi), and δij the Kronecker delta.
The relative importance of viscous and inertial effects in the flow is determined by
the Reynolds number Re = ~UL/ν, where ~U and L are characteristic velocity and
length scales.

The cG(1)cG(1) method is based on the continuous Galerkin method cG(1) in
space and time. With cG(1) in time, the trial functions are continuous, piecewise
linear and the test functions piecewise constant. cG(1) in space corresponds to
both test functions and trial functions being continuous, piecewise linear.

Let 0 = t0 < t1 < ... < tN = T be a sequence of discrete time steps, with
associated time intervals In = (tn−1, tn) of length kn = tn − tn−1, and let W ⊂
H1(Ω) be a finite element space consisting of continuous, piecewise linear functions
on a tetrahedral mesh T = {K} of mesh size h(~x), with W~w the functions ~v ∈ W
satisfying the Dirichlet boundary condition ~v|Γ = ~w.

18 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

We seek ~̂U = (~U, P), continuous piecewise linear in space and time, and the
cG(1)cG(1) method for the NSE with homogeneous Dirichlet boundary conditions
reads: for n = 1, ..., N find (~Un, Pn) ≡ (~U(tn), P (tn)), with ~Un ∈ V0 ≡ [W0]3 and
Pn ∈W , such that:

((~Un − ~Un−1)k−1
n + ~̄Un · ∇ ~̄Un, ~v) + (2νε(~̄Un), ε(~v))− (Pn,∇ · ~v)

+ (∇ · ~̄Un, q) + SDn
δ (~̄Un, Pn;~v, q) = (f,~v), ∀~̂v = (~v, q) ∈ V0 ×W,

(2.14)

where ~̄Un = 1
2 (~Un + ~Un−1) is piecewise constant in time over In, with the

stabilizing term

SDn
δ (~̄Un, Pn;~v, q) ≡ (2.15)

(δ1(~̄Un · ∇ ~̄Un +∇Pn − f), ~̄Un · ∇~v +∇q) + (δ1∇ · ~̄Un,∇ · ~v),

and

(~v, ~w) =
∑
K∈T

∫
K

~v · ~w dx,

(ε(~v), ε(~w)) =
3∑

i,j=1
(εij(~v), εij(~w)),

with the stabilization parameter δ1 = κ1h, where κ1 is a positive constant of
unit size. We choose a time step size kn = CCFL min~x∈Ω h/|~Un−1|, with CCFL
typically in the range [0.5, 20]. The resulting non-linear algebraic equation system
is solved with a robust Schur-type fixed-point iteration method [23].

2.2.3.2 The Adaptive Algorithm

A simple description of the adaptive algorithm, starting from i = 0, reads:

1. For the mesh Ti: solve the primal and (linearized) dual problems for the
primal solution (~U, P) and the dual solution (Φ,Θ).

2. Compute the quantity EK for any cell K of Ti. If
∑
K∈Ti

EK < TOL then
stop, else:

3. Mark 5% of the elements with highest EK for refinement.

4. Generate the refined mesh Ti+1, and goto 1.

Here, EK is the error indicator for each cell K, which we describe in Sec-
tion 2.2.3.3. For now, it suffices to say that EK is a function of the residual of
the NSE and of the solution of a linearized dual problem. The formulation of the

2.2. TIME RESOLVED ADAPTIVE DIRECT FEM SIMULATION 19

dual problem includes the definition of a target functional for the refinement, which
usually enters the dual equations as a boundary condition or as a volume source
term. This functional should be chosen according to the problem we are solving.
In other words, one needs to ask the right question in order to obtain the correct
answer from the algorithm. In this chapter our target functional is chosen to be
the mean value in time of the aerodynamic forces.

The dual problem can be written as (see [24] for more details):
− ~̇ϕ− (~u · ∇)~ϕ+∇~U

>
~ϕ+∇θ − ν∆~ϕ = ψ1 (~x, t) ∈ Ω× I

∇ · ~ϕ = ψ2 (~x, t) ∈ Ω× I
~ϕ = ψ3 (~x, t) ∈ Γ× I
~ϕ(·, T) = ψ4 ~x ∈ Ω,

(2.16)

where we find that the structure is similar to the primal NSE equations, except
that the adjoint problem is linear, the transport is backward in time, and that we
have a reaction term (∇~U

>
~ϕ)j = U,j · ~ϕ, not present in the primal NSE.

The only other input required from the user is an initial discretization of the
geometry, T0. Since our method is designed for tetrahedral meshes that do not
require any special treatment of the near-wall region (no need for a boundary-layer
mesh), the initial mesh can be easily created with any standard mesh generation
tool.

2.2.3.3 A posteriori error estimate for cG(1)cG(1)

The a posteriori error estimate is based on the following theorem (for a detailed
proof, see chapter 30 in [6]):

Theorem 2 If ~̂U = (~U, P) solves (2.14), ~̂u = (~u, p) is a weak NSE solution, and
~̂ϕ = (~ϕ, θ) solves an associated dual problem with data M(·), then we have the
following a posteriori error estimate for the target functional M(~̂U) with respect to
the reference functional M(~̂u):

|M(~̂u)−M(~̂U)| ≤
N∑
n=1

[∫
In

∑
K∈Ti

|R1(~U, P)K | · ω1 dt

+
∫
In

∑
K∈Ti

|R2(~U)K | ω2 dt+
∫
In

∑
K∈Ti

|SDn
δ (~̂U ; ~̂ϕ)K | dt

]
=:

∑
K∈Ti

EK

with

R1(~U, P) = ~̇U + (~U · ∇)~U +∇P − 2ν∇ · ε(~u)− f,
R2(~U) = ∇ · ~U, (2.17)

20 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

where SDn
δ (·; ·)K is a local version of the stabilization form (2.15), and the stability

weights are given by

ω1 = C1hK |∇~ϕ|K ,
ω2 = C2hK |∇θ|K ,

where hK is the diameter of element K in the mesh Ti, and C1,2 represent in-
terpolation constants. Moreover, |w|K ≡ (‖w1‖K , ‖w2‖K , ‖w3‖K), with ‖w‖K =
(w,w)1/2

K , and the dot denotes the scalar product in R3.

For simplicity, it is here assumed that the time derivatives of the dual variables
ϕ̂ = (~ϕ, θ) can be bounded by their spatial derivatives. Given Theorem 2, we can
understand the adaptive algorithm. As mentioned above, the error indicator, EK , is
a function of the residual of the NSE and the solution of a linearized dual problem
(a detailed formulation of the dual problem is given in Chapter 14 in [6]). Thus, on
a given mesh, we must first solve the NSE to compute the residuals, R1(~U, P) and
R2(~U), and then a linearized dual problem to compute the weights multiplying the
residuals, ω1 and ω2. With that information, we are able to compute

∑
K∈Ti

EK and
check it against the given stop criterion. This procedure of solving the forward and
backward problems for the NSE is closely related to an optimization loop and can
be understood as the problem of finding the “optimal mesh” for a given geometry
and boundary conditions, id est, the mesh with the least possible number of degrees
of freedom for computing M(~̂u) within a given degree of accuracy.

2.2.3.4 The Do-nothing Error Estimate and Indicator

To minimize loss of sharpness, we also investigate an approach where the weak form
is used directly in a posteriori error estimates, without integration by parts to the
strong form, using the Cauchy-Schwarz inequality and interpolation estimates. We
here refer to this direct form of a posteriori error representation by duality as the
“do-nothing” approach.

In terms of the exact adjoint solution ~̂ϕ, the output error with respect to a weak
solution ~̂u can be represented as

|M(~̂u)−M(~̂U)| = |(R(~̂U), ~̂ϕ)| = |
∑
K∈Ti

(R(~̂U), ~̂ϕ)K | (2.18)

This error representation involves no approximation or inequalities. We thus
refer to the following error indicator based on the representation as the do-nothing
error indicator :

eK ≡ (R(~̂U), ~̂ϕ)K (2.19)

2.2. TIME RESOLVED ADAPTIVE DIRECT FEM SIMULATION 21

A computable estimate and an error indicator are again based on the computed
approximation ~̂ϕh of the dual solution:

|M(~̂u)−M(~̂U)| ≈ |(R(~̂U), ~̂ϕh)| (2.20)

eKh ≡ (R(~̂U), ~̂ϕh)K (2.21)

where we may lose reliability of the global error estimate by the Galerkin orthogo-
nality property, which states that the (R(~̂U), ~̂ϕh) vanishes for a standard Galerkin
finite element method if ~̂ϕh is chosen in the same space as the test functions. Al-
though, in the setting of a stabilised finite element method this may not be the
case, see [25].

2.2.3.5 Turbulent boundary layers

In our work on high Reynolds number turbulent flows [30–32] we have chosen to
apply a skin friction stress as wall layer model. That is, we append the NSE with
the following boundary conditions:

~u · ~n = 0, (2.22)
β~u · τk + ~nTστk = 0, k = 1, 2, (2.23)

for (~x, t) ∈ Γsolid × I, with ~n = ~n(~x) an outward unit normal vector, and τk =
τk(~x) orthogonal unit tangent vectors of the solid boundary Γsolid. We use matrix
notation with all vectors ~v being column vectors and the corresponding row vector
being denoted by ~vT .

With skin friction boundary conditions, the rate of kinetic energy dissipation in
cG(1)cG(1) has a contribution of the form

2∑
k=1

∫ T

0

∫
Γsolid

|β1/2 ~̄U · τk|2 ds dt, (2.24)

from the kinetic energy which is dissipated as friction in the boundary layer. For
high Re, we model Re→∞ by β → 0, so that the dissipative effect of the boundary
layer vanishes with large Re. In particular, we have found that a small β does not
influence the solution [30]. For the present simulations we used the approxima-
tion β = 0, which can be expected to be a good approximation for real high-lift
configurations, where Re is very high.

2.2.3.6 Numerical tripping

The simulation setting so far is idealized in the sense that the inflow is noise-free,
the surfaces have no roughness, there are no vibrations in the surface, etc. This is
not a realistic setting.

22 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

In the DNS community the effect of introducing noise has been investigated
in [43], and it turns out that in idealized settings different DNS methods and
frameworks may get different results for the same problem, but introducing a noise
term has the effect of making the results more uniform.

We explore a similar idea here, where we add a volume force term of simple
white in a domain approximately the bounding box of the aircraft geometry. We
want the noise to only slightly perturb the solution, to act as a seed for growth of
perturbations in unstable mechanisms (such as stall), but we do not want the noise
to dominate the solution.

To achieve this balanced effect we scale the white noise force term by 5% of the
maximum pressure gradient |∇p|.

We investigate the effect of such numerical tripping in the results section, com-
paring simulations with and without the tripping. We will see that especially for
stall this appears to have a key effect in triggering the correct physical separation.

2.2.3.7 The FEniCS-HPC finite element computational framework

The simulations in this article have been computed using the Unicorn solver in the
FEniCS-HPC automated FEM software framework.

FEniCS-HPC [3] is an open source framework for the automated solution of
PDEs on massively parallel architectures, providing automated evaluation of vari-
ational forms whose description is given in a high-level mathematical notation,
duality-based adaptive error control, implicit turbulence modeling by use of sta-
bilized FEM and strong linear scaling up to thousands of cores [11, 12, 19, 44–47].
FEniCS-HPC is a branch of the FEniCS [4,13] framework focusing on high perfor-
mance on massively parallel architectures.

Unicorn is solver technology (models, methods, algorithms and software) with
the goal of automated high performance simulation of realistic continuum mechan-
ics applications, such as drag or lift computation for fixed or flexible objects (FSI) in
turbulent incompressible or compressible flow. The basis for Unicorn is Unified Con-
tinuum (UC) modeling [22] formulated in Euler (laboratory) coordinates, together
with the General Galerkin (G2) adaptive stabilized finite element discretization
described above.

The simulations in this chapter were run on supercomputer resources described
in the Acknowledgments section, and took ca. 10h on the finest mesh for the whole
time interval using ca. 1000 cores.

2.2.4 Results
We have performed simulations with the adaptive DFS methodology using the
Unicorn/FEniCS-HPC framework for the JSM “pylon on” variant of the HiLiftPW-
3 benchmark for the angles 4.36°, 10.58°, 18.58°, 21.57° and 22.58°. All angles
except 22.58° have rich experimental data including forces, cp and oil film provided
by the workshop, which we will compare against below. The angle 22.58° only

2.2. TIME RESOLVED ADAPTIVE DIRECT FEM SIMULATION 23

has force data. The angles 21.57° and 22.58° exhibit stall in the experiment, e.g.
large-scale separation leading to loss of lift force. Capturing stall quantitatively
and with the correct stall mechanism is an open problem in aerodynamics, we
therefore investigate both the angle 21.57°, which is the highest angle with detailed
experimental data, as well as 22.58°,

The experiment is a semispan model at Re = 1.93M . However, “free air”
computations were requested, and to avoid possible modeling errors introduced by
a symmetry plane we model the entire aircraft. However, we choose the output
quantity as drag and lift of the left side of the aircraft only, to save computational
resources, where we expect the adaptive method to refine in the right half-volume
only when there is a significant error contribution to the drag and lift on the left
side.

The initial mesh in the adaptive method has ca. 2.5M vertices, and the mesh
is then iteratively refined with 5% of the cells in every iteration until we observe
mesh convergence in drag and lift, or as many times as we can afford. The finest
adapted meshes in our computations presented here have 5M to 10M vertices.

We solve the time-dependent Navier-Stokes equations (2.13) with a non-dimensional
unit inflow velocity over the time interval I = [0, 10]. For some of the cases close to
stall where we observe a longer startup, we extend the time interval to I = [0, 20].
To compute the aerodynamic coefficients we take the mean value in the last quarter
of the time interval, e.g. [7.5, 10] or [15, 20], respectively.

We have divided this section into three parts:

1. Detailed comparison of aerodynamic forces against the experiments including
convergence of the adaptive method and analysis of stall.

2. Detailed comparison of the pressure coefficients cp against the experimental
data, including analysis of cp in the stall regime.

3. Flow visualizations are presented, including dual quantities acting as weights
in the error estimates, and comparison of surface velocity against oil film
visualizations in the experiment.

2.2.5 Aerodynamic Forces

F = 1
|I|

∫
I

∫
Γa

p~n dsdt, (2.25)

with Γa the left half-boundary of the aircraft. The drag and lift coefficients are
then simply the x and y components of F since we have unit inflow.

We use the duality-based “do-nothing” adaptive method, which iteratively re-
fines the mesh by repeatedly solving the primal and dual problem based on the a
posteriori error estimate. This generates a sequence of adapted meshes, a procedure
that takes the role of the classical mesh study.

24 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

10 20 30 40 50
angle of attack

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

C
l

sim (adapt. it. smaller)
sim tripped (adapt. it. smaller)
exp. pylon

10 20 30 40 50
angle of attack

0.1

0.2

0.3

0.4

0.5

0.6

C
d

HiLiftPW-3 JSM pylon-on Unicorn - Cl and Cd vs. angle of attack

Figure 2.3: Lift coefficient, Cl, and drag coefficient, Cd, versus the angle of attack, α,
for the different meshes from the iterative adaptive method.

In Figure 2.3 we plot the lift coefficient, Cl, and drag coefficient, Cd, versus the
angle of attack, α, for the different meshes from the iterative adaptive method.

The size of the dots indicates the iteration number in the adaptive sequence,
with larger dots indicating a larger number, that is more refinement. We connect the
finest meshes with lines, and also plot the experimental data as lines. For the angles
18.58◦ and 22.58◦ we compute the solution both with and without the “numerical
tripping” term described in Section tripping 2.2.3.6 to assess the dependence on
the angle of attack, the tripped cases are plotted in red, and the adaptive sequence
shifter somewhat to the right for clarity.

We observe mesh convergence to within 1 % to 2 % for all cases, a close match to
the experiments for Cl, within circa 5 %, and a small overprediction of circa 10 % for
Cd, which is consistent with the majority of the participants in HiLiftPW-3 across
a range of methods [48], suggesting a systematic error in the problem statement or
the experimental data.

For the stall regime angles 18.58◦, 21.57◦ and 22.58◦ we qualitatively reproduce
the stall phenomenon in the experiment – a decrease in Cl with increased angle

2.2. TIME RESOLVED ADAPTIVE DIRECT FEM SIMULATION 25

0 2 4 6 8 10 12

t

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

C
d

Time evolution of Cd

exp
sim iter 00
sim iter 01
sim iter 02
sim iter 03
sim iter 04

0 2 4 6 8 10 12

t

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

C
l

Time evolution of Cl

exp
sim iter 00
sim iter 01
sim iter 02
sim iter 03
sim iter 04

Figure 2.4: Time evolution of lift coefficient, Cl, and drag coefficient, Cd, and a table of
the value for the finest adaptive mesh with relative error compared to the experimental
results for α = 4.36 ◦.

of attack past 21.57◦. We observe that the stall angle occurs somewhere between
18.58◦, 21.57◦ which is ca. 1◦ from the experimental stall angle.

Additionally we verify that the “numerical tripping” functions as expected: the
term has no significant impact on the solution for an angle of 18.58◦, which is the
maximum lift angle and the maximum non-stalling angle, whereas for the stalling
angle 22.58◦ we observe that the tripping has the effect of triggering a large-scale
separation consistent with the stall phenomenon, whereas the untripped case ap-
pears to contain too small perturbations for the separation to occur. We analyze
the stall mechanism in more detail in the surface velocity visualization below.

To analyze the variability in time of Cd and Cl we plot the time evolution for
α = 4.36◦ in Figure 2.4, untripped with α = 18.58◦ in Figure 2.5 and tripped with
α = 18.58◦ in Figure 2.6.

For the pre-stall cases we observe an initial “startup phase” for t ∈ [0, 5] and
then an oscillation around a stable mean value. The effect of the numerical tripping
is noise in the Cd and Cl signals with amplitude of about 1 %.

2.2.6 Pressure coefficients

The pressure coefficients Cp from both simulation on the finest adaptive mesh and
experiments are plotted in Figures 2.8, 2.9 and 2.10, for the wing, flap and slat
respectively.

26 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

0 2 4 6 8 10 12

t

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

C
d

Time evolution of Cd

exp
sim iter 00
sim iter 01
sim iter 02
sim iter 03
sim iter 04

0 2 4 6 8 10 12

t

1.5

2.0

2.5

3.0

3.5

4.0

C
l

Time evolution of Cl

exp
sim iter 00
sim iter 01
sim iter 02
sim iter 03
sim iter 04

Figure 2.5: Time evolution of lift coefficient, Cl, and drag coefficient, Cd, and a table of
the value for the finest adaptive mesh with relative error compared to the experimental
results for α = 18.58 ◦, untripped.

0 2 4 6 8 10 12

t

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

C
d

Time evolution of Cd

exp
sim iter 00
sim iter 01
sim iter 02
sim iter 03
sim iter 04
sim iter 05

0 2 4 6 8 10 12

t

1.5

2.0

2.5

3.0

3.5

4.0

C
l

Time evolution of Cl

exp
sim iter 00
sim iter 01
sim iter 02
sim iter 03
sim iter 04
sim iter 05

Figure 2.6: Time evolution of lift coefficient, Cl, and drag coefficient, Cd, and a table of
the value for the finest adaptive mesh with relative error compared to the experimental
for α = 18.58 ◦ with numerical tripping.

2.2. TIME RESOLVED ADAPTIVE DIRECT FEM SIMULATION 27

Figure 2.7: Diagram of the pressure sensor layout for the JSM configuration showing
where the pressure sensors are located and how they are denoted.

The pressure sensor locations corresponding to the plots are specified in the
diagram in Figure 2.7.

Since the aerodynamic force defined in (2.25) matches the experiment well, and
since it consists of integrals of the pressure weighed by the normal vector, the
Cp values also have to match the experiment on average. However, the Cp plots
can give insight into local mechanisms such as separation patterns, an important
example being the stall mechanism. These local mechanisms are what we will focus
on here.

First of all, we see that for the pre-stall angles α = 10.48 ◦ and α = 18.58 ◦ the
simulation and experiment match very well for the wing and slat, and generally
well for the flap, aside from local differences. The Cp for the simulation is lower on
the upper surface for the flap close to the body (the A-A station). Otherwise the

28 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−3

−2

−1

0

1

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−5

−4

−3

−2

−1

0

1

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−3

−2

−1

0

1

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−5

−4

−3

−2

−1

0

1

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−6

−5

−4

−3

−2

−1

0

1

2

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−6

−5

−4

−3

−2

−1

0

1

2

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−5

−4

−3

−2

−1

0

1

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−6

−4

−2

0

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−6

−4

−2

0

2
C
p

Cp

Cp sim.
Cp exp.

Figure 2.8: Pressure coefficients, Cp, versus normalized local chord, x/c, for the angles
of attack α = 10.48 ◦ (left), α = 18.58 ◦ (middle) and α = 22.56 ◦ (right) at locations A-A
(top), D-D (middle) and G-G (bottom) for the wing of JSM pylon on.

curves generally match.
For the stall regime we analyze both 21.57 ◦ where experimental Cp are available

and 22.56 ◦ where experimental Cp plots are not available. We compare both against
the experimental Cp plots for 21.57 ◦ to have a margin for if we have stall at a higher
angle in the simulation. The simulation matches the experiment very well, there is a
small discrepancy for the wing close to the body (the A-A station), but considering
that this is where the large-scale separation causing the stall is located, the results
match acceptably.

The matching Cp curves are consistent with matching Cd and Cl from the
aerodynamic force plots.

We now compare the tripped and untripped simulation with the experiment at
22.56 ◦, as well as 22.56 ◦ in Figure 2.11 for the wing.

We clearly see that the untripped simulation for 22.56 ◦ grossly misses the Cp on
the upper surface at station A-A, near the wing-body junction where the large-scale

2.2. TIME RESOLVED ADAPTIVE DIRECT FEM SIMULATION 29

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−2

−1

0

1

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−3

−2

−1

0

1

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−3

−2

−1

0

1

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−2

−1

0

1

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.5

−1.0

−0.5

0.0

0.5

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.5

−1.0

−0.5

0.0

0.5

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.0

−0.5

0.0

0.5

C
p

Cp

Cp sim.
Cp exp.

Figure 2.9: Pressure coefficients, Cp, versus normalized local chord, x/c, for the angles
of attack α = 10.48 ◦ (left), α = 18.58 ◦ (middle) and α = 22.56 ◦ (right) at locations A-A
(top), D-D (middle) and G-G (bottom) for the flap of JSM pylon on.

separation mechanism causing stall is located, while the tripped simulation captures
the experimental Cp curve well, aside from a slightly lower Cp near the leading edge.
We conclude that the tripping acts to trigger the physically correct separation. At
the other stations, D-D and G-G, the tripped and untripped simulations are very
similar, indicating that the tripping does not have a significant effect aside from
the triggering of the perturbations.

The α = 21.57 ◦ simulation is tripped and captures the experiment less well
than 22.56 ◦, but better than 22.56 ◦ untripped indicating that we may have a ca.
1 ◦ later stall angle in the simulation than in the experiment.

2.2.7 Flow and Adaptive Mesh Refinement Visualization

Here we concentrate on presenting effective visualization of the flow and the adap-
tive mesh refinement procedure. Our aim is to provide information on the properties

30 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−4

−3

−2

−1

0

1

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−3

−2

−1

0

1

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−5

−4

−3

−2

−1

0

1

2

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−6
−5
−4
−3
−2
−1

0
1
2

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−3

−2

−1

0

1

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−10

−8

−6

−4

−2

0

2

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−15

−10

−5

0

C
p

Cp

Cp sim.
Cp exp.

Figure 2.10: Pressure coefficients, Cp, versus normalized local chord, x/c, in the stall
regime for the angles of attack α = 10.48 ◦ (left), α = 18.58 ◦ (middle) and α = 22.56 ◦

(right) at locations A-A (top), D-D (middle) and G-G (bottom) for the slat of JSM pylon
on.

and features of the approximated solution and, more importantly, of the approxi-
mating procedure, most of which cannot be discerned from one dimensional plots of
the pressure coefficient and the aerodynamic forces. Sometimes these more complex
visualizations cannot be directly compared to experiments, but still they constitute
a qualitative validation of the results.

The first plots that we show are the surface plots of the velocity magnitude on
the upper side of the wing. Together with the velocity magnitude surface plots we
also report pictures of the oil film experiment that was provided by the organizers as
a validation tool. These serve as comparison tools, and we report such comparison
in Figure 2.12.

Some common features intrinsic of the geometry of the JSM aircraft are revealed
by the oil film experiment and reproduced by the velocity plots. A pattern of low
velocity streaks, alternating with areas of higher velocity, is seen on the suction side

2.2. TIME RESOLVED ADAPTIVE DIRECT FEM SIMULATION 31

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−6
−5
−4
−3
−2
−1

0
1
2

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−3

−2

−1

0

1

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−5

−4

−3

−2

−1

0

1

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−6

−4

−2

0

2

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−6

−5

−4

−3

−2

−1

0

1

2

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−6

−5

−4

−3

−2

−1

0

1

2

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−6

−4

−2

0

2

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−6

−4

−2

0

2

C
p

Cp

Cp sim.
Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−6

−4

−2

0

2

C
p

Cp

Cp sim.
Cp exp.

Figure 2.11: Pressure coefficients, Cp, versus normalized local chord, x/c, for the angle
of attack α = 22.56 ◦ untripped (left), the same angle α = 22.56 ◦ tripped (middle) and
α = 21.57 ◦ tripped at locations A-A (top), D-D (middle) and G-G (bottom) for the wing
of JSM pylon on.

of the fixed wing for all angles of attack. This is caused by separation at the slat
tracks upstream, which is correctly captured by the numerical solution.

Another characteristic feature of the flow is the turbulent separation near the
tip of the wing. This is particularly evident in the case α = 18.59°,

Areas that exhibit this kind of flow behavior influence the aerodynamic forces on
the aircraft, and indeed in our experimentation we found that computations done on
some meshes resulted in wrong predictions of the target functionals, usually yielding
lower lift coefficients than the experimental ones. We were able to overcome this
intermediate obstacle by refining the surface mesh were the original geometry had
a higher curvature. We later interpreted the effectiveness of this workaround as a
symptom that the original meshes were unable to capture the surface geometry to
a sufficient degree of accuracy, and were for this reason failing at reproducing these
complex patterns.

32 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

Figure 2.12: Comparison between experimental oil film visualization (left) and surface
rendering of the velocity magnitude (right).

Another interesting visualization technique, which we are about to present, is
more closely related to turbulence itself: the Q-criterion [49]. The Q-criterion was
widely used in the literature to visualize turbulent features of fluid flows. The main
idea is that it is possible to define a quantity, commonly denoted by the letter Q,
whose value is related to the vorticity and thus the visualization of the isocontours
of Q is claimed to give visual information on the presence and location of vortexes
within the flow field.

The Q-criterion for the case of the airplane with pylon is displayed in Figure 2.13
for three different angles of attack.

Once again, the visualization technique highlights the same pattern as in the
previous case: the isosurfaces assume a characteristic V shape along the interfaces
between the fast and slow velocity regions on the suction side of the wing. Not

2.2. TIME RESOLVED ADAPTIVE DIRECT FEM SIMULATION 33

Figure 2.13: Instantaneous isosurface rendering at the final time of the Q-criterion with
value Q = 100.

34 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

only that, but we can also clearly distinguish a clustering of these isosurfaces near
the tip of the wing, matching the position of the turbulent separation zone that
we mentioned above. The Q-criterion visualizations are consistent with the surface
velocity plots, and this internal coherence increases our trust in the computational
results.

Let us now turn our attention to the adaptive procedure which produces the
successive approximations of the fluid flow. As we described above, the mesh re-
finement solution is driven by the residual of the Navier-Stokes equations and the
solution of the dual Navier-Stokes equations. We begin by showing a plot of a
volume rendering of the dual solution, see Figure 2.14.

What is worth noting here is that the adjoint velocity flows backwards in time
and, consequently, it appears to be flowing in the opposite direction of the primal
velocity. We observe that the part of the mesh where the dual velocity has higher
values is upstream to the airplane. Because of the way the do-nothing error estima-
tor is designed, we expect that the refinement will happen where both the residual
and the dual solution are large. Indeed, this has the important implication that the
mesh refinement will not only happen on the wing, where the forces are computed,
but also upstream, splitting cells that, a priori, are unrelated to the computation
of the aerodynamic forces.

This feature is unique for our methodology: while other methods tend to refine
the mesh in zones where intuitively higher accuracy would yield better approxi-
mation of the aerodynamic forces, namely around the body and downstream, the
adaptive algorithm provides an automatic procedure that knows nothing about the
features of the flow but only takes into account the residual of the equations of
motion and the solution of the dual problem.

In our numerical experimentation we found that this is exactly what happens,
as we are about to show. Consider Figure 2.15, showing a crinkled slice of the mesh
for the initial and the finest meshes for a given angle of attack. It is clear that the
mesh refinement procedure is concentrating both on the area around the surface
where the aerodynamic forces are computed and in the upstream region. Some cells
are refined downstream due to the large residual.

2.2.8 Conclusions
This chapter presents an adaptive finite element method without turbulence model
parameters for time-dependent aerodynamics, and we validate the method by simu-
lation results of a full aircraft model originating from the 3rd AIAA CFD High-Lift
Prediction Workshop (HiLiftPW-3) which was held in Denver, Colorado, on June
3rd-4th 2017. The mesh is automatically constructed by the method as part of the
computation through duality-based a posterori error control and no explicit turbu-
lence model is used. Dissipation of turbulent kinetic energy in under-resolved parts
of the flow is provided by the numerical stabilization in the form of a weighted least
squares method based on the residual of the NSE. Thus, the method is purely based
on the NSE mathematical model, and no other modeling assumptions are made.

2.2. TIME RESOLVED ADAPTIVE DIRECT FEM SIMULATION 35

Figure 2.14: Volume rendering of the time evolution of the magnitude of the adjoint
velocity ~ϕ magnitude, snapshots at t = (16, 18, 20).

36 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

Figure 2.15: Crinkled slice aligned with the angle of attack, α = 10.48°

2.3. MULTI PHASE FLOW 37

The DFS method and these simulations are thus parameter-free, where no a
priori knowledge of the flow is needed during the problem formulation stage, nor
during the mesh generation process. Additionally, the computational cost is drasti-
cally reduced by modeling turbulent boundary layers in the form of a slip boundary
condition, and thus no boundary layer mesh is needed.

The computed aerodynamic coefficients, are very close to the experimental val-
ues for all the angles of attack that we studied. In particular, Cl is within circa 5 %
of the experiments, Cd has a small overprediction of circa 10 %, which is consistent
with the majority of the participants in HiLiftPW-3 across a range of methods [48],
suggesting a systematic error in the problem statement or the experimental data.

The fact that the error is automatically estimated by the method is itself a
critical feature missing in most (if not all) other computational frameworks for
CFD.

Moreover, the adaptive procedure in DFS is seen to converge to a mean value
with oscillations of the order of 1 % to 2 %. This contributes to increase the confi-
dence in the numerical method.

The point of adaptive computations is all about saving on the computational
cost. During the workshop we had the chance to compare our performance with
that of the other participating groups. In terms of number of degrees of freedom,
DFS is about ten times cheaper than the leading RANS and Lattice Boltzmann
Methods.

To capture stall, we applied a tripping noise term that turned out to have the
effect of triggering the physically correct stall separation pattern. A similar idea
with a noise term is employed in the DNS community as well, and the addition
of this term seems to have no effect on non-stalling configurations, which is an
important validation.

We observed that DFS was able to capture the stall mechanism of the proposed
configuration, namely the large scale separation pattern that occurs at the wing-
body juncture. The same mechanism is observed in the experiments. The stall
angle is also captured within ca. 1 ◦.

2.3 Multi Phase Flow

In this section, we will describe the multiphase flow formulation. Multiphase flow is
essential modeling in science and engineering, for example, chemical industries and
marine renewable engineering. We introduced a variable-density incompressible
Navier-Stokes formulation in the DFS methodology, where DFS is implemented in
FEniCS-HPC.

2.3.1 Mathematical model
We modeled the problem using the primitive incompressible Navier-Stokes equa-
tions with variable density ρ:

38 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

R(û) =


ρ(∂tu+ (u · ∇)u) +∇p− ν∆u− ρg = 0
∂tρ+ (u · ∇)ρ = 0
∇ · u = 0

û = (u, p, ρ)

By using a few parameter-free stabilized finite element method (FEM), we were
not introducing any explicit parameterization or modeling, aside from the slip model
of the boundary layer and we thus expected the simulations to be predictive if the
mesh is fine enough to control the computational error.

2.3.2 Direct FEM cG(1)cG(1) for variable-density

In a cG(1)cG(1) method [50], we sought an approximate space-time solution Û =
(D,U, P) (with D the discrete density ρ) that is continuous piecewise linear in space
and time (equivalent to the implicit Crank-Nicolson method). With I a time inter-
val with sub intervals In = (tn−1, tn), Wn a standard spatial finite element space of
continuous piecewise linear functions, and Wn

0 the functions in Wn, which are zero
on the boundary Γ, the cG(1)cG(1) method for variable-density incompressible flow
with homogeneous Dirichlet boundary conditions for the velocity takes the following
form: for n = 1, ..., N , find (Dn, Un, Pn) ≡ (D(tn), U(tn), P (tn)) with Dn ∈ Wn,
Un ∈ V n0 ≡ [Wn

0]3 and Pn ∈Wn, such that

r(Û , v̂) = (D((Un − Un−1)k−1
n + (Ūn · ∇)Ūn), v) + (2νε(Ūn), ε(v))

− (P,∇ · v)− (Dg, v) + (∇ · Ūn, q) + (Dn −Dn−1)k−1
n + (Ūn · ∇)D̄n), v)

+ LS(Dn, Ūn, Pn) + SC(Dn, Ūn, Pn) = 0, ∀v̂ = (z, v, q) ∈Wn × V n0 ×Wn

(2.26)

where Ūn = 1/2(Un + Un−1) is piecewise constant in time over In and LS and SC
are least-squares and shock-capturing stabilizing term described in [50].

Here, we also add an experimental phase separation term for the form (ρair −
ρ)(ρwater − ρ).

2.3.3 Validation
Figure 2.16 shows a marine engineering dam breaking wave impact setup, which
is the MARIN benchmark [9] problem. Water is stored in a rectangular box, the
release of the water impacts the box. On the box there are pressure sensors, which
are compared to the simulation results.

Since for the variable density method we do not have an adaptive approach yet,
we use uniform refinement. We have approximately uniform mesh size and ca. 2
million vertices

In figure 2.17 we see waster isosurface and contour of water density. Figure 2.18
shows the pressure comparison with simulation and experiment, pressure values are

2.4. TANDEM SPHERE 39

Figure 2.16: Layout of dam breaking benchmark settings [source from K.M.T. Kleefsman
et al.,2005]

Figure 2.17: Density slice and isosurface for ρ = 0.5 at t = 0, 1, 2, 3, 4, 5s.

compared at location P1 and P7. We notice that, there is good agreement between
simulation and experimental values for the phase separation variant, and worse
agreement without the phase separation term. Later this approach is adapted
to two applications: one is a flash rain water tank door opening and the second
application is 3D printing. These are well explained in the appended papers 2 and
4.

2.4 Tandem sphere

In this section, we will describe tandem sphere simulations in the Fifth AIAA High
Order CFD Workshop and compare our DFS results with higher order methods, in
particular, PyFR and Nek5000. Higher-order methods are defined as giving better
order of accuracy than 2 for a smooth solution. Another possible advantage of
higher-order formulations is more compact computation, which can improve the

40 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

0 1 2 3 4 5 6 7 8
time (s)

2000
0

2000
4000
6000
8000

10000
12000
14000

pr
es

su
re

 (P
a)

Pressure sensor P1
exp
sim

0 2 4 6 8
time (s)

400
0

400
800

1200
1600
2000
2400
2800

pr
es

su
re

 (P
a)

Pressure sensor P7
exp
sim

Dam break pressure comparison Direct FEM sim. vs. MARIN exp.

Figure 2.18: Pressure over time for simulation and experiment for the sensors P1 and
P7 in the MARIN benchmark.

communication performance in an HPC setting. For further details of higher order
methods, please refer to [51–53].

The tandem sphere problem is a complex unsteady multi-scale flow under tur-
bulent low Reynolds and Mach number. Here, we validate Cd in the DFS setting.
The problem setup information is as follows:

• The diameter of the sphere is D and and another sphere is kept at 10D
distance, with the angle of attack is 0◦

• Reynolds number is ReD = 3900

• Free stream temperature is T∞ = 300K and density is ρ∞ = 1.225 kg
m3

We constructed the starting coarse tetrahedral mesh with appx. 100k vertices,
resolving the curvature of the sphere boundaries and we did not resolve any bound-
ary layer or locally refine the mesh in the fluid domain, that is, both in upstream
and downstream sides of corresponding spheres. Figure 2.19 shows the initial mesh
for the DFS simulation. In contract figures 2.20 and 2.21, show how the higher
order CFD solvers manually refine the mesh at the boundary layer and refine the
mesh along the flow path in upstream and downstream of the spheres.

For low Reynolds number, i.e. less than Re = 105, we use the no-slip boundary
condition. In this regime the skin friction is still significant, and boundary layers
can be resolved while still keeping the computational efficiency high.

2.4. TANDEM SPHERE 41

Figure 2.19: Initial mesh for the DFS simulation with appx. 100k vertices.

Figure 2.20: M1P3 refined mesh at down stream side of sphere 1 and 2 and refined
mesh at upstream side of sphere 2.

42 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

Figure 2.21: M1P3 boundary layer is refined manually.

2.4.1 Drag Cd over time with adaptive mesh
Figure 2.23 shows the drag Cd evaluation over time with the adaptive mesh of
tandem sphere. As we can see in figure 2.23, we predicted drag Cd very close to
the experimental results for a single sphere (2 % error). For the second sphere, we
predicted a slightly reduced drag compared to the first sphere. We interpret this as
the "slipstream" effect, as the wake from the first sphere reduces the upstream pres-
sure on the second sphere. This is a well known concept, and it is effectively being
applied in trucks, trains and smart driving to reduce the drag [54–57]. Figure 2.22
shows the adaptive mesh at 24th iteration. Here, we can see that the downstream
side of the second sphere is not as refined as the first sphere, consistent with the
error representation and adjoint solution.

2.4.2 Mesh convergence
The workshop guidelines prescribe the computation and interpretation of the com-
putational results in a slightly different way than what is usual. In particular, the
main difference is that the convergence order is no longer specified via an infinites-
imal function of the minimum cell diameter h of a given mesh, as, for example,
the number α is the usual relation with err ≤ Chα, but rather as a function of a
redefined h = N

1
d where N is the total number of degrees of freedom used for a

simulation and d is the geometrical dimension of the computational domain.
In our setting, this means that:

• Generalized length scale h = N
1
d

DOF

• Order of convergence e(h) = Chporlog(e(h)) = plog(Ch)

• Compute convergence sequence (ei, hi)

2.4. TANDEM SPHERE 43

(a) FEniCS-HPC (DFS) refined mesh after
24 adaptive iterations (front view).

(b) FEniCS-HPC (DFS) refined mesh after
24 adaptive iterations (top view).

Figure 2.22

• Least-squares fit for p gives “effective order of convergence“.

Where, h is the minimum cell diameter, N is the number of degree of freedom and
d is the dimension of computational domain.

Figure 2.23 shows the convergence of the drag coefficients of the first and second
sphere by showing the approximation error as a function of the total number of
degrees of freedom used in a particular simulation. Now, the one thing that certainly
does not go unnoticed is that we have orders of convergence not only greater than
one, as we were expecting, but also greater than two. This very curious effect
finds its roots in the way the mesh parameter h is defined as a metric of the made
efforts. Indeed, the convergence order is now a measure of how good are the results
we get are, as a function of the computational cost we paid to get them. Here,
our adaptive refinement procedure comes into play, and it does so by playing a
fundamental role. The effect of the adaptive procedure involves choosing the cells
where more resolution is needed and refining them in order to reduce the error
on the target cost functional. This is an equivalent formulation of the problem of
finding the optimal way to spend a fixed amount of computational power in order
to get the best possible approximation of our cost functional. The fact that we
can get a good convergence order is a proof of the fact that the method is indeed
effective.

Figure 2.24 shows that mesh convergence drag Cd over adaptive mesh vertices.
This also shows the mesh convergence is effective over more than 3. We also wanted
to investigate how the mesh convergence for the given mesh and using PyFR would
be. Figure 2.25 shows the DFS mesh convergence for the mesh 1 with 3-5 and
PyFR with mesh 1 with P1-3 (with orders of 1-3). Even though the mesh is pre-
refined, it does not converge for the DFS and is 10% away from the drag. Moreover,
a drag reduction in the second sphere. However in PyFR, there is no clear drag or
mesh convergence, and moreover, PyFR has a restriction with time step dt ≈ 10/4.
This leads to higher cost when compared to DFS. Even with Nek5000 it is a similar
behavior as PyFR.

44 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4

log10(vertices)

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43

0.44

C
D

Mesh convergence of CD

CD sphere1
CD sphere2
CD sphere exp

−2.3−2.2−2.1−2.0−1.9

log10(h)

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

lo
g1

0(
C
D

er
r)

CD err sphere1
CD err sphere2

O(h1.908256)

O(h3.120914)

Figure 2.23: Time evolution of the drag coefficient for various iterations of our adaptive
procedure.

2.4. TANDEM SPHERE 45

0 20 40 60 80 100 120 140 160
t

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

C
D

CD sphere1

exp
sim iter 15
sim iter 16
sim iter 17
sim iter 18
sim iter 19
sim iter 20

0 20 40 60 80 100 120 140 160
t

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

C
D

CD sphere2

exp
sim iter 15
sim iter 16
sim iter 17
sim iter 18
sim iter 19
sim iter 20

Figure 2.24: Mesh convergence of the drag coefficients of the two spheres.

4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0
log10(Work units)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

C
D

FEniCS-HPC Tandem Spheres - Mesh convergence of CD

CD sphere1
CD sphere2
CD sphere exp

(a) FEniCS-HPC tandem sphere mesh for Cd

convergence with provided mesh (for meshes
3,4 and 5).

5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0
log10(Work units)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

C
D

PyFR Tandem Spheres - Mesh convergence of CD

CD sphere1
CD sphere2
CD sphere exp

(b) PyFR mesh convergence for Cd mesh 1
P1-3 (mesh refinement 1 with others 1-3).

Figure 2.25

Chapter 3

Applications

We present here the flash rain water storage flash tank openning and 3D printing
nozzle design. Both involves with the multi phase flow modeling.

3.1 Turbulent Multiphase Flow in Urban Water Systems
and Marine Energy

High-Reynolds number turbulent incompressible multiphase flow represents a large
class of engineering problems of key relevance to society. Here we describe our work
on The Consorcio de Aguas Bilbao Bizkaia is constructing a new storm tank system
with an automatic cleaning system, based on periodically flushing tank water out
in a tunnel.
Here we study the MARIN benchmark modeling breaking waves over objects in
marine environments.
Both of these problems are modeled in the the Direct FEM/General Galerkin
methodology for turbulent incompressible variable-density flow [?, 58]

3.1.1 Overview
Present world is facing the global warming by anthropogenic activities and natural
disaster(e.g., earthquake, tsunami and volcano) which are causing ozone layer de-
pletion, loss of biodiversity, water quality and climate change. Among these climate
change causes extreme weather phenomena across the world, resulting either severe
flood or draught. In 20th century, about 1000000 people were killed and 1.4 billion
people were affected by the floods [59]. Floods not only kills and affects the people
and also it affects the eco-system, agriculture production, infrastructure and cre-
ates economical instability. According to The International Disaster Database [60],
from January 1975 to June 2002, flash floods (due to heavy rain) in Europe has
5.6 % morality (rate of killed verses affected people) [59]. Especially, in Spain from
1900 to 2016, flash flood killed 987 people, 1350 people were affected and it caused

47

48 CHAPTER 3. APPLICATIONS

damage of 642000000 US$ [60]. And it is predicted that the weather instability
(more flash floods) going to be happen frequently in coming years [61].

Bilbao is located northern part of Spain and it has Oceanic/Atlantic climate;
its annual precipitation is from 1200 to 2000 millimeter (mm) [62]. Consorcio de
Aguas Bilbao Bizkaia (BWC) is constructing a new storm tank (detention tank)
system with an automatic cleaning system, based on periodically flushing tank
out in a tunnel in Galindo. This would prevent rain water goes into a river and
also minimize the more hydraulic load on the existing sewer infrastructure. Later
this water can be treated in wastewater treatment plant (WWTP) in Galindo for
portable or other purposes.

The excessive water from the detention tank overflows through the tunnel, where
the sediments and floating objects might permanently settle down on the surface
of the tunnel, which will eventually give the foul smell and in a frequent run it will
also affect the downstream flow in the tunnel. It is not a feasible solution to send
a men to clean the tunnel. Instead BWC wants to clean the tunnel with periodic
flushing using water from the detention tank.

Our work in the research is to predict the velocity, pressure and flow rate in the
down stream side of the tunnel. Where this velocity, pressure and flow rate values
will be used as a input parameter for the shallow water modelling; and also velocity
at the door section will be used to design the stronger gate to open a water from
the detention tank. We used the Finite Element Method (FEM) for the simulation
calculation, problem is modelled as a 3D computations of the primitive equations
(variable-density incompressible Navier-Stokes) in FEniCS-HPC.

For the simulation, we have investigated the 4 options, they are: TD=5s,10s and
H=6m,10m, with TD the time for the door to fully open and H the initial water
height in the tank. We compute the time interval I=[0s, 6s] for TD=5s, and I=[0s,
11s] for TD=10s.

3.1.2 Mathematical modelling

Please refer to the Chapter 2 for the multiphase mathematical modelling.

3.1.3 The Bilbao Water Consortium storm drain problem

The problem consistes of an initial water volume stored in a tank with a gate
opening toward a storm drain tunnel. To clean the tunnel, the gate is opened, and
water flows out throughout the tunnel. Here we investigate a range of gate opening
speeds and initial water height in the tank.

The geometry of the tank, door and start of the tunnel is presented in figure
3.1. The mesh is refined close to the door of the tank, and in the region with x
coordinate [30m, 40m] at the start of the tunnel, giving ca. 800k mesh points. The
door height is 1m and breadth is 6m. A slice of the mesh is presented in figure 3.3
demonstrating the distribution of the cell size.

3.1. TURBULENT MULTIPHASE FLOW IN URBAN WATER SYSTEMS
AND MARINE ENERGY 49

00

0

R

Front View

Top View

Side View From Tunnel

Figure 3.1: Schematic of the geometry of the tank, door and start of the tunnel (top),
and a 3D rendering (bottom).

Gravitational force g=9.81 m s−1 is set at top of the tank and P=0 Pa is set at
the end of the tunnel. Walls in the geometry at the upstream & downstream side
considered as a free-slip boundary condition. The rest of the space in the geometry
(tank and tunnel) were set to air density at ambient temperature as well as water
density is set to the water in the tank. We set time interval as 0.02s, for example,
in TD=5s, we get 250 time interval samples. The door opening mechanism is based
on the time interval (0.02s). In this case, for each time sample, the door is moving
(flow region space is gradually increasing) 0.004m (total length for gate opening is
1m) towards upward vertical direction. Figure 3.2 shows the boundary and initial

50 CHAPTER 3. APPLICATIONS

conditions set up in the simulation.

00

Air density at ambient temperature

Outlet Water Density at ambient temperature

Door gradually opens
 as time goes

All the walls set to free-slip

6
m

Figure 3.2: Initial and boundary conditions set up.

Figure 3.3: Slice plot through the x-z plane (front view) of the mesh.

3.1.4 Simulation results

The simulations are carried out by running on the Beskow supercomputer at KTH
(Sweden). The output is a piecewise linear density field representing the density of
air and water, and a velocity field for the entire continuum. An average time step
of ca. k = 5 × 10−4 is chosen, giving ca. 10k time steps for TD=5s and 20k time
steps for TD=10s. We used 1024 cores on the Beskow Cray XC40 system at KTH
for each simulation, giving ca. 1s per time step of computation time.

In this section we plot slice plots of the density (showing the evolution of the
water surface), the velocity, 3D plots of the isovolume of the density (showing the
evolution of the water surface). Additionally we plot the flow rate through the door
over time, and the average velocity in the door section and in the first 10m section
of the tunnel.

3.1. TURBULENT MULTIPHASE FLOW IN URBAN WATER SYSTEMS
AND MARINE ENERGY 51

(a) Density and velocity x-y and x-z slice
TD={5s,10s}, H=6m, t=0.

(b) Density and velocity x-y and x-z
slice TD=5s, H=6m, t=5s.

(c) Density and velocity x-y and x-z slice
TD=10s, H=6m, t=10s.

(d) Density and velocity x-y and x-z
slice TD={5s,10s}, H=10m, t=0.

(e) Density and velocity x-y and x-z slice
TD=5s, H=10m, t=5s.

(f) Density and velocity x-y and x-z slice
TD=10s, H=10m, t=10s.

Figure 3.4: Density and velocity x-y and x-z at different height with different door
opening time.

52 CHAPTER 3. APPLICATIONS

For example, figure 3.4 shows the density and velocity at different time and
height setting. As we can see in figure 3.4 (b) and (e), the turbulence behaviour is
slightly higher for figure 3.4 (e); as well as the velocity at the bottom of the tunnel
is also higher in both cases (TD={5s and 10s}) for H=10m.

(a) Water isovolume TD={5s,10s},
H=6m, t=0s

(b) Water isovolume TD=5s, H=6m,
t=5s

(c) Water isovolume TD=10s, H=6m,
t=10s

(d) Water isovolume TD={5s,10s},
H=10m, t=0s

(e) Water isovolume TD=5s, H=10m,
t=5s

(f) Water isovolume TD=10s, H=10m,
t=10s

Figure 3.5: Water isovolume at different height with different doot openning time.

Figure 3.6 shows the flow rate through the gate. As we can see here, gate
opening time and water height do have a influence over the water flow rate through
the opening gate. Volumetric flow rate is depend on the area and the velocity.
For example, in case H=10m, when TD=10s, the area of the flow through the

3.1. TURBULENT MULTIPHASE FLOW IN URBAN WATER SYSTEMS
AND MARINE ENERGY 53

gate is increasing slowly compare to TD=5s, this shows, TD=5s reaches volumetric
flow rate 50 m3 s−1 at 5th second, whereas TD=10s reaches volumetric flow rate
50 m3 s−1 at 10th second. In general, if the H is same (for 5s and 10s) then the
flow rate is depend on the area of the opening gate and if the TD is same (for 6m
and 10m) then flow rate is depend on the velocity.

0 1 2 3 4 5 6 7 8 9
time (s)

0
5

10
15
20
25
30
35
40
45

flo
w

 ra
te

 (m
^

3
s^

-1
)

Flow rate for TD=5s H=6m

0 1 2 3 4 5 6 7 8 9
time (s)

0

10

20

30

40

50

60

70
flo

w
 ra

te
 (m

^
3

s^
-1

)
Flow rate for TD=5s H=10m

0 2 4 6 8 10 12
time (s)

0
5

10
15
20
25
30
35
40

flo
w

 ra
te

 (m
^

3
s^

-1
)

Flow rate for TD=10s H=6m

0 2 4 6 8 10 12
time (s)

0

10

20

30

40

50

60

flo
w

 ra
te

 (m
^

3
s^

-1
)

Flow rate for TD=10s H=10m

Figure 3.6: “Spending” flow rate through the door.

Figure 3.7 shows the average velocity at the door section. It is clearly seen
that, velocity will be higher at the door section for H=10m compare to H=6m
(for the same opening time TD=5s). From Pascal’s Law we can calculate the static
pressure at the gate, but in real case as gate opens we need to calculate the dynamic
pressure, from this we can calculate the force acting on the door section.

For example, static pressure can be expressed as P = ρghPa, considering
H=10m, we get P=98.100Pa. Similarly the dynamic pressure at fully opened
door can be calculated as P = 1

2ρv
2Pa. The velocity is around 10 m s−1 when the

door is fully opened for TD=5s and H=10m, from this the dynamic pressure will
be P=490.500Pa. A force can be calculated from F = pa N. The area of door
opening is 6 m2 and P=490.500Pa, then the maximum acting force at the door will
be F=2943 N.

54 CHAPTER 3. APPLICATIONS

The average velocity at the downstream side of the tunnel is plotted in figure
3.8. It shows, for example, when TD=5s and H=6m, the velocity is increasing
gradually upto 6 m s−1 until time reaches 4s, after that the velocity is started to
reduce. But on the other hand, if the TD=6s and H=10m, it reaches higher velocity
upto about 6 m s−1. This behaviour is similar to if TD=10s, thus concludes, water
height influences average velocity at the bottom of the tunnel.

0 2 4 6 8 10 12 14
time (s)

0

1

2

3

4

5

6

7

8

ve
lo

ci
ty

 (
m

 s
^

-1
)

Avg. velocity for TD=5s H=6m

0 2 4 6 8 10 12 14
time (s)

0

2

4

6

8

10

12

ve
lo

ci
ty

 (
m

 s
^

-1
)

Avg. velocity for TD=5s H=10m

Figure 3.7: Average x-velocity in the door section.

3.2. 3D PRINTING NOZZLE DESIGN 55

1 2 3 4 5 6 7 8 9
time (s)

2

3

4

5

6

7

8

ve
lo

ci
ty

 (m
 s

^
-1

)

Avg. velocity for TD=5s H=6m

1 2 3 4 5 6 7 8 9
time (s)

2

4

6

8

10

12

14

16

ve
lo

ci
ty

 (m
 s

^
-1

)

Avg. velocity for TD=5s H=10m

0 2 4 6 8 10 12
time (s)

1
2
3
4
5
6
7
8
9

ve
lo

ci
ty

 (m
 s

^
-1

)

Avg. velocity for TD=10s H=6m

0 2 4 6 8 10 12
time (s)

2

4

6

8

10

12

14

ve
lo

ci
ty

 (m
 s

^
-1

)

Avg. velocity for TD=10s H=10m

Figure 3.8: Average flushing x-velocity in the first 10m-section of the tunnel.

3.1.5 Conslusions
In this report we provide computational results for Direct FEM simulations of the
primitive 3D variable-density incompressible Navier-Stokes equations. The density
and velocity fields have a 3D structure, a triangular jet shape, at the exit of the door.
The door opening time does not appear to have a large influence on the structure or
magnitude of the velocity. The water height in the tank has a significant influence
on the magnitude of the velocity in the flushing section at the beginning of the
tunnel.

3.2 3D printing Nozzle design

In this section, we present a nozzle design of the 3D printing using FEniCS-HPC
as mathematical and simulation tool. In recent years 3D printing or Additive
Manufacturing (AM) has become a emerging technology and it has been already
in use for many industries. 3D printing considered as a sustainable production or
eco-friendly production, where one can minimize the wastage of the material during
the production. Many industries are replacing their traditional parts or product

56 CHAPTER 3. APPLICATIONS

manufacturing into optimized or smart 3D printing technology. In order to have
3D printing to be efficient, this should have optimized nozzle design. Here we
design the nozzle for the titanium material. Since it is a metal during the process
it has to be preserved by the inert gas. All this makes this problem comes under
the multiphase flow. FEniCS-HPC is high level mathematical tool, where one can
easily modify a mathematical equations according to the physics and has a good
scalability on massively super computer architecture. And this problem modelled as
Direct FEM/General Galerkin methodology for turbulent incompressible variable-
density flow in FEniCS-HPC.

3.2.1 Objective
The overall goal of the FRACTAL project led by Etxe-Tar is to design a 3D printing
nozzle for a selective laser melting method, where a fiber laser will be used as an
energy source to melt an inter gas and powder mixture jet ejected by the nozzle.
Where the entire metal melting process is confined by the inert gas (argon) to
ensure minimizing oxygen interaction and hydrogen pick up. 3D printing, also know
as additive manufacturing (AM) has gained popularity in recent years, especially
in the medicine industries, where to make orthopedic components such as knee,
hip, jaw replacements [63, 64]; and also it uses increases in consumer products
and mechanical industries. For example, General Electronics (GE) produces a 3D
printing spare parts for it’s next generation LEAP jet engines [65]. And in medicine
(bio-mechanical), each and every patient has a unique structure, to replace their
body parts in a quick way 3D printing is a good option. It is estimated that,
to produce knee implant component with traditional method produces up to 80%
metal waste chips [66].

In order to design efficient 3D printing nozzle, we have conducted 3 stages of
research for the nozzle, they are:

• Initial design

• Optimized design

• Compare the simulation results with experimental results

A efficient 3D printing nozzle should have this properties, which are as follows:

1. Minimize a wastage of the titanium powder (titanium is expensive)

2. Avoid oxidation during a melting process (might decrease the melting effi-
ciency, nitrogen and oxygen pickup)

3. Minimize heating of tip of a nozzle (during the melting temperature might
rise around 1,668 ◦C)

We consider a continuum multiphase model of the three phases, they are:

3.2. 3D PRINTING NOZZLE DESIGN 57

Section B
Section C Section E

Pipe Nozzle

Length of the target surface

S
e
ct

io
n
 D

S
e
ct

io
n
 A

X mm Y mm

10-15 mm

Z
 m

m

Angle of nozzle changes
as Y changes

Figure 3.9: Schematic 3D printing nozzle design.

• Inert gas ans particle mixture

• Inert gas

• Air

In the presented simulations we omit the air phase for simplicity, but the model
has the capability for including this third phase without significant extra complex-
ity.The model is discretized by the Direct FEM Simulation (DFS) methodology in
the FEniCS-HPC framework.

3.2.2 Mathematical modelling
Please refer to the Chapter 2 for the multiphase mathematical modelling.

3.2.3 Initial Design
First we would like to see how the jet of flow will be look like in reality and how
far it can be steady before it breaks, to do this we have come up with simple cone
shape model. Figure 3.9 shows the initial design of the 3D printing prototype.
FEniCS-HPC does not have adaptivity for the multiphase flow, in this case, we
ran couple of adaptive simulation for one-phase flow and we took that mesh as a
initial mesh for the multiphase flow, for example this mesh can be seen in Figure
3.13. During the design phase the following items should be considered, they are,
laster beam diameter is 150 µm and distance from a nozzle tip to the target surface
should be between 10 mm to 15 mm

Figure 3.10 and 3.11 show a multiphase flow with velocities profiles and differ-
ent section of cone size. As we can see in here, higher velocity seems to be stable
compare to the lower velocity.

3.2.4 Optimized design
In this design phase we introduce a sheath flow [67], which will make the flow
steady and narrow down a jet flow, this concept of geometry can seen in Figure
3.12. Sheath flow has a real benefit which can be seen in the figures 3.14 and 3.15

58 CHAPTER 3. APPLICATIONS

Figure 3.10: Nozzle length (section c)is 2.5mm and velocities ={0.1, 0.25} m/s

Figure 3.11: Nozzle length (section c)is 5.0mm and velocities ={0.1, 0.25} m/s

3.2. 3D PRINTING NOZZLE DESIGN 59

Figure 3.12: Schematic 3D printing sheath model

Figure 3.13: Adaptivity mesh for the single phase flow

Figure 3.14: Schematic 3D printing sheath model

60 CHAPTER 3. APPLICATIONS

Figure 3.15: Adaptivity mesh for the single phase flow

3.2.5 Validation

In this stage we got experimental results 3D printing nozzle, which is almost similar
to the sheath modeling which we discussed above. Figure 3.16 shows the design of
the model and reference sample points location.

3.2.6 Results

The equation (??) can be scaled arbitrarily keeping the Reynolds number fixed,
using the formula for the Reynolds number Re = ρūL

ν with ū the freestream velocity,
L the characteristic length and ν the viscosity.

In the presented simulations we choose the physical geometrical dimensions,
where L can be chosen as the diameter of the inner channel, L = 0.8mm. We choose
ρmixture = 1, and ρinert = 1e− 3. The inner inflow is chosen as uinner = 0.75. We
then study a range of sheath inflow velocities and viscosities to study the different
flow regimes, and the focusing effect of the sheath flow.

We give a schematic of plot lines in figure 3.16, used for studying the density
distribution in subsequent plots. The density field in a slice through the center of
the domain is given in figures 3.17, 3.18, 3.19 for a range of sheath inflow speeds
indicated in the plots. In figures 3.20, 3.21, and 3.22 the density along the specified
plot lines.

We use the same mesh for all the simulations, which has been constructed by
adaptive one-phase simulations, where we make the coarse approximation that the
velocity field for one-phase flow will be similar to the multi-phase case in the present
simulations.

3.2. 3D PRINTING NOZZLE DESIGN 61

Figure 3.16: Plot line positions = 0.0, 1.0, 2.0, 3.0, 4.0 and 5.0 mm

Figure 3.17: Pseu.Col.:Density; viscosity ν = 1e-04, inner inflow uinner = 0.75 and
sheath inflow usheath = 3.75.

62 CHAPTER 3. APPLICATIONS

Figure 3.18: Pseu.Col.:Density; viscosity ν = 1e-04, inner inflow uinner = 0.75 and
sheath inflow usheath = 4.75.

Figure 3.19: Pseu.Col.:Density; viscosity ν = 1e-04, inner inflow uinner = 0.75 and
sheath inflow usheath = 5.75.

3.2. 3D PRINTING NOZZLE DESIGN 63

Figure 3.20: viscosity ν = 1e-04, inner inflow uinner = 0.75 and sheath inflow usheath =
3.75.

64 CHAPTER 3. APPLICATIONS

Figure 3.21: viscosity ν = 1e-04, inner inflow uinner = 0.75 and sheath inflow usheath =
4.75.

3.2. 3D PRINTING NOZZLE DESIGN 65

Figure 3.22: viscosity ν = 1e-04, inner inflow uinner = 0.75 and sheath inflow usheath =
5.75.

3.2.7 Summary and Conclusion
From our simulation results we see that the dominant parameter, aside from the
viscosity, is the sheath velocity. The geometry of the nozzle appears to have less
importance. We have thus focused on studying the sheath inflow speed in this
report.

In the figures 3.20, 3.21, and 3.22 we see that as the speed of the sheath flow
is increased, the width of the inert gas and particle mixture jet is decreased. The
parameters corresponding to 3.22 appear to give the best results among the studied
cases.

Chapter 4

High performance computing

In this chapter we discuss about the accelerators such as GPUs and embedded
architecture called “Kalray”. And also if we see the Top500 [68] super computers
list, let’s say first 10 of them from the list have accelerators such as GPU. In order
to able to use accelerator resources at present and in the future, the scientific codes
should be in heterogeneous capabilities, and also the scientific codes should be
validated on the accelerators to make sure we get good performance. This chapter
has a three main section: the first section describes the generic CPU and GPU
architecture, the second section describes the stencil computation on the multiple-
GPUs and the last section describes about the embedded architecture of “Kalray”
computational performance analysis of it using the Jacobi method as a test case.

4.1 CPU, GPU and Parallel archietecture

The concept of parallel computing was discussed even in the 19th century when
there where no electronic machines available, as Babbageet al. [69] tried to perform
a multiplication of two numbers using their Difference Machine.

The beginning of the high performance computing era, the Von Neumann archi-
tecture, attempts to illustrate the concept of sequential computing shown in Figure
4.1. Although the computation can be done fast the I/O has a problem with
the memory, which is called Von Neumann bottleneck [70]. In recent years, this
problem has been reduced drastically using memory banks that provides parallel
I/O memory. Today, efficient parallelization is achieved by vectorization, multi-
ple processors and accelerators (for example, GPU and CPU co-processors). The
efficiency of a computer can be measured by FLoating point Operations Per Sec-
ond (FLOPS). Supercomputers are ranked based on how fast they can solve the
LINPACK benchmark, which consists of dense linear algebra.

67

68 CHAPTER 4. HIGH PERFORMANCE COMPUTING

Memory

I/
O

 d
e
v
ic

e
s

CPU

control, arithmetic
 and logical unit

Figure 4.1: The Von Neumann architecture.

core 1 core 2 core 3 core 4

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache L2 cache

Memoryinterface/Interconnect

Main memory

Figure 4.2: Standard multi core CPU.

4.1.1 CPU architecture

Today, all CPUs have multiple cores. For example Intel Xeon Gold has 16 CPU
cores and Figure 4.2 shows the standard multi-core CPU concept. This trend
might increase gradually, which means the more production of CPU cores would
take place over the years as technology evolves. In Figure 4.2, L1 cache is private to
the cores, and L2 cache is shared among the cores, whereas the last level memory is
shared between all the cores by memory interface. Evidently, to achieve maximum
performance of multicore, one needs to do multi-threading or multi-processing.

4.1. CPU, GPU AND PARALLEL ARCHIETECTURE 69

4.1.2 Parallel architecture

Parallel architectures are classified into three components, which are, control struc-
ture, memory organization and network connection topology.

4.1.2.1 Control structure

Michael J. Flynn divided computer architectures into four categories [71, 72].They
are as follows:

• Single instruction stream single data stream (SISD): which is based on the
Von Neumann architecture, i.e., simple, sequential and uniprocessor.

• Single instruction stream, multiple data streams (SIMD): only one single
stream of instruction can be executed and, moreover, as a single instruc-
tion can be used to process multiple data, this leads to data parallelization.
Figure 4.3 shows the SIMD concept of simultaneous instructions and single
instruction with multiple data.

• Multiple instruction streams, single data stream (MISD): in reality, it is not
useful since there is no program that can readily map into MISD organization.

• Multiple instruction streams, multiple data streams (MIMD): multiple in-
structions can be executed on multiple data streams. For example, on multi-
core CPUs, a processor can execute the same code or different branches of the
same code. This is typically done by thread level parallelization on multicore
CPUs. It can be hard to debug the code.

A1 B1+ = C1

A2 B2+ = C2

A3 B3+ = C3

A4 B4+ = C4

A1 B1 C1

A3 B3 C3

A2 B2 C2

A4 B4 C4

= +

SIMDScalar

Figure 4.3: SIMD model.

4.1.2.2 Memory organization

Memory hierarchy is a key concept in standard and parallel architectures. Figure 4.4
shows a basic memory hierarchy of computer. Cache is the fastest access memory
compared to off-chip memory. Cache holds the temporal information from the main
or secondary memory, which might be currently used by the processor [73].

70 CHAPTER 4. HIGH PERFORMANCE COMPUTING

Smaller, faster

Bigger, slower
Secondary Memory

Primary Memory

Cache Memory

Registers

Figure 4.4: Memory hierarchy.

• Shared memory: all the processors have the same address space, which can
share and access the data from the main memory. Shared memory archi-
tecture is classified into three variants, based on the how the bus network
connects the memory and processor. Figure 4.4 shows the 3 different types
of shared memory architecture.

• Distributed memory: each processor has their local memory, which means no
global memory shared by the processors. The local memory is accessed by
the physical network to transfer data to and from another processor.

• Hybrid memory system: A distributed memory with shared memory approach
in each cluster. This typically consists of multicore CPUs with/without an
accelerator such as GPUs.

P1 Pp

M

Network

Cache 1 Cache P

P1 Pp

Network

M1 Mm

Cache 1 Cace P

P1 Pp

Netwrok

M1 Mm

UMA- single shared
Memory

SMP with caches
NUMA

Figure 4.5: Shared memory architectures.

4.1.2.3 Network topology

Many variants can be used to organize the processors in an efficient way how the
processors are connected to each other. For example, bus, linear array, ring, 2D
grid, torus, 3D grid, 3D torus, tree and aeries. Each of these network topologies
has their own advantages and disadvantages, for example, tree network has a higher
cost but reduces the bandwidth bottleneck.

4.1. CPU, GPU AND PARALLEL ARCHIETECTURE 71

4.1.3 GPU architecture

A key difference between GPU and CPU is that a GPU has a large number of cores,
for example, the latest Nvidia Volta GPU has 2560 (FP64 Cores) cores [74]. On
the other hand, a CPU has a higher clock speed than a GPU.

GPUs are one of the main accelerators in the HPC field and almost all su-
percomputers in the world have a GPU accelerator. In order to achieve exa-scale
computations, GPUs appear to be a good option. Today, there are also PDE frame-
works with unstructured meshes that demonstrate good performance with GPUs,
such as high-order PyFR.

Processing elements in the GPU are grouped together and called Streaming
Multiprocessor (SM). Multiple threads can be executed concurrently on each and
every SMs, and this is based on Single Instruction Multiple Thread (SIMT) archi-
tecture. These threads are grouped (e.g. into groups of 32), and executed across the
SMs. These grouped threads are called "warps" and they have their own registers
and instructions. GPUs allow scalable multi thread arrays, which is means grid and
thread blocks can be in 1D, 2D and 3D. On CUDA, this thread block is called a
cooperative thread array (CTA) [75]. Performance of the GPU can be improved if
the "latency" is reduced [76]. Here, latency refers to number of clock cycles needed
to execute the warps in the SMs [77].

4.1.3.1 Memory organization in GPU

A GPU has a similar memory organization as a CPU, but with some key differences
as follows.
Register: is the fastest memory; each thread owns registers.
Local: holds the register spelling and is cached in typically the next level of mem-
ory hierarchy such as L1 and L2 cache.
Shared Memory: for both Fermi and Kepler, shared memory is configurable by the
programmer, and the usual size is 64 KB. However, with the latest Pascal and Volta
architecture, L1 and shared memory are merged and each of them then share 64KB
each. Each and every SM has its own shared memory.
L2 cache: a normal GPU has a single L2 cache is shared by all the SMs in the
GPU. The Volta GPU has 6144 KB in size.

Figure 4.6 (left) shows the generic memory access on the CUDA device and
(right) shows the thread memory access in the Kepler architecture. Figure 4.1
shows threads, access to the memory.

72 CHAPTER 4. HIGH PERFORMANCE COMPUTING

Thread

L1
Cache

Shared
Memory

Read - Only
Data Cache

L2
Cache

DRAM

Constant

Global

Texture

Local

DRAM

Device

GPU
SM

SM

SM
Registers,
Shared Memory
 / L1 Cache

Constant and
Texture Cache

To
 H

o
st

Figure 4.6: left:CUDA device memory spec.; right: Kepler’s read cache memory.

Table 4.1: CUDA threads memory access in the device.

Memory Location Cached Device Access Scope Life Time
Register On-chip N/A R/W one thread thread
Local DRAM yes** R/W one thread thread
Shared On-chip N/A R/W all threads in block thread block
Global DRAM * R/W all threads in host Application
Constant DRAM Yes R all threads in host Application
Texture DRAM Yes R all threads in host Application
* cached L2 by default by latest compute capabilities
** cached L2 by default only on compute capabilities 5.x

4.1.3.2 Latest advancement in GPUs

CUDA is a programming language used to program Nvidia GPUs. CUDA has
compute capabilities, that controls the hardware programming capabilities on the
respective Nivida GPU micro architecture. We would like to point out some ad-
vanced technologies that are available at present, as follows:

• NVLINK: the memory transfer between the CPU-GPU was a major bottle-
neck in the early stage of GPUs, that is before Tesla P100. NVLINK has
minimized this bottle gradually, which means that the data transfer between
CPU and GPU and among the different GPUs and the bandwidth can achieve
up to 300 Gigabytes/second on second generation of NVLINK with Volta ar-
chitecture GPU.

4.2. MULTIPLE GPU IMPLEMENTATION OF PARALLEL 3D SWEEPING73

• Unified Memory: this is available as a virtual memory whose, CPU and GPU
share the same address space. This allows simpler implementation and it
facilitates the fast porting of complex data structure programming models.

• Tensor Cores: Typically AI applications deal with huge data, and most of
the times it will be dealing with linear algebra operations. The latest micro
architecture GPUs have Tensor cores, with half precision compute capabili-
ties, and the normal cores in the SMs have both single precision and double
precision.

• New Concepts: on the Volta and Pascal, SMs are grouped as multiple GPU
Processing Clusters (GPC), which means that each and every GPC has one
set of SMs and tensor cores.

4.2 Multiple GPU Implementation of parallel 3D sweeping

To explore the possible performance of multi-GPU computation on a single compute
node, we considered a stencil computation, with application in geological folding
simulations. Geological folding simulations are carried out to find oil in the ground.
A specific reason for focusing on this problem is also so that it requires large com-
puting resources.

Here we show the CUDA programming challenges with using multiple GPUs
inside a single machine to carry out plane-by-plane updates in parallel 3D sweeping
algorithms. In particular, care must be taken to mask the overhead of various data
movements between the GPUs. Multiple OpenMP threads on the CPU side should
be combined multiple CUDA streams per GPU to hide the data transfer cost related
to the halo computation on each 2D plane. Moreover, the technique of peer-to-peer
data motion can be used to reduce the impact of 3D volumetric data shuffles that
have to be done between mandatory changes of the grid partitioning. We have in-
vestigated the performance improvement of 2- and 4-GPU implementations that are
applicable to 3D anisotropic front propagation computations related to geological
folding. In compari- son with a straightforward multi-GPU implementation, the
overall performance improvement due to masking of data movements on four GPUs
of the Fermi architecture was 23%. The corresponding improvement obtained on
four Kepler GPUs was 47%.

4.2.1 Background
Motivated by higher energy efficiency, a new trend with high-end computing plat-
forms is the adoption of multiple hardware accelerators such as general-purpose
GPUs and many-integrated- core coprocessors per compute node. The most promi-
nent example is Tianhe-2, which is the current No. 1 system on the TOP500 list [78].
Three Xeon Phi coprocessors can be found in each of Tianhe-2ś 16,000 compute
nodes. With respect to clusters that have multi-GPU nodes, the TSUBAME 2.5

74 CHAPTER 4. HIGH PERFORMANCE COMPUTING

system is known for having three NVIDIA Tesla K20x GPUs per compute node.
Together with this new hardware configuration trend, there comes the challenge
of programming. In addition to properly offloading portions of a computation to
the individual accelerators to achieve higher computing speed, a new issue arises
regarding accelerator-to- accelerator data transfers. Although MPI communication
should be used between accelerators residing on different compute nodes, intra-
node data transfers between cohabitant accelerators have the possibility of using
low-level APIs that incur less overhead than the MPI counterpart. The hardware
context of this paper is using multiple NVIDIA GPUs within the same com- pute
node. As the computational domain, we choose to study parallel 3D sweeping al-
gorithms, which have a causality constraint in that 2D planes have to updated
one by one in sequence, where parallelism exists between mesh points lying on the
same 2D plane. Following our pre- vious work in the simpler scenario of 3D stencil
computations [79], we want to investigate how to apply multiple CUDA streams,
multiple OpenMP threads and NVIDIA GPUDirect [80] to 3D sweeping algorithms
for masking the overhead of GPU-to-GPU data transfers. Another objective of this
paper is to quantify the actual performance gain of using multiple GPUs for sim-
ulating 3D anisotropic front propagation, compared with using a single GPU [81].
To our knowledge, previous work on using GPUs to simulate anisotropic front prop-
agation all targeted single-GPU platforms, such as [82–84]. Therefore, this paper
is also novel with respect to using multiple GPUs for this particular computational
problem.

4.2.2 Mathematical background
In this paper, we consider parallel 3D sweeping algorithms that use a Cartesian
grid, which is of dimension (nx + 2)× (ny + 2)× (nz + 2). The mesh point values,
denoted by Ti,j,k, are iteratively updated by sweeps each being made up of six sub-
sweeps that alternate between the positive and negative x, y and z-directions. Each
sub-sweep consists of plane-by-plane updates that move consecutively through the
3D mesh. Computations of the mesh points that lie on a 2D update plane are
independent of each other, thus parallelizable. The following pseudocode shows
one sub-sweep along the positive x-direction and another sub-sweep in the opposite
direction, see Fig 4.7.
for i = 2→ nx do

for all j ∈ [1, ny] and k ∈ [1, nz] do
Update Ti,j,k using values Ti−1,j±a,k±b,a ∈ 0, 1, b ∈ 0, 1

end for
end for
for i = nx − 1→ 1 do

for all j ∈ [1, ny] and k ∈ [1, nz] do
Update Ti,j,k using values Ti+1,j±a,k±b,a ∈ 0, 1, b ∈ 0, 1

end for
end for

4.2. MULTIPLE GPU IMPLEMENTATION OF PARALLEL 3D SWEEPING75

(a)

Z-
dir
ec
tio
n

sw
ee
p

X

Y

Z

1

2
n-1

(b)
Y
d
ir
e
ct
io
n

sw
e
e
p

X

Y

Z

1

2

n-1

(c)
X direction
sweep

X

Y

Z

1 2 n-1

Figure 4.7: 2D plane sub-sweeping (a) in Z-direction, (b) in Y-direction and (c) in
X-direction.

The four other sub-sweeps (two in the y-direction and two in the z-directions)
are similar. We also remark that the sub-sweeps update only the interior mesh
points, i.e., 1 ≤ i ≤ nx , 1 ≤ j ≤ ny , 1 ≤ k ≤ nz . The boundary points assume
known solution values. In the above pseudocode, updating a mesh point relies on 9
mesh points that lie on the preceding plane, see figure 4.8 for an example. A con-
crete application of such a sweeping algorithm can be to simulate anisotropic front
propagation that is described by the following static Hamilton-Jacobi equation:

F (x)
∥∥∇T (x)

∥∥+ Ψ(a · ∇T (x)) = 1,
T = t0onΓ0,

(4.1)

where T (x) can model the first-arrival time of a propagating front that originates
from the initial surface Γ0. When the viscosity solution of 4.1 is used to model
geological folding, vector a marks the axial direction of the fold, with F and Ψ being
nonzero constants. For details about the mathematical model and the derivation
of sweeping-based numerical schemes, we refer the reader to [84] and the references
therein.

76 CHAPTER 4. HIGH PERFORMANCE COMPUTING

Figure 4.8: An example of data dependency associated with sub-sweeps along the z-
direction.

Z

Y

X

Block 1

Block 2

Block 3

Block 4

Z dire
cti

on

su
b-sw

eeps

X direction
sub-sweeps

Figure 4.9: A partitioning of the 3D Cartesian grid that suits parallelization of sub-
sweeps in both x and z-directions.

4.2.3 Data partition

Parallelism within parallel 3D sweeping algorithms exists among mesh points that
lie on the same 2D update plane, but not across the planes. That is, parallelization
can be realized by dividing each 2D plane among multiple computing hardware
units, such as GPUs. Due to the rectangular shape of a 2D plane, it is natural
to assign each GPU with a rectangular subdomain. Moreover, since each sub-
sweep moves along a given spatial direction, from the top (or bottom) 2D plane
to the bottom (or top) plane, all the 2D planes associated with one sub-sweep
can use the same partitioning. This means that, for sub-sweeps along a specific
spatial direction, the 3D Cartesian grid should be partitioned by cutting surfaces
parallel with the sub-sweeping direction. However, we recall that the sub-sweeps

4.2. MULTIPLE GPU IMPLEMENTATION OF PARALLEL 3D SWEEPING77

(1,1)

Y
 -

 D
ir

e
ct

io
n

 s
u
b

-s
w

e
e
p

s

Data block
 1

Data block
 2

Data block
 3

Data block
 n

X - Direction sub-sweeps

Z - D
ire

cti
on

 su
b-sw

eeps

(1,1) (1,2) (1,3) (1,n)

(2,1)

(3,1)

(n,1)

(2,2)

(3,3)

(n,n)

(2,1) (3,1) (n,1)

(2,2)

(3,3)

(n,n)

Data block
 1

Data block 2

Data block
 3

Data block n

X

Z
Z

Y
Y

X

(1,2)

(1,3)

(1,n)

Figure 4.10: An example of volumetric data shuffle in connection with changing the grid
partitioning.

alternate between the three spatial directions, thus there does not exist a universal
partitioning that works for all x, y and z-directions. The best partitioning strategy
is to let sub-sweeps of two spatial directions share one partitioning, switching to
another partitioning for the third spatial direction. Figure 4.9 shows a partitioning
of the 3D Cartesian grid that can be used to parallelize sub-sweeps in both x and
z-directions.

4.2.4 Data transfer
There are two types of data transfers that must be carried out between the GPUs.
The first type of data movement happens on each 2D (yz or xz or xy) plane, for
the purpose of com- municating results of the halo computation (i.e., on mesh
points that lie immediately beside a neighbor) from one subdomain to another.
Consider for example the partitioning shown in figure 4.9, which can be shared by
sub-sweeps in the x and z-directions. Then parallel computing on each yz-plane
(inside ax-directional sub-sweep) will require one subdomain to send (and receive)
nz point values to (and from) each of its two neighbors. When updating each xy-
plane (inside a z-directional sub-sweep), nx point values are exchanged between a
pair of neighboring subdomains. It should be noted that this halo-induced type of
communication happens once per 2D plane.

The second type of data transfer is due to the need of switching the grid par-
titioning between some of the sub-sweeps. For example, the partitioning shown
in figure 4.9 cannot be used for sub-sweeps along the y-direction. In connection
with switching the grid partitioning, a 3D volumetric data shuffle among all GPUs
is necessary. A concrete example of data shuffle involving four GPUs is shown in
figure 4.10. There, each GPU can keep one fourth of its data, but has to exchange
one fourth of its data wdith each of the other three GPUs. This volumetric data
shuffle happens only twice per sweep (every six sub-sweeps). In other words, the

78 CHAPTER 4. HIGH PERFORMANCE COMPUTING

Listing 4.1: Basic
for (i=2; i <= nx; i++)
{

cudaSetDevice (0);
compute - kernel : update all points on GPU0âĂŹs part of a yz - plane
pack - kernel : fill a buffer containing halo values needed by GPU1

cudaSetDevice (1);
compute - kernel : update all points on GPU1âĂŹs part of a yz - plane
pack - kernel : fill a buffer containing halo values needed by GPU0

cudaMemcpy (GPU0 buffer to host buffer H0)
cudaMemcpy (GPU1 buffer to host buffer H1)
cudaMemcpy (host buffer H0 to GPU1 buffer)
cudaMemcpy (host buffer H1 to GPU0 buffer)

cudaSetDevice (0);
unpack - kernel : handle the incoming H1 data from host
cudaSetDevice (1);
unpack - kernel : handle the incoming H0 data from host

}

second type of communication is considerably less frequent than the first type of
halo-induced communication.

4.2.5 CUDA implementations
4.2.5.1 Plain multi-GPU implementation

If there already exists a single-GPU CUDA implementation of a 3D sweep algo-
rithm, it is a relatively simple programming task to write a plain implementation
that uses multiple GPUs residing on the same compute node. Of the existing
single-GPU code, its six kernels associated with the six different sub-sweeps can
be reused by each GPU to work within its assigned subdomain of a 2D plane.
Additional kernels have to be implemented to support the two types of data trans-
fers: halo-induced communication and 3D volumetric data shuffle. The following
pseudocode segment shows one sub-sweep in the positive x-direction for the case of
using two GPUs:

There are two problems with the plain implementation above. First, due to the
default synchronous CUDA stream on each GPU, the halo-induced communication
will not start until all the mesh points on the subdomain 2D plane are updated.
There is thus no possibility of hiding the overhead of this communication, as shown
in figure 4.11. The second problem is the use of synchronous data copies (cud-
aMemcpy for both device-host and host-device transfers), meaning that only one
data transfer can happen at a time. The same problem also applies to the second
type of communication: 3D volumetric data shuffles (not shown in the above code

4.2. MULTIPLE GPU IMPLEMENTATION OF PARALLEL 3D SWEEPING79

Listing 4.2: Improvement 1
for (i=2; i <= nx; i++)
{

cudaSetDevice (0);
halo - kernel using halo_stream (0)
compute - kernel over interior points using compute_stream (0)
cudaMemcpyAsync (GPU0 ->H0) using halo_stream (0)

cudaSetDevice (1);
halo - kernel using halo_stream (1)
compute - kernel over interior points using compute_stream (1)
cudaMemcpyAsync (GPU1 ->H1) using halo_stream (1)

cudaStreamSynchronize halo_stream (0)
cudaStreamSynchronize halo_stream (1)

cudaSetDevice (0);
cudaMemcpyAsync (H0 ->GPU1) using halo_stream (1)
unpack - kernel using halo_stream (1)

cudaSetDevice (1);
cudaMemcpyAsync (H1 ->GPU0) using halo_stream (0)
unpack - kernel using halo_stream (0)

cudaSetDevice (0);
cudaStreamSynchronize compute_stream (0);
cudaSetDevice (1);
cudaStreamSynchronize compute_stream (1);

}

segment).

4.2.5.2 Improvement 1

The key to hiding the overhead of halo-induced communications is to overlap this
type of data transfers with computations of the interior points (i.e., non-halo points)
on each GPU. For this purpose, every data-packing kernel from the plain imple-
mentation is extended (as a halo-kernel) to compute its line of “halo points” as
well as packing. Moreover, each GPU adopts at least two CUDA streams, one
being responsible for updating its interior mesh points, the other (“halo stream”)
for independently executing the data-packing kernels. Consequently, asynchronous
device-host and host-device data transfers (by calling cudaMemcpyAsync) can be
enabled by using the halo streams. The following pseudocode implements this
improvement, and the effect can be seen in figure 4.12 for the case of two GPUs.

80 CHAPTER 4. HIGH PERFORMANCE COMPUTING

4.2.5.3 Improvement 2

The situation can be improved further. We note from figure 4.12 that the start of
the kernels on GPU1 has a delay with respect to those on GPU0. This is because
both GPUs are controlled by the same host CPU thread, which first initiates the
kernels on GPU0 and then those on GPU1. This delay will become more severe
when more GPUs are involved. To solve the above problems, we adopt the strategy
of using multiple OpenMP threads on the CPU side, as proposed in [79]. That is,
one controlling OpenMP thread is now in charge of each GPU. The entire code will
thus be wrapped into an OpenMP parallel region, and the thread ID will dictate
the responsibility of an OpenMP thread. The effect of this improvement is clearly
visible in figure 4.13.

4.2.5.4 Improvement 3

As can be seen in figure 4.13, the combination of multiple CUDA streams and one
controlling OpenMP thread per GPU can result in halo-induced data exchanges
being carried out while computations on the interior mesh points proceed. The
overhead of this type of communication can therefore be effectively hidden, even
though the communication is relayed through the CPU host. For the second type
of communication, i.e., 3D volumetric data shuffles between switches of the grid
partitioning, relaying data via CPU is unnecessarily costly if there is hardware
sup- port for direct peer-to-peer (P2P) communication [80] between the GPUs.
Specifically, to draw benefit from P2P and enable bi-directional data transfers, the
cudaMemcpyPeerAsync function should be simultaneously called by the controlling
OpenMP threads. Afterwards, the CUDA streams that execute the asynchronous
P2P communication must be properly synchronized, via cudaStreamSynchronize
called by the multiple controlling CPU threads, to make sure that the shuffled
data has arrived. Finally, we remark that the above three improvements were first
discussed in [85]. However, the multi-GPU implementations used in this paper have
made substantial adjustments (and corrections) of those in [85].

4.2.6 Experiments and measurements
4.2.6.1 Hardware platforms

We tested our multi-GPU implementations on two GPU clusters, Erik [86] and Zorn
[87], for running 3D simulations of anisotropic front propagation. In particular,
one 4-GPU node on the Erik cluster was used, where each GPU is of type NVIDIA
Tesla K20m. The CPU host has dual-socket 8-core Intel Xeon E5-2650 2.0 GHz
processors. It is important to notice that the four GPUs are organized as two PCIe
“islands” meaning that the GPU0-GPU1 and GPU2-GPU3 pairs have a direct PCIe
connection in between, whereas across-pair traffic is subject to a slower speed. On
the Zorn cluster, we used one of its 4-GPU nodes where each GPU is of type Tesla
C2050 and the CPU host consists of dual-socket 4-core Intel Xeon E5620 2.4 GHz

4.2. MULTIPLE GPU IMPLEMENTATION OF PARALLEL 3D SWEEPING81

Figure 4.11: Plain 2-GPU implementation: the default synchronous CUDA stream per
GPU

Figure 4.12: Improved 2-GPU implementation version 1: two CUDA streams per GPU

Figure 4.13: Improved 2-GPU implementation version 2: two CUDA streams and one
OpenMP thread per GPU

82 CHAPTER 4. HIGH PERFORMANCE COMPUTING

processors. The four GPUs are also organized as two pairs with intra-pair PCIe
connection. CUDA v5.5 was used on both platforms.

4.2.6.2 An example of geological folding

To compare with the single-GPU implementation from [81], we have chosen to
simulate the same example of geological folding. More specifically, F = 1.1, ψ =
1.0 and a = (-0.34, 0.4, 0.7) were used in 4.1. The 3D spatial domain has length 10
in all three directions. The initial surface Γ0 is shown in the left plot of figure 4.14,
whereas the simulation result is depicted in the right plot. (The numerical results
from the multi-GPU implementations were all verified by those produced by the
original single-GPU implementation.)

Figure 4.14: The initial surface Γ0 (left plot) and the simulation result of (1) after
running 8 sweeps

4.2.6.3 Time measurements

Table 1 summarizes the time measurements that were obtained on the Erik and Zorn
systems. Two problem sizes were tested: nx = ny = nz = 512 and nx = ny = nz =
640. Each simulation ran 8 sweeps, i.e., 48 sub-sweeps in total. All computations
used double precision. Recall from Section 4 that the first improvement to the plain
multi-GPU implementation is to let each GPU use multiple CUDA streams. That
is, the number of CUDA streams per GPU equals the

number of neighbors plus one. Halo computations are thus carried out as early
as possible, and the data transfers (type 1 communication) between neighboring
GPUs can be carried out while computations on the interior mesh points proceed.
As can be seen in Table 1, the benefit of the first improvement is more obvious
for the 4-GPU cases. Likely, the second improvement (assigning one controlling
OpenMP thread per GPU) also has a clearer advantage for the 4-GPU cases. For
the third improvement, using P2P data communication for the 3D volumetric data
shuffles (type 2 communication) instead of relaying data via the CPU, the benefit
is more profound for the 2-GPU cases. This is due to the fact that GPU0 and

4.2. MULTIPLE GPU IMPLEMENTATION OF PARALLEL 3D SWEEPING83

Grid size nx = ny = nz = 512 nx = ny = nz = 640
Time on Erik Time on Zorn Time on Erik Time on Zorn

Single-GPU 31.71 64.95 59.54 123.34

2-GPU plain impl. 24.75 44.50 45.05 82.14

2-GPU improved v1 24.35 41.40 44.73 81.36

2-GPU improved v2 22.39 40.38 39.58 75.42

2-GPU improved v3 19.37 37.40 35.34 69.64

4-GPU plain impl. 23.28 30.77 41.03 54.61

4-GPU improved v1 20.68 28.54 38.65 51.56

4-GPU improved v2 14.31 25.54 25.18 46.83

4-GPU improved v3 12.48 23.57 21.91 43.02

Table 1: Time measurements (in seconds) of running eight sweeps of various multi-GPU imple-

mentations.

GPU1 have a direct PCIe connection that provides hardware support for P2P.
When four GPUs are used, although GPU2 and GPU3 also form a pair with direct
PCIe connection, data transfers across the two pairs (e.g. GPU0-GPU2) still have
to relay through the CPU, thus not fully enjoying the performance benefit of P2P
data communication.

4.2.7 Conclusion

In comparison with single-GPU implementations of parallel 3D sweeping algo-
rithms, the use of multiple GPUs introduces the complicating issue of having to
switch between two grid par- titionings and the resulting 3D volumetric data shuf-
fles among all the GPUs. These come on top of the conventional halo-induced data
exchanges between neighboring GPUs. In other words, parallelizing a 3D sweeping
algorithm is more difficult than parallelizing a regular 3D finite difference method.
The achievable parallel efficiency will consequently be lower due to the costly 3D
volumetric data shuffles. Nevertheless, our time measurements have shown that
with a proper use of multiple multiple CUDA streams per GPU, in combination
with adopting one controlling OpenMP thread per GPU and P2P data communica-
tion offered by NVIDIA GPUDirect, we can secure satisfactory parallel efficiency.
This means that using multiple GPUs for performing parallel 3D sweeps is a viable
technical solution, especially considering the ben- efit of aggregating the device
memory of the GPUs to solve larger problems that exceed the memory limit of a
single GPU.

As future work, the current work can be extended to the scenario of multiple
compute nodes, each with one or several GPUs. Asynchronous CUDA memory
copies have to be replaced with suitable non-blocking MPI calls. Then, really huge-
scale simulations can be made possible.

84 CHAPTER 4. HIGH PERFORMANCE COMPUTING

(1,1)

Y
 -

 D
ir

e
ct

io
n

 s
u
b

-s
w

e
e
p

s

Data block
 1

Data block
 2

Data block
 3

Data block
 n

X - Direction sub-sweeps

Z - D
ire

cti
on

 su
b-sw

eeps

(1,1) (1,2) (1,3) (1,n)

(2,1)

(3,1)

(n,1)

(2,2)

(3,3)

(n,n)

(2,1) (3,1) (n,1)

(2,2)

(3,3)

(n,n)

Data block
 1

Data block 2

Data block
 3

Data block n

X

Z
Z

Y
Y

X

(1,2)

(1,3)

(1,n)

Figure 4.15: Data re-partition for the Y direction sub-sweeps.

4.2.8 Future work

A natural future extension is to investigate the FEniCS-HPC on GPU architectures,
for example with new GPU sparse linear algebra backends, and with the Omega_h
[88]library for general parallel mesh operations.

4.3 Towards HPC-embedded;case study-Kalray and
message-passing on NoC

Today one of the most important challenges in HPC is the development of com-
puters with a low power consumption. In this context, recently, new embedded
many-core systems have emerged. One of them is Kalray. Unlike other many-core
architectures, Kalray is not a co-processor (self-hosted). One interesting feature
of the Kalray architecture is the Network on Chip (NoC) connection. Habitually,
the communication in many-core architectures is carried out via shared memory.
However, in Kalray, the communication among processing elements can also be
via Message-Passing on the NoC. One of the main motivations of this work is to
present the main constraints to deal with the Kalray architecture. In particular,
we focused on memory management and communication. We assess the use of
NoC and shared memory on Kalray. Unlike shared memory, the implementation of
Message-Passing on NoC is not transparent from programmer point of view. The
synchronization among processing elements and NoC is other of the challenges to
deal with in the Karlay processor. Although the synchronization using Message-
Passing is more complex and consuming time than using shared memory, we obtain
an overall speedup close to 6 when using Message-Passing on NoC with respect to
the use of shared memory. Additionally, we have measured the power consumption
of both approaches. Despite of being faster, the use of NoC presents a higher power
consumption with respect to the approach that exploits shared memory. This ad-

4.3. TOWARDS HPC-EMBEDDED;CASE STUDY-KALRAY AND
MESSAGE-PASSING ON NOC 85

ditional consumption in Watts is about a 50%. However, the reduction in time by
using NoC has an important impact on the overall power consumption as well.

4.3.1 Background

Advanced strategies for the efficient implementation of computationally intensive
numerical methods have a strong interest in industrial and academic community. In
the last decade, we have lived a spectacular growth in the use of many-core architec-
tures for HPC applications [89–93]. However, the appearance of other (low-power
consumption) embedded many-core architectures such as Kalray [94] has created
new challenges and opportunities for performance optimization in multiple appli-
cations. In this work, we have explored some of these new opportunities towards a
supercomputing on a chip era.

Kalray integrates its own OS and is not in need of a co-processor as in the
case of other many-core proces- sors [94, 95]. In Karlay, highly expensive memory
transfers from host main memory to co-processor memory are not necessary, as in
other architectures, such as NVIDIA GPUs [96] or Inel MIC [97]. Besides, this
architecture offers the possibility to communicate each of the processing elements
via a Network on Chip (NoC) connection composed by links and routers [94, 95].
Kalray has been previously used for video encoding and Monte Carlo applications
[2]. However, these works lack information of how to implement these applications
and what are the most efficient programming strategies and architectonic features
to deal with our embedded processor. The NoCs have been recently used as a level
in-between the computing cores and shared memory [98–100]. The NoCs in these
systems can be configurable depending on the particular needs of the applications.
However, the NoC in Kalray is completely different. In Kalray, there are two
different and independent inter-connectors, one bus which connects each of the
processing elements to shared memory and one NoC which connects the different
processing elements (clusters) among them.

We have chosen as a test case a widely known and extended problem, that is
Jacobi method [101]. The main motivation of this work is twofold. While, on one
hand, this work presents the main challenges to deal with the Kalray architecture.
On the other hand, we present two different approaches to implement the commu-
nication among the different processing elements of our Kalray processor, one based
on using shared memory and other based on using a Network on Chip, which works
as interconnection among the set of processing cores. We detail and analyze deeply
each of the approaches, presenting theirs advantages and disadvantages. Moreover,
we include measurements for power consumption in both approaches.

This section is structured as follows. Subsection 4.3.2 briefly introduces the
main features of the architecture at hand, Kalray. Then, we detail the techniques
performed for an efficient implementation of the Jacobi method on Kalray processor
in Subsection 4.3.3. Finally, In Section 4.3.4, it is carried out the performance
analysis of the proposed techniques in terms of consuming time, speed-up and

86 CHAPTER 4. HIGH PERFORMANCE COMPUTING

Figure 4.16: Kalray MPPA many-core (left) and compute cluster (righ) architecture [2]

power consumption. At the end of this work in subsection 4.3.5 we outline some
conclusions.

4.3.2 Kalray Arhietecture
Kalray architecture [2] is an embedded many-core processor. It integrates 288
cores on a single 28 nm CMOS chip with a low power consumption per operation.
We have 256 cores divided into 16 clusters which are composed by 16+1 cores
each. 4 quad-core I/O subsystems (1 core per cluster) are located at the periphery
of the processing array (Figure 4.16-left). They are used as DDR controller for
accessing to up to 64GB of external DDR3-1600. These subsystems control a 8-
lane Gen3 PCI Express for a total peak throughput of 16GB/s full duplex. The
16 compute clusters and the 4 I/O subsystems are connected by two explicitly
addressed Network on Chip (NoC) with bi-directional links, one for data and the
other for control [2, 102]. NoC traffic does not interfere with the memory buses
of the underlying I/O subsystem or compute cluster. The NoC is implemented
following a 2-D torus topology.

The compute cluster (Figure 4.16 right) is the basic processing unit of our
architecture [2]. Each cluster contains 16 processing cores (C0, C1, C2, . . . ,
C15 in Figure 4.16-right) and one resource management (Syst. Core in Figure
4.16-right) core, a shared memory, a direct memory access (DMA) controller, a
Debug & System Unit (DSU), and two routers, one for data (D-NoC) and one
for control (C-NoC). The DMA is responsible to transfer data among shared and
the NoC with a total throughput of 3.2GB/s in full duplex. The shared memory
compromises 2MB organized in 16 parallel banks, and with a bandwidth of 38.4
GB/s. The DSU supports the debug and diagnosis of the compute cluster.

Each processing or resource management core is a 5-way VLIW processor with
two arithmetic and logic units, a multiply-accumulate & floating point unit, a
load/store unit, and a branch & control unit [2]. It enables up to 800MFLOPS at
400MHz, which supposes almost 13 GFLOPS per cluster and almost 205GFLOPS

4.3. TOWARDS HPC-EMBEDDED;CASE STUDY-KALRAY AND
MESSAGE-PASSING ON NOC 87

in total by using the 16 clusters. These five execution units are connected to a
shared register file which allows 11 reads and 4 writes per cycle. Each core is
connected to two (data & instruction) separate 2-way associate caches (8KB each).

Kalray provides a software development kit, a GNU C/C++ & GDB devel-
opment tool for compilation and debugging. Two programming models are cur-
rently supported. A high level programming model based on data-flow C language
called

∑
C [103], where programmers do not care about communication, only data

dependencies must be expressed. The other programming model supported is a
POSIX-Level programming model [94, 95]. It distributes on I/O subsystems the
sub-processes to be executed on the compute clusters and pass arguments through
the traditional argc, argv, and environ variables. Inside compute clusters, classic
shared memory programming models such as POSIX threads or OpenMP pragmas
are supported to exploit more than one processing core. Specific IPC takes advan-
tage of the NoC connection. Unlike

∑
C, the POSIX-Level programming model

presents more important challenges from programmer side, however it allows us to
have more control on hardware and optimize both, communication and computa-
tion. In the present work, the authors have followed the programming model based
on POSIX.

Algorithm 1 Jacobi OpenMP Algorithm.
1: jacobi(A, Anew, N X, N Y)
2: float err;
3: #pragma omp parallel for
4: for int i = 1→ NY − 1 do
5: for intj = 1→ NX − 1 do
6: Anew[i ∗NX + j] = 0.25 ∗ (A[i ∗NX + (j − 1)] +A[i ∗NX + (j + 1)] +
A[(i−1)∗NX+j]+A[(i+1)∗NX+j]); err = maxf(err, fabs(Anew[i∗NX+
j]−A[i ∗NX + j]));

7: end for
8: end for
9: #pragma omp parallel for

10: for inti = 1→ NY − 1 do
11: for intj = 1→ NX − 1 do
12: end for
13: end for

4.3.3 Jacobi Method Implementation on Kalray
We have chosen as test case the Jacobi method [101]. This is a good example,
which allows us to study and evaluate different strategies for communication. The
parallelization is implemented following a coarse-grained distribution of (adjacent)
rows across all cores. This implementation is relatively straightforward using a

88 CHAPTER 4. HIGH PERFORMANCE COMPUTING

few OpenMP pragmas on the loops that iterate over the rows of our matrix (see
Algorithm 1).

One of the most important challenges in Kalray is the communication and mem-
ory management. To address the particular features of Kalray architecture, we use
the Operating System called NodeOs [94], provided by Kalray. NodeOs implements
the Asymmetric Multi-Processing (AMP) model. AMP takes advantage of the
asymmetry found in the clusters between the Resource Management Core (RMC)
and the Processing Element Cores (PEC). RMC runs the operating system (kernel
and NoC routines) on the set of RM (single-core). PEC are dedicated to run user
threads, one thread per PEC. PEC can also call functions, such as syscall that are
in need of OS support, which are received and compute by RMC. When a PEC ex-
ecutes a syscall call, it sends an event and it is locked until it receives an event from
the RMC. This process is necessary to know that the syscall has been processed.
Data and parameters are exchanged using shared memory. We have two codes, one
executed by RMC (IO code) and other (cluster code) executed by PECs. The work
is distributed following a master/slave model that is well suited to Kalray architec-
ture. The IO code is the master. It is in charge of launching the code and sending
data to be computed by slaves. Finally they wait for the final results. Otherwise,
the cluster code are the slaves. They wait for data to be computed and send results
to IO cluster.

The POSIX-Level programming model of Kalray (NodeOs) allows us to imple-
ment the communication among different clusters in two different ways. While
shared memory (accessible by all clusters) is used for the communication in the
first approach (SM), in the second approach (NoC), we use channels (links) and
routers. For sake of clarify, we include several algorithms in which we detail the
main steps of each of the approaches. Algorithms 2 and 3 illustrate the IO and
cluster pseudocodes for the SM approach and Algorithms 4 and 5 for the NoC
approach respectively.

The communication is implemented by using some specific objects and functions
provided by NodeOs. Next, we explain each of these objects and functions. The
transfers from/to global/local memory are implemented via portals. These portals
must be initialized using specific paths (one path per cluster) as A_portal in Algo-
rithm 2. Then, they must be opened (mppa_open) and synchronized (mppa_ioctl)
before transferring (mppa_pwrite in Algorithm 2 and mppa_aio_read in Algo-
rithm 3) data from/to global/local memory. The slaves are launched from master
via mppa_spawn which include parameters and name of the function/s to be com-
puted by cluster/s.

The communication among cluster via links (NoC) is implemented by using of
channel. Similar to the use of portals, channels must be initialized using one path
per channel (see C0_to_C1 channel in Algorithm 2).

On the other hand, the synchronization is implemented by using of sync. They
are used to guarantee that some resources are ready to be used or cluster are ready
to start computing (for instance, see mppa_ioctl in Algorithm 2,3,4 and 5).

In order to minimize the number of transfers among main and local memory

4.3. TOWARDS HPC-EMBEDDED;CASE STUDY-KALRAY AND
MESSAGE-PASSING ON NOC 89

Algorithm 2 Shared Memory I/O pseudocode.
1: const char * cluster executable = “mainCLUSTER”;
2: static f loat A[SIZE]; static f loat Anew[SIZE];
3: int mainIO(int argc , char * argv[])
4: long long dummy = 0; long long match = -(1 « CLUSTER_COUNT);
5: const char * root sync = “/mppa/sync/128 : 1”;
6: const char * A portal = “/mppa/portal/“CLUSTER_RANGE” : 1”;
7: const char * Anew portal = “/mppa/portal/128 : 3”;
8: //–OPENING FILES–//
9: int root_sync_fd = mppa_open(root_sync, O_RDONLY);

10: int A_portal_fd = mppa_open(A_portal, O_W RONLY);
11: int A_new_portal_fd = mppa_open(Anew_portal, O_RDONLY);
12: //–PREPARE_FOR_RESULT–//
13: status| = mppa_ioctl(root_sync_fd, MPPA_RX_SET_ MATCH, match);
14: mppa_aicob_t Anew_portal_aiocb[1] = {MPPA_AIOCB_INITIALIZER

(Anew_portal_fd, Anew, sizeof (Anew[0]) * SIZE)};
15: mppa_aiocb_set_trigger(Anew_portal_aiocb, CLUSTER_COUNT);
16: status| = mppa_aio_read(Anew_portal_aiocb);
17: //–LAUNCHING SLAVES–//
18: char arg0[10], arg1[10];
19: const char * argv[] = arg0, root_sync, A_portal, Anew_portal, 0;
20: for int rank = 1→ CLUSTERCOUNT do
21: sprintf (arg0, “%d”, rank);
22: status| = mppa_spawn(rank, NULL, cluster_executable, argv, 0);
23: end for
24: //Wait for the cluster portals to be initialized.
25: status| = mppa_read(root_sync_fd,& dummy, sizeof(dummy));
26: // Distribute slices of array A over the clusters.
27: for int rank = 0→ CLUSTERCOUNT do
28: status| = mppa_ioctl(A_portal_fd, MPPA_TX_SET_RX_RANK,

rank);
29: status| = mppa_pwrite(A_ portal_fd, (A + rank * SIZE_ LOCAL) -

(NX_ LOCAL * 2),sizeof (float) * SIZE_LOCAL, 0);
30: end for
31: // Wait for the cluster contributions to arrive in array |Anew|.
32: status| = mppa_aio_ wait(Anew_portal_aiocb);
33: return status < 0;

90 CHAPTER 4. HIGH PERFORMANCE COMPUTING

(SM approach) as well as among clusters through links (NoC approach), the matrix
is divided into rectangular sub-blocks (Figures 4.17 and 4.18). In particular, the
distribution of the workload and communication implemented in the NoC approach
avoid multi-level routing, connecting each of the cluster with its adjacent clusters
via a direct link.

Although, the ghost cells strategy is usually used for communication in dis-
tributed memory systems [104], we have used this strategy in Kalray processor to
avoid race conditions among each of the sub-blocks assigned to each clusters. The
use of ghost cells consists of replicating the borders of all immediate neighbors
blocks. These ghost cells are not updated locally, but provide stencil values when
updating the borders of local blocks. Every ghost cell is a duplicate of a piece of
memory located in neighbors nodes. To clarify, Figures 4.17 and 4.18 illustrate
a simple scheme for our interpretation of the ghost cell strategy applied to both
approaches, SM and NoC, respectively.

Algorithm 3 Shared Memory CLUSTER Pseudocode.
1: int mainCLUSTER(int argc, chjar *argv[])
2: int i, j, k, status, rank = atoi(argv[0]);
3: const char * root_sync = argv[1],*A_portal = argv[2],*Anew_portal = argv[3];
4: float A[SIZE_LOCAL], Anew[SIZE_LOCAL]; long long slice_offset;
5: slice_offset = sizeof(float)*(CHUNK * NX _LOCAL+((rank-1)*(CHUNK-

1)*NX _LOCAL));
6: Each clster contributes a different bit to the root_sync mask
7: long long mask = (long long)1 rank;
8: //–OPENING_PORTAL–//
9: int root_sync_fd = mppa_open(root_sync, O_W RONLY);

10: int A_portal_fd = mppa_open(A_portal, O_RDONLY);
11: int Anew_portal_fd = mppa_open(Anew_portal, O_W RONLY);
12: //–PREPARE_FOR_INPUT–//
13: mppa_aiocb_t A_portal_aiocb[1] =MPPA_AIOCB_INITIALIZER(A_portal_fd,

A, sizeof(A));
14: status| = mppa_aio_read(A_portal_aiocb);
15: –UNLOCK_MASTER–//
16: status| = mppa write(root_sync_fd, & mask, sizeof (mask));
17: // Wait for notification of remote writes to local arrays |A|.
18: status| = mppa_aio wait(A_portal_aiocb);
19: //–JACOBIANCOMPUTE–//
20: jacobi(A, Anew, NX _LOCAL, NY _LOCAL);
21: //Contribute back local array Anew into the portal of master array

Anew.
22: status| = mppa pwrite(Anew_portal_fd, & Anew[NX _LOCAL], sizeof

(Anew) - sizeof (float) âĹŮ 2 âĹŮ NX _LOCAL, slice_offset);
23: mppa exit((status < 0)); return 0;

4.3. TOWARDS HPC-EMBEDDED;CASE STUDY-KALRAY AND
MESSAGE-PASSING ON NOC 91

Figure 4.17 graphically illustrates the strategy followed by the SM approach. It
consists of dividing the matrix into equal blocks which are sent from main memory
to local memory. To avoid race condition, each of the blocks includes 2 additional
rows (gray and white rows in Figure 4.17) which correspond to the upper and lower
adjacent rows of the block. These additional rows work as ghost-cell, which are
only used in local memory. The blocks transferred from local memory to global
memory (Figure 4.17-right) do not include these additional rows (ghost rows).

Figure 4.17: Master (Global Memory) ↔ Slave (Local Memory) Communication.

Otherwise the communication among global and local memory is not necessary
in the NoC approach. The master (IO code) is only used for synchronizing. The
synchronization is necessary at the beginning and at the end of each Master code.
I/O core and the rest of cores in each of the clusters must be also synchronized. In
particular the synchronization between IO core and computing cores (I/O− > C1
sync section in Algorithm 5) is necessary to guarantee that there are no cluster
reading into channels before the corresponding cluster has opened the channel.
After computing the Jacobi method in each of the clusters, some rows of the local
blocks must be transferred to/from adjacent clusters. The first row computed
(white upper row C1 in Figure 4.18) must be transferred to the upper adjacent
cluster (C0) to be stored in the last row. Also, the last row computed (gray lower
row C1 in Figure 4.18) must be transfered to the lower adjacent cluster (C2) to be
stored in the first row. This pattern must be carried out in all clusters except the
first and last clusters where a lower number of data-transfers is necessary.

4.3.4 Performance Study

In this section, we analyze deeply both approaches, SM and NoC, focusing on
communication, synchronization and computing separately. In order to find/focus
on the performance of both approaches, we have used a relatively small problem
which can be fully stored in local memory.

92 CHAPTER 4. HIGH PERFORMANCE COMPUTING

Algorithm 4 NoC I/O pseudocode.
1: const char * global_sync = “/mppa/sync/128:1”;
2: const char * IO_to_CO_sync = “/mppa/sync/0:2”;...
3: const char * C0_to_C1_channel = “/mppa/channel/1:1/0:1”;...
4: static const char *exe[CLUSTER_COUNT] = {“mainCLUS-

TER0”,“mainCLUSTER1”,...};
5: int mainIO(int argc, const char * argv[])
6: //Global sync
7: int ret, global_sync_fd = mppa_open(global_sync,O_RDONLY
8: long long match = -1 « CLUSTER_COUNT
9: mppa_ioctl(global_sync_fd, MPPA_RT_SET_MATCH, match);

10: //–IO_TO_C # _SYNC–//
11: int IO_to_C0_sync_fd = mppa_open(IO_to_C0_sync, O_W RONLY);
12: int IO_to_C1_sync_fd = mppa_open(IO_to_C1_sync, O_W RONLY);
13: //–LAUNCHING_SLAVES–//
14: for inti =→ CLUSTER_COUNT do
15: mppa_spawn(i,NULL,exe[i],argv,0);
16: end for
17: //Wait for other clusters to be ready.
18: mppa_read(global_sync_fd, NULL, 8);
19: Write into I/O -> C # sync to unlock C # cluster.
20: mask = 1; mppa_write(IO_to_C0_sync_fd, &mask, sizeof(mask));
21: mppa_write(IO_to_C1_sync_fd, &mask, sizeof(mask));...
22: //–WAITING TO THE END OF CLUSTERS EXECUTION–//
23: for inti = 0→ CLUSTER_COUNT do
24: red = mppa_waitpid(i,&status,0);mppa_exit(ret);
25: end for

Next we present the commands used to compile and launch both approaches:
Compiling lines:
k1− gcc −O3 −std = c99 −mos = rtems io.c −o io_app −lmppaipc
k1 − gcc −O3 −std = c99 −fopenmp −mos = nodeos cluster.c −o cluster
−lmppaipc
k1− create−multibinary −− cluster cluster −− boot = io_app −T multibin
Launching line:
k1− jtag − runner −−multibinary multibin −− exec−multibin = IODDR0 :
io_app

The communication among I/O and computing cores in the NoC approach is
more complex and it is in need of a higher number of synchronizations. This causes
a higher execution time with respect to the SM approach, being almost 2.5× bigger
(Figures 4.19 and 4.20). Note that we use a different vertical scaling in each of the

4.3. TOWARDS HPC-EMBEDDED;CASE STUDY-KALRAY AND
MESSAGE-PASSING ON NOC 93

C0

C1

C2

C2(White)−>C1(Black)

C0(Black)−>C1(White)

C1(Black)−>C2(White)

C1(White)−>C0(Black)

Figure 4.18: Pipeline (Bus) Communication.

graphics illustrated in Figures 4.19 and 4.20 .Despite of the overhead caused by a
higher number of synchronizations, the use of the NoC interconnection makes the
NoC approach (Figure 4.20) about 55× faster than the SM approach.

As expected the time consumed for computing the Jacobi method is equivalent
in both approaches. The time consumed by synchronization, communication and
computing in the NoC approach is more balanced than in the SM approach. This
can be beneficial for future improvements, such as asynchronous communication.

Finally, we analyse the performance in terms of GFLOPS. First, we compute
the theoretical FLOPS for the Jacobi computation. The variant used in this study
performs six flops per update (Algorithm 1). Therefore, the theoretical FLOPS is
equal to the elements of our matrix multiplied by six.

 0

 5

 10

 15

 20

 25

Jacobian

G
lobal->Local

Local->G
lobal

Sync.

Total

 T
im

e
 (

m
s
)

Figure 4.19: Time consumption for the SM approach.

94 CHAPTER 4. HIGH PERFORMANCE COMPUTING

Algorithm 5 NoC CLUSTER pseudocode
1: intmainCLUSTER1(intargc, char ∗ argv[])
2: floatA[SIZE_LOCAL], Anew[SIZE_LOCAL];
3: //Openalltheresourcesneededfortransfers.
4: //Globalsync.
5: intglobal_sync_fd = mppa_open(global_sync,O_WRONLY);
6: //C1− > C2channel.
7: intchannel0_fd = mppa_open(C1_to_C2_channel, O_WRONLY);
8: //C2− > C1channel.
9: intchannel1_fd = mppa_open(C2_to_C1_channel, O_RDONLY);

10: //C1− > C0channel.
11: intchannel2_fd = mppa_open(C1_to_C0_channel, O_WRONLY);
12: //C0− > C1channel.
13: intchannel3_fd = mppa_open(C0_to_C1_channel, O_RDONLY);
14: //I/O − C1sync.
15: intIO_to_C1_sync_fd = mppa_open(IO_to_C1_sync,O_RDONLY);
16: longlongmatch = −(1 << 1/ ∗WesynconlywithI/Ocluster ∗ /);
17: mppa_ioctl(IO_to_C1_sync_fd,MPPA_RX_SET_MATCH,match)
18: //WriteintoglobalsynctounlockI/Ocluster.
19: longlongmask = 1 << mppa_getpid();
20: mppa_write(global_sync_fd,&mask, sizeof(mask))
21: //−−WAIT_FOR_IO_TO_C1_SY NC −−//
22: mppa_read(IO_to_C1_sync_fd,NULL, 8);
23: //−−CLUSTERSCOMMUNICATION −−//
24: //Writedataforcluster0.
25: mppa_write(channel0_fd,&A[NX_LOCAL ∗ (NY_LOCAL− 2)], sizeof(float) ∗

NX_LOCAL);
26: //ReaddatafromC0.
27: mppa_read(channel1_fd,A, sizeof(float) ∗NX_LOCAL);
28: //ReaddatafromC2.
29: mppa_write(channel2_fd,&A[NX_LOCAL], sizeof(float) ∗NX_LOCAL);
30: //Writedataforcluster2.
31: mppa_read(channel3_fd,&A[NX_LOCAL ∗ (NY_LOCAL − 1)], sizeof(float) ∗

NX_LOCAL);
32: mppa_exit(0);

In order to evaluate the overhead of each of the strategies, first, we show the
GFLOPS achieved by the Jacobi computation without the influence of the synchro-
nization and communication (see Jacobian in Figure 4.21). It achieves almost the
peak of performance of our platform (GFLOPS-Peak in Figure 4.21). The com-
putation of the Jacobian method is exactly the same in both approaches (SM and
NoC). Next, we include the overhead of the communication. Although both ap-
proaches present a fall in performance when taking into account the time consumed
by the communication, the fall shown by the NoC approach is not so dramatic as
the overhead suffered by the SM approach (Figure 4.21).

4.3. TOWARDS HPC-EMBEDDED;CASE STUDY-KALRAY AND
MESSAGE-PASSING ON NOC 95

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Jacobian

1x-C
om

m
.

4x-C
om

m
.

1x-Sync.

4x-Sync.

Total

 T
im

e
 (

m
s
)

Figure 4.20: Time consumption for the NoC approach.

The software development kit provided by Kalray allow us to measure the power
consumption of our ap- plications. This is done via this command:

k1 − power − − k1 − jtag − runner − −multibinary multibin − − exec −
multibin = IODDR0 : io_app

Executing our binary using k1-power we obtain the power achieved in terms of
Watts. The average power achieved by the NoC approach is about 8.508W , while
the SM approach achieves an average of 5.778W in every execution. This is almost
a 50% more power when executing the NoC approach. However, the reduction in
execution time obtained by the NoC approach has an important impact on the
overall power consumed. Joules are computed by following the next expression:

Joules = Watts× Time
obtaining an overall consumption about 0.0047J and 0.16J for the NoC and

the SM approaches respectively. This is a 96% less of power consumed by the NoC
approach.

4.3.5 Conclusions and Future Work
Embedded many-core architectures such as Kalray have emerged as a new HPC
platform to deal with the problem of the excessive power consumption.

In this work, we have presented two different approaches to implement the
communication among the processing elements of the Kalray architecture. Both
approaches implement a ghost-cell strategy to avoid race conditions among the
different blocks assigned to each of the processing elements (clusters). This strat-

96 CHAPTER 4. HIGH PERFORMANCE COMPUTING

 0

 50

 100

 150

 200

 250

G
F
L
O
P
S
-P

e
a
k

Ja
co

b
ia
n

N
o
C

S
M

 G
F

L
O

P
S

Figure 4.21: GFLOPS achieved by both approaches.

egy has been adapted to the particular features of our embedded processor and
approaches, SM and NoC, to minimize the number of transfers.

Although the communication via shared memory is more habitual and easier
to implement on many-core architectures, the particular features of the Kalray
architecture, in particular the communication via Message- Passing on NoC con-
nection, offers a much faster alternative. Although, the use of NoC consumes more
power, the reduction in time makes this approach more efficient in terms of power
consumption.

We plan to investigate other problems and more efficient strategies for memory
management and data distribution, such as the overlapping of communication and
computing via asynchronous transfers. In particular, the NoC approach could take
advantage of the asynchronous communication as the time consumed by its major
steps is balanced.

4.4 Visualization

Post processing is important to visualize the output from the CFD simulation.
We will discuss the Open Source visualization tool VisIt, which is an interactive,
scalable, visualization, animation and analysis tool. The typical workflow of VisIt
consists of:

1. Manual visualization of the local workstation

2. Remote visualization through Graphical User Interface (GUI) from host to
remote computer

4.4. VISUALIZATION 97

The above mentioned methods are good but not efficient in terms of fast visu-
alization with a given set of resources. Transferring data back to a local computer
can take time, and a workstation may not have enough RAM to store the data.

An alternative is data parallelization with VisIt. This is an efficient method for
large data sizes, as it partitions and distributes data across the CPUs with MPI.

Since FEniCS-HPC is based on adaptive error control, which minimizes mesh
sizes, in a standard use case, a single time sample will not be large. This will make
VisIt data parallelization inefficient.

We instead propose task parallelism over the set of time samples.

(a) sim. on 120 sec (b) sim. on 350 sec

Figure 4.22: Marin simulation with no phase separation

(a) sim. on 120 sec (b) sim. on 350 sec

Figure 4.23: Marin simulation with phase separation

As an example, one time sample file of the Marin simulation is ≈ 170M and the
PDC/KTH Tegner single node memory size is 512 GB RAM. This shows the feasi-
bility of task parallelism with one sample per core. Figure 4.24 shows the difference
between the task and data parallelism. Approach 1 shows the data parallelism with
MPI and approach 2 is distributing each time sample to one core. Approach 2 is
much faster than approach 1. Figures 4.22 and 4.23 show the volume rendering of
the multiphase flow with approach 2. For task parallelism, 54 cores take ≈ 2 hours
for 800 time sample files, whereas for data parallelism, 54 cores take ≈ 20 hours to
process the 800 time sample files.

98 CHAPTER 4. HIGH PERFORMANCE COMPUTING

Single time step file, 01

ex,54 MPI CPU cores

01 02 03

1
 C

P
U

 c
o
re

2
 C

P
U

 c
o
re

3
 C

P
U

 c
o
re

Single time step file, 01

ex,54 MPI CPU cores

01 02 03

1
 C

P
U

 c
o
re

2
 C

P
U

 c
o
re

3
 C

P
U

 c
o
re

Approach 1 Approach 2

Figure 4.24: task paralleization

Chapter 5

Outcomes and future work

We have showed that with our DFS methodology and Open Source Unicorn/FEniCS-
HPC automated software framework, we can predict the stall of a realistic aircraft
at realistic Reynolds number, which is considered by NASA as one of the grand
challenges problem to be solved by 2030 [1]. We not only predict aerodynamic forces
close to experimental results but also 10 times cheaper and faster when compared
to exiting CFD methodologies. Our work in this direction has been highlighted
by NASA, a Fields Medalist former, KVA Royal Swedish Academy of Engineering
Sciences and at the highest echelon of the aerodynamics industry. In order to pro-
mote this technology as an open source scientific platform in the CFD community
and industry, we have started an open source spin-off called "Icarus Digital Math",
supported by KTH Innovation, Vinnova and KVA Royal Swedish Academy of En-
gineering Sciences. Our aim is to transform the industry to Digital Math - science
as open source, which is verifiable and can be used by anyone at an affordable cost.

Our variable density approach does not yet include an adaptive algorithm, which
means we do not have any posteriori error estimation. Including adaptivity would
be beneficial in terms of computational cost and reliability.

One of the grand challenges in CFD to be solved by 2030 according to NASA
is for CFD solvers to attain exa-scale computing using massively parallel and het-
erogeneous architectures. At present FEniCS-HPC runs only on homogeneous ar-
chitectures. This is due to a bottleneck of data transfer in FEM between CPU
and GPU, studies with FEniCS on early stage GPU architectures have not been
able to attain competitive speedup. In the past few years, GPU technology has
attained tremendous technological advancement in terms of number of cores, data
transfer (through NVlink) and unified memory. FEniCS-HPC on heterogeneous
architectures would be beneficial, especially since most new supercomputers have
a heterogeneous architecture.

In our adaptive methodology in DFS and FEniCS-HPC, we refine the mesh in
parallel based on goal-oriented duality-based error control. One additional key step
in FEniCS-HPC is to allow parallel mesh coarsening and general mesh operations.

99

100 CHAPTER 5. OUTCOMES AND FUTURE WORK

We identified the Open Source library Omega_h as providing this key technology,
that would unlock general adaptivity.

Bibliography

[1] J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, and
D. Mavriplis, “Cfd vision 2030 study: a path to revolutionary computational
aerosciences,” 2014.

[2] B. D. de Dinechin, R. Ayrignac, P.-E. Beaucamps, P. Couvert, B. Ganne,
P. G. de Massas, F. Jacquet, S. Jones, N. M. Chaisemartin, F. Riss et al., “A
clustered manycore processor architecture for embedded and accelerated ap-
plications,” in 2013 IEEE High Performance Extreme Computing Conference
(HPEC). IEEE, 2013, pp. 1–6.

[3] J. Hoffman, J. Jansson, and N. Jansson, “Fenics-hpc: Automated predictive
high-performance finite element computing with applications in aerodynam-
ics,” Proceedings of the 11th International Conference on Parallel Processing
and Applied Mathematics, PPAM 2015. Lecture Notes in Computer Science,
2015.

[4] FEniCS, “Fenics project,” http://www.fenicsproject.org, 2003.

[5] M. T. Heath, Scientific computing: an introductory survey. SIAM, 2018,
vol. 80.

[6] J. Hoffman and C. Johnson, Computational Turbulent Incompressible Flow,
ser. Applied Mathematics: Body and Soul. Springer, 2007, vol. 4.

[7] Tandemsphere. [Online]. Available: https://how5.cenaero.be/sites/how5.
cenaero.be/files/CS1_TandemSpheres_0.pdf

[8] J. Jansson, E. Krishnasamy, and M. Leoni, “Adaptive direct fem simulation
with unicorn/fenics-hpc for cs1.” 5th International Workshop on High Order
CFD Methods, 2018.

[9] K. Kleefsman, G. Fekken, A. Veldman, B. Iwanowski, and B. Buchner, “A
volume-of-fluid based simulation method for wave impact problems,” Journal
of Computational Physics, vol. 206, no. 1, pp. 363–393, 2005.

[10] Harshlab. [Online]. Available: https://bird.bcamath.org/bitstream/handle/
20.500.11824/862/poster-euskampus-2017.pdf?sequence=1&isAllowed=y

101

https://how5.cenaero.be/sites/how5.cenaero.be/files/CS1_TandemSpheres_0.pdf
https://how5.cenaero.be/sites/how5.cenaero.be/files/CS1_TandemSpheres_0.pdf
https://bird.bcamath.org/bitstream/handle/20.500.11824/862/poster-euskampus-2017.pdf?sequence=1&isAllowed=y
https://bird.bcamath.org/bitstream/handle/20.500.11824/862/poster-euskampus-2017.pdf?sequence=1&isAllowed=y

102 BIBLIOGRAPHY

[11] J. Hoffman, J. Jansson, R. V. de Abreu, N. C. Degirmenci, N. Jansson,
K. Müller, M. Nazarov, and J. H. Spühler, “Unicorn: Parallel adaptive fi-
nite element simulation of turbulent flow and fluid-structure interaction for
deforming domains and complex geometry,” Comput. Fluids, vol. 80, no. 0,
pp. 310 – 319, 2013.

[12] J. Hoffman, J. Jansson, C. Degirmenci, N. Jansson, and M. Nazarov, Unicorn:
a Unified Continuum Mechanics Solver. Springer, 2012, ch. 18.

[13] A. Logg, K.-A. Mardal, G. N. Wells et al., Automated Solution of Differential
Equations by the Finite Element Method. Springer, 2012.

[14] A. Logg, G. N. Wells, and J. Hake, “Dolfin: A c++/python finite element li-
brary,” in Automated Solution of Differential Equations by the Finite Element
Method. Springer, 2012, pp. 173–225.

[15] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman,
L. Dalcin, A. Dener, V. Eijkhout, W. Gropp et al., “Petsc users manual,”
2019.

[16] N. Jansson, “High performance adaptive finite element methods for turbulent
fluid flow,” Ph.D. dissertation, KTH Royal Institute of Technology, 2011.

[17] R. C. Kirby, “Algorithm 839: Fiat, a new paradigm for computing fi-
nite element basis functions,” ACM Transactions on Mathematical Software
(TOMS), 2004.

[18] R. C. Kirby and A. Logg, “A compiler for variational forms,” ACM Transac-
tions on Mathematical Software, vol. 32, no. 3, pp. 417–444, 2006.

[19] N. Jansson, J. Hoffman, and J. Jansson, “Framework for Massively Paral-
lel Adaptive Finite Element Computational Fluid Dynamics on Tetrahedral
Meshes,” SIAM J. Sci. Comput., vol. 34, no. 1, pp. C24–C41, 2012.

[20] J. Hoffman, J. Jansson, R. V. de Abreu, N. C. Degirmenci, N. Jansson,
K. Müller, M. Nazarov, and J. H. Spühler, “Unicorn: Parallel adaptive fi-
nite element simulation of turbulent flow and fluid-structure interaction for
deforming domains and complex geometry,” Comput. Fluids, vol. 80, no. 0,
pp. 310 – 319, 2013.

[21] J. Hoffman and C. Johnson, Computational Turbulent Incompressible Flow,
ser. Applied Mathematics: Body and Soul. Springer, 2007, vol. 4.

[22] J. Hoffman, J. Jansson, and M. Stöckli, “Unified continuum modeling of fluid-
structure interaction,”Mathematical Models and Methods in Applied Sciences,
2011.

BIBLIOGRAPHY 103

[23] G. Houzeaux, M. Vázquez, R. Aubry, and J. Cela, “A massively parallel
fractional step solver for incompressible flows,” Journal of Computational
Physics, vol. 228, no. 17, pp. 6316–6332, 2009.

[24] J. Hoffman and C. Johnson, Computational Turbulent Incompressible Flow:
Applied Mathematics Body and Soul Vol 4. Springer-Verlag Publishing, 2006.

[25] J. Hoffman, J. Jansson, N. Jansson, R. Vilela De Abreu, and C. Johnson,
“Computability and adaptivity in cfd. encyclopedia of computational me-
chanics, stein, e., de horz, r. and hughes, tjr eds,” 2016.

[26] J. Hoffman and C. Johnson, Adaptive finite element methods for incompress-
ible fluid flow. Heidelberg: Error Estimation and Solution Adaptive Dis-
cretization in Computational Fluid Dynamics (Ed. T. J. Barth and H. De-
coninck), Lecture Notes in Computational Science and Engineering, Springer-
Verlag Publishing, 2002, pp. 97–158.

[27] ——, “A new approach to computational turbulence modeling,” Comput.
Methods Appl. Mech. Engrg., vol. 195, pp. 2865–2880, 2006.

[28] J. Hoffman, “Adaptive simulation of the turbulent flow past a sphere,” J.
Fluid Mech., vol. 568, pp. 77–88, 2006.

[29] ——, “Efficient computation of mean drag for the subcritical flow past a
circular cylinder using general galerkin g2,” Int. J. Numer. Meth. Fluids, vol.
59(11), pp. 1241–1258, 2009.

[30] J. Hoffman and N. Jansson, A computational study of turbulent flow separa-
tion for a circular cylinder using skin friction boundary conditions. Ercoftac,
series Vol.16, Springer, 2010.

[31] J. Hoffman and C. Johnson, “Resolution of d’alembert’s paradox,” J. Math.
Fluid Mech., Published Online First at www.springerlink.com: 10 December
2008.

[32] R. Vilela de Abreu, N. Jansson, and J. Hoffman, “Adaptive computation
of aeroacoustic sources for a rudimentary landing gear,” Int. J. Numer.
Meth. Fluids, vol. 74, no. 6, pp. 406–421, 2014. [Online]. Available:
http://dx.doi.org/10.1002/fld.3856

[33] F. D. Witherden and A. Jameson, “Future directions of computational fluid
dynamics,” in 23rd AIAA Computational Fluid Dynamics Conference, 2017,
p. 3791.

[34] H. Shan, L. Jiang, and C. Liu, “Direct numerical simulation of flow separation
around a naca 0012 airfoil,” Computers and Fluids, vol. 34, p. 1096ï¿Ř1114,
2005.

http://dx.doi.org/10.1002/fld.3856

104 BIBLIOGRAPHY

[35] P. Sagaut, Large Eddy Simulation for Incompressible Flows (3rd Ed.).
Springer-Verlag, Berlin, Heidelberg, New York, 2005.

[36] P. Moin and D. You, “Active control of flow separation over an airfoil using
synthetic jets,” Journal of Fluids and Structures, vol. 24, no. 8, pp. 1349–1357,
2008.

[37] L. Huang, P. G. Huang, and R. P. LeBeau, “Numerical study of blowing and
suction control mechanism on naca 0012 airfoil,” AIAA Journal of aircraft,
vol. 41, no. 1, 2004.

[38] P. R. Spalart, “Detached-eddy simulation,” Annu Rev. Fluid Mech., vol. 41,
pp. 181–202, 2009.

[39] U. Piomelli and E. Balaras, “Wall-layer models for large-eddy simulation,”
Annu. Rev. Fluid Mech., vol. 34, pp. 349–374, 2002.

[40] C. P. Mellen, J. Frölich, and W. Rodi, “Lessons from lesfoil project on large-
eddy simulation of flow around an airfoil,” AIAA journal, vol. 41, pp. 573–581,
2003.

[41] J. Hoffman, “Computation of mean drag for bluff body problems using adap-
tive dns/les,” SIAM J. Sci. Comput., vol. 27(1), pp. 184–207, 2005.

[42] J. Hoffman, J. Jansson, N. Jansson, and R. V. D. Abreu, “Towards a
parameter-free method for high reynolds number turbulent flow simulation
based on adaptive finite element approximation,” Computer Methods in
Applied Mechanics and Engineering, vol. 288, no. 0, pp. 60 – 74,
2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0045782514004836

[43] P. Schlatter and R. Orlu, “Turbulent boundary layers at moderate reynolds
numbers: inflow length and tripping effects,” Journal of Fluid Mechanics, vol.
710, p. 5âĂŞ34, 2012.

[44] R. C. Kirby, FIAT: Numerical Construction of Finite Element Basis Func-
tions,. Springer, 2012, ch. 13.

[45] A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, FFC: the FEniCS
Form Compiler. Springer, 2012, ch. 11.

[46] J. Hoffman, J. Jansson, N. Jansson, and M. Nazarov, “Unicorn: A
unified continuum mechanics solver,” in Automated Solutions of Differential
Equations by the Finite Element Method. Springer, 2011. [Online]. Available:
http://www.fenicsproject.org/pub/documents/book/

http://www.sciencedirect.com/science/article/pii/S0045782514004836
http://www.sciencedirect.com/science/article/pii/S0045782514004836
http://www.fenicsproject.org/pub/documents/book/

BIBLIOGRAPHY 105

[47] J. Hoffman, J. Jansson, N. Jansson, C. Johnson, and R. V. de Abreu,
“Turbulent flow and fluid-structure interaction,” in Automated Solutions
of Differential Equations by the Finite Element Method. Springer, 2011.
[Online]. Available: http://www.fenicsproject.org/pub/documents/book/

[48] C. Rumsey, “3rd AIAA CFD High Lift Prediction Workshop (HiLiftPW-
2) (http://hiliftpw.larc.nasa.gov/),” 2017. [Online]. Available: http:
//hiliftpw.larc.nasa.gov/

[49] J. C. Hunt, A. A. Wray, and P. Moin, “Eddies, streams, and convergence
zones in turbulent flows,” 1988.

[50] J. Hoffman and C. Johnson, Computational turbulent incompressible flow:
Applied mathematics: Body and soul 4. Springer Science & Business Media,
2007, vol. 4.

[51] X. Deng, M. Mao, G. Tu, H. Zhang, and Y. Zhang, “High-order and high ac-
curate cfd methods and their applications for complex grid problems,” Com-
munications in Computational Physics, vol. 11, no. 4, pp. 1081–1102, 2012.

[52] J. A. Ekaterinaris, “High-order accurate, low numerical diffusion methods for
aerodynamics,” Progress in Aerospace Sciences, vol. 41, no. 3-4, pp. 192–300,
2005.

[53] Z. Wang, “High-order methods for the euler and navier–stokes equations on
unstructured grids,” Progress in Aerospace Sciences, vol. 43, no. 1-3, pp. 1–41,
2007.

[54] A. Stuermer, “Unsteady cfd simulations of propeller installation effects,”
in 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,
2006, p. 4969.

[55] R. Mustak, M. H. U. Khan, M. M. Rahman, and M. Mashud, “Investigation
of slipstreaming effect between a semi trailer-truck and a sedan car,” Inter-
national Journal of Scientific & Engineering Research (IJSER), vol. 8, no. 2,
pp. 676–678, 2017.

[56] L. Pii, E. Vanoli, F. Polidoro, S. Gautier, and A. Tabbal, “A full scale
simulation of a high speed train for slipstream prediction,” in Trans-
port Research Arena (TRA) 5th Conference: Transport Solutions from Re-
search to DeploymentEuropean CommissionConference of European Direc-
tors of Roads (CEDR) European Road Transport Research Advisory Council
(ERTRAC) WATERBORNEáţĂáť¿European Rail Research Advisory Coun-
cil (ERRAC) Institut Francais des Sciences et Technologies des Transports,
de l’Aménagement et des Réseaux (IFSTTAR) Ministère de l’Écologie, du
Développement Durable et de l’Énergie, 2014.

http://www.fenicsproject.org/pub/documents/book/
http://hiliftpw.larc.nasa.gov/
http://hiliftpw.larc.nasa.gov/

106 BIBLIOGRAPHY

[57] C. Baker, S. Dalley, T. Johnson, A. Quinn, and N. Wright, “The slipstream
and wake of a high-speed train,” Proceedings of the Institution of Mechanical
Engineers, Part F: Journal of Rail and Rapid Transit, vol. 215, no. 2, pp.
83–99, 2001.

[58] J. Hoffman, J. Jansson, R. V. de Abreu, N. C. Degirmenci, N. Jansson,
K. Müller, M. Nazarov, and J. H. Spühler, “Unicorn: Parallel adaptive fi-
nite element simulation of turbulent flow and fluid–structure interaction for
deforming domains and complex geometry,” Computers & Fluids, vol. 80, pp.
310–319, 2013.

[59] S. N. Jonkman, “Global perspectives on loss of human life caused by floods,”
Natural hazards, vol. 34, no. 2, pp. 151–175, 2005.

[60] The international disaster database. [Online]. Available: http://www.emdat.
be/country{_}profile/index.html

[61] H.-M. Füssel, A. Jol et al., “Climate change, impacts and vulnerability in
europe 2012 an indicator-based report,” 2012.

[62] A. Ezcurra, J. Areitio, and I. Herrero, “Relationships between cloud-to-
ground lightning and surface rainfall during 1992–1996 in the spanish basque
country area,” Atmospheric research, vol. 61, no. 3, pp. 239–250, 2002.

[63] J. W. Choi and N. Kim, “Clinical application of three-dimensional printing
technology in craniofacial plastic surgery,” Archives of plastic surgery, vol. 42,
no. 3, pp. 267–277, 2015.

[64] S. L. Sing, J. An, W. Y. Yeong, and F. E. Wiria, “Laser and electron-beam
powder-bed additive manufacturing of metallic implants: A review on pro-
cesses, materials and designs,” Journal of Orthopaedic Research, 2015.

[65] S. C. Joshi and A. A. Sheikh, “3d printing in aerospace and its long-term
sustainability,” Virtual and Physical Prototyping, pp. 1–11, 2015.

[66] L. Murr, S. Quinones, S. Gaytan, M. Lopez, A. Rodela, E. Martinez, D. Her-
nandez, E. Martinez, F. Medina, and R. Wicker, “Microstructure and me-
chanical behavior of ti–6al–4v produced by rapid-layer manufacturing, for
biomedical applications,” Journal of the mechanical behavior of biomedical
materials, vol. 2, no. 1, pp. 20–32, 2009.

[67] Y.-L. Pan, J. Bowersett, S. C. Hill, R. G. Pinnick, and R. K. Chang, “Noz-
zles for focusing aerosol particles,” ARMY RESEARCH LAB ADELPHI MD
COMPUTATIONAL AND INFORMATION SCIENCES DIRECTORATE,
Tech. Rep., 2009.

[68] “top500.” [Online]. Available: https://www.top500.org/

http://www.emdat.be/country{_}profile/index.html
http://www.emdat.be/country{_}profile/index.html
https://www.top500.org/

BIBLIOGRAPHY 107

[69] H. P. Babbage, “Babbage analytical engine,” in The Origins of Digital Com-
puters. Springer, 1982, pp. 67–70.

[70] A. Huang, “Architectural considerations involved in the design of an optical
digital computer,” Proceedings of the IEEE, vol. 72, no. 7, pp. 780–786, 1984.

[71] M. J. Flynn, “Very high-speed computing systems,” Proceedings of the IEEE,
vol. 54, no. 12, pp. 1901–1909, 1966.

[72] ——, “Some computer organizations and their effectiveness,” IEEE transac-
tions on computers, vol. 100, no. 9, pp. 948–960, 1972.

[73] A. J. Smith, “Cache memories,” ACM Computing Surveys (CSUR), vol. 14,
no. 3, pp. 473–530, 1982.

[74] NVIDIA, Volta Architecture, https://images.nvidia.com/content/
volta-architecture/pdf/volta-architecture-whitepaper.pdf.

[75] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla: A
unified graphics and computing architecture,” IEEE Micro, vol. 28, no. 2, pp.
39–55, 2008.

[76] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and
W.-m. W. Hwu, “Optimization principles and application performance eval-
uation of a multithreaded gpu using cuda,” in Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel programming.
ACM, 2008, pp. 73–82.

[77] J. A. Jablin, T. B. Jablin, O. Mutlu, and M. Herlihy, “Warp-aware trace
scheduling for GPUs,” in Proceedings of the 23rd international conference on
Parallel architectures and compilation. ACM, 2014, pp. 163–174.

[78] Top500 supercomputing sites. [Online]. Available: https://www.top500.org/
lists/2014/11/

[79] M. Sourouri, T. Gillberg, S. B. Baden, and X. Cai, “Effective multi-gpu com-
munication using multiple cuda streams and threads,” in 2014 20th IEEE
International Conference on Parallel and Distributed Systems (ICPADS).
IEEE, 2014, pp. 981–986.

[80] Gpudirect. [Online]. Available: https://developer.nvidia.com/gpudirect

[81] T. Gillberg, M. Sourouri, and X. Cai, “A new parallel 3d front propagation
algorithm for fast simulation of geological folds,” Procedia Computer Science,
vol. 9, pp. 947–955, 2012.

[82] W.-K. Jeong and R. T. Whitaker, “A fast iterative method for eikonal equa-
tions,” SIAM Journal on Scientific Computing, vol. 30, no. 5, pp. 2512–2534,
2008.

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.top500.org/lists/2014/11/
https://www.top500.org/lists/2014/11/
https://developer.nvidia.com/gpudirect

108 BIBLIOGRAPHY

[83] O. Weber, Y. S. Devir, A. M. Bronstein, M. M. Bronstein, and R. Kimmel,
“Parallel algorithms for approximation of distance maps on parametric sur-
faces,” ACM Transactions on Graphics (TOG), vol. 27, no. 4, p. 104, 2008.

[84] T. Gillberg, “Fast and accurate front propagation for simulation of geological
folds,” 2013.

[85] E. Krishnasamy, “Hybrid cpu-gpu parallel simulations of 3d front propaga-
tion,” 2014.

[86] The erik gpu cluster at lunarc. [Online]. Available: URLhttp://www.lunarc.
lu.se/Systems/ErikDetails

[87] An overview of zorn, pdcâĂŹs gpu cluster. [Online]. Available: URLhttps:
//www.pdc.kth.se/resources/computers/zorn

[88] D. A. Ibanez, “Conformal mesh adaptation on heterogeneous supercomput-
ers,” Ph. D. thesis, Rensselaer Polytechnic Institute, 2016.

[89] P. Valero, J. L. Sánchez, D. Cazorla, and E. Arias, “A gpu-based implemen-
tation of the mrf algorithm in itk package,” The Journal of Supercomputing,
vol. 58, no. 3, pp. 403–410, 2011.

[90] P. Valero-Lara, A. Pinelli, J. Favier, and M. P. Matias, “Block tridiagonal
solvers on heterogeneous architectures,” in 2012 IEEE 10th International
Symposium on Parallel and Distributed Processing with Applications. IEEE,
2012, pp. 609–616.

[91] P. Valero-Lara, A. Pinelli, and M. Prieto-Matias, “Fast finite difference pois-
son solvers on heterogeneous architectures,” Computer Physics Communica-
tions, vol. 185, no. 4, pp. 1265–1272, 2014.

[92] P. Valero-Lara, “Accelerating solid–fluid interaction based on the immersed
boundary method on multicore and gpu architectures,” The Journal of Su-
percomputing, vol. 70, no. 2, pp. 799–815, 2014.

[93] P. Valero-Lara, F. D. Igual, M. Prieto-Matías, A. Pinelli, and J. Favier, “Ac-
celerating fluid–solid simulations (lattice-boltzmann & immersed-boundary)
on heterogeneous architectures,” Journal of Computational Science, vol. 10,
pp. 249–261, 2015.

[94] S. A. Kalray, “Mppa accesscore posix progamming reference manual,” 2013.

[95] B. D. De Dinechin, D. Van Amstel, M. Poulhiès, and G. Lager, “Time-critical
computing on a single-chip massively parallel processor,” in 2014 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2014, pp. 1–6.

URL http://www.lunarc.lu.se/Systems/ErikDetails
URL http://www.lunarc.lu.se/Systems/ErikDetails
URL https://www.pdc.kth.se/resources/computers/zorn
URL https://www.pdc.kth.se/resources/computers/zorn

BIBLIOGRAPHY 109

[96] P. Valero-Lara and F. L. Pelayo, “Full-overlapped concurrent kernels,” in
ARCS 2015-The 28th International Conference on Architecture of Computing
Systems. Proceedings. VDE, 2015, pp. 1–8.

[97] P. Valero-Lara, P. Nookala, F. L. Pelayo, J. Jansson, S. Dimitropoulos, and
I. Raicu, “Many-task computing on many-core architectures,” Scalable Com-
puting: Practice and Experience, vol. 17, no. 1, pp. 32–46, 2016.

[98] M. D. Gomony, B. Akesson, and K. Goossens, “Coupling tdm noc and dram
controller for cost and performance optimization of real-time systems,” in
2014 Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2014, pp. 1–6.

[99] H. Zhao, O. Jang, W. Ding, Y. Zhang, M. Kandemir, and M. J. Irwin, “A
hybrid noc design for cache coherence optimization for chip multiprocessors,”
in Proceedings of the 49th Annual Design Automation Conference. ACM,
2012, pp. 834–842.

[100] M. Monchiero, G. Palermo, C. Silvano, and O. Villa, “Exploration of dis-
tributed shared memory architectures for noc-based multiprocessors,” Jour-
nal of Systems Architecture, vol. 53, no. 10, pp. 719–732, 2007.

[101] D. M. Young, Iterative solution of large linear systems. Elsevier, 2014.

[102] B. D. de Dinechin, Y. Durand, D. Van Amstel, and A. Ghiti, “Guaranteed
services of the noc of a manycore processor,” in Proceedings of the 2014 In-
ternational Workshop on Network on Chip Architectures. ACM, 2014, pp.
11–16.

[103] T. Goubier, R. Sirdey, S. Louise, and V. David, “σc: A programming model
and language for embedded manycores,” in International Conference on Al-
gorithms and Architectures for Parallel Processing. Springer, 2011, pp. 385–
394.

[104] P. Valero-Lara and J. Jansson, “Lbm-hpc-an open-source tool for fluid simu-
lations. case study: unified parallel c (upc-pgas),” in 2015 IEEE International
Conference on Cluster Computing. IEEE, 2015, pp. 318–321.

	Contents
	List of Figures
	Introduction
	Objectives of the thesis
	Why CFD
	Components of FEniCS-HPC

	Mathematical formulation and validation
	Direct FEM Simulation and its methodoloy
	The cG(1)cG(1) method
	The Adaptive Algorithm
	A posteriori error estimate for cG(1)cG(1)
	The Do-nothing Error Estimate and Indicator
	Boundary layers

	Time resolved adaptive direct FEM simulation
	Background
	Introduction
	Simulation Methodology
	Results
	Aerodynamic Forces
	Pressure coefficients
	Flow and Adaptive Mesh Refinement Visualization
	Conclusions

	Multi Phase Flow
	Mathematical model
	Direct FEM cG(1)cG(1) for variable-density
	Validation

	Tandem sphere
	Drag Cd over time with adaptive mesh
	Mesh convergence

	Applications
	Turbulent Multiphase Flow in Urban Water Systems and Marine Energy
	Overview
	Mathematical modelling
	The Bilbao Water Consortium storm drain problem
	Simulation results
	Conslusions

	3D printing Nozzle design
	Objective
	Mathematical modelling
	Initial Design
	Optimized design
	Validation
	Results
	Summary and Conclusion

	High performance computing
	CPU, GPU and Parallel archietecture
	CPU architecture
	Parallel architecture
	GPU architecture

	Multiple GPU Implementation of parallel 3D sweeping
	Background
	Mathematical background
	Data partition
	Data transfer
	CUDA implementations
	Experiments and measurements
	Conclusion
	Future work

	Towards HPC-embedded;case study-Kalray and message-passing on NoC
	Background
	Kalray Arhietecture
	Jacobi Method Implementation on Kalray
	Performance Study
	Conclusions and Future Work

	Visualization

	Outcomes and future work
	Bibliography

