THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Automated Computational Modeling

JOHAN JANSSON

Department of Applied Mechanics
Chalmers University of Technology
Goteborg, Sweden 2006

Automated Computational Modeling
JOHAN JANSSON
ISBN 91-7291-809-8

© JOHAN JANSSON, 2006.
Doktorsavhandlingar vid Chalmers tekniska hogskola
Ny serie nr 2491

ISSN 0346-718x

Department of Applied Mechanics
Chalmers University of Technology
SE-412 96 Goteborg

Sweden

Telephone 446 (0)31-772 1000

Printed in Sweden
Chalmers Reproservice
Goteborg, Sweden 2006

AUTOMATED COMPUTATIONAL MODELING

JOHAN JANSSON

ABSTRACT.

This thesis is part of the FENICS project of Automation of Computational Mathemat-
ical Modeling (ACMM) as the modern manifestation of the basic principle of science:
formulating mathematical equations (modeling) and solving equations (computation).

The vision of FENICS is to set a new standard towards the goals of generality, efficiency,
and simplicity, concerning mathematical methodology, implementation, and application.
ACMM includes the key steps of Automation of (a) discretization of differential equations,
(b) solution of discrete systems, (c) error control of discrete solutions, (d) optimization
and (e) modeling. FENICS is based on adaptive finite element methods (FEM) [1].

This thesis presents the following examples of Automated Computational Modeling as
concrete realizations of ACMM with main focus on (a)-(c):

MG: Multi-adaptive Galerkin ODE-solver: This part concerns the automation
of (al) discretization in time by the MG implementation of the multi-adaptive ODE-
solver mcG(q)/mdG(q) formulated in the thesis ([9]) by Anders Logg, based on
Galerkin’s method with continuous/discontinuous piecewise polynomial approxima-
tion in time of degree ¢ with different time steps for different components, automati-
cally determined by a posteriori error estimation. MG realizes automation of (al) by
Galerkin’s method, (b) by fixed-point or Newton’s method, and (c) by a posteriori
error estimation using duality. MG is the first general multi-adaptive ODE-solver
with automatic error control based on duality. MG has potentially a very vast range
of applicability. MG may also be run in mono-adaptive form with the same time
step for all components, eliminating the over-head required for multi-adaptivity. For
bench-mark problems with different time scales, we demonstrate substantial perfor-
mance gains with MG, as compared to mono-adaptive solvers. MG is joint work
with Anders Logg.

Ko: Solid mechanics solver: This part includes the automation of (a2) discretiza-
tion in space of a general continuum model for solid mechanics with elasto-visco-
plastic materials and large displacements, rotations and deformations. When coupled
with MG for time-discretization this gives the solid mechanics solver Ko realizing
(a) and (b) with (c) in progress. Ko is based on an updated Lagrangian formu-
lation where equilibrium and constitutive equations are expressed on the current
deformed configuration. Ko is the first automated solid mechanics solver and the
range of possible applications is very large. We show that the performance of Ko
is comparable to that of a mass-spring solver, which is the industry standard for
performance-intensive solid mechanics simulations [8]. Ko demonstrates the general
capability and potential of FENICS.

DOLFIN as a PSE: We present the FENICS tool chain, and in particular DOLFIN, as
a general and automated problem solving environment (PSE). DOLFIN realizes the
overall concept of automated computational modeling by taking a PDE in mathe-
matical notation as input and automatically discretizing and computing the solution
by the FEM with full efficiency, including automated time discretization of time de-
pendent PDE with the ODE solver. This is joint work with Johan Hoffman, Anders
Logg and Garth Wells.

Automated Modeling: We present a case study of automated modeling (e) in a
model problem with a fast and a slow time scale. By resolving the fast time scale for
a short period of time an effective coefficient is determined by optimization, which
allows simulation of the slow time scale over long time. This is joint work with Claes
Johnson and Anders Logg.

AUTOMATED COMPUTATIONAL MODELING 3

APPENDED PAPERS

The following papers are included in the thesis:

Paper I A discrete mechanics model for deformable bodies Computer-Aided Design 34
(2002)

Paper II Algorithms for multi-adaptive time-stepping Chalmers Finite Element Center
Preprint Series no. 2004-13

Paper III Simulation of mechanical systems with individual time steps Chalmers Finite
Element Center Preprint Series no. 2004-14

Paper IV Computational Modeling of Dynamical Systems Mathematical Models and Meth-
ods in Applied Sciences 15 (2005)

Paper V DOLFIN: an automated problem solving environment

Paper VI Ko: a Fenics solid mechanics solver

4 JOHAN JANSSON
ACKNOWLEDGEMENTS

To my family Elsie-Britt, Erik and Lasse, and to my friends.

Special thanks to my supervisor Claes Johnson for encouragement, creativity and con-
structiveness, and to Anders Logg for great cooperation.

AUTOMATED COMPUTATIONAL MODELING 5

1. INTRODUCTION

This thesis is part of the FENICS project [3] of Automation of Computational Mathe-
matical Modeling (ACMM) as the modern manifestation of the basic principle of science:

(I) formulating mathematical equations (modeling),

(IT) solving equations (computation).
The mathematical models of science and technology usually take the form of systems of
partial differential equations such as

(i) Navier’s equations: solid mechanics,

(ii) Navier-Stokes equations: fluid mechanics,
(iii) Maxwell’s equations: electromagnetics,
(iv) Schrodinger’s equation: quantum mechanics.

Each system of equation has the general form

where A represents a system of partial differential equations over a doamin () is space-time
including boundary and initial conditions, a represents coefficients, D represents partial
derivatives, f represents input e.g. in the form of applied forces and w is a function
satisfying the system of equations. We view the system (1) as the model including the
domain (), the coefficients a and the input f as given data, which determine a solution
u. Each of the set of equations (i)-(iv) describes in very concise form a basic scientific
discipline with a wide variety of applications in different areas of technology.

The objective of the modeling (I) is to formulate the equation (1) including the specifica-
tion of coefficients such as Lamé coefficients in solid mechanics, viscosity in fluid mechanics,
permeabilities in electromagneticcs and potentials in quantum mechanics, as well as geo-
metric data to specify (). The objective of (II) is to compute the solution u for each given
set of data.

The vision of FENICS is Automation of Computational Mathematical Modeling (ACMM)
towards the goals of generality, efficiency, and simplicity, concerning mathematical method-
ology, implementation, and application. Specifically, ACMM concerns automation of com-
putational solution of general systems of differential equations including (i)-(iv), where
automation signifies that after specification of model including data and error tolerance,
an approximate solution within the error tolerance is automatically computed by a com-
puter, ideally with minimal computational work.

The goal of ACMM is to provide solutions of general systems of differential equations
on a lap-top with the same degree of automation as the computation of e.g. trigonometric
functions using a pocket calculator. The comparison is natural since all the elementary
functions including trigonometric functions, in fact are solutions to simple linear ordinary
differential equations, and thus in a pocket calculator are determined by computational
solution of the relevant equation when needed, instead of storing large tables of values.
The difference is the scope with ACMM aiming at general nonlinear systems of partial
differential equations, but the principle is the same.

ACMM includes the key steps of automation of:

6 JOHAN JANSSON

(a) discretization of differential equations,
(b) solution of discrete systems,

(c) error control of computed solutions,
(d) optimization,

(e) modeling.

By discretization a given set of differential equations is translated into a discrete system
of algebraic equations, which is solved using numerical algebra on a computer, to produce
an approximation U of the solution u. The objective of error control is to assure that the
difference u — U is smaller than a given tolerance with respect to a given error measure.
FENICS uses the finite element method to automate discretization and duality-based a
posteriori error estimation to automate error control. Automated optimization is realized
by solving the set of differential equations expressing optimality using (a)-(c). Automation
of modeling requires an Ansatz combined with (d). Automated modeling may concern
computation of (effective) coefficients a in a model of the form (1) from best least-squares
fit to measured or computed solutions u, often referred to as inverse problems. In principle,
(d) and (e) can thus be reduced to (a)-(c), which accordingly represent the basic elements
of ACMM.

The essential step of (a), which concerns both (al) time-discrization and (a2) space-
discretization, is automated computation of finite element stiffness matrices and assembly
to a global stiffness matrix. This requires efficient evaluation of integrals of combinations
of derivatives of finite element basis functions over finite elements. FENICS achieves this
in the Fenics Form Compiler (FFC) by factorization of the element stiffness matrix into
a reference and geometry tensor. The reference tensor contains integrals over a reference
element computed once, which for each element upon multiplication a geometry tensor
gives the element stiffness matrix for each element. The input to FFC is then the equation
(1) in standard mathematical notation and a given finite element mesh and finite elements,
and the output is computer code (e.g. C++) specifying the discrete system.

The step (b) is automated in FENICS using, with input from FFC, the parallel numerical
linear algebra package PETSc.

The essential step of (¢) is automated computation of (cl) discrete residuals and (c2)
stability factors/weights by automated formulation and solution of a dual linearized prob-
lem. FENICS currently achives these requirements partially, with a full implementation in
sight.

The objective of this thesis is to contribute to the realization of the vision of FENICS with
the following concrete basic elements representing Automated Computational Modeling:

MG: Multi-adaptive Galerkin ODE-solver: This part concerns the automation
of time-discretization (al) by the MG implementation of the multi-adaptive ODE-
solver mcG(q)/mdG(q) formulated in the thesis ([9]) by Anders Logg, based on
continuous/discontinuous piecewise polynomial approximation in time of degree ¢
with different time steps for different components, automatically determined by a
posteriori error estimation. MG realizes automation of (al) by Galerkin’s method
and (b) by fixed-point or Newton’s method, and (c¢) by a posteriori error estimation

AUTOMATED COMPUTATIONAL MODELING 7

using duality with (c1) available and (c2) in progress. MG is the first general multi-
adaptive ODE-solver with automatic error control based on duality. MG realizes
automation of time discretization and thus has potentially a very vast range of
applicability. MG may also be run in mono-adaptive form with the same time step
for all components, eliminating the over-head required for multi-adaptivity. In this
perspective MG can be viewed as a form of automated model reduction with large
time steps for slow components and small time steps for fast components.

For bench-mark problems with different time scales, we demonstrate substantial
performance gains with MG, as compared to mono-adaptive solvers. MG is joint
work with Anders Logg.

Ko: solid mechanics solver: This part includes the automation of space-discretization
(a2) of a general continuum model for solid mechanics including elastic, viscous and
plastic materials and large displacements, rotations and deformations [10]. When
coupled with MG for time-discretization this gives the solid mechanics solver Ko
realizing (a) and (b) with (c) in progress. Ko is based on an updated Lagrangian
formulation where equilibrium and constitutive equations are expressed on the cur-
rent deformed configuration. Ko uses FFC for fast computation of the stiffness
matrix in each time step. Ko is the first automated solid mechanics solver and the
range of possible applications is very large. We show that the performance of Ko
is comparable to that of a mass-spring solver, which is the industry standard for
performance-intensive solid mechanics simulations. Ko has several advantages as
compared to a mass-spring solver, such as automatic adaptive error control and
specification of material properties, which in standard mass-spring models are per-
formed ad hoc manually.

Ko may be viewed as a demonstration of the general capability and potential of
FENICS: The FENICS code for Ko is less than 100 lines, and would require many
thousands of lines of standard finite element code. Ko in particular demonstrates
the ease of of coupling time-discretization with MG with space discretization with
FFC. Another example is offered by the FENICS Navier-Stokes solver by Johan
Hoffman, opening to fluid-structure simulations with coupling to Ko.

DOLFIN as a PSE: We present the FENICS tool chain, and in particular DOLFIN,
as a general and automated problem solving environment (PSE). DOLFIN realizes
the overall concept of automated computational modeling by taking a PDE in
mathematical notation as input and automatically discretizing and computing the
solution by the FEM with full efficiency, including automated time discretization
of time dependent PDE with the ODE solver.

Automated modeling: We present an example of automated modeling (d) for a
problem with a fast and a slow time scale. By resolving the fast time scale for a
short period of time, an effective coefficient in a reduced model with only the slow
time scale is determined, and the reduced problem is then solved with large time
steps, with update of the effective coeffcient when needed. This allows the efficient
solution over long time intervals without resolving the fast time scale, except over

8 JOHAN JANSSON

small time intervals. The study has the character of a case study of a model case,
with many possibilities of generalization usiung the general tools of FENICS.

We now describe the main parts of the thesis in some more detail with focus on the basic
aspects (a)-(c). We also indicate how the different appended papers fit into the general
picture.

2. MUuLTI-ADAPTIVE ODE-SOLVER MG

A basic component of FENICS is the multi-adaptive ODE-solver MG developed in coop-
eration with Anders Logg. MG automates the computational solution of general systems
of ordinary differential equations (ODEs) of the form

u(t) = f(t,u(t)) fort >0, u(0) = u’,

where f : "' — R™ is a given mapping, and u® a given initial condition. MG is based
on continuous or discontinuous Galerkin methods in multiadaptive form with different
time steps for different components adaptively determined by duality-based error control,
referred to as meG(q) and mdG(q) where ¢ indicates the degree of the polynomial approx-
imation in time.

Performance. We perform a benchmark experiment of solving a reaction-diffusion test
problem with the multi-adaptive solver and a mono-adaptive solver. The benchmark is
illustrated in figure 1 with the multi-adaptive step sequence in figure 2. Benchmark results
can be seen in table 1.

| N e | time | M | n | p |
1000 | 1.8-107° | 13.6s | 1922(5))| 95.3
2000 | 1.7-107° | 17.3s | 1923 (5)) | 140.5
4000 | 1.6-1075 | 24.0s | 1920(6) | 4.0(1.0) | 185.0
(5))
(5))

8000 |1.7-107° | 33.7s | 1918(5 218.8
16000 | 1.7-107° | 57.9s | 1919 (5 234.0

N | [le(T)][oo | time M n m

1000 | 2.3-107° | 28.1s | 117089 (1) | 4.0 1.0
2000 |2.2-107° | 64.8s | 117091 (1) | 4.0 1.0
4000 |2.2-107°|101.3s | 117090 (1) | 4.0 1.0
8000 | 2.2-107° | 175.1s | 117089 (1) | 4.0 1.0

16000 | 2.2- 1075 | 327.7s | 117089 (1) | 4.0 1.0
TABLE 1. Benchmark results for meG(1) (above) and c¢G(1) below for fixed
tolerance tol = 1.0 - 107% and varying number of components (and size of
domain). p is an estimated efficiency index.

AUTOMATED COMPUTATIONAL MODELING 9

= t=0.75

t=0.2§
0.2 N

0.1 t=20 B

FIGURE 1. Propagation of the solution of a reaction—diffusion test problem.

Main Result. Consider an ODE with Ng slow components requiring a time step K
and Ny fast components requiring a time step k for resolution to the given tolerance (or
alternatively for stability reasons when using an explicit method). A standard mono-
adaptive solver has to take time step k for all components. A multi-adaptive solver can
take time step K for the slow components and time step k for the fast components. If N
is much larger than Ny, this has a potential for a massive speedup, up to a factor %

We describe the implementation of such a multi-adaptive solver and demonstrate dra-
matic performance gains due to multi-adaptivity, i.e. the solution is computed with the
same error but much less work.

3. SoLID MECHANICS SOLVER

The world of solid mechanics is described by Navier’s equations including an equilibrium
equation expressing balance of forces according to Newton’s 2nd law, a constitutive model
connection stress to strain, or rates thereof and boundary and initial conditions. The
equilibrium equation has a generic form, while the constitutive equation appears in many
different forms expressing different material behavior including elastic, viscous, plastic and
damage effects.

Our objective is to develop using the general tools of FENICS an automated solver for
solid mechanics simulations according to the following requirements:

10 JOHAN JANSSON

F1GURE 2. The multi-adaptive time steps as function of space at a sequence
of time intervals for a reaction—diffusion test problem.

e large displacments, rotations and deformations

e clastic, viscous and plastic materials

e contact and friction boundary conditions

e performance allowing real-time simulation.

We may summarize the design specifications as those required in an advanced computer
game based on realistic solid mechanics.

We restrict the constitutive model to a combination of elastic, viscous and plastic mate-
rial behavior which can be described by Lamé coefficients, a coefficient of viscosity and a
plastic limit, which we for simplicity take to be constant. Even with these limitations we
can model a rich variety of materials, with variable coefficients presenting no additional
difficulty beyond specification. We thus consider the model (1) to be given including data,
and our task is to automate the computation of a corresponding approximate solutin U.

We use an updated Lagrangian formulation where the equilibrium equation and consti-
tutive equation are expressed over the current configuration of a solid body subject to
displacement, rotation and deformatin subject to some load. The constitiutive equation
in general relates rates of stresses to rates of strain, but we also consider for purely elastic
bodies a constitutive equation directly relating stress to strain. In the updated Lagrangian
formulation with constitutive equation in rate form, the initial configuration of the body
is not kept, and both equilbrium and constitutive equations are expressed over the current

AUTOMATED COMPUTATIONAL MODELING 11

configuration as well as boundary conditions. We refer to the FENICS realization of this
model as Ko.

Ko is realized using FFC for space discretization and MG for time discretization through
the DOLFIN interface.

FiGurE 3. Example DOLFIN output of visco-elasto-plastic model solid me-
chanics model with contact, simulating a cow and a block being thrown in a
room.

Performance. We compare the speed of Ko with that of mass-spring models which we
have used in earlier work. We show that an implementation of a corresponding PDE model
in Ko is only a factor 2-3 slower than a mass-spring implementation based on the same
linear algebra data structures. This means PDE models in Ko could replace mass-spring
implementations for performance-intensive applications.

Main Result. Ko represents a basic feature of FENiCS: We start from a mathematical
model in concise form which is a basic general model of solid mechanics. We build the
automated solid mechanics solver Ko using FENICS where the essential part consists in

12 JOHAN JANSSON

Form representing the equilibrium equation of elasticity

name = "ElasticityDirect"

elementl = FiniteElement("Vector Lagrange", "tetrahedron", 1)

element2 = FiniteElement("Discontinuous vector Lagrange",
"tetrahedron", 0, 9)

q = TestFunction(elementl) # Test function

dotv = TrialFunction(elementl) # Trial function
f = Function(elementl) # Body force

B = Function(element2) # Deformation measure

lmbda = Constant() # Lame coefficient
mu Constant() # Lame coefficient

Dimension
d = len(q)

Manual tensor representation
def tomatrix(q):
return [[q[3 * j + i] for i in range(d)] for j in range(d)]

Bmatrix = tomatrix(B)

def E(e, 1lmbda, mu):
Ee = 2.0 * mult(mu, e) + mult(lmbda, mult(trace(e), Identity(d)))

return Ee
ematrix = 0.5 * (Identity(d) - Bmatrix)

sigmamatrix = E(ematrix, lmbda, mu)

a
L

dot(dotv, q) * dx
(-dot(sigmamatrix, grad(q)) + dot(f, q)) * dx

FIGURE 4. Form for a total stress Euler-Almansi elasticity model.

specifying the variational form as well as data including coefficients and boundary /initial
conditions. We demonstrate efficiency of Ko and thereby the power of FENICS.

AUTOMATED COMPUTATIONAL MODELING 13

The Navier-Stokes solver of FENICS developed by Johan Hoffman similarly automates
the simulation of fluid flow including turbulent flow of fluids with small viscosity. Combin-
ing the Navier and the Navier—Stokes solvers we may simulate a rich world of fluid-structure
interaction. The combined solver is now ready for implementation in FENICS.

4. DOLFIN as A PSE

Traditionally problem solving has been equation-specific. An equation is selected, a
method and solver is then derived or chosen specifically for that equation. For example, it
is common to talk about a “Maxwell solver” or a “Navier-Stokes solver” which have been
developed specifically for those equations.

When the equation is significantly changed, or a new equation is selected, the process
needs to start from the beginning again. This implies much redundant manual work.

We present a free software tool called DOLFIN which combines generality with optimal
efficiency. “Generality” means here that any equation can be input into DOLFIN essen-
tially as it looks on paper. “Optimal” means here that DOLFIN is able to reach the same
efficiency as a manually-developed solver for a specific equation.

DOLFIN is a component of the FENICS tool-chain, where the role of DOLFIN is the
problem solving environment, or programmer user interface for formulating and solving
equations.

We illustrate the generality and efficiency of DOLFIN by presenting the following as-
pects:

Simple form language: We can input any equation into DOLFIN in mathemati-
cal notation, meaning that no extensive re-formatting or manual manipulation is
required.

Assembly efficiency: Assembly is the forming of a discrete system (equation system
for the degrees of freedom) given a discretization (finite element and mesh) of an
equation. This is the key step for solving an equation. DOLFIN achieves generality
and full efficiency by generating assembly code from a description of the equation.

High-level programming interface: Generality means that we should enforce a
high level of abstraction, and this also applies to the programming interface. DOLFIN
publishes a high-level programming interface in C++ and Python. The Python in-
terface enables Just-In-Time (JIT) compilation of generated assembly code, which
means that the code generation and compilation is transparent to the user of the
interface.

PDE/ODE solver integration: DOLFIN provides capability for solving both ini-
tial value Ordinary Differential Equations (ODE) as well as Partial Differential
Equations (PDE). We present a method which allows the general ODE solver in
DOLFIN to be used for solving PDE by writing the PDE in the form u = f(¢, u).

Applications: We present applications in incompressible fluid flow (Navier-Stokes’
equations), see figure 5 for example output, and large deformation elasto-plasticity,
see figure 4 for an example form and figure 3 for example output.

14 JOHAN JANSSON

F1GURE 5. Example DOLFIN output of a turbulent incompressible Navier-
Stokes model, simulating drag of air flow on a car. (Courtesy of Johan

Hoffman) [4]

Main Result. We present automation advances which bring us closer to achieving the
goal of solving an equation using DOLFIN (and indirectly FENICS as a whole) using a
minimal amount of manual work, while retaining the efficiency of a manually written solver.

DOLFIN (in the form of the Python interface) has very successfully been used in a
PDE project course at Chalmers University of Technology. Students completed projects
in streamline diffusion stabilization, Navier-Stokes’ equations and acoustic equations (lin-
earized Euler equations). The automated discretization DOLFIN enabled the students to
focus on the forms instead of solver performance.

5. A CASE STUDY OF AUTOMATED MODELING

We again consider ODEs with multiple time scales. In this scenario the fast components
are very fast compared to the slow components and time interval of the problem, and would
be too costly to resolve directly. Instead, we construct a reduced model where we model
the average effect of the very fast components on the rest of the system. This allows the
system to be solved in a reasonable time. We show how the construction of the reduced
model can be completely automated.

This is an example of (e) in the ACMM vision.

Main Result. We describe the process of automated construction of the reduced model
and present an a posteriori error estimate for the modeling and discretization error.

We present two example problems with slow scales of order 1s and fast scales of or-
der 107% and 107s on time intervals of [0,100]. The automated modeling allows us to
eliminate the very fast scales and only resolve the slow scales.

6. FENICS

We present FENICS [3], a free software [2] system for ACMM. The overall goal of ACMM
is to build a computational machine which takes any PDE (in variational form) and a

AUTOMATED COMPUTATIONAL MODELING 15

tolerance for the error as input, and automatically computes a solution to the model which
satisfies the tolerance.
FENICS consists of the following components:

FIAT: Flnite element Automatic Tabulator [5]. Automates the generation of finite el-
ements. Provides representation of finite elements and evaluation of basis functions
as well as general quadrature for integrating basis functions.

FFC: Fenics Form Compiler [6]. Automates the evaluation of variational forms. Pro-
vides assembly code generation and a form language for equation input.

FErari: Finite Element rearrangement to automatically reduce instructions [7]. Opti-
mizes the evaluation of variational forms. Detects and exploits structure in element
tensors.

DOLFIN: Dynamic Object oriented Library for FINite element computation. The
programmer user interface for solving equations. Provides a high-level C++ and
Python interface to:

e assembly
e variational form representation
e finite element representation
e function representation (typically a solution or coefficient)
e mesh representation
e linear algebra algorithms
e initial value multi- and mono-adaptive ODE solver
e file input/output
The assembly algorithm of a finite element method is typically of high complexity, and
is not trivial to implement efficiently manually. A modification of the variational form
or the choice of finite element normally means that large parts of the code need to be
reimplemented. This is a waste of human resources and, due to the complexity of the
algorithm, may easily introduce errors in the implementation.
The finite element assembly algorithm for a bilinear form a(-,-) generating a matrix A
can be formulated as follows: For each element K, add the local element matrix Ag =

ax (ds, ¢;) to A, where ag(-,-) is the bilinear form restricted to the current element K.

FFC parses the form and, together with a description of the finite element, generates
source code for evaluation of the local element matrix AX. FFC (using FIAT) precomputes
integrals on the reference element. FFC uses Ferari to exploit the structure of AX to
produce efficient code. This results in automatically generated source code which is as
efficient as hand-written code. The generated assembly code is then linked into DOLFIN
and can be accessed through the assembly interface.

7. FUTURE

The potential of FENICS has been demonstrated in the solid mechanics solver Ko and
the Navier-Stokes solver.
We recall the key steps of ACMM, automation of:

(a) discretization of differential equations,

16 JOHAN JANSSON

) solution of discrete systems,
(¢) error control of computed solutions,
) optimization,

(e) modeling.

Today FENICS realizes (a)-(b) fully, and (c) partially with a clear plan for full realiza-
tion in sight. This opens new possibilities for efficient and reliable simulation of complex
problems in many areas of science and technology. The FENICS solid mechanics solver Ko
and the Navier-Stokes solver demonstrate the potential.

The FENICS plan for the immediate future includes Maxwell and Schrédinger solver and
a variety of multi-physics solvers. FENICS is a cooperative effort with a growing number
of partners including Simula Research Laboratory and research groups at Delft University,
Texas Tech, KTH, etc.

FENICS is an open source project now reaching critical mass with some possibility of
developing into “Linux for PDEs”.

REFERENCES

[1] K. ERikSsON, D. EsTep, P. HANSBO, AND C. JOHNSON, Computational differential equations, 1996.

[2] FREE SOFTWARE FOUNDATION, GNU GPL. http://www.gnu.org/copyleft/gpl.html.

[3] J. HOFFMAN, J. JANssON, C. JouNsoN, M. KNEPLEY, R. C. KirBY, A. Loca, AND L. R. ScoTT,
FEniCS. http://www.fenics.org/.

[4] J. HOFFMAN AND C. JOHNSON, Applied Mathematics: Body and Soul, vol. IV, Springer-Verlag, 2006.
In press.

[5] R. C. KIRBY, FIAT: A new paradigm for computing finite element basis functions, ACM Trans. Math.
Software, 30 (2004), pp. 502-516.

[6) R. C. KIRBY AND A. LoGG, A compiler for variational forms. submitted to ACM Trans. Math.
Softw., 2005.

[7] R.C. KirBY, A. LoGa, L. R. ScoTT, AND A. R. TERREL, Topological optimization of the evaluation
of finite element matrices. submitted to STAM J. Sci. Comput., 2005.

[8] A. Liu, F. TENDICK, K. CLEARY, AND C. KAUFMANN, A survey of surgical simulation: Applications,
technology and edudcation, Presence, 12 (2003).

9] A. Loca, Automation of Computational Mathematical Modeling, PhD thesis, Chalmers University of
Technology, Sweden, 2004.

[10] J. C. Simo AND T. J. R. HUuGHES, Computational Inelasticity, Springer-Verlag, 2000.

SUMMARY OF APPENDED PAPERS

PAPER 1 A discrete mechanics model for deformable bodies
We describe an extended mass-spring model including contact. The example
application is interactive physics-based geometric modeling for rapid prototyping in
CAD. The mass-spring model is standard in computer graphics due to its simplicity
and high performance. We use this model and its implementation as a comparison
to PDE models and implementations presented in the later papers.
PAPER 2 Algorithms for multi-adaptive time-stepping
We describe the main algorithms for multi-adaptivity: construction of time slabs
and the solution of the resulting equation systems by fixed-point and Newton’s

AUTOMATED COMPUTATIONAL MODELING 17

method. Further, the implementation of such a multi-adaptive solver is presented
and we demonstrate dramatic performance gains due to multi-adaptivity, i.e. the
solution is computed with the same error but much less work.
PAPER 3 Simulation of mechanical systems with individual time steps
The application of multi-adaptivity to mass-spring systems is covered in this
paper. The aim is to show how to apply multi-adaptivity to practical applications.
PAPER 4 Computational Modeling of Dynamical Systems
This paper consists of a case study of automated modeling. The contribution of
the thesis author is not major but the paper illustrates automated modeling - a key
element of ACM and FENICS.
PAPER 5 DOLFIN: an automated problem solving environment
We present the FENICS tool chain, and in particular DOLFIN, as a general
and automated problem solving environment (PSE). DOLFIN realizes the overall
concept of automated computational modeling by taking a PDE in mathematical
notation as input and automatically discretizing and computing the solution by the
FEM with full efficiency, including automated time discretization of time dependent
PDE with the ODE solver.
PAPER 6 Ko: a Fenics solid mechanics solver
In this paper we present a general continuum model for solid mechanics with
elasto-visco-plastic materials and large displacements, rotations and deformations
which model-wise is a much improved replacement for the mass-spring model. We
describe how to implement the model using FENICS and show that the imple-
mentation complexity and performance of the PDE model is comparable to the
mass-spring model, while retaining the advantages of a PDE model: generality and
spatial error control. The model is also automatically discretized in time using the
multi-adaptive ODE solver in FENICS.

COMPUTER-AIDED
DESIGN

ELSEVIE Computer-Aided Design 34 (2002) 913-928
www.elsevier.com/locate/cad
A discrete mechanics model for deformable bodies
J. Jansson*, J.S.M. Vergeest
Faculty of Design, Engineering and Production, Delft University of Technology, Delft, The Netherlands
Abstract

This paper describes the theory and implications of a discrete mechanics model for deformable bodies, incorporating behavior such as
motion, collision, deformation, etc. The model is fundamentally based on inter-atomic interaction, and recursively reduces resolution by
approximating collections of many high-resolution elements with fewer lower-resolution elements. The model can be viewed as an extended
mass-spring model. We begin by examining the domain of conceptual design, and find there is a need for physics based simulation, both for
interactive shape modeling and analysis. We then proceed with describing a theoretical base for our model, as well as pragmatic additions.
Applications in both interactive physics based shape modeling and analysis are presented. The model is aimed at conceptual mechanical
design, rapid prototyping, or similar areas where adherence to physical principles, generality and simplicity are more important than metric

correctness. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Mechanics model; Deformation; Collison; Deformable bodies; Geometric modeling; Conceptual design; Virtual claying

1. Introduction

The context of this paper is conceptual mechanical
design. It is well known that the conceptual stage of the
design process still is largely unsupported by computer
tools. We believe that such support can greatly increase
efficiency, by, for example, providing rapid verification of
early design ideas, or support for quick description and
modification of non-detailed 3D geometry, i.e. the equiva-
lent of sketching.

There are many possible aspects of such support: natural
interaction, vague description, virtual environments, physi-
cal simulation, rapid prototyping, etc. Our research group,
the Integrated Concept Advancement (ICA) Group [17] is
researching some of these areas. This paper will focus on
physical simulation. We will describe a mechanics model
and implementation that can be used for geometric model-
ing and physical analysis in the conceptual design phase.

For computer tools to actually support, instead of hinder this
phase, several requirements must be met. There have been
studies determining what these requirements are [8,32]. The
relevant requirements posed for this specific domain are:

1. natural interaction methods—interaction with virtual
objects should be experienced as interaction with real
objects;

* Corresponding author.
E-mail address: j.jansson@io.tudelft.nl (J. Jansson).

2. rapid feedback and evaluation—interaction should not be
hindered by poor resolution and time lags.

Notably missing from the list of requirements is metric
accuracy. This is the main difference compared to traditional
CAD applications, we can sacrifice metric accuracy for other
properties; interactivity for example. However, this does
not give as much freedom as might seem. We still need to
make sure that the phenomena we are trying to simulate are
physically correct, especially if we want to perform physical
analysis.

We have developed a mechanics model that is particle
system based, and in which accuracy is dependent on the
resolution of description. We reason recursively, the
model defines lower-resolution elements which approxi-
mate a collection higher-resolution elements. This means
that we can employ induction as a means of making sure
the model is physically correct. If we can show that
some ideal resolution is physically correct, and show
that the operation of reducing resolution some given
step does not remove this property, we can assume that
low resolutions will also have this property. With this,
we are not aiming for a formal proof of correctness, but
want to show the philosophy of the model. Also, this
kind of reasoning is very dependent on the definitions
of the terms we are using. It is evident that each opera-
tion of reducing resolution removes some kind of
correctness, we just want a guarantee that we are not
removing any physical principles.

0010-4485/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.

PII: S0010-4485(01)00146-4

914 J. Jansson, J.S.M. Vergeest / Computer-Aided Design 34 (2002) 913-928

Assuming we have such a model that covers deformable
bodies, we can consider various applications. The most
direct application is analysis. During the early stage of
design, it can be desirable to get indications of what kind
of physical implications some given design directions will
have, essentially a pruning of the design space. Ford Motor
Company has expressed such a need in a paper [25]. Appar-
ently there is a need for simulation data at the early design
stage of new cars, and traditional simulation is too expen-
sive and time-consuming to be applicable. Although the
approach described in that paper is of a different type than
what we propose [it proposes a Design of Experiment (DoE)
approach], it clearly shows a need for such analysis. Even if
our approach at this stage might not be suited for the car
industry, we can assume that the same need exists in other
related industries.

Another perhaps more interesting application is virtual
environments. Given the coverage of the model (deformable
bodies), and an interface that can present a user as a body in
the environment, we can reformulate geometric modeling as
a mechanics simulation problem instead of as a mathema-
tical geometry problem. For example, if we can simulate
bodies of some appropriate modeling material, such as
clay or foam, and we can present the hands of the user as
bodies in the environment, all the user has to do is manip-
ulate the material with his/her hands, presumably a familiar
process. Our job is then to make sure the properties of the
simulation fulfil the requirements of such a manipulation
process. This application requires less adherence to physical
principles, and we can, for example, introduce artificial
operations, which have no real physical base, to take some
load off the model. This type of application is normally
referred to as ‘virtual claying’.

2. State of the art

The mechanics of deformable bodies is in no way a new
research area. There exist numerous models aimed at
various applications.

At least one attempt has been made to augment a rigid
body model with a special module for deformable body
collision [2]. It applies a two-phase model, where the first
phase prevents inter-penetration, and the second phase
calculates contact forces. Deformations are constrained to
what can be represented by a global deformation function,
which avoids the problem of calculating impulse propaga-
tion. It is not clear, however, how general this approach is.
The authors also state that allowing complex deformation
functions will lead to a heavy computational burden.

Particle models are often used where flexibility is needed
with regard to the phenomena modeled. We use the term
‘particle model’ to distinguish what the computer graphics
community calls a ‘particle system’ from the term used in
physics. A particle model is a particle system with possible
additional rules. Originally used to model smoke and fire

phenomena, the models have developed to cover geometric
modeling [29]. Strictly speaking, most of the other models
mentioned could be denoted particle models.

Another well-established model is the mass-spring
model. Provot has described a model used for cloth simula-
tion [27], and Chen et al. a model aimed at general objects
[5]. It describes bodies as sets of point-masses, and the
materialistic properties as a graph of springs over these
sets (essentially a particle model as well). While the
model is very useful for describing deformation of a single
body, it does not cover collision at all, since there exists no
concept of volume. Computationally, it can give rise to stiff
differential equations, for very stiff springs, for example,
which requires finer time discretization, and thus more
computation.

The primary tool for mechanics simulation in engineering
analysis is called Finite Element Analysis (FEA) [1].
However, there is inconsistency in the literature about the
definition and scope of this term. The term is derived from
the term Finite Element Method (FEM) of analysis. It is the
term FEM that is inconsistently used.

In Popov [26] (p. 104), the FEM is described as ‘More
recently a powerful numerical procedure has been developed,
where a body is subdivided into a discrete number of finite
elements, such as squares and cubes, and the analysis is carried
out with a computer’. In Heath [13], it is described as: ‘Finite
element methods approximate the solution to a boundary value
problem by a linear combination of basis functions ¢;, typi-
cally piecewise polynomials, which for historical reasons are
called elements’. The former definition is commonly used in
engineering discussions, while the second is used in mathe-
matical and numerical method texts.

The difference between the (informal) definitions, and
what is causing the confusion, is that the first definition is
a general discretization of a body, while the second is a
method for solving boundary value differential equation
problems, by discretizing the solution function in a particu-
lar way. Additionally, neither definition tells us anything
about which physics model (what assumptions, etc.) is used.

Originally, and still principally, FEA refers to statics [24],
and this is the definition we will adopt. A typical statics
problem results in a boundary value problem, which can
then be solved using the FEM. A basic dynamics problem
on the other hand, results in an initial value problem, for
which the FEM does not apply. When referring to an analy-
sis method, it is preferable to refer to the physics aspect of
the analysis instead of the numerical aspect. For instance,
the FEM can be used to solve heat transfer problems, which
have no relation to solid mechanics. To group such differing
analyses under the term FEA causes ambiguities.

Terzopoulos et al. have developed a Lagrangian
mechanics model aimed at animation [30]. They use contin-
uous bodies, and a combination of boundary value (finite
difference) and initial value methods. They treat elastically
deformable bodies, and also collisions, which they handle
by creating a force field around each body.

J. Jansson, J.S.M. Vergeest / Computer-Aided Design 34 (2002) 913-928 915

In Terzopoulos and Fleischer [31], they extend this model
with plasticity, and state an aim similar to ours: ‘We envi-
sion users, aided by stereoscopic and haptic input—output
devices, carving ‘computer plasticine’ and applying simu-
lated forces to it in order to create free-form shapes inter-
actively.” While we have not treated plasticity in our model,
their treatment of plasticity is likely to be directly applicable
in future development.

Kang and Kak [21] have developed an FEA system to
create a geometric modeling system. The system presents
the designer with an initial physical shape, represented by
the FEM mesh. The user can then utilize a force-input inter-
face, in their case a four-sensor plate, to manipulate nodes of
the shape. The system could presumably be generalized to
allow arbitrary input methods.

James and Pai use the Boundary Element Method (BEM)
to create a virtual modeling environment [18]. This method
is more suited to pure interactive deformation applications
than the FEM due to only considering the boundary, and
thus requiring less computation.

3. Mechanics model
3.1. Basic theory

We start building our theory at the atomic level. We know
that any given body is made up of a large number of atoms,
so if we can know the behavior of each atom, we will know
the behavior of the body as a whole. An atom can be consid-
ered as a particle, a point mass. Between any given atom
pair we have a central force, determined by the distance, and
other properties of the atoms. This means we have a particle
system, an entity that is quite simple to treat. If we have
several bodies, we have several particle systems, which
together can simply be treated as one particle system.

Now, we do not want to have an atom as the basic element in
our model, to build any kind of useful bodies will require too
many elements. However, we can make an approximation to
overcome this. If we consider a solid body, it consists of many
atoms close together, with neighboring atoms behaving in a
similar way. If we were to treat every 2 X 2 X 2 matrix of eight
atoms in the body as a single element, we would end up with
eight times less elements to treat. These new elements would
in turn form a particle system, and through induction, we could
keep reducing the resolution until we have a manageable
number of elements. For this to be possible, we need to
show that we can approximate a 2 X 2 X 2 matrix of atoms, a
particle system, as one single particle.

First of all, we need to formalize some of our statements.
We have said that, in a solid body, ‘neighboring atoms
behave in a similar way’. Formally, what we mean by this
is that two neighboring atoms have the same properties, and
that the external force, the force due to all other atoms in the
system, on two neighboring atoms can be approximated as
being equal. We then take this further to apply toa2 X2 X2
matrix of atoms.

Particle system theory states that all forces that act on a
particle in a particle system can be divided into two sets:
internal forces, which stem from other particles in the system,
and external forces, which stem from outside the system. This
distinction is made because internal forces balance out, and do
not affect the center of mass of the particle system. Thus, the
center of mass motion can be determined strictly by taking
external forces into consideration.

If all particles have the same external force applied to
them, and all particles have the same properties, the result
on the center of mass will be the same as if we treat the
system as one particle, with the sum of the external forces
applied to it, and with the sum of all the properties added to
it. It is also clear that with this arrangement, all torques with
regard to the system’s center of mass cancel out, and the
angular momentum of the system is conserved.

What we have done with this approximation is to remove
resolution from the description of a body. Since an element
of the body must, by our definition, be homogenous, we
cannot have different forces acting on different parts of
the element, as would be the case if the element was decom-
posed into its original parts. We will have to take this into
consideration when we consider what kind of forces are
acting between two elements. For example, interatomic
forces have components that are only significant for a
very small distance. If our elements are significantly larger
than this distance, our approximation errors will be very
large. We can, however, compensate for this by trying to
find some sort of average force over the entire element.
However, we have not examined this topic very closely
yet, and our force models are still very simplified.

3.2. Model description

In the previous section, we describe how we can reduce
the complexity of the atomic configuration of a body into
larger and fewer ‘elements’. We now need to describe how
such elements interact, and more formally describe the
components of the model.

We started off by examining how atoms are configured in
a body, and we need to apply the same reasoning to deter-
mine how our elements interact. Since we have removed
much of the resolution from the configuration of elements,
we introduce an entity for interaction which allows us to
retain some of the complexity. We say there is a ‘connec-
tion’ between two elements when they are interacting, and
that such a connection has some state associated with it. We
are also free to determine when an element pair will start
interacting, and when it will stop. This can allow us to over-
come some of the lack of geometric shape of an element.

With such an entity, we can define a force between a pair
of elements which is not only dependent on some instanta-
neous distance or parameter of the elements, but also on
some parameter of the connecion, which we can deduce
through other means. For example, although the contact
force between two bodies and the strain force inside a

916 J. Jansson, J.S.M. Vergeest / Computer-Aided Design 34 (2002) 913-928

body both physically stem from the same inter-atomic
forces, the structure of the atoms inside a body might be
different from that seen in the interaction between two
bodies. We could describe that using our connections, thus
creating a different force function between elements known
to be fused to one another, and elements of different bodies.

Based on what we know of the micromechanics of inter-
atomic behavior, and of some of the more macroscopic
mechanics of bodies, we have formulated several forces
we can use in our model.

3.2.1. Gravitation

First of all, we have a gravitational force. If necessary, we
can describe a detailed gravitational force model where each
element determines the force on every other element.
However, normally it is sufficient to have a uniform grav-
itational force, where only one mass is the source of a grav-
itational field.
mym,

F

;=G

(D
L)

where G is gravitational constant, m, m, are masses, and r is

distance.

3.2.2. Elasticity and fracture

To determine inter-element forces, we start off by exam-
ining a graph of the inter-atomic forces (see Fig. 1 [23]). We
can see that there exists a distance where the force is zero,
and that the force becomes repulsive when decreasing the
distance, and attractive when the distance is increased. If the
distance is increased beyond a limit, the force decreases to
insignificance. We can model this by using a simple Hooke
formulation, and two threshold distances. One distance
determines when two elements are close enough so the
force is significant enough to be taken into consideration,
and another determines when two elements have receded far
enough from each other to no longer significantly interact.

F.=—kd-1)

where d is actual distance, k is a Hooke constant, and / is the
nominal distance.We now have the core model. See Fig. 2
for a schema of two elements, a connection, and important
quantities. We can now construct arbitrarily shaped bodies,
in arbitrary initial states, and simulate the behavior. We will
see, however, that such systems do not behave very well. In
reality, most actions and interactions inside and between
bodies involve non-conservative processes which damp
the motion of such systems. As no such processes exist
within our model, the systems will simply oscillate eter-
nally, or more probably, if solved numerically, oscillate
divergently and ‘explode’.

Therefore, we need to identifyn and find a way to incor-
porate, such processes into our model. Unfortunately, such
processes are not as simple as what we have seen so far, and
need more heuristic and approximative methods.

There are three easily identifiable non-conservative

]

Attractive

Repulsive
ey

Fig. 1. Sketch of the inter-atomic force function.

processes we can observe: internal damping (compress
and release a foam ball), sliding friction (run and fall
down) and ambient viscous friction (throw a foam ball
into the air at high speed). However, there does not exist
any simple general models for these processes, the models
that exist are only based on very special cases. Regardless,
as long as they convey a reasonable approximation of the
process, they are useful.

3.2.3. Internal damping
We damp the linear inter-element force with viscous fric-
tion, oriented along the elongation velocity vector:

Fq = —blé] 3)

where b is the damping constant, and ¢ is the elongation
velocity.

3.2.4. Sliding friction

We use the standard sliding friction model, oriented along
the velocity vector component normal to the normal force
vector:

F = — ¥ @

where N denotes normal force, and [the friction constant.
While the empirically found friction constants are only
valid for interaction between two specific materials, we

|

v . - I
Actual distance of ¢

Nominal distance of ¢

" Fracture distance of ¢
Radius of e;

Radius of e,

Fig. 2. Schema of two elements, a connection, and important quantities.

J. Jansson, J.S.M. Vergeest / Computer-Aided Design 34 (2002) 913-928 917

simplify this a bit, and define a friction constant for every
element. When two elements interact, we average the
constants for the friction force between the elements.

This force is separated from the other forces in that it is
not central. We have to be careful when using it, because
in conjunction with our approximation, it can lead to unex-
pected behavior. For example, in a body which is
compressed and rotated, ‘sliding’” occurs between internal
elements, producing a sliding friction force. While this
behavior does not violate the model, it may not be what is
expected.

3.2.5. Ambient viscous friction
We use the model for fluid resistance at high speed,
oriented along the velocity vector:

F, = —arp|[p.|] (5)

in which p is medium density.

3.2.5.1. Element. An element e is a set of parameters
{p,V,b,m,r,k,t,u,C}.

Position

Velocity

Damping constant

Mass

Radius

Fracture distance

Friction constant

Set of connections connected to the element

AT ™ Y I o i

3.2.5.2. Connection. A connection c is a set of parameters
{e,er, bk, L t, u}.

e, eo Elements comprising the connection
Damping constant

Hooke constant

Nominal distance

Fracture distance

Friction constant

tNN»@

Connections are dynamically created and destroyed when
elements start interacting and stop interacting, respectively.
The parameters of a newly created connection are calculated
from the parameters of the elements it connects. This is why
the element primitive share some parameters with the
connection primitive. Exactly how the new parameters
should be calculated remains to be determined. Presumably,
the radii of the colliding objects should also be taken into
consideration. For now, however, we simply average the
respective parameters for the new connection.

We are now satisfied with the components of the model.
We can reasonably correctly simulate most phenomena
observed in systems of deformable bodies. We will now
proceed to show how we can numerically solve such
systems defined within this model.

4. Implementation
4.1. Numerical solution

The nature of the inter-element forces in the physical
model may provide for difficulties in mathematical treat-
ment. Since we externally control the force functions, we
control the connection entities through a state machine, as
the system develops over time, formally we should include
this state machine in our functions. However, piecewise in
time, the state (the connections) remains the same, and we
do not have to take this into consideration. Thus, we can
describe the system as a series of differential equation
systems, where the initial state of each system is determined
by the state of the previous system, and by a state machine.

The mathematical formulation for each single system is
quite simple. We have a standard particle system that we
want to develop in time.

We can define the force on a single element e in the
system:

ﬁ‘e:ic—i_FG—i_FL (6)

where F c 1s the sum of all the connection forces, F G 1s the
sum of all global forces, and F 1 is the sum of all ‘local’
forces, i.e. forces depending only on the state of the element
itself.

We then use Newton’s second law, F = mp” , to produce a
system of second-order ordinary differential equations:

=/ Fe
P -

- @)
me

To simplify solution, we want to transform our system into a

new system of only first-order ordinary differential equa-

tions. We define two new vector functions:

81 Zﬁe (8)

82 =Pe (€))

We now have a new system:

g1 =8 (10)

gh = (1D
Thus, solving (11) produces g,, which we can use in (10) to
produce g;, which is equal to p,, the solution to (7).

We can now solve this system using our preferred numer-
ical method. We have to keep in mind that mathematical
treatment may encounter difficulties, however, due to the
usage of this state machine. As a start we choose Euler’s
method. It has proven to be practically usable, so even if we
never manage to apply any other methods, we can still
create a practical implementation.

The required step size is dependent on a number of
factors. We are not so much interested in correctness as in

918 J. Jansson, J.S.M. Vergeest / Computer-Aided Design 34 (2002) 913-928

stability. We can reason that the Euler method (as well as
most other numerical methods) works by sampling the state
of the system, and then extrapolating current state to
produce the next state. Since the extrapolation necessarily
will bound state changes in our system, such as a collision,
we have to make sure we do not extrapolate too far. This
means that the step size is dependent on the velocity, posi-
tion and radius of the elements in the system. Since our
method is not adaptive, we must choose a step size in
advance, which will correctly handle the most extreme
event in the simulated sequence. Step size will also be
dependent on the stiffness of our connections. This is,
however, related to the previous attributes (velocity, etc.),
as a connection only can provide an acceleration.

As we specify the initial state of the system when we
describe what we want to simulate, we have all the informa-
tion we need to start the Euler iteration. All we now need to
do is to define F . formally. We define E as the set of all
elements in the system. The subscript e refers to the element
we are calculating the force on. We also define an informal
order in the set so we can iterate through it. We define each
component separately.

4.1.1. Local force (ambient viscous friction is the only force)

1

: (12)

vl

Fp=—mrplvl

4.1.2. Global forces (gravitation is the only force)

|E| - -
T mem; Pe — Pi
Fo=) G ==
2.5~ 5T T =]

(13)

(Normally we only define one body as a gravitational
source, to reduce computation, or a uniform gravitational
field.)

4.1.3. Connection force

As the friction force depends on the other components of
the inter-element force (which define the normal force of the
friction equation), we need to further subdivide the inter-
element force. For clarity, we simply use the logical compo-
nents we have already defined:

where F » 1s the original inter-element force definition, F 418
the damping force, and F ' 1s the friction force.

To simplify notation, we define the subscript e as we have
done before, and a new subscript p as the opposite element
in the connection. We iterate over the connection set C of
the element:

. e B, — P
Fo=> —k(p. = ppll = l)7=—=" (15)
i=0 ||pe - pp”

We define the relative velocity of the two elements in the
connections as two components, one parallel to the connec-
tion, and one orthogonal:

ﬁ” = (e _ﬂvp)'(lze ;pp) (ﬁe - ﬁp) (16)
”pe - ppH

v, =@, =V, = 17)

Then:

. IC.|

Fp=> —b.) (18)

i=0

The sum of these two forces could be called ‘contact force’
in certain contexts. They form the normal force in the fric-
tion definition,

Fy=F,+F, (19)

We can now define the friction force:

|Ce‘ e

> > V

Fr=> —|uFyl—=" (20)
parr] .l

4.2. Algorithms and performance

Before we discuss performance and efficient algorithms,
we make some assumptions about the state of the system to
remove the need to treat degenerate cases.

The state of the system consists of a set E of elements, and
a set C of connections. The set of connections form a graph
over the set of elements. For |E| = n, we have that the mini-
mum of |C| is 0 and the maximum is n°. However, for the
applications we have in mind, we make the assumption that
there exists a structuring on the elements so that they are
well-separated. This means that any given element has a
number of connections that can be bounded by a constant
independent of n. For instance, according to our original
argumentation about elements, we formed elements from
a 3D matrix of smaller elements. If we create connections
between vertical, horizontal and diagonal neighbors in the
matrix, we end up with 3-3+3 — 1 = 26 neighbors, which
is also the number of connections per element. Since each
connection consists of two elements, we will have 13n
connections for this example. During simulation, this may
not be true locally, but for non-degenerate situations, we
should be able to find a constant which can bound the
number of connections.

4.2.1. Force calculations

The force calculations consist of simply performing the
arithmetic as dictated by our force definitions. We have two
kinds of force calculations, one that calculates a component
of the force of a connection, and one that calculates a force
component of a global force. Thus, for each connection
force component, we have to make one calculation per

J. Jansson, J.S.M. Vergeest / Computer-Aided Design 34 (2002) 913-928 919

Fig. 3. Illustration of how four elements are interconnected (size of
elements have been shrunk to prevent occlusion).

connection, and for each global force component, we have
to make one calculation per element. According to our
previous assumption of well-separatedness, both of these
are O(n).

Numerical integration consists of calculating a new state
of the system for every time step, as has been described. We
have one equation per element, so this algorithm also is

O(n).

4.2.2. State machine operations

The operations by the state machine so far only include
determining when connections should be created and
destroyed, and what properties they should have. This is a
more complex computation. To determine when a connec-
tion should be destroyed, we simply have to perform a test
for each connection, and if its elements are a distance ¢
apart, we destroy it. Thus, this operation also is O(n).
However, the opposite operation does not. Given a distance
r for every element, we create a connection when two
elements are within 2r from one another (and a connection
does not already exist). The brute force algorithm compares
every element with every other element, so this algorithm is
O(n*). We will see we can do better than that.

This problem can be formulated as the well-known colli-
sion detection problem. Given a set of shapes, find all pairs
which intersect. Although we can never find an algorithm
better than O(n?) in the general case, since there might exist
O(nz) collision pairs, and we somehow need to find them,
we can isolate such cases. There are several algorithms
which are significantly more efficient than the brute force
algorithm. One is based on dimension reduction [6], and is
O(nlogn + m), where m is the number of shape pairs which
are ‘very close’. We can also apply hierarchical space parti-
tioning [20], which while difficult to prove, empirically
performs as O(nlogn).

4.2.3. Global performance

If we add our complexities together, we get O(nlogn) (the
most expensive complexity). We have performed empirical
experiments that indicate this behavior [20]. For absolute
performance, we refer to the same paper. We show that up to
ca. 500 elements, with semi rigid material properties, we

can achieve real time performance on standard PC hard-
ware.

4.3. Creating bodies

Before we can do anything practical with the model, we
need to specify the state of the model, i.e. the elements and
connections and their properties. Our aim is to be able to
take a standard solid CAD model as input to our system. If
we look back at how we defined an element, we can see that
it is quite straightforward to translate a given geometric
description of a solid body into the physical representation
of the model.

The geometric description of a solid body defines the
volume of the body. The volume of a body is simply the
union of all the atoms in the body. Since an element in our
model simply is a spherical approximation of a large
number of neighboring atoms, we can easily create a trans-
lation.

First of all, we need to decompose the geometric descrip-
tion into polyhedra, each which must be approximable by a
sphere. These form our elements. We then determine the
topology of the spheres from the topology of the polyhedra.
From this topology, we can determine which spheres are
connected. If we assume the body initially is in its rest
shape, we specify the nominal distances of the connections
so that there is no strain energy, concretely, we specify the
nominal distances to be the actual distances between the
elements. Since a geometric description has no physical
attributes, we cannot determine any other parameters of
the elements or connections from this description alone,
but need extra information.

In our implementation, we can translate solid polygonal
representations into the physical representation of the model
(any solid representation should be translatable with this
method). First of all, we convert the polygonal representa-
tion into a voxel representation by sampling the polygonal
representation with an inside/outside function. We then
generate an element for each voxel, with a diameter no
more than twice the voxel width (so two neighboring
elements can intersect, but no further). Connections are
generated depending on the topology of the voxel matrix.
We say that the neighbor of a voxel is any voxel which
shares a vertex, and a connection is created for each neigh-
bor. Fig. 3 illustrates how four voxels have created four
elements (with shrunk diameters to prevent occlusion),
with connections.

We can demonstrate a practical example. Say we have a
boundary description of a part as described in Fig. 4. We can
then generate a physical description using the previously
described method to generate the description as shown in
Fig. 4.

4.4. Interface

When practically using the model, it is normally not
enough for the model to be isolated, we somehow need

920 J. Jansson, J.S.M. Vergeest / Computer-Aided Design 34 (2002) 913-928

WA
LA

AALRELLLLE
bW
b il

3

Fig. 4. Boundary and physical representation of a part (a support).

ways to interface with it, either interactively in real-time, or
with other simulation systems. If the model publishes a
standard interface, we can create a modular system, where
models and devices easily can be replaced as needed.

4.4.1. Manipulation

We define two different ways of manipulating the state of
the model: physical and artificial.

A physical manipulation is indirect, the manipulator
needs to create entities in the model, and then use those to
perform the manipulation. An example could be that the
manipulator creates a tool as a configuration of elements
and connections, and then applies that tool to some body
in the environment to perform a deformation.

An artificial manipulation is direct, the manipulator
changes the values in the state directly, thus bypassing the
physical laws of the model. For instance, to control the
previously discussed tool, a predefined path could provide
values that are given the positions of the elements as time
progresses.

4.4.2. Human interaction

With human interaction, we mean a real-time interaction
which feels natural to a user, as if the user is interacting with
something in the real environment. This can be supported
to varying degrees, we will try to describe the relevant
components.

At the most basic level, the user is a body that we want to
represent in the model. The information that flows from the
user to the model is position information of the body. The
information which the model can provide back is position
information of the bodies in the environment, but also force
information where the user’s body is interacting with bodies
in the model.

This interaction has to be handled by actual physical
devices. Position and orientation information can be
sampled in many ways, through electromagnetic sensors
or mechanical arms for example [3,4]. In our testing, we
have used a simple mechanical arm (see Fig. 5) which can
sample position and orientation of a rod. Visual feedback

can be produced by a computer monitor, also in stereoscopic
form, and with a computer graphics visualization of the state
of the model. There exists devices for force feedback, or
haptic feedback, but such devices are still not as established
as the previous types. We have not had the opportunity to
perform testing with such devices—this will be a future
field to explore.

Interfacing the model with a haptic device should be
fairly straightforward. We represent the haptic device as a
body, whose position and orientation is provided by the
device. When the body interacts with other bodies in the
environment, there will be forces acting on the ‘device
body’. These forces can then be displayed by the haptic
device, and will thus be translated into the real world,
where they will accelerate the ‘device body’ in reality,
and thus change its position. This creates a loop of feedback.
As mentioned, we have unfortunately been unable to test
this.

Fig. 5. We have used a MicroScribe 3D device to track position and orien-
tation in real time.

J. Jansson, J.S.M. Vergeest / Computer-Aided Design 34 (2002) 913-928

921

0.2 T T T T
’bend1.dat” —f—
0.15 | -
—_ //7'»
E -
= —
£ o1l / |
3
fas 7
— e
z AT
7
0.05 - 1
//
//
/
//;E
0 - 1 L 1 I 1
200 400 600 800 1000
load (N)
0.2 T T T T T
’bend2.dat” —
0.15 g
- A
e +
— //
2 g, A
£ 0l1f — .
A
2, T
w2
A 7|b/
0.05 - - -
///7F
A
0 //’/ 1 I i 1 L
200 400 600 800 1000
load (N)

Fig. 6. Graphs describing the relation between the perpendicular loading of a beam and its displacement. The beam in the top graph is of twice the resolution

than the bottom.

5. Preliminary verification

While we have a reasonably sound theoretical foundation,
it is important to verify the model experimentally. We have
performed some limited experiments that at least can give us
an indication.

The experiment set up is a beam (see Fig. 7, right image),
fixed at one end, with a static perpendicular load applied at
the free end. The beam is 2 X 0.7 X 0.5 m, the density is
0.58E3 kg/m* and the elasticity modulus is 12.1E5 N/m?.

There is no gravity. The simulation is run until there is
equilibrium (within a threshold), and the displacement of a
point at the free end is measured. According to beam theory
in mechanical engineering [26], the displacement grows
linearly with the applied load, for small displacements.

Thus, we apply a range of loads and analyze whether the
relation is in fact linear. For now, we do not examine
whether the magnitude of the displacement for a given
load and material corresponds with beam theory, we are
only interested in the relation.

In the graph at the bottom of Fig. 6, we have plotted the
results of the experiment,. We can directly see the relation is
linear.

We have also examined the impact of resolution on this
particular experiment. We take the same beam, but double
the resolution (see Fig. 7, left image), and examine the
result. Before we can do that, we must use the same material
in both beams, or the result will be meaningless. Ganovelli
et al. [10] present a relation between the Hooke constant,
Young’s modulus, the spring length, and the volume of the

922 J. Jansson, J.S.M. Vergeest / Computer-Aided Design 34 (2002) 913-928

Fig. 7. A beam in two different resolutions.

tetrahedron which the spring mesh forms:

o= VO
/

(2D
where 7 is the tetrahedron considered, E is the Young’s
modulus, Vis the volume, k; is the Hooke’s constant contrib-
uted by tetrahedron, and [/ is the spring length.

However, this relation has not provided consistent results
for us. This will have to be examined more deeply in the
future. Since at this point, we are only interested in the
relation between two beams, we use a similar relation,
which is still consistent with unit analysis:

k=El (22)

where E is the Young’s modulus, & is the Hooke’s constant
and [is the spring length.

We used this relation for the previous experiment, and
now we perform the same experiment, but with twice the
resolution. In the graph at the top of Fig. 6, we have plotted
the results of the experiment. We can again directly see the
relation is linear, and also that the graph is very nearly
identical to the bottom graph. This means the behavior of
the beam in this experiment is resolution-independent. As
before, the absolute numbers are not important for this parti-
cular aspect to be proven. Due to the discretization process,
the two resolutions do have differences, in mass and geome-
trical extent for example, but these differences are minor.

6. Applications

We now have a quite general model. The aim is now to
determine how to apply this model, and in which applica-
tions it can be advantageous to use this model, compared to
existing methods.

We can divide possible applications into two fields: inter-
active applications and offline applications. The main differ-
ence is that there exists a much tighter time constraint on
interactive applications.

6.1. Geometric modeling

Geometric modeling is a typical interactive application.
During shape design, geometric modeling is used both as a
creative tool (sketching, claying), as well as for the final
description of the shape. Normally, these two processes
are not integrated. We will describe a geometric modeling
application that integrates the two processes.

Geometric modeling can be done through a physical
interface. We define a number of bodies as manipulators,
which the user controls to manipulate other bodies in the
environment. This provides a completely natural interface,
and requires no knowledge of the model. However, due to
limitations of the model, such a system is not yet fully
practical. For example, since the model only supports elas-
ticity and fracture, and no plasticity, it is not possible to
perform a permanent non-fracturing deformation on a
body. Therefore, we need to introduce a number of artificial
operations, which can provide a replacement for full plasti-
city, as well as other properties.

We also have to make the distinction between deforma-
tion and creation/annihilation. The model supports deforma-
tion but not creation/annihilation of bodies or of elements of
bodies. However, this could be resolved in a similar manner.
We could simply couple the model with a system able to
create/annihilate geometry, and then perform a translation
procedure between the two systems. In our tests, we have
used standard and custom geometric modeling packages to
create basic shapes, which are then translated into a physical
representation, and imported into the environment. We have
not attempted annihilation as of yet.

6.1.1. Modeling operations

6.1.1.1. Physical deformation. The main operation is
simply interacting with the physical model through contact
forces, generated by the interaction between the manipula-
tors and the bodies in the environment (see Fig. 8). With this
operation, we can also perform fracturing, though such an
operation might be implemented more efficiently as an arti-
ficial operation. Depending on how we interpret the state of

J. Jansson, J.S.M. Vergeest / Computer-Aided Design 34 (2002) 913-928 923

Fig. 8. The manipulators are applied for a bending operation.

the model, we could also perform topology changes with
this operation (aside from fracturing, which can directly
perform topology changes).

6.1.1.2. Renormalization (artificial plasticity). Since we
have no plasticity, deformations are essentially useless for
prolonged modeling since they are not permanent. We can
alleviate this by introducing an artificial operation called
‘renormalization’. When this operation is performed on a
certain body, all connections in the body assume the current
distance as the nominal distance. Macroscopically, this
means the body takes on the deformed shape as the rest
shape.

6.1.1.3. Direct attribute modification. A generalization of
renormalization is ‘direct attribute modification’. Given
that we can select a part of a body, or a body, and
determine which elements comprise the selection, we can
artificially modify the attributes of the elements or of the
connections between the elements. We could, for example,
make part of a body stiffer, so that deformation of the entire
body has less impact on that specific part. Another
possibility could be increasing the fracture distance of
elements of parts of a body, thus making it more ‘sticky’.
This could be used to glue parts of bodies together, or,
applied to a manipulator, could increase flexibility of
manipulation. However, the only such operation which
has been implemented and tested is this ‘renormalization’.
We have also tested the ‘glue on manipulator’ concept, but
only as part of defining the actual manipulator.

6.1.2. Deformation mapping

While such a geometric description is enough, when a b-
rep (boundary representation) description already exists, it
can be useful to use that representation directly, and then
map the deformation of the physical representation to the b-
rep. We have previously described how we can generate a
physical representation from a b-rep. If we store the b-rep

with the physical representation, we can use the b-rep for
visualization and post processing, while using the physical
representation for simulation (Fig. 9).

There exists methods which can map deformation of a
‘cage’ to a b-rep shape inside the cage [28]. We can apply a
similar method, but locally for each vertex of the b-rep, and
let the cage be defined by neighboring elements. Normally,
interpolation is used to determine the deformation inside the
cage, however, since our cages are very local to the vertices,
we do not use interpolation (Fig. 10).

We denote the space where the elements are expressed as
‘simulation space’. For each vertex in the b-rep, we find four
close elements that we can generate an orthogonal base
from, using the Gram—Schmidt method, for example. One
element forms origo, one element forms the primary axis,
while the other two are used to determine the orientations of
the two secondary axes. We then transform the vertex into
this new base, and store this representation. If we now trans-
form the vertex back into simulation space, we will get back
the original vertex. However, if the simulation has led to a
deformation of the original positions of the elements, the
vertex will also be deformed according to the deformation
of the space determined by the elements.

We can view this using a Voronoi diagram formulation. If
we generate the Voronoi diagram of the elements, we will
end up with cells, where each vertex of the b-rep exists in a
cell. If the elements are deformed, the cells are also
deformed. This way, we can determine the discrete space
deformation from the deformation of the elements.
However, this model is only valid for one specific Voronoi
diagram, so deformations that give rise to new diagrams
may produce erroneous results. Depending on the tolerance
of the application, such errors may or may not be accept-
able. In our testing, such errors have been acceptable when
only visualization is required.

6.1.3. Geometric modeling example

See Fig. 11, combined with the previous Fig. 8, for illus-
trations of how we can perform operations using a natural
interface to produce arbitrary deformations.

6.2. Analysis

As mentioned in Section 1, it can be useful to perform
simple analysis in the conceptual stage to determine fruitful
design directions. It is obvious that if the later stage analysis
could be performed at the conceptual stage, it would be
done. However, this is not practical. What we have instead
is a cheaper variant, which produces less accurate results.
However, it is better to have some results which can be
indicative, and later can be verified more thoroughly, than
to have none at all, and perhaps have to go through a re-
design after layer analysis.

6.2.1. Analysis example
Our example considers the analysis of a design of a

924 J. Jansson, J.S.M. Vergeest / Computer-Aided Design 34 (2002) 913-928

Fig. 9. A b-rep of a cow shape is translated to a physical representation.

support part. We fix two supports by the back surfaces, and
then let them support a thick beam. We then drop a heavy
cylinder on the beam, and examine the behavior of one of
the supports during impact. The supports and beam are
semi-rigid, perhaps comparable to a wood material, or a
polymer.

Fig. 12 shows the system during the simulation. Fig. 13
shows a close-up of only one of the supports during simula-
tion, with everything else in the system removed from the
visualization. Since we cannot yet map materials from the
real world into the model, such analysis is not yet practically

usable for most cases. However, if the material properties
can be made to match reasonably, through empirical testing
for example, it can be used to compare behaviors of different
designs. The support, beam and cylinder were modeled
using a traditional solid modeling system (Rhinoceros).
The translation of the geometry required an insignificant
time, however, some manual input had to be made (element
sizes and material parameters). The total computation time
for the simulation in the example was less than 600 s. The
hardware used was a dual processor (Intel Celeron, 450
MHz) PC-AT system.

6.3. Integration with existing methods

After conceptual shape modeling and analysis has been
performed, and some possible designs have been produced,
we need to transfer this information to detail design systems,
and perform more accurate analysis. However, this transfer
is theoretically trivial, since we at least implicitly have a
discrete boundary representation of the geometry of the
bodies, and a discrete representation of the physical quan-
tities of the bodies.

More difficult, and interesting, is direct integration with
existing methods. For example, we might have parts of the
design which are at the conceptual phase, and parts which
are already detailed. An important future aim could be to be
able to perform simulation with both a traditional Finite
Element Analysis model and a model such as this directly

Fig. 10. The deformation of the physical representation can be mapped onto the b-rep.

J. Jansson, J.S.M. Vergeest / Computer-Aided Design 34 (2002) 913-928 925

Fig. 11. We start with a bar, which we want to perform bending operations on. By applying tools, we can perform bending operations on the bar. We are,
however, limited by the simplicity of our manipulators, and the interface. We use our artificial plasticity to first bend the bar upwards, then ‘freeze’ that shape

as the nominal shape. We then bend the deformed bar sideways.

interfaced, so any two bodies from different representations
could interact.

The presented model is meant to be used in conceptual
design support tools. This means that it has no direct influ-
ence on the structure of the design process, it only enhances
certain stages. Any design process normally consists of first
creating a concept according to specifications, and then
analyzing whether it actually meets those specifications.

This model can be used at the concept shape creation
stage, as a kind of ‘virtual claying’, or more natural geo-
metry manipulation than typical direct geometrical entity
manipulation. At the analysis stage, it can be used to give
an indication of feasibility, or a rough estimate of the beha-
vior. An analysis example could be a concept for a new type
of washing machine. This type of simulation could then
indicate how much angular velocity of the drum is needed
to create the desired friction or movement of the cloth, and
also what vibrations and deflections the drum causes on the
structure of the machine.

7. Conclusions and future research

We have described the theory and implementation of a
discrete mechanics model for deformable bodies. The model
attempts to preserve physical principles by starting at the
atomic level, and then recursively approximating groups of

basic elements into fewer larger elements. We have practi-
cally demonstrated that the model incorporates behaviors
such as motion, collision and deformation, and theoretically
shown behaviors such as fracture and fusing. We have
presented two main applications in the conceptual design
domain for this model: interactive shape modeling/
geometric modeling (virtual claying) and rapid analysis.
To support the claim that the model is suited for rapid
evaluation, we have presented an algorithm analysis,
and shown that the most expensive algorithm is collision-
detection, and that algorithms exist which are provably
O(nlogn + m), where n is the number of shapes considered,
and m the number of shape pairs which are ‘very close’.
Fundamentally, our system can be represented as a mass-
spring system, and thus shares many of the weaknesses and
strengths of such a system. For example, bodies made of
very rigid materials require a very fine time discretization,
with long computation time as a result.
Possible future research directions are:

1. Plasticity. Currently, we incorporate elasticity and visc-
osity as material phenomena. While we have an artificial
model of plasticity, a physics based plasticity model
could have large benefits. There has been work done in
this area that may be directly applicable to this model
[31].

2. Experimental verification. Before the model can be

926 J. Jansson, J.S.M. Vergeest / Computer-Aided Design 34 (2002) 913-928

Fig. 12. The beam and supports are initially at rest, while the cylinder is falling rapidly. The cylinder impacts on the beam, and the beam and supports flex quite
significantly. The supports and beam flex back, and launch the cylinder upwards again, the beam is also launched. The total computation time for this
simulation was less than 600 s.

practically used, we need to perform experimental veri- 5. Interfacing with rigid-body representations. If we can

fication of the modeled phenomena.

. Material mapping. Related to experimental verification,
we need to be able to map real-world materials to para-
meters in the model, so we can translate a description of a
real-world system of bodies into the model.

. Dynamic resolution change. Our theory is based on a recur-
sive resolution reduction. If we can show that a given
collection of low-resolution elements sufficiently approxi-
mates a given collection of higher-resolution elements, we
can dynamically replace the two representations at will.
While this is true in our theory, we have not shown how
it practically can be done, for example, how the parameters
of elements are dependent on resolution.

represent bodies using the standard rigid-body formula-
tion, we can at least partly overcome the computational
expense of simulating rigid materials. This should be
fairly straightforward, but requires testing, and perhaps
examination of additional possibilities of such a hybrid
model.

Acknowledgements

This research has been performed as part of the Integrated

J. Jansson, J.S.M. Vergeest / Computer-Aided Design 34 (2002) 913-928 927

LELLE 1

AL ALARLLLLL
ALLLLLL
Imww

RN
Y.

T

Fig. 13. A close-up of one of the supports. In the first image the support is at rest. In the second image the impact is at its extreme. In the third image the support
has flexed back. Aside from a large deflection, we see no anomalies in the support.

Concept Advancement (ICA) project, at the Delft Univer-
sity of Technology.

References

[1] Andersson K, Sellgren U. Modeling and simulation of physical beha-
vior of complex products. Proceedings of Produktmodeller 98,
Linkdping, 10 November, 1998.

[2] Baraff D, Witkin A. Dynamic simulation of non-penetrating flexible
bodies. Computer Graphics (Proc. SIGGRAPH), vol. 26. 1992. p.
303-8.

[3] Berkley J, Weghorts S, Gladstone H. Real-time finite element model-
ing with haptic support. In: Proceedings of the ASME Design Engi-
neering Technical Conferences, 1999.

[4] Bullinger H, Breining R, Bauer W. Virtual prototyping—state of the
art in product design. Proceedings of the Twenty-Sixth International
Conference on Computers and Industrial Engineering, Melbourne,
1999. p. 103-7.

[5] Chen et al. Physically-based animation of volumetric objects.
Proceeding of IEEE Computer Animation 98, 1998, p. 154-60.

[6] Cohen J, Lin M, Manocha D, Ponamgi M. I-COLLIDE: an interactive
and exact collision detection system for large-scale environments.
Proceedings of ACM Interactive 3D Graphics Conference, 1995.
p. 189-96.

[8] Deisinger J, Blach R, Wesche G, Breining R, Simon A. Towards
immersive modeling—challenges and recommendations: a workshop
analyzing the needs of designers. In: Proceedings of Sixth Euro-
graphics Workshop on Virtual Environments, 2000.

[10] Ganovelli F, Cignoni P, Montani C, Scopigno R. A multiresolution
model for soft objects supporting interactive cuts and lacerations.
Eurographics 2000;19(3).

[13]
[17]
(18]

[20]

(21]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

Heath M. Scientific computing. McGraw-Hill, 1997.

ICA group web site. http://www.io.tudelft.nl/research/ica/.

James D, Pai D. Accurate real time deformable objects. SIGGRAPH
99, 1999.

Jansson J, Horvith I, Vergeest JSM. Implementation and analysis of a
mechanics simulation module for use inn a conceptual design system.
In: Proceedings ASME Design Engineering Technical Conferences,
2000.

Kang H, Kak A. Deforming virtual objects interactively in accordance
with an elastic model. Computer-Aided Design 1996.

Kleppner D, Kolenkow R. An introduction to mechanics, McGraw-
Hill, 1978. p. 91.

Pedersen P. Elasticity—anisotropy—Ilaminates, 2000. http://
www.fam.dtu.dk/html/pp.html.

Ping G, Nanxin W. DOE study in building surrogate models for
complex systems. In: Proceedings ASME Design Engineering Tech-
nical Conferences, 2000.

Popov E. Engineering mechanics of solids. Prentice-Hall, 1999.
Provot X. Deformation constraints in a mass-spring model to describe
rigid cloth behavior. Proceedings Graphics Interface *95 1995:147—
54.

Sederberg T, Parry S. Free-form deformation of solid primitives.
Computer Graphics 1986:151-60.

Szeliski R, Tonnesen D. Surface modeling with oriented particle
systems. Computer Graphics 1992;26(2).

Terzopoulos D, Platt J, Barr A, Fleischer K. Elastically deformable
models. SIGGRAPH ’87, 1987, p. 205-14.

Terzopoulos D, Fleischer K. Modeling inelastic deformation: viscoe-
lasticity, plasticity, fracture. SIGGRAPH 88, 1988, p. 269-78.
Wiegers T, Horvath I, Vergeest JSM, Opiyo EZ, Kuczogi G. Require-
ments for highly interactive system interfaces to support conceptual
design. CIRP99, 1999.

928 J. Jansson, J.S.M. Vergeest / Computer-Aided Design 34 (2002) 913-928

Further reading

Cormen H, Leiserson C, Rivest R. Introduction to algorithms. MIT Press,
1998.

Fuchs H, Kedem ZM, Naylor BF. On visible surface generation by a priori
tree structures. SIGGRAPH 80, 1980, p. 124-33.

Goldstein H. Classical mechanics. Reading, MA: Addison-Wesley, 1950.

Grandin Jr H. Fundamentals of the finite element methods. Macmillan,
1986.

Hollerbach JM. Cohen E, Thompson W, Freier R, Johnson D, Nahvi A,
Nelson D, Thompson TV. Haptic interfacing for virtual prototyping of
mechanical CAD designs. In: Proceedings of the ASME Design Engi-
neering Technical Conferences, 1997.

Horvith I, Kuczogi G, Staub G. Spatial behavioural simulation of mechan-
ical objects. Proceedings of TMCE *98 1998:221-3.

Hunter PJ, Pullan AJ. FEM/BEM notes, 1997. http://www.esc.auckland.
ac.nz/Academic/Texts/FEM-BEM-notes.html.

Jansson J, Vergeest JSM. A general mechanics model for systems of
deformable solids. In: Proceedings International Symposium on Tools
and Methods for Concurrent Engineering, 2000.

Keller H, Stolz H, Ziegler A, Briaunl T, Virtual mechanics—simulations
and animation of rigid body systems. Computer Science Report No.
8/93, 1993. http://www.ee.uwa.edu.au/~braunl/aero/ftp/docu.english.
ps.gz.

Algorithms and Data Structures for
Multi-Adaptive Time-Stepping

Johan Jansson

Chalmers University of Technology
and

Anders Logg

Simula Research Laboratory

Multi-adaptive Galerkin methods are extensions of the standard continuous and discontinuous
Galerkin methods for the numerical solution of initial value problems for ordinary or partial dif-
ferential equations. In particular, the multi-adaptive methods allow individual and adaptive time
steps to be used for different components or in different regions of space. We present algorithms for
efficient multi-adaptive time-stepping, including the recursive construction of time slabs, adaptive
time step selection and automatic generation of the dual problem. We also present data struc-
tures for efficient storage and interpolation of the multi-adaptive solution. The efficiency of the
proposed algorithms and data structures is demonstrated for a series of benchmark problems.

Categories and Subject Descriptors: G.1.7 [Ordinary Differential Equations]: —FError analy-
sis, Initial value problems; G.1.8 [Partial Differential Equations|: —Finite Element Methods;
G.4 [Mathematical Software|: —Algorithm design and analysis, Efficiency

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Multi-adaptivity, individual time steps, local time steps,
ODE, continuous Galerkin, discontinuous Galerkin, mcgq, mdgq, C++, implementation, algo-
rithms

1. INTRODUCTION

We have earlier in a sequence of papers [35; 36; 38] introduced the multi-adaptive
Galerkin methods mcG(g) and mdG(q) for the approximate (numerical) solution of
ODEs of the form

a(t) = f(u(t),t), te(0,T],

u(0) = wo, 1)

where u : [0,T] — RY is the solution to be computed, uy € RY a given initial
value, T > 0 a given final time, and f : RY x (0,7] — R¥ a given function that is

Johan Jansson, Department of Computational Technology, Chalmers University of Technology,
SE-412 96 Goteborg, Sweden. Email: johanjan@math.chalmers.se.

Anders Logg, Simula Research Laboratory, P.O. Box 134 NO-1325 Lysaker, Norway. FEmail:
logg@simula.no.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20YY ACM 0098-3500/20YY /1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY, Pages 1-077.

2 . J. Jansson and A. Logg

Lipschitz-continuous in « and bounded.

The multi-adaptive Galerkin method mcG(g) and mdG(q) extend the standard
mono-adaptive continuous and discontinuous Galerkin methods cG(g) and dG(q),
studied earlier in detail in [29; 28; 30; 4; 13; 31; 8; 9; 7; 10; 11; 12; 6; 15; 16;
17; 19; 18], by allowing individual time step sequences k; = k;(t) for the different
components U; = U,(t), i = 1,2,..., N, of the approximate solution U ~ u of the
initial value problem (1). For related work on local time-stepping, see also [26; 27;
39; 2; 1; 40; 20; 3; 34; 41].

In the current paper, we discuss important aspects of the implementation of
multi-adaptive Galerkin methods. While earlier results on multi-adaptive time-
stepping presented in [35; 36; 38] include the basic formulation of the methods, a
priori and a posteriori error estimates, together with a proof-of-concept implemen-
tation and results for a number of model problems, the current paper addresses the
important issue of efficiently implementing the multi-adaptive methods with mini-
mal overhead as compared to standard mono-adaptive solvers. For many problems,
in particular when the propagation of the solution is local in space and time, the
potential speedup of multi-adaptivity is large, but the actual speedup may be far
from the ideal speedup if the overhead of the more complex implementation is
significant.

1.1 Implementation

The algorithms presented in this paper are implemented by the multi-adaptive
ODE-solver available in DOLFIN [24; 25|, the C++ interface of the new open-source
software project FEniCS [23; 5] for the automation of Computational Mathematical
Modeling (CMM). The multi-adaptive solver in DOLFIN is based on the original
implementation Tanganyika, presented in [36], but has been completely rewritten
for DOLFIN.

The multi-adaptive solver is actively developed by the authors, with the intention
of providing the next standard for the solution of initial value problems. This will be
made possible through the combination of an efficient forward integrator, automatic
and reliable error control, full integration with the automatic discretization of PDEs
through FFC [37; 32; 33] and a simple and intuitive user interface.

1.2 Obtaining the software

DOLFIN is licensed under the GNU General Public License [21], which means that
anyone is free to use or modify the software, provided these rights are preserved.
The complete source code of DOLFIN, including numerous example programs, is
available at the DOLFIN web page [24].

1.3 Notation

The following notation is used throughout this paper: FEach component U;(t),
i =1,...,N, of the approximate m(c/d)G(q) solution U(t) of (1) is a piecewise
polynomial on a partition of (0,77 into M; sub intervals. Sub interval j for compo-
nent i is denoted by I;; = (t; j—1,t;;], and the length of the sub interval is given by
the local time step kij = t;; —t; j—1. We shall sometimes refer to I;; as an element.
This is illustrated in Figure 1. On each sub interval I;;, U; I; 1s a polynomial of
degree g;;.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Algorithms and Data Structures for Multi-Adaptive Time-Stepping . 3

Furthermore, we shall assume that the interval (0,77 is partitioned into blocks
between certain synchronized time levels 0 = Ty < Ty < ... < Typy = T. We refer
to the set of intervals 7,, between two synchronized time levels T,,_; and T}, as a
time slab:

Tn={Lj :Tho1 <tij_1 <ty <T,}.
We denote the length of a time slab by K,, =T, — T,,_1.

Fig. 1. Individual partitions of the interval (0,7T] for different components. Elements between
common synchronized time levels are organized in time slabs. In this example, we have N = 6
and M = 4.

1.4 OQutline of the paper

We first give an introduction to multi-adaptive time-stepping in Section 2. We then
present the key algorithms used by the multi-adaptive ODE solver of DOLFIN in
Section 3, followed by a discussion of data structures for efficient representation and
interpolation of multi-adaptive solutions in Section 4. In Section 5, we then present
a number of numerical examples, including benchmark problems that demonstrate
the efficiency of the proposed algorithms and data structures.

2. MULTI-ADAPTIVE TIME-STEPPING

In this section, we give a quick introduction to multi-adaptive time-stepping, in-
cluding the formulation of the methods, error estimates and adaptivity. For a more
detailed account, we refer the reader to [35; 36; 38].

2.1 Formulation of the methods

Just as the standard c¢G(q) and dG(g) methods, the multi-adaptive mcG(gq) and
mdG(q) methods are obtained by multiplying the system of equations (1) with a
suitable test function v, to obtain a variational problem of the form: Find U € V

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

4 . J. Jansson and A. Logg

with U(0) = uo, such that

/0 (v,U)dt = /(v Ndt YveV, (2)

where (-, -) denotes the standard inner product in RN and (V,V) is a suitable pair
of discrete functions spaces, the test and trial spaces respectively.

For the standard ¢G(q) method, the trial space V' consists of the space of contin-
uous piecewise polynomial vector-valued functions of degree ¢ = ¢(t) on a partition
0=ty <ty <--- <ty =T and the test space V consist of the space of (possibly
discontinuous) piecewise polynomial vector-valued functions of degree ¢ — 1 on the
same partition. The multi-adaptive mcG(q) method extends the standard cG(q)
method by extending the test and trial spaces to piecewise polynomial spaces on
individual partitions of the time interval according to Figure 1. Thus, each compo-
nent U; = U;(t) is continuous and piecewise polynomial on the individual partition
O=tip<tip <--- <tiM,; :TfOI‘i:LQ,...,N.

For the standard dG(q) method, the test and trial spaces are equal and consist of
the space of (possibly discontinuous) piecewise polynomial vector-valued functions
of degree ¢ = ¢(t) on a partition 0 = ¢y < t; < --- < tpy = T, which extends
naturally to the multi-adaptive mdG(g) method by allowing each component of
the test and trial functions to be piecewise polynomial on individual partitions of
the time interval as above. Note that for both the dG(¢) method and the mdG(q)
method, the integral fo,T(U’ U)dt in (2) must be treated appropriately at the points
of discontinuity, see [35].

Both in the case of the mcG(q) and mdG(q) methods, the variational problem (2)
gives rise to a system of discrete equations by expanding the solution U in a suitable
basis on each local interval I;;,

qij

L= Y &GijmGijm, (3)
m=0

where {{ijm}f,ijzo are the degrees of freedom for U; on I;; and {qﬁijm}%jzo is a
suitable basis for P%(l;;). For any particular choice of quadrature, the resulting
system of discrete equations takes the form of an implicit Runge-Kutta method on
each local interval I;;. In the case of the mcG(g) method, the discrete equations
are given by

qij

fijm 5130 + kl] Zw ais] fl ((L?”]))Wi;l(sgij]))v (4)

form=1,...,¢;, where {w[qu} i

(t—tij—1)/(tij—tij—1), and {s[q”] %7 - are quadrature points defined on [0, 1]. The
discrete equations for the mdG(q) method are similar in structure. See Section 3.5
below for a discussion of suitable quadrature rules and basis functions.

L1 n—o are weights, 7;; maps I;; to (0, 1]: 7;(t) =

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Algorithms and Data Structures for Multi-Adaptive Time-Stepping . 5

2.2 Error estimates and adaptivity

In [35], a posteriori error estimates are proved for the multi-adaptive mcG(q) and
mdG(q) methods. For the mcG(q) method, the estimate takes the form

N
[M(e)| < B =37 8"UT) max {Cukf | i} (5)
i=1 ’

with a similar estimate for the mdG(q) method. Here, M : RY — R denotes some
given functional of the global error e = U — u to be estimated, R = U — f(U, ")
denotes the residual of the computed solution, C' denotes a set of interpolation
constants (which may be different for each local interval) and S;(T') denotes a sta-
bility factor that measures the rate of propagation of errors for component U; (the
influence of errors in component U; on the size of the error in the given functional).
Comparing to standard Runge-Kutta methods for the solution of initial value prob-
lems, the stability factor is the missing link between the “local error” and the global
error. Note that alternatively, the stability information may be kept as a local time-
dependent stability weight for more fine-grained control of the contributions to the
global error. The stability factors are obtained from solving the dual problem of (1)
for the given functional M, see [6; 35].

The individual time steps may then be chosen so as to equidistribute the error
onto the different components,

in an iterative fashion according to the following basic adaptive algorithm:

(i) Solve the primal problem with time steps based on (6);
(ii) Solve the dual problem and compute the stability factors;
(iii) Compute an error bound E based on (5);

(iv) If E < TOL then stop; if not go back to (i).

3. ALGORITHMS

We present below a collection of the key algorithms for multi-adaptive time-
stepping. The algorithms are given in pseudo-code and where appropriate we give
remarks on how the algorithms have been implemented in C++ for DOLFIN. In
most cases, we present simplified versions of the algorithms with focus on the most
essential steps.

3.1 General algorithm

The general multi-adaptive time-stepping algorithm is Algorithm 1. Starting at
t = 0, the algorithm creates a sequence of time slabs until the given end time T is
reached. The end time T is given as an argument to CreateTimeSlab, which creates
a time slab covering an interval [T},_1,T},] such that 7,, < T. CreateTimeSlab
returns the end time T}, of the created time slab and the integration continues until
T, = T. For each time slab, the system of discrete equations is solved iteratively,
using direct fixed-point iteration or a preconditioned Newton’s method, until the
discrete equations given by the mcG(gq) or mdG(g) method have converged.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

6 . J. Jansson and A. Logg

Algorithm 1 U = Integrate(ODE)

t—20

while t < T
{time slab, t} « CreateTimeSlab({1,...,N}, ¢, T)
SolveTimeSlab(time slab)

end while

The basic forward integrator, Algorithm 1, can be used as the main component
of an adaptive algorithm with automated error control of the computed solution
as outlined in Section 2. In each iteration, the primal problem (1) is solved using
Algorithm 1. An ODE of the form (1) representing the dual problem is then created
and solved using Algorithm 1. It is important to note that both the primal and the
dual problems are solved using the same algorithm, but with different time steps
and, possibly, different tolerances, methods, and orders. When the solution of the
dual problem has been computed, the stability factors {S;(T)}XY, and the error
estimate can be computed.

3.2 Recursive construction of time slabs

In each step of Algorithm 1, a new time slab is created between two synchronized
time levels T,,_1 and T,,. The time slab is organized recursively as follows. The
root time slab covering the interval [T},_1,T},| contains a non-empty list of elements,
which we refer to as an element group, and a possibly empty list of time slabs, which
in turn may contain nested groups of elements and time slabs. Each such element
group together with the corresponding nested set of element groups is referred to
as a sub slab. This is illustrated in Figure 2.

To create a time slab, we first compute the desired time steps for all components
as given by the a posteriori error estimate (5). We discuss in detail the time step
selection below in Section 3.3. A threshold #K is then computed based on the
maximum time step K and a fixed parameter 6§ € (0,1) controlling the density of
the time slab. The components are partitioned into two sets based on the threshold,
see Figure 3. For each component in the group with large time steps, an element is
created and added to the element group of the time slab. The remaining components
with small time steps are processed by a recursive application of this algorithm for
the construction of time slabs.

We organize the recursive construction of time slabs as described by Algorithms
2, 3, 5, and 4. The recursive construction simplifies the implementation; each
recursively nested sub slab can be considered as a sub system of the ODE. Note
that the group of recursively nested sub slabs for components in group I; is created
before the element group containing elements for components in group Iy. The tree
of time slabs is thus created recursively breadth-first, which means in particular
that the element for the component with the largest time step is created first.

Algorithm 3 for the partition of components can be implemented efficiently using
the function std: :partition(), which is part of the Standard C++ Library.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Algorithms and Data Structures for Multi-Adaptive Time-Stepping . 7

Algorithm 2 {time slab, T;,} = CreateTimeSlab(components, T,,_1, T)

{Iy, I, K} < Partition(components)
ifT, 1. +K<T
T, —Th1+K
else
T, —T
end if
element group < CreateElements(Iy, T),—1, T,)
time slabs « CreateTimeSlabs(Iy, Ty,—1, Tp)
time slab « {element group, time slabs}

Algorithm 3 {I,, I, K} = Partition(components)

I() — @
Il — @
K — maximum time step within components
for each component
k < time step of component
if k<O0K
Iy < Iy U {component}
else
I, < I; U {component}
endif
end for
K — minimum time step within I
K~ K

Algorithm 4 elements = CreateElements(components, T,,_1, T,)

elements « ()

for each component
create element for component on [T),_1,T),]
elements <« elements U element

end for

Algorithm 5 time slabs = CreateTimeSlabs(components, T;,_1, T3,)

time slabs «

t— Tn—l

while t < T
{time slab, t} <« CreateTimeSlab(components, ¢, T,)
time slabs < time slabs U time slab

end while

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

8 . J. Jansson and A. Logg

Th-1 Tn

Y

Fig. 2. The recursive organization of the time slab. Each time slab contains an element group and
a list of recursively nested time slabs. The root time slab in the figure contains one element group
of three elements and three sub slabs. The first of these sub slabs contains an element group of
two elements and two nested sub slabs, and so on. The root time slab recursively contains a total
of nine element groups and 35 elements.

3.3 Multi-adaptive time step selection

The individual and adaptive time steps k;; are determined during the recursive
construction of time slabs based on an a posteriori error estimate as discussed in
Section 2. Thus, according to (6), each local time step k;; should be chosen to

satisfy

TOL Y

ki = . 7
J <C7;jNSi maxlij Rz|> ()

where TOL is a given tolerance.

However, the time steps can not be based directly on (7), since that leads to
unwanted oscillations in the size of the time steps. If r; j_1 = maxy, ;,_, |R;| is small,
then k;; will be large, and as a result r;; will also be large. Consequently, k; ;11 and
r;,j+1 Will be small, and so on. To avoid these oscillations, we adjust the time step
ki; according to Algorithm 6, which determines the new time step as a weighted
harmonic mean value of the previous time step and the time step given by (7).
Alternatively, DOLFIN provides time step control based on the (PID) controllers
presented in [22; 42], including H0211 and H211PI. However, the simple controller
of Algorithm 6 performs well compared to the more sophisticated controllers in [22;
42]. A suitable value for the weight w in Algorithm 6 is w = 5.

The initial time steps k11 = ko1 = --- = ky1 = K; are chosen equal for all
components and are determined iteratively for the first time slab. The size K;

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Algorithms and Data Structures for Multi-Adaptive Time-Stepping . 9

Fig. 3. The partition of components into groups of small and large time steps for 6 = 1/2.

Algorithm 6 k = Controller(knew, kold; Fmax)

k — (1 + 7vU)koldknew/(k'old + U)k:new)
k «— min(k, kmax)

of the first time slab is first initialized to some default value, possibly based on
the length T of the time interval, and then adjusted until the local residuals are
sufficiently small for all components.

3.4 Interpolation of the solution

To update the degrees of freedom on an element according to (4), the appropriate
component f; of the right-hand side of (1) needs to be evaluated at the set of
quadrature points. In order for f; to be evaluated, each component U; of the
computed solution U on which f; depends has to be evaluated at the quadrature
points. We let S; C {1,..., N} denote the sparsity pattern of component U;, that
is, the set of components on which f; depends,

Si:{i’e{l,...,N}:8fi/8ui/750}. (8)

Thus, to evaluate f; at a given quadrature point ¢, only the components {U; }i/es,
need to be evaluated at ¢, as in Algorithm 7. This is of particular importance for
problems of sparse structure and enables efficient multi-adaptive time integration

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

10 . J. Jansson and A. Logg

of time-dependent PDEs, as demonstrated below in Section 5. The sparsity pattern
S; is automatically detected by the solver. Alternatively, the sparsity pattern can
be specified by a (sparse) matrix.

Algorithm 7 y = EvaluateRightHandSide(i, t)
for i/ € S;
(i) «— Ui (t)
end for
Yy — fi(x7 t)

3.5 Implementation of general elements

The system of discrete equations given by the variational problem (2) for the degrees
freedom {&;;,,} on each element I;; takes the form

Eijm = &ijo + / wkljj](nj) f(U®),t)dt, m=1,...,q;, 9)
ij
for the mcG(g) method, where 7;;(t) = (¢t — tij—1)/(tij — tij—1) and where
{w,[qqu}}%;l c Plas=11([0,1]) are polynomial weight functions. For the mdG(q)
method, the system of equations on each element has a similar form, with m =
0,...,¢i;. As pointed out above in Section 2, the discrete equations take the form
(4) for any particular choice of quadrature used to evaluate the integral in (9).

Thus, the weight functions {w%"j] 129 need to be evaluated at a set of quadrature
points {s,} C [0,1]. In DOLFIN, these values are computed and tabulated each
time a new type of element is created. If the same method is used for all components
throughout the computation, then this computation is carried out only once.

For the mcG(q) method, Lobatto quadrature with n = ¢ + 1 quadrature points
is used. The n > 2 Lobatto quadrature points are defined on [—1,1] as the two
end-points together with the roots of the derivative P),_; of the (n—1)th-order Leg-
endre polynomial. The quadrature points are computed in DOLFIN using Newton’s
method to find the roots of P, _; on [—1,1], and are then rescaled to the interval
[0, 1].

Similarly, Radau quadrature with n = g + 1 quadrature points is used for the
mdG(g) method. The n > 1 Radau points are defined on [—1,1] as the roots of
Q. = P,_1 + P,, where P,_; and P, are Legendre polynomials. Note that the
left end-point is always a quadrature point. As for the mcG(q) method, Newton’s
method is used to find the roots of @,, on [—1,1]. The quadrature points are then
rescaled to [0, 1], with time reversed to include the right end-point.

Since Lobatto quadrature with n quadrature points is exact for polynomials of
degree p < 2n — 3 and Radau quadrature with n quadrature points is exact for
polynomials of degree p < 2n — 2, both quadrature rules are exact for polynomials
of degree n — 1 for n > 2 and n > 1, respectively. With both quadrature rules,
the integral of the Legendre polynomial P, on [—1,1] should thus be zero for p =
0,...,n— 1. This defines a linear system, which is solved to obtain the quadrature
weights.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Algorithms and Data Structures for Multi-Adaptive Time-Stepping . 11

After the quadrature points {sn}?jio have been determined, the polynomial
weight functions {wk]{'j] %5 | are computed as described in [35] (again by solving
a linear system) and then evaluated at the quadrature points. Multiplying these

values with the quadrature weights, we rewrite (9) in the form (4).

4. DATA STRUCTURES

The solution on a standard mono-adaptive time slab, that is, a time slab constructed
with equal time steps for all components, is typically stored as an array of values
at the right end-point of the time slab, or as a list of arrays (possibly stored as
one contiguous array) for a higher order method with several stages. A different
data structure is needed to store the multi-adaptive solution on a time slab, such
as the one in Figure 1. Such a data structure should ideally store the solution
with minimal overhead compared to the cost of storing only the array of degrees
of freedom for the solution on the time slab. In addition, it should also allow for
efficient interpolation of the solution, that is, accessing the values of the solution
for all components at any given time within the time slab. We present below a data
structure that allows efficient storage of the entire solution on a time slab with little
overhead, and at the same time allows efficient interpolation with O(1) access to
any given value during the iterative solution of the system of discrete equations.

4.1 Representing the solution

The multi-adaptive solution on a time-slab can be efficiently represented using a
data structures consisting of eight arrays as shown in Table I. For simplicity, we
assume that all elements in a time slab are constructed for the same choice of
method, mcG(q) or mdG(q), for a given fixed g.

The recursive construction of time slabs as discussed in Section 3.2 generates a
sequence of sub slabs, each containing a list of elements (an element group). For
each sub slab, we store the value of the time ¢ at the left end-point and at the right
end-point in the two arrays sa and sb. Thus, for sub slab number s covering the
interval (as, bs), we have

as = sals],

1
bs = sb[s]. (10)

Furthermore, for all elements in the (root) time slab, we store the degrees of freedom
in the order they are created in the array jx. Thus, if each element has g degrees
of freedom, as in the case of the multi-adaptive mcG(gq) method, then the length
of the array jx is ¢ times the number of elements. In particular, if all components
use the same time steps, then the length of the array jx is qIV.

4.2 Interpolating the solution

For each element, we store the corresponding component index ¢ in the array ei in
order to be able to evaluate the correct component f; of the right-hand side f of (1)
when iterating over all elements in the time slab to update the degrees of freedom.
When updating the values on an element according to (4), it is also necessary to
know the left and right end-points of the elements. Thus, we store an array es that
maps the number of a given element to the number of the corresponding sub slab

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

12 . J. Jansson and A. Logg

containing the element. As a consequence, the left end-point a. and right end-point
b. for a given element e are given by

a. = salesle]],
be = sbles|e]].

(11)

Array Type Description

sa double left end-points for sub slabs

sb double right end-points for sub slabs
jx double values for degrees of freedom
ei int component indices for elements
es int time slabs containing elements
ee int previous elements for elements
ed int first dependencies for elements
de int elements for dependencies

Table I. Data structures for efficient representation of a multi-adaptive time slab.

Updating the values on an element according to (4) also requires knowledge of
the value at the left end-point, which is given as the end-time value on the previous
element in the time slab for the same component (or the end-time value from the
previous time slab). This information is available in the array ee, which stores for
each element the number of the previous element (or —1 if there is no previous
element).

The discrete system of equations on each time slab is solved by iterating over
the elements in the time slab and updating the values on each element, either in
a direct fixed-point iteration or a Newton’s method. We must then for any given
element e corresponding to some component i = eile] evaluate the right-hand
side f; at each quadrature point ¢ within the element. This requires the values
of the solution U(t) at ¢ for all components contained in the sparsity pattern S;
for component i according to Algorithm 7. As a consequence of Algorithm 2 for
the recursive construction of time slabs, elements for components that use large
time steps are constructed before elements for components that use small time
steps. Since all elements of the time slab are traversed in the same order during
the iterative solution of the system of discrete equations, elements corresponding to
large time steps have recently been visited and cover any element that corresponds
to a smaller time step. The last visited element for each component is stored in
an auxiliary array elast of size N. Thus, if i’ € S; and component i’ has recently
been visited, then it is straight-forward to find the latest element for component 7’
that covers the current element for component ¢ and interpolate U at time ¢. It is
also straight-forward to interpolate the values for any components that are present
in the same element group as the current element.

However, when updating the values on an element e corresponding to some com-
ponent i = eile] depending on some other component i" € S; which uses smaller
time steps, one must find for each quadrature point ¢ on the element e the element
e’ for component i’ containing ¢, which is non-trivial. The element ¢’ can be found
by searching through all elements for component ¢’ in the time slab, but this quickly

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Algorithms and Data Structures for Multi-Adaptive Time-Stepping . 13

becomes inefficient. Instead, we store for each element e a list of dependencies to
elements with smaller time steps in the two arrays ed and de. These two arrays
store a sparse integer matrix of dependencies to elements with smaller time steps
for all elements in the time slab. Thus, for any given element e, the list of elements
with smaller time steps that need to be interpolated are given by

{de[ed[e]], de[ed]e] + 1],...,de[ed[e + 1]]}. (12)

5. NUMERICAL EXAMPLES AND BENCHMARK RESULTS

In this section, we present a number of examples to illustrate various aspects of
multi-adaptive time-stepping. All three examples are time-dependent PDEs that
we discretize in space using the ¢G(1) finite element method to obtain a system of
ODEs, sometimes referred to as the method of lines approach. In each case, we
lump and invert the mass matrix so as to obtain a system of the form (1).

The first of the three examples demonstrates qualitatively the basic principles of
multi-adaptive time-stepping, with small time steps only in regions where the local
residual is large.

The second and third examples demonstrate quantitatively the benefits of multi-
adaptive time-stepping compared to standard methods. In the first of these two
benchmark problems, the individual time steps are chosen automatically based on
an a posteriori error estimate and in the second, the time steps are fixed in time
and vary in space according to the CFL condition so that k& ~ h locally.

5.1 The bistable equation
As a first example, we solve the bistable equation on the unit cube,
i — eAu=u(l —u?) in Qx (0,7),
Opu=0 on 9N x (0,7T], (13)
u(-,0) =wup in Q,

with Q© = (0,1) x (0,1) x (0,1), € = 0.0001, final time 7" = 100, and with random
initial data ug = ug(x) distributed uniformly on [—1,1].

The bistable equation has been studied extensively before [17; 14] and has inter-
esting stability properties. In particular, it has two stable steady-state solutions,
u = 1 and u = —1, and one unstable steady-state solution, u = 0. From (13),
it is clear that the solution increases in regions where it is positive and decreases
in regions where it is negative. Because of the diffusion, neighboring regions will
compete until finally the solution has reached one of the two stable steady states.
Since this action is local on the interface between positive and negative regions, the
bistable equation is an ideal example for multi-adaptive time-stepping.

The solution was computed on a uniformly refined tetrahedral mesh with mesh
size h = 1/64. This mesh consists of 1,572,864 tetrahedrons and has N = 274,625
vertices. In Figure 4, we plot the initial value used for the computation together
with the solution at final time ¢ = 100. We also plot the solution and the multi-
adaptive time steps at time ¢ = 10 in Figure 5, and note that the time steps are
small in regions where there is strong competition between the two stable steady-
state solutions, in particular in regions with where the curvature of the interface is
small.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

14 . J. Jansson and A. Logg

Fig. 4. Initial data (left) and final solution at time ¢ = 100 (right) for the bistable equation (13).

5.2 A nonlinear reaction-diffusion equation

As a second example, we solve the following nonlinear reaction-diffusion equation,
taken from [41]:

0 —eu =yu*(1 —u) in Q x (0,7],
Opu =0 on 00 x (0,77, (14)
u(-,0) =wy inQ,

with Q = (0, L), e = 0.01, v = 1000 and final time 7" = 1.
The equation is discretized in space with the standard ¢G(1) method using a
uniform mesh with 1000 mesh points. The initial data is chosen according to

B 1
W) = T @ = 1)
The resulting solution is a reaction front, sweeping across the domain from left to
right, as demonstrated in Figure 6. The multi-adaptive time steps are automatically
selected to be small in and around the reaction front and sweep the domain at the
same velocity as the reaction front, as demonstrated in Figure 7.

To study the performance of the multi-adaptive solver, we compute the solution
for a range of tolerances with L = 1 and compare the resulting error and CPU
time with a standard mono-adaptive solver that uses equal (adaptive) time steps
for all components. To make the comparison fair, we compare the multi-adaptive
mcG(g) method with the mono-adaptive ¢G(g) method for ¢ = 1. Both methods
are implemented for general order ¢ in the same programming language (C++)
within a common framework (DOLFIN), but the mono-adaptive method takes full
advantage of the fact that the time steps equal for all components. In particular,
the mono-adaptive solver may use much simpler data structures (a plain C array)
to store the solution on each time slab and there is no overhead for interpolation of
the solution. This is a more difficult benchmark than only comparing the number
degrees of freedom (local steps) as in [41] or comparing the CPU time against
the same multi-adaptive solver when it is forced to use identical time steps for all
components as in [35], since it also takes into account the overhead of the more

(15)

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Algorithms and Data Structures for Multi-Adaptive Time-Stepping . 15

Fig. 5. Solution (above) and multi-adaptive time steps (below) at time ¢ = 10 for the bistable
equation (13).

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

16 . J. Jansson and A. Logg

t=0.75

t=0.25

0.11 t=0 T

Fig. 6. Propagation of the solution of the reaction—diffusion problem (14).

complicated algorithms and data structures necessary for the implementation of
multi-adaptive time-stepping.

Note that we don’t solve the dual problem to compute stability factor (or stability
weights) which is necessary to obtain a reliable error estimate. Thus, the tolerance
controls only the size of the error modulo the stability factor, which is unknown.

In addition, we also compare the two methods for varying size L of the domain €,
keeping the same initial conditions but scaling the number of mesh points according
to the length of the domain, N = 1000L/5. As the size of the domain increases,
we expect the relative efficiency of the multi-adaptive method to increase, since
the number of inactive components increases relative to the number of components
located within the reaction front.

In Figure 8, we plot the CPU time as function of the tolerance and number of
components (size of domain) for the mcG(1) and c¢G(1) methods. We also summa-
rize the results in Table II and Table III. As expected, the speedup expressed as the
multi-adaptive efficiency index u, that is, the ideal speedup if the cost per degree
of freedom were the same for the multi- and mono-adaptive methods, is large in
all test cases, around a factor 100. The speedup in terms of the total number of
time slabs is also large. Note that in Table II, the total number of time slabs M
remains practically constant as the tolerance and the error are decreased. The de-
creased tolerance instead results in finer local resolution of the reaction front, which
is evident from the increasing multi-adaptive efficiency index. At the same time,

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Algorithms and Data Structures for Multi-Adaptive Time-Stepping . 17

k(z,t)

Fig. 7. The multi-adaptive time steps as function of space at a sequence of time intervals for the
test problem (14).

the mono-adaptive method needs to decrease the time step for all components and
so the relative efficiency of the multi-adaptive method increases as the tolerance
decreases. See also Figure 9 for a comparison of the multi-adaptive time steps at
two different tolerances.

The situation is slightly different in Table I1I, where the tolerance is kept constant
but the size of the domain and number of components vary. Here, the number of
time slabs remains practically constant for both methods, but the multi-adaptive
efficiency index increases as the size of the domain increases, since the reaction
front then becomes more and more localized relative to the size of the domain. As
a result, the efficiency index of the multi-adaptive method increases as the size of
the domain is increased.

In all test cases, the multi-adaptive method is more efficient than the standard
mono-adaptive method also when the CPU time (wall-clock time) is chosen as a
metric for the comparison. In the first set of test cases with varying tolerance, the
actual speedup is about a factor 2.0 whereas in the second test case with varying
size of the domain, the speedup increases from about a factor 2.0 to a factor 5.7 for
the range of test cases. These are significant speedups, although far from the ideal
speedup which is given by the multi-adaptive efficiency index.

There are mainly two reasons that make it difficult to attain full speedup. The
first reason is that as the size of the time slab increases, the number of iterations n

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

18 . J. Jansson and A. Logg

needed to solve the system of discrete equations increases. In Table III, the number
of iterations, including local iterations on individual elements as part of a global
iteration on the time slab, is about a factor 1.5 larger for the multi-adaptive method.
However, the main overhead lies in the more straightforward implementation of the
mono-adaptive method compared to the more complicated data structures needed
to store and interpolate the multi-adaptive solution. For constant time step and
equal time step for all components, this overhead is roughly a factor 5 for the
test problem, but the overhead increases to about a factor 100 when the time slab
is locally refined. It thus remains important to further reduce the overhead of the
implementation in order to increase the range of problems where the multi-adaptive
methods give a positive speedup.

e
=

CPU time
CPU time

B lle(T)loc’

Fig. 8. CPU time as function of the local tolerance tol ~ TOL (left) and number of components N
(right) for mcG(1) (dashed line) and ¢G(1) (solid line).

| #]

Table II. Benchmark results for mcG(1) (above) and c¢G(1) below for varying tolerance and fixed

tol | [le(Dlloe | time [M | n
1.0-107% | 1.8-107° | 14.2s | 1922(5) | 3.990(1.498) | 95.3
50-1077 | 1.1-107° | 23.3s | 1912(9) | 4.822(1.544) | 138.2
1.0-1077 | 1.9-107°% | 48.1s 1929 (7) | 4.905(1.594) | 142.6
5.0-107% | 9.0-1077 | 49.8s 1917 (7) | 4.131(1.680) | 172.4
tol le(T)]] oo time M n W
1-107% | 2.3-107° | 28.1s | 117089 (1) 4.0 1.0
5-1077 | 1.2-107° | 39.5s | 165586 (1) 4.0 1.0
1-1007 | 2.3-107°% | 71.9s | 370254 (1) 3.0 1.0
5-107% | 1.2-107° | 101.7s | 523615 (1) 3.0 1.0

number of components N = 1000.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Algorithms and Data Structures for Multi-Adaptive Time-Stepping

19

10

1075

-5

0.5

15

2.5 3

35

4.5

-4

k(z)

10°F -

10

Fig. 9.

0.5

15

35

Multi-adaptive time steps at ¢ = 0.5 for two different tolerances.

|

| N | e | time | M n L
1000 | 1.8-107° | 13.6s | 1922(5) | 4.0(1.5) | 95.3
2000 | 1.7-107° | 17.3s | 1923(5) | 4.0(1.2) | 140.5
4000 | 1.6-107° | 24.0s | 1920(6) | 4.0(1.0) | 185.0
8000 | 1.7-107° | 33.7s | 1918(5) | 4.0(1.0) | 218.8
16000 | 1.7-107° | 57.9s | 1919(5) | 4.0(1.0) | 234.0

N lle(T)]] o time M n u
1000 | 2.3-107° | 28.1s | 117089 (1) 4.0 1.0
2000 | 2.2-107° | 64.8s | 117091 (1) 4.0 1.0
4000 | 2.2-107° | 101.3s | 117090 (1) 4.0 1.0
8000 | 2.2-107° | 175.1s | 117089 (1) 4.0 1.0
16000 | 2.2-107° | 327.7s | 117089 (1) 4.0 1.0

Table III. Benchmark results for meG(1) (above) and ¢G(1) below for fixed tolerance tol = 1.0 -

1076 and varying number of components (and size of domain).

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

20 . J. Jansson and A. Logg

5.3 The wave equation

As a final example, we consider the wave equation,

i—Au=0 inQx(0,7],
Opu =0 ondQx (0,77, (16)
u(-,0) =wup in Q,

on a two-dimensional domain {2 consisting of two square sub domains of length 0.5
separated by a thin wall with a narrow slit of size 0.0001 x 0.0001 at its center. The
initial condition is chosen as a plane wave traversing the domain from right to left.
In Figure 10, we plot the initial data together with the (fixed) multi-adaptive time
steps. The resulting solution is shown in Figure 11 at a sequence of time intervals.
The geometry of the domain €2 forces the discretization to be very fine close to
the narrow slit. As a result, the CFL condition puts a limit on the size of the time
step, roughly given by
k< hnin = minh(), (17)
where h = h(z) is the local mesh size. With a larger time step, an explicit method
will be unstable or, correspondingly, direct fixed-point iteration on the systems of
discrete equations on each time slab will not converge without suitable stabilization.
On the other hand, with a multi-adaptive method, the time step may be chosen
to satisfy the CFL condition only locally, that is,

k(z) < h(z), x€Q, (18)

and as a result, the number of local steps may decrease significantly (depending on
the properties of the mesh) and as a result the total work may decrease (depending
on the size of the overhead for the multi-adaptive method). The speedup for the
multi-adaptive mcG(1) method was a factor 4.2.

l

It
Dl
g

i
ali)

0

i

N
i

Fig. 10. Initial data (left) and multi-adaptive time steps (right) for the solution of the wave
equation.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Algorithms and Data Structures for Multi-Adaptive Time-Stepping

: 21

7Y

L

Fig. 11. The solution of the wave equation at times t = 0.25, t = 0.4, t = 0.45 and ¢t = 0.6.

Q
XYY

X
V§

Y]
CCOTRRRRRIDRREOn oz
R
'A%'é"' (% ﬂ‘h‘hb PRI
“v.ﬂ

AN NSRBI NN SAINANAT
A e
i
PRI

>
AV

o
)
S
vas
vy

Vs
S

v

KL
S5
LR
ravas
R
X2
s
S

9
TGy

=
7
AVAVAVAVLATY
VAVAVAVaS
vas

AV,
VAV

VAVAVAYA

o

0.253|

S

=
SRS
P
ST
H

=

O]

i
XA
NASRIAS
YAV A
KINYY
sy

ava
AV

v

as
=
S

cvasvd

SSOTISFOE,
ERERR
SERSES,

AN
%
s

i

X
a

5

o
oy,

SOSAVAYL AN
VAVATAY:
a

=

4

i,

0
=
s

0.252

>
5
)

>
>

Rk
AV
vavs

5

XAA

5
2
5
PO Va
=
K

=
S
5

kY

RES

J

o
I
SAv

v
X

VAN

N\

N
pAY.

0.251

V>

N

KN
WA
%
‘wﬁt«;ﬁﬁ%‘.&ﬁg Ko

)A
2 0 ARV
KON,
PRI AR
A
OO KA KRN ORI
NV AKX
R KR SN XK
KoK ,‘#“147&:;1&&@5%2?’%}1%&‘l< gl 0248

SORAOAY
0 O

Vﬁ

SR

VANAVATA BN AL VAT,

RS
SEE

0.247

e,

XK

SO NOTSOSA
ST AVava
PISERISRS S
<A AW

KA
AR

0 01 02 0.3 0.4 05 06 0.7

=
&
&

v

0.246 L
08 09 1 0.496 0.497

L L L L
0.498 0.499 05 0.501 0.502 0.503 0.504

Fig. 12. The mesh used for the solution of the wave equation on a domain intersected by a thin
wall with a narrow slit (left) and details of the mesh close to the slit (right).

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

22

J. Jansson and A. Logg

REFERENCES

S. G. ALEXANDER AND C. B. AGNOR, n-body simulations of late stage planetary formation with
a simple fragmentation model, ICARUS, 132 (1998), pp. 113-124.

R. Dav, J. DUBINSKI, AND L. HERNQUIST, Parallel treeSPH, New Astronomy, 2 (1997), pp. 277
297.

C. DawsonN AND R. C. KirBY, High resolution schemes for conservation laws with locally
varying time steps, SIAM J. Sci. Comput., 22, No. 6 (2001), pp. 2256-2281.

M. DELFOUR, W. HAGER, AND F. TROCHU, Discontinuous Galerkin methods for ordinary dif-
ferential equations, Math. Comp., 36 (1981), pp. 455-473.

T. DuponTt, J. HorrMAN, C. JounsoN, R. C. KirBy, M. G. LArsoN, A. Loca, AND L. R.
Scort, The FEniCS project, Tech. Rep. 2003-21, Chalmers Finite Element Center Preprint
Series, 2003.

K. Eriksson, D. EsTep, P. HANSBO, AND C. JOHNSON, Introduction to adaptive methods for
differential equations, Acta Numerica, 4 (1995), pp. 105-158.

K. ERIKSSON AND C. JOHNSON, Adaptive finite element methods for parabolic problems III:
Time steps variable in space, in preparation.

, Adaptive finite element methods for parabolic problems I: A linear model problem, SIAM
J. Numer. Anal., 28, No. 1 (1991), pp. 43-77.

——, Adaptive finite element methods for parabolic problems II: Optimal order error estimates
in leolz and logloo, SIAM J. Numer. Anal., 32 (1995), pp. 706-740.

, Adaptive finite element methods for parabolic problems IV: Nonlinear problems, SIAM
J. Numer. Anal., 32 (1995), pp. 1729-1749.

———, Adaptive finite element methods for parabolic problems V: Long-time integration, STAM
J. Numer. Anal., 32 (1995), pp. 1750-1763.

K. ErIKssON, C. JOHNSON, AND S. LARSSON, Adaptive finite element methods for parabolic
problems VI: Analytic semigroups, STAM J. Numer. Anal., 35 (1998), pp. 1315-1325.

K. ErikssoN, C. JOHNSON, AND V. THOME, Time discretization of parabolic problems by the
discontinuous Galerkin method, RATIRO MAN, 19 (1985), pp. 611-643.

D. EsTEP, An analysis of numerical approximations of metastable solutions of the bistable
equation, Nonlinearity, 7 (1994), pp. 1445-1462.

, A posteriori error bounds and global error control for approximations of ordinary dif-
ferential equations, STAM J. Numer. Anal., 32 (1995), pp. 1-48.

D. EsTEP AND D. FRENCH, Global error control for the continuous Galerkin finite element
method for ordinary differential equations, M2AN, 28 (1994), pp. 815-852.

D. EsteEp, M. LARSON, AND R. WILLIAMS, FEstimating the error of numerical solutions of
systems of nonlinear reaction—diffusion equations, Memoirs of the American Mathematical
Society, 696 (2000), pp. 1-109.

D. EsTEP AND A. STUART, The dynamical behavior of the discontinuous Galerkin method and
related difference schemes, Math. Comp., 71 (2002), pp. 1075-1103.

D. EsTtEP AND R. WILLIAMS, Accurate parallel integration of large sparse systems of differential
equations, Math. Models. Meth. Appl. Sci., 6 (1996), pp. 535-568.

J. E. FLAHERTY, R. M. Loy, M. S. SHEPHARD, B. K. SzZyMANSKI, J. D. TERESCO, AND L. H.
Z1ANTZ, Adaptive local refinement with octree load balancing for the parallel solution of three-
dimensional conservation laws, Journal of Parallel and Distributed Computing, 47 (1997),
pp. 139-152.

FREE SOFTWARE FOUNDATION, GNU GPL, 1991. URL: http://www.gnu.org/copyleft/gpl.
html.

K. GUSsTAFSSON, M. LUNDH, AND G. SDERLIND, A PI stepsize control for the numerical solution
of ordinary differential equations, BIT, 28 (1988), pp. 270-287.

J. HorrMAN, J. JANssoN, C. JounsoN, M. G. KNEPLEY, R. C. KirBY, A. Loca, L. R. ScorT,
AND G. N. WELLS, FEniCS, 2006. http://www.fenics.org/.

J. HOFFMAN, J. JANsSON, A. Loca, AND G. N. WELLS, DOLFIN, 2006. http://wuw.fenics.
org/dolfin/.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Algorithms and Data Structures for Multi-Adaptive Time-Stepping . 23

J. HoFrMAN AND A. LoGa, DOLFIN: Dynamic Object oriented Library for FINite element
computation, Tech. Rep. 2002-06, Chalmers Finite Element Center Preprint Series, 2002.

T. J. R. HucHES, I. LEvIT, AND J. WINGET, Element-by-element implicit algorithms for heat-
conduction, J. Eng. Mech.-ASCE, 109 (1983), pp. 576-585.

——, An element-by-element solution algorithm for problems of structural and solid mechan-
ics, Computer Methods in Applied Mechanics and Engineering, 36 (1983), pp. 241-254.

B. L. HULME, Discrete Galerkin and related one-step methods for ordinary differential equa-
tions, Math. Comput., 26 (1972), pp. 881-891.

, One-step piecewise polynomial Galerkin methods for initial value problems, Math. Com-
put., 26 (1972), pp. 415-426.

P. JAMET, Galerkin-type approzimations which are discontinuous in time for parabolic equa-
tions in a variable domain, SIAM J. Numer. Anal., 15 (1978), pp. 912-928.

C. JOHNSON, Error estimates and adaptive time-step control for a class of one-step methods
for stiff ordinary differential equations, SIAM J. Numer. Anal., 25 (1988), pp. 908-926.

R. C. KirRBY AND A. LoGaG, A compiler for variational forms, to appear in ACM Trans. Math.
Softw., (2006).

———, Optimizing the FEniCS Form Compiler FFC: Efficient pretabulation of integrals. 2006.
A. LEw, J. E. MARSDEN, M. ORTIZ, AND M. WEST, Asynchronous variational integrators,
Arch. Rational. Mech. Anal., 167 (2003), pp. 85-146.

A. Loca, Multi-adaptive Galerkin methods for ODEs I, SIAM J. Sci. Comput., 24 (2003),
pp- 1879-1902.

—, Multi-adaptive Galerkin methods for ODEs II: Implementation and applications, STAM
J. Sci. Comput., 25 (2003), pp. 1119-1141.

——, FFC, 2006. http://www.fenics.org/ffc/.

———, Multi-adaptive Galerkin methods for ODEs III: A priori error estimates, SIAM J.
Numer. Anal., 43 (2006), pp. 2624—2646.

J. MAKINO AND S. AARSETH, On a Hermite integrator with Ahmad-Cohen scheme for gravita-
tional many-body problems, Publ. Astron. Soc. Japan, 44 (1992), pp. 141-151.

S. OsHER AND R. SANDERS, Numerical approxrimations to mnonlinear conservation laws with
locally varying time and space grids, Math. Comp., 41 (1983), pp. 321-336.

V. SavCceENco, W. HUNDSDORFER, AND J. VERWER, A multirate time stepping strategy for
parabolic PDEs, submitted to SIAM J. Sci. Comput., (2005).

G. SDERLIND, Digital filters in adaptive time-stepping, ACM Trans. Math. Softw., 29 (2003),
pp. 1-26.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

SIMULATION OF MECHANICAL SYSTEMS WITH
INDIVIDUAL TIME STEPS

JOHAN JANSSON AND ANDERS LOGG

ABSTRACT. The simulation of a mechanical system involves the formulation of a differ-
ential equation (modeling) and the solution of the differential equation (computing). The
solution method needs to be efficient as well as accurate and reliable. This paper discusses
multi-adaptive Galerkin methods in the context of mechanical systems. The primary type
of mechanical system studied is an extended mass—spring model. A multi-adaptive method
integrates the mechanical system using individual time steps for the different components
of the system, adapting the time steps to the different time scales of the system, poten-
tially allowing enormous improvement in efficiency compared to traditional mono-adaptive
methods.

1. INTRODUCTION

Simulation of mechanical systems is an important component of many technologies of
modern society. It appears in industrial design, for the prediction and verification of
mechanical products. It appears in virtual reality, both for entertainment in the form of
computer games and movies, and in the simulation of realistic environments such as surgical
training on virtual and infinitely resurrectable patients. Common to all these applications
is that the computation time is critical. Often, an application is real-time, which means
that the time inside the simulation must reasonably match the time in the real world.

Simulating a mechanical system involves both modeling (formulating an equation de-
scribing the system) and computation (solving the equation). The model of a mechanical
system often takes the form of an initial value problem for a system of ordinary differential
equations of the form

u(t) = flu(t),t), te(0,T],

1.1
(1.1) u(0) = o,

where u : [0, 7] — RY is the solution to be computed, uy € RY a given initial value, T' > 0
a given final time, and f : RY x (0, 7] — R a given function that is Lipschitz-continuous

in v and bounded.

Date: April 27, 2004.

Key words and phrases. Multi-adaptivity, individual time steps, local time steps, ODE, continuous
Galerkin, discontinuous Galerkin, mcgq, mdgq, mechanical system, mass—spring model.

Johan Jansson, email: johanjan@math.chalmers.se. Anders Logg, email: logg@math.chalmers.se.
Department of Computational Mathematics, Chalmers University of Technology, SE-412 96 Goteborg,
Sweden.

1

2 JOHAN JANSSON AND ANDERS LOGG

The simulation of a mechanical system thus involves the formulation of a model of the
form (1.1) and the solution of (1.1) using a time-stepping method. We present below
multi-adaptive Galerkin methods for the solution of (1.1) with individual time steps for
the different parts of the mechanical system.

1.1. Mass—spring systems. A mass—spring system consists of a set of point masses con-
nected by springs, typically governed by Hooke’s law with other laws optionally present,
such as viscous damping and external forces. Mass—spring systems appear to encompass
most of the behaviors of elementary mechanical systems and thus represent a simple, intu-
itive, and powerful model for the simulation of mechanical systems. This is the approach
taken in this paper.

However, to obtain a physically accurate model of a mechanical system, we believe it
is necessary to solve a system of partial differential equations properly describing the me-
chanical system, in the simplest case given by the equations of linear elasticity. Discretizing
the system of PDEs in space, for example using the Galerkin finite element method, an
initial value problem for a system of ODEs of the form (1.1) is obtained. The resulting
system can be interpreted as a mass—spring system and thus the finite element method in
combination with a PDE model represents a systematic methodology for the generation of
a mass—spring model of a given mechanical system.

1.2. Time-stepping methods. Numerical methods for the (approximate) solution of
(1.1) are almost exclusively based on time-stepping, i.e., the step-wise integration of (1.1)
to obtain an approximation U of the solution u satisfying

2
(1.2) u(ty) = u(t;—1) +/ fu(t),t)ydt, j=1,..., M,
ti—1
for a partition 0 =t < t; < --- < tpy =T of [0,T]. The approximate solution U ~ u is
obtained by an appropriate approximation of the integral ftt” Cf(u(t),t) dt.
i

Selecting the appropriate size of the time steps {k; = tj—tj,l}j]‘il is essential for efficiency
and accuracy. We want to compute the solution U using as little work as possible, which
means using a small number of large time steps. At the same time, we want to compute
an accurate solution U which is close to the exact solution u, which means using a large
number of small time steps. Often, the accuracy requirement is given in the form of a
tolerance TOL for the size of the error e = U — w in a suitable norm. The competing
goals of efficiency and accuracy can be met using an adaptive algorithm, determining a
sequence of time steps {kj}j]‘/il which produces an approximate solution U satisfying the
given tolerance with minimal work.

Galerkin finite element methods present a general framework for the numerical solution
of (1.1), including adaptive algorithms for the automatic construction of an optimal time
step sequence, see [7, 8]. The Galerkin finite element method for (1.1) reads: Find U € V,
such that

(1.3) /OT(U,U) dt = /OT(f,v) dt YoeV,

SIMULATION OF MECHANICAL SYSTEMS WITH INDIVIDUAL TIME STEPS 3

where (-,-) denotes the RY inner product and (V, V) denotes a suitable pair of finite
dimensional subspaces (the trial and test spaces).
Typical choices of approximating spaces include

V={velc(o,)" : vl € [PUI)]Y, j=1,...,M}

1.4 .
(14) V:{v:v|1j€[Pq*1(Ij)]N, j=1,...,M},
i.e., V represents the space of continuous and piecewise polynomial vector-valued functions
of degree ¢ > 1 and 1% represents the space of discontinuous piecewise polynomial vector-
valued functions of degree ¢ — 1 on a partition of [0,7]. We refer to this as the ¢G(q)
method. With both V and V representing discontinuous piecewise polynomials of degree
q > 0, we obtain the dG(q) method. Early work on the ¢G(q) and dG(g) methods include
6, 19, 10, 9].

By choosing a constant test function v in (1.3), it follows that both the ¢G(¢) and dG(q)
solutions satisfy the relation

(1.5) U(tj):U(tj_1)+/tj FU@),dt, j=1,..., M,

tji—1

corresponding to (1.2).

In the simplest case of the dG(0) method, we note that ftij,l fU@),t)dt = k;jf(U(t)),t;),
since U piecewise constant, with equality if f does not depend explicitly on ¢t. We thus
obtain the method

(1.6) U(ty) =Ultj—1) + ki f(U(t)),45), j=1,....M,

which we recognize as the backward (or implicit) Euler method. In general, a ¢G(q) or
dG(g) method corresponds to an implicit Runge-Kutta method, with details depending
on the choice of quadrature for the approximation of the integral of f(U,).

1.3. Multi-adaptive time-stepping. Standard methods for the discretization of (1.1),
including the ¢G(q) and dG(q) methods, require that the same time steps {k;}}Z, are used
for all components U; = U;(t) of the approximate solution U of (1.1). This can be very
costly if the system exhibits multiple time scales of different magnitudes. If the different
time scales are localized to different components, efficient representation and computation
of the solution thus requires that this difference in time scales is reflected in the choice of
approximating spaces (V V) We refer to the resulting methods, recently introduced in a
series of papers [20, 21, 22, 23, 16|, as multi-adaptive Galerkin methods.

Surprisingly, individual time-stepping (multi-adaptivity) has previously received little
attention in the large literature on numerical methods for ODEs, see e.g. [3, 12,13, 2, 27, 1],
but has been used to some extent for specific applications, including specialized integrators
for the n-body problem [24, 4, 26], and low-order methods for conservation laws [25, 18, 5].

4 JOHAN JANSSON AND ANDERS LOGG

1.4. Obtaining the software. The examples presented below have been obtained using
DOLFIN version 0.4.11 [14]. DOLFIN is licensed under the GNU General Public License
[11], which means that anyone is free to use or modify the software, provided these rights
are preserved. The source code of DOLFIN, including numerous example programs, is
available at the DOLFIN web page, http://www.phi.chalmers.se/dolfin/, and each
new release is announced on freshmeat.net. Alternatively, the source code can be obtained
through anonymous CVS as explained on the web page. Comments and contributions are
welcome.

The mechanical systems presented in the examples have been implemented using Ko,
which is a software system for the simulation of mass—spring models, based on DOLFINs
multi-adaptive ODE-solver. Ko will be released shortly under the GNU General Public
License and will be available at http://www.phi.chalmers.se/ko/.

1.5. Outline of the paper. We first describe the basic mass—spring model in Section
2 and then give a short introduction to multi-adaptive Galerkin methods in Section 3.
In Section 4, we discuss the interface of the multi-adaptive solver and its application to
mass—spring models. In Section 5, we investigate and analyze the performance of the multi-
adaptive methods for a set of model problems. Finally, we present in Section 6 results for
a number of large mechanical systems to demonstrate the potential and applicability of
the proposed methods.

2. MASS—SPRING MODEL

We have earlier in [17] described an extended mass—spring model for the simulation of
systems of deformable bodies.

The mass—spring model represents bodies as systems of discrete mass elements, with
the forces between the mass elements transmitted using explicit spring connections. (Note
that “spring” is a historical term, and is not limited to pure Hookean interactions.) Given
the forces acting on an element, we can determine its motion from Newton’s second law,

(2.1) F =ma,

where F' denotes the force acting on the element, m is the mass of the element, and a = &
is the acceleration of the element with x = (z1, 29, x3) the position of the element. The
motion of the entire body is then implicitly described by the motion of its individual mass
elements.

The force given by a standard spring is assumed to be proportional to the elongation of
the spring from its rest length. We extend the standard model with contact, collision and
fracture, by adding a radius of interaction to each mass element, and dynamically creating
and destroying spring connections based on contact and fracture conditions.

In Table 1 and Figure 1, we give the basic properties of the mass—spring model consisting
of mass elements and spring connections. With these definitions, a mass—spring model may
thus be given by just listing the mass elements and spring connections of the model.

SIMULATION OF MECHANICAL SYSTEMS WITH INDIVIDUAL TIME STEPS 5

A mass element e is a set of parameters {z, v, m, r, C}:

r @ position

v velocity

m : mass

r : radius

C : aset of spring connections

A spring connection c is a set of parameters {e1, es, K, b, ly, If}:

e1 : the first mass element connected to the spring
es @ the second mass element connected to the spring
K Hooke spring constant

b : damping constant

lop : rest length
ly o fracture length

TABLE 1. Descriptions of the basic elements of the mass—spring model: mass
elements and spring connections.

U1

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Actlial]éngth of ¢

Rest léﬁgth_ of ¢

" Fracture lengt.h'o'f ¢

\ |
| Radius of ¢; |

\ |
| Radius of e, |

FIGURE 1. Schema of two mass elements e; and ey, a spring connection c,
and important quantities.

3. MULTI-ADAPTIVE (GALERKIN METHODS

The multi-adaptive methods mcG(q) and mdG(q) used for the simulation are obtained
as extensions of the standard c¢G(gq) and dG(g) methods by enriching the trial and test

6 JOHAN JANSSON AND ANDERS LOGG

spaces (V, V) of (1.3) to allow each component U; of the approximate solution U to be
piecewise polynomial on an individual partition of [0, 7.

3.1. Definition of the methods. To give the definition of the multi-adaptive Galerkin
methods, we introduce the following notation: Subinterval j for component ¢ is denoted
by I;; = (tij-1,t;j], and the length of the subinterval is given by the local time step
kij = tij —t;j—1 for j = 1,...,M;. This is illustrated in Figure 2. We also assume
that the interval [0, 7] is partitioned into blocks between certain synchronized time levels
0=Ty<Ty <---< Ty =T. We refer to the set of intervals 7,, between two synchronized
time levels T,,_; and T,, as a time slab.

With this notation, we can write the mcG(g) method for (1.1) in the following form:
Find U € V, such that

(3.1) /OT(U,U) dt = /OT(f,v) dt YoeV,

where the trial space V' and test space V are given by

(52) V={velC(0, TV : v, € P¥ (L), j=1,....,M;, i=1,..., N},
' V={v:vl, €PN, j=1,....,M;, i=1,....N}.

The mcG(q) method is thus obtained as a simple extension of the standard ¢G(q) method by
allowing each component to be piecewise polynomial on an individual partition of [0, 7.
Similarly, we obtain the mdG(g) method as a simple extension of the standard dG(q)
method. For a detailed description of the multi-adaptive Galerkin methods, we refer the
reader to [20, 21, 22, 23, 16]. In particular, we refer to [20] or [22] for the full definition of
the methods.

3.2. Adaptivity. The individual time steps {k;; }?/[:"i],\{:l are chosen adaptively based on
an a posteriori error estimate for the global error e = U —u at final time ¢t = T, as discussed
in [20, 21]. The a posteriori error estimate for the mcG(g) method takes the form

N
(3.3) le(Dll. < C, 3 SUT) max K Ri(U,)l

i=1 ’
where Cj is an interpolation constant, SZ-[q"}(T) are the individual stability factors, k; = k;(t)
are the individual time steps, and R;(U,-) = U; — fi(U,-) are the individual residuals for

1 =1,...,N. The individual stability factors Sz[q"}(T), measuring the effect of local errors
introduced by a nonzero local residual on the global error, are obtained from the solution
¢ of an associated dual problem, see [7] or [20].

Thus, to determine the individual time steps, we measure the individual residuals and
take each individual time step k;; such that

(3.4) iy max | Ry(U,)| = TOL/(NC,S"(T),

SIMULATION OF MECHANICAL SYSTEMS WITH INDIVIDUAL TIME STEPS 7

I

v

/

FIGURE 2. Individual partitions of the interval [0, 7] for different compo-
nents. Elements between common synchronized time levels are organized in
time slabs. In this example, we have N =6 and M = 4.

where TOL is a tolerance for the error at final time. See [21] or [15] for a detailed discussion
of the algorithm for the automatic selection of the individual time steps.

3.3. Iterative methods. The system of discrete nonlinear equations defined by (3.1) is
solved by fixed point iteration on time slabs, as described in [16]. For a stiff problem,
the fixed point iteration is automatically stabilized by introducing a damping parameter
which is adaptively determined through feed-back from the computation. We refer to this
as adaptive fized point iteration.

4. MULTI-ADAPTIVE SIMULATION OF MASS—SPRING SYSTEMS

The simulation of a mechanical system involves the formulation of a differential equation
(modeling) and the solution of the differential equation (computing). Having defined these
two components in the form of the mass—spring model presented in Section 2 and the
multi-adaptive solver presented in Section 3, we comment briefly on the user interface of
the multi-adaptive solver.

The user interface of the multi-adaptive solver is specified in terms of an ODE base class
consisting of a right hand side f, a time interval [0, 7], and an initial value ug, as shown in
Table 2. To solve an ODE, the user implements a subclass which inherits from the ODE
base class.

The mass—spring model presented above has been implemented using Ko, a software
system for the simulation and visualization of mass—spring models. Ko automatically
generates a mass—spring model from a geometric representation of a given system, as
shown in Figure 3. The mass—spring model is then automatically translated into a system

8 JOHAN JANSSON AND ANDERS LOGG

class ODE

{
ODE(int N);

virtual real uO(int i);
virtual real f(Vector u, real t, int i);

}

TABLE 2. Sketch of the C++ interface of the multi-adaptive ODE-solver.

of ODEs of the form (1.1). Ko specifies the ODE system as an ODE subclass and uses
DOLFIN to compute the solution.

f’F:H-.-----"*_

FIGURE 3. A geometric representation of a cow is automatically translated
into a mass—spring model.

SIMULATION OF MECHANICAL SYSTEMS WITH INDIVIDUAL TIME STEPS 9

Ko represents a mass—spring model internally as lists of mass elements and spring con-
nections. To evaluate the right-hand side f of the corresponding ODE system, a translation
or mapping is thus needed between a given mass element and a component number in the
system of ODEs. This mapping may take a number different forms; Ko uses the mapping
presented in Algorithm 1.

Algorithm 1 FromComponents(Vector u, Mass m)

i < index(m)
N «— size(u)

m.xy — u(3(1 —1)+1)
m.zy — u(3(i — 1) +2)
m.x3 — u(3(i — 1) + 3)

may «— u(N/2+3(i—1)+1)
m.ay «— u(N/2+3(1 — 1)+ 2)
m.vg «— u(N/2+3(i — 1)+ 3)

5. PERFORMANCE

We consider a simple model problem consisting of a long string of n point masses con-
nected with springs as shown in Figure 4. The first mass on the left is connected to a
fixed support through a hard spring with large spring constant x > 1. All other springs
are connected together with soft springs with spring constant k = 1. As a result, the first
mass oscillates at a high frequency, with the rest of the masses oscillating slowly. In Figure
5, we plot the coordinates for the first three masses on [0, 1].

oS SR S, 9T, B

F1GURE 4. The mechanical system used for the performance test. The sys-
tem consists of a string of masses, fixed at the left end. Each mass has been
slightly displaced to initialize the oscillations.

To compare the performance of the multi-adaptive solver (in the case of the mcG(1)
method) with a mono-adaptive method (the ¢G(1) method), we choose a fixed small time
step k for the first mass and a fixed large time step K > k for the rest of the masses in
the multi-adaptive simulation, and use the same small time step k for all masses in the
mono-adaptive simulation. We let M = K/k denote the number of small time steps per
each large time step.

We run the test for M = 100 and M = 200 with large spring constant x = 100 for the
hard spring connecting the first mass to the fixed support. We use a large time step of size

10 JOHAN JANSSON AND ANDERS LOGG

0.2 0.19005

0.19 T

0.18995

0.1899

Uus

—~
[
S
&
§'\ 0.18985
o -
S
~—

0.1898

/ \ \ \ 0.18975

-0.05 0.1897
0 0.8 1

F1GURE 5. Coordinates for the first three masses of the simple model prob-
lem (left) and for the third mass (right).

K = 0.1 and, consequently, a small time step of size k = 0.1/M. The computation time
T. is recorded as function of the number of masses n.

As shown in Figure 6, the computation time for the multi-adaptive solver grows slowly
with the number of masses n, practically remaining constant; small time steps are used only
for the first rapidly oscillating mass and so the work is dominated by frequently updating
the first mass, independent of the total number of masses. On the other hand, the work for
the mono-adaptive method grows linearly with the total number of masses, as expected.

FiGURE 6. Computation time 7, as function of the number of masses n
for the multi-adaptive solver (dashed) and a mono-adaptive method (solid),
with M = 100 (left) and M = 200 (right).

More specifically, the complexity of the mono-adaptive method may be expressed in
terms of M and n as follows:

(51) TC(M, n) = Cl + CQMH,

SIMULATION OF MECHANICAL SYSTEMS WITH INDIVIDUAL TIME STEPS 11

while for the multi-adaptive solver, we obtain
(52) TC(M, n) = CgM + 0471,.

Our general conclusion is that the multi-adaptive solver is more efficient than a mono-
adaptive method for the simulation of a mechanical system if M is large, i.e., when small
time steps are needed for a part of the system, and if n is large, i.e, if large time steps may
be used for a large part of the system.

The same result is obtained if we add damping to the system in the form of a damping
constant of size b = 100 for the spring connections between the slowly oscillating masses,
resulting in gradual damping of the slow oscillations, while keeping the rapid oscillations
of the first mass largely unaffected. With b = 100, adaptive fixed point iteration is au-
tomatically activated for the solution of the discrete equations, as discussed in Section
3.3.

6. LARGE PROBLEMS AND APPLICATIONS

To demonstrate the potential and applicability of the proposed mass—spring model and
the multi-adaptive solver, we present results for a number of large mechanical systems.

6.1. Oscillating tail. For the first example, we take the mass—spring model of Figure 3
representing a heavy cow and add a light mass representing its tail, as shown in Figure 7.
The cow is given a constant initial velocity and the tail is given an initial push to make it
oscillate. A sequence of frames from an animation of the multi-adaptive solution is given
in Figure 8.

We compare the performance of the multi-adaptive solver (in the case of the mcG(1)
method) with a mono-adaptive method (the ¢G(1) method) using the same time steps for
all components. We also make a comparison with a simple non-adaptive implementation of
the ¢G(1) method, with minimal overhead, using constant time steps equal to the smallest
time step selected by the mono-adaptive method.

As expected, the multi-adaptive solver automatically selects small time steps for the
oscillating tail and large time steps for the rest of the system. In Figure 9, we plot the
time steps as function of time for relevant components of the system. We also plot the
corresponding solutions in Figure 11. In Figure 10, we plot the time steps used in the
mono-adaptive simulation.

The computation times are given in Table 3. The speed-up of the multi-adaptive method
compared to the mono-adaptive method is a factor 70. Compared to the simple non-
adaptive implementation of the ¢G(1) method, using a minimal amount of work, the speed-
up is a factor 3. This shows that the speed-up of a multi-adaptive method can be significant.
It also shows that the overhead is substantial for the current implementation of the multi-
adaptive solver, including the organization of the multi-adaptive time slabs, interpolation
of solution values within time slabs, and the evaluation of residuals for multi-adaptive
time-stepping. However, we believe it is possible to remove a large part of this overhead.

12 JOHAN JANSSON AND ANDERS LOGG

...... >
“"...O.’D'
PODOPDIYE
-4 ..,:..0

FIGURE 8. The tail oscillates rapidly while the rest of the cow travels at a
constant velocity to the right.

0.01 I U WA L TV

0.001

0.001

o ,
LN N
=2 0001 | i =2 0001

ST L R R noo

1le-06 1le-06

0 0.2 0.4 t 0.6 0.8 1 0 0.2 0.4 t 0.6 0.8 1

FIGURE 9. Multi-adaptive time steps used in the simulation of the cow with
oscillating tail. The plot on the left shows the time steps for components
481-483 corresponding to the velocity of the tail, and the plot on the right
shows the time steps for components 13-24 corresponding to the positions
for a set of masses in the interior of the cow.

6.2. Local manipulation. For the next example, we fix a damped cow shape at one end
and repeatedly push the other end with a manipulator in the form of a large sphere, as
illustrated in Figure 12.

'V\“UUVUVvU‘VU\.’V‘J‘u‘u\vh 0.8

SIMULATION OF MECHANICAL SYSTEMS WITH INDIVIDUAL TIME STEPS

e ! ! ! !
0.0001 4
R
R
1e-07 i i L i
0 0.2 0.4 ; 0.6 0.8 1

FIGURE 10. Mono-adaptive time steps for the cow with oscillating tail.

0.4

N

-0.2

0.4

INNIBNIREAEEE “
\J”HM“HH‘H\H‘\H\\ o0

0 0.2 0.4 t 0.6 0.8 1 0 0.2 0.4 t 0.6 0.8

FIGURE 11. Solution for relevant components of the cow with oscillating
tail. The plot on the left shows the solution for components 481-483 cor-
responding to the velocity of the tail, and the plot on the right shows the
solution for components 13-24 corresponding to the positions for a set of
masses in the interior of the cow.

14 JOHAN JANSSON AND ANDERS LOGG

Algorithm Time / s
Multi-adaptive 40
Mono-adaptive 2800
Non-adaptive 130

TABLE 3. Computation times for the simulation of the cow with oscillating
tail for three different algorithms: multi-adaptive mcG(1), mono-adaptive
¢G(1), and a simple implementation of non-adaptive ¢G(1) with fixed time
steps and minimal overhead.

FIGURE 12. A cow shape is locally manipulated. Small time steps are au-
tomatically selected for the components affected by the local manipulation,
with large time steps for the rest of the system.

As shown in Figure 13, the multi-adaptive solver automatically selects small time steps
for the components directly affected by the manipulation. This test problem also illustrates
the basic use of adaptive time-stepping; the time steps are drastically decreased at each
impact to accurately track the effect of the impact.

6.3. A stiff beam. Our final example demonstrates the applicability of the multi-adaptive
solver to a stiff problem consisting of a block being dropped onto a stiff beam, as shown in
Figure 14. The material of both the block and the beam is very hard and very damped,
with spring constant x = 107 and damping constant b = 2-10° for each spring connection.
The multi-adaptive time steps for the simulation are shown in Figure 15. Note that the
time steps are drastically reduced at the time of impact, with large time steps before and
after the impact.

SIMULATION OF MECHANICAL SYSTEMS WITH INDIVIDUAL TIME STEPS

P o 0.001

1e-04

6 1605
0

e T Vet
44l I VoMl {
)/ L LA

0.001

1e-04

f T LY
i
Wt L /

0.001

1e-04

1005
0 05 t 15 2
0.01
" I TS
it/ i
./ v
L 8
0.001 it
|
|
i
i
1e:04
3
4
s 1005
0 05 t 15 2 0 05 t 15 2

FIGURE 13. Solution (left) and multi-adaptive time steps (right) for selected
components of the manipulated cow. The two top rows correspond to the
positions of the left- and right-most masses, respectively, and the two rows
below correspond to the velocities of the left- and right-most masses, respec-
tively. Note that smaller time steps are used for the components mostly
affected by the manipulation, in particular at the point of impact, while
larger time steps are used for other components.

16 JOHAN JANSSON AND ANDERS LOGG

Sttt dttd
............:::::::::

FIGURE 14. A block is dropped onto a beam. The material of both the
block and the beam is very hard and very damped, with spring constant
x = 107 and damping constant b = 2 - 10°.

0.011 T T T T

0.01 ™

0.009 - B
0.008 b

0.007 B

0.006 - b

0.005 - R

0.004 B

0.003 - A

0.002

0.001

0 1 1 1 1

FI1GURE 15. Multi-adaptive time steps for the block and beam. Note that
the time steps are drastically reduced at the time of impact. The maximum
time step is set to 0.01 to track the contact between the block and the beam.

SIMULATION OF MECHANICAL SYSTEMS WITH INDIVIDUAL TIME STEPS 17

7. CONCLUSIONS

From the results presented above, we make the following conclusions regarding multi-
adaptive time-stepping:

[1]

8]

[10]

[13]

e A multi-adaptive method outperforms a mono-adaptive method for systems con-
taining different time scales if there is a significant separation of the time scales
and if the fast time scales are localized to a relatively small part of the system.

e Multi-adaptive time-stepping, and in particular the current implementation, works
in practice for large and realistic problems.

REFERENCES

U. ASCHER AND L. PETzOLD, Computer Methods for Ordinary Differential Equations and
Differential-Algebraic Equations, STAM, 1998.

J. BUTCHER, The Numerical Analysis of Ordinary Differential Equations — Runge—Kutta and Gen-
eral Linear Methods, Wiley, 1987.

G. DaAHLQUIST, Stability and Error Bounds in the Numerical Integration of Ordinary Differential
Equations, PhD thesis, Stockholm University, 1958.

R. DAVE, J. DUBINSKI, AND L. HERNQUIST, Parallel treeSPH, New Astronomy, 2 (1997), pp. 277
297.

C. DawsoN AND R. KIRBY, High resolution schemes for conservation laws with locally varying time
steps, STAM J. Sci. Comput., 22, No. 6 (2001), pp. 2256-2281.

M. DELFOUR, W. HAGER, AND F. TROCHU, Discontinuous Galerkin methods for ordinary differential
equations, Math. Comp., 36 (1981), pp. 455-473.

K. ErikssoN, D. Estep, P. HANSBO, AND C. JOHNSON, Introduction to adaptive methods for
differential equations, Acta Numerica, (1995), pp. 105-158.

——, Computational Differential Equations, Cambridge University Press, 1996.

D. ESTEP, A posteriori error bounds and global error control for approximations of ordinary differ-
ential equations, SITAM J. Numer. Anal., 32 (1995), pp. 1-48.

D. EsTEp AND D. FRENCH, Global error control for the continuous Galerkin finite element method
for ordinary differential equations, M?AN, 28 (1994), pp. 815-852.

FREE SOFTWARE FOUNDATION, GNU GPL, http://www.gnu.org/copyleft/gpl.html.

E. HAIRER AND G. WANNER, Solving Ordinary Differential Equations I — Nonstiff Problems,
Springer Series in Computational Mathematics, vol 8, 1991.

——, Solving Ordinary Differential Equations II — Stiff and Differential-Algebraic Problems,
Springer Series in Computational Mathematics, vol 14, 1991.

J. HOFFMAN AND A. LOGG ET AL., DOLFIN, http://www.phi.chalmers.se/dolfin/.

J. JANSSON AND A. Loca, Algorithms for multi-adaptive time-stepping, submitted to ACM Trans.
Math. Softw., (2004).

, Multi-adaptive Galerkin methods for ODEs V: Stiff problems, submitted to BIT, (2004).

J. JANSSON AND J. VERGEEST, A discrete mechanics model for deformable bodies, Computer-Aided
Design, 34 (2002).

J.E. Fragerry, R.M. Loy, M.S. SHEPHARD, B.K. Szymanski, J.D. TERESCO, AND L.H.
ZIANTZ, Adaptive local refinement with octree load balancing for the parallel solution of three-
dimensional conservation laws, Journal of Parallel and Distributed Computing, 47 (1997), pp. 139-152.
C. JOHNSON, Error estimates and adaptive time-step control for a class of one-step methods for stiff
ordinary differential equations, STAM J. Numer. Anal., 25 (1988), pp. 908-926.

A. LoGG, Multi-adaptive Galerkin methods for ODFEs I, STAM J. Sci. Comput., 24 (2003), pp. 1879—
1902.

18 JOHAN JANSSON AND ANDERS LOGG

[21] ——, Multi-adaptive Galerkin methods for ODEs II: Implementation and applications, STAM J. Sci.
Comput., 25 (2003), pp. 1119-1141.

[22] ——, Multi-adaptive Galerkin methods for ODEs III: Existence and stability, Submitted to STAM J.
Numer. Anal., (2004).

[23] ——, Multi-adaptive Galerkin methods for ODEs IV: A priori error estimates, Submitted to STAM
J. Numer. Anal., (2004).

[24] J. MAKINO AND S. AARSETH, On a Hermite integrator with Ahmad-Cohen scheme for gravitational
many-body problems, Publ. Astron. Soc. Japan, 44 (1992), pp. 141-151.

[25] S. OSHER AND R. SANDERS, Numerical approzimations to nonlinear conservation laws with locally
varying time and space grids, Math. Comp., 41 (1983), pp. 321-336.

[26] S.G. ALEXANDER AND C.B. AGNOR, n-body simulations of late stage planetary formation with a
simple fragmentation model, ICARUS, 132 (1998), pp. 113-124.

[27] L. SHAMPINE, Numerical Solution of Ordinary Differential Equations, Chapman & Hall, 1994.

World Scientific

Vol. 15, No. 3 (2005) 471-481 —
www.worldscientific.com

(© World Scientific Publishing Company

Mathematical Models and Methods in Applied Sciences \\’e
N

COMPUTATIONAL MODELING OF DYNAMICAL SYSTEMS

JOHAN JANSSON* and CLAES JOHNSONT

Department of Computational Mathematics, Chalmers University of Technology
SE—412 96 Gdéteborg, Sweden
*johanjan@math.chalmers.se

tclaes@math. chalmers. se

ANDERS LOGG

Toyota Technological Institute, 1427 E. 60th Street
Chicago, IL 60637, USA
logg@tti-c.org

Received 13 September 2004
Communicated by F. Brezzi

In this short note, we discuss the basic approach to computational modeling of dynamical
systems. If a dynamical system contains multiple time scales, ranging from very fast to
slow, computational solution of the dynamical system can be very costly. By resolving the
fast time scales in a short time simulation, a model for the effect of the small time scale
variation on large time scales can be determined, making solution possible on a long
time interval. This process of computational modeling can be completely automated.
Two examples are presented, including a simple model problem oscillating at a time
scale of 10™? computed over the time interval [0,100], and a lattice consisting of large
and small point masses.

Keywords: Modeling; dynamical system; reduced model; automation.

1. Introduction

We consider a dynamical system of the form

u(t) = fu(t),t), te(0,T]

w(0) = o, (1.1)

where u: [0,T] — RY is the solution to be computed, ug € RY a given initial
value, T > 0 a given final time, and f: RY x (0,7] — R¥ a given function that
is Lipschitz-continuous in v and bounded. We consider a situation where the exact
solution u varies on different time scales, ranging from very fast to slow. Typical
examples include meteorological models for weather prediction, with fast time scales
on the range of seconds and slow time scales on the range of years, protein folding
represented by a molecular dynamics model of the form (1.1), with fast time scales

471

472 J. Jansson, C. Johnson & A. Logg

on the range of femtoseconds and slow time scales on the range of microseconds, or
turbulent flow with a wide range of time scales.

In order to make computation feasible in a situation where computational reso-
lution of the fast time scales would be prohibitive because of the small time steps,
the given model (1.1) containing the fast time scales needs to be replaced with a
reduced model for the variation of the solution u of (1.1) on resolvable time scales.
As discussed below, the key step is to correctly model the effect of the variation at
the fast time scales on the variation on slow time scales.

The problem of model reduction is very general and various approaches have
been taken.®® We present below a new approach to model reduction, based on
resolving the fast time scales in a short time simulation and determining a model
for the effect of the small time scale variation on large time scales. This process
of computational modeling can be completely automated and the validity of the
reduced model can be evaluated a posteriori.

2. A Simple Model Problem

We consider a simple example illustrating the basic aspects: Find u = (uq,us):
[0, 7] — R?, such that

iy +u; —u2/2=0 on (0,7],
s + kug =0 on (0,77, (2.1)
u(0) = (0,1), 4(0) = (0,0),

which models a moving unit point mass M; connected through a soft spring to
another unit point mass Ms, with My moving along a line perpendicular to the
line of motion of M, see Fig. 1. The second point mass Ms is connected to a fixed
support through a very stiff spring with spring constant x = 10'® and oscillates
rapidly on a time scale of size 1/y/k = 1072, The oscillation of Mj creates a force

Fig. 1. A simple mechanical system with large time scale ~1 and small time scale ~1/+/k.

Computational Modeling of Dynamical Systems 473

~u3 on M; proportional to the elongation of the spring connecting Ms to M;
(neglecting terms of order uj).

The short time scale of size 107 requires time steps of size ~ 10719 for full
resolution. With 7" = 100, this means a total of ~ 102 time steps for solution of
(2.1). However, by replacing (2.1) with a reduced model where the fast time scale
has been removed, it is possible to compute the (averaged) solution of (2.1) with
time steps of size ~ 0.1 and consequently only a total of 103 time steps.

3. Taking Averages to Obtain the Reduced Model

Having realized that pointwise resolution of the fast time scales of the exact solu-
tion u of (1.1) may sometimes be computationally very expensive or even impossible,
we seek instead to compute a time average u of u, defined by

/2
alt) = % / Pt s)ds, telr/aT -2 (3.1)
—7/2

where 7 > 0 is the size of the average. The average u can be extended to [0,7] in
various ways. We consider here a constant extension, i.e. we let u(t) = u(7/2) for
t €10,7/2), and let u(t) = u(T —7/2) for t € (T'— 7/2,T.

We now seek a dynamical system satisfied by the average u by taking the average
of (1.1). We obtain

u(t) = a(t) = f(u,-)(t) = fQa(t),t) + (f(u,)(t) = f(a(t), 1)),

or

u(t) = f(u(t), t) + glu, t), (3.2)

where the variance g(u,t) = f(u,-)(t) — f(u(t),t) accounts for the effect of small
scales on time scales larger than 7. (Note that we may extend (3.2) to (0,77 by
defining g(u,t) = — f(u(t),t) on (0,7/2] U (T —71/2,T].)

We now seek to model the variance g(u,t) in the form g(u,t) ~ g(u(t),t) and
replace (3.2) and thus (1.1) by

= f(a(t),t) + g(a(t),t), te(0,T), (3.3)

where ug = u(0) = u(7/2). We refer to this system as the reduced model with
subgrid model § corresponding to (1.1).

To summarize, if the solution u of the full dynamical system (1.1) is computa-
tionally unresolvable, we aim at computing the average u of u. However, since the
variance g in the averaged dynamical system (3.2) is unknown, we need to solve the
reduced model (3.3) for @ ~ u with an approximate subgrid model g ~ g. Solving
the reduced model (3.3) using e.g. a Galerkin finite element method, we obtain an
approximate solution U ~ @ =~ u. Note that we may not expect U to be close to u
pointwise in time, while we hope that U is close to @ pointwise.

474 J. Jansson, C. Johnson & A. Logg

4. Modeling the Variance

There are two basic approaches to the modeling of the variance g(u,t) in the form
g(u(t),t); (i) scale-extrapolation or (ii) local resolution. In (i), a sequence of solu-
tions is computed with increasingly fine resolution, but without resolving the fastest
time scales. A model for the effects of the fast unresolvable scales is then determined
by extrapolation from the sequence of computed solutions.? In (ii), the approach
followed below, the solution u is computed accurately over a short time period,
resolving the fastest time scales. The reduced model is then obtained by computing
the variance

and then determining g for the remainder of the time interval such that g(a(t),t) ~
g(u,).

For the simple model problem (2.1), which we can write in the form (1.1) by
introducing the two new variables us = 11 and ug = o with

f(u7) = (u37u47 —uy + U%/Q, —IQ’U,2>,

we note that g ~ 0 (for \/k7 large) while u_g ~ 1/2. By the linearity of fi, fo and
fa, the (approximate) reduced model takes the form

U1+, —1/4=0 on (0,7],
Uy + kiig = 0 on (0,77, (4.2)
a(0) = (0,0), a(0) = (0,0),

with solution @(t) = (3(1 — cost),0).

In general, the reduced model is constructed with subgrid model g varying on
resolvable time scales. In the simplest case, it is enough to model g with a constant
and repeatedly checking the validity of the model by comparing the reduced model
(3.3) with the full model (1.1) in a short time simulation. Another possibility is to
use a piecewise polynomial representation for the subgrid model g.

5. Solving the Reduced System

Although the presence of small scales has been decreased in the reduced system

(3.3), the small scale variation may still be present. This is not evident in the

reduced system (4.2) for the simple model problem (2.1), where we made the
1

approximation tz(0) = 0. In practice, however, we compute @2(0) = = fOT ug(t) dt =

L [cos(v/kt)dt ~ 1/(y/kT) and so Uy oscillates at the fast time scale 1/y/k with
amplitude 1/(v/kT).

To remove these oscillations, the reduced system needs to be stabilized by intro-
ducing damping of high frequencies. Following the general approach,® a least squares
stabilization is added in the Galerkin formulation of the reduced system (3.3) in
the form of a modified test function. As a result, damping is introduced for high
frequencies without affecting low frequencies.

Computational Modeling of Dynamical Systems 475

Alternatively, components such as uy in (4.2) may be inactivated, corresponding
to a subgrid model of the form go(@,) = — f2(@,). We take this simple approach
for the examples presented below.

6. Error Analysis

The validity of a proposed subgrid model may be checked a posteriori. To analyze
the modeling error introduced by approximating the variance g with the subgrid
model g, we introduce the dual problem

_qa(t) = J(ﬂ, U, t)Td)(t)v te [OvT)a
o(T) =,

where J denotes the Jacobian of the right-hand side of the dynamical system (1.1)
evaluated at a mean value of the average u and the computed numerical (finite

(6.1)

element) solution U ~ @ of the reduced system (3.3),

1
J(u,U,t) = / %(su(t) + (1 —=s)U(t),t)ds, (6.2)
0
and where 1 is the initial data for the backward dual problem.

To estimate the error € = U — @ at final time, we note that €(0) = 0 and
¢+ J(u,U,-) "¢ =0, and write

(e(T),v) = (e(T),) — / G+ I(@U.) ée)dt

T T .

=/ <¢,é-—Jé>dt=/ (6.U — it~ f(U,-) + f(a,) dt
0 0

- / (.U — f(U,) — §(U,) dt + / (6.5(U,) — g(u,)) dt
T T

— / (6, R(U,) dt + / (6.5(U.) — glu,) dt.
0 0

The first term, fOT(gzﬁ,f?(U, -))dt, in this error representation corresponds to the
discretization error U — @ for the numerical solution of (3.3). If a Galerkin finite
element method is used,'? the Galerkin orthogonality expressing the orthogonality
of the residual R(U,-) = U — f(U,-) — §(U,-) to a space of test functions can be
used to subtract a test space interpolant w¢ of the dual solution ¢. In the simplest
case of the ¢G(1) method for a partition of the interval (0,7 into M subintervals
I; = (tj_1,t;], each of length k; = t; — t;_1, we subtract a piecewise constant
interpolant to obtain

T _ T _ M ~ .
) @ R = [6= RO <D kg mas |RO s | 1ol

j=1

< S[l](T) maxo, 7] ||k'R(U7 ')le?

476 J. Jansson, C. Johnson & A. Logg

where the stability factor SU(T) = fOT |1, dt measures the sensitivity to dis-
cretization errors for the given output quantity (e(7),).

The second term, fOT(¢,§(U,) — g(u,-))dt, in the error representation corre-
sponds to the modeling error u — u. The sensitivity to modeling errors is measured
by the stability factor SON(T) = fOT l|olli, dt. We notice in particular that if the
stability factor SI%(T) is of moderate size, a reduced model of the form (3.3) for
u =~ % may be constructed.

We thus obtain the error estimate

|(&(T), 9)| < SUN(T) max kR,)1, + SUT) max ||§(U;) = g,)iz, (6:3)

)

including both discretization and modeling errors. The initial data 1 for the dual
problem (6.1) is chosen to reflect the desired output quantity, e.g. v» = (1,0, ...,0)
to measure the error in the first component of U.

To estimate the modeling error, we need to estimate the quantity g — g. This
estimate is obtained by repeatedly solving the full dynamical system (1.1) at a
number of control points and comparing the subgrid model g with the computed
variance g. As initial data for the full system at a control point, we take the com-
puted solution U ~ u at the control point and add a perturbation of appropriate
size, with the size of the perturbation chosen to reflect the initial oscillation at the
fastest time scale.

7. Numerical Results

We present numerical results for two model problems, including the simple model
problem (2.1), computed with DOLFIN? version 0.4.10. With the option automatic
modeling set, DOLFIN automatically creates the reduced model (3.3) for a given
dynamical system of the form (1.1) by resolving the full system in a short time
simulation and then determining a constant subgrid model g. Components with
constant average, such as us in (2.1), are automatically marked as inactive and are
kept constant throughout the simulation. The automatic modeling implemented in
DOLFIN is rudimentary and many improvements are possible, but it represents
a first attempt at the automation of modeling, following the recently presented”
directions for the automation of computational mathematical modeling.

7.1. The simple model problem

The solution for the two components of the simple model problem (2.1) is shown in
Fig. 2 for k = 10'® and 7 = 10~7. The value of the subgrid model g; is automatically
determined to 0.2495 ~ 1/4.

7.2. A lattice with internal vibrations

The second example is a lattice consisting of a set of p? large and (p—1)? small point
masses connected by springs of equal stiffness k = 1, as shown in Figs. 3 and 4.

Computational Modeling of Dynamical Systems 477

0.5 T T T T T T T

0.4 1

~—~ 03[n

ul(t

0.2

0.1

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

x107"

x 107

71 1 1 1 1 1 1 1

0 0.5 1 1.5 2 25 3 3.5 4
t x 107

Fig. 2. The solution of the simple model problem (2.1) on [0,100] (above) and on [0,4 x 10~7]
(below). The automatic modeling is activated at time t = 27 =2 x 107",

478 J. Jansson, C. Johnson & A. Logg

M M

Fig. 3. Detail of the lattice. The arrows indicate the direction of vibration perpendicular to the
springs connecting the small mass to the large masses.

‘4

b

e

/L £
/\(

\

' A
Y T\
BN
7 1 5
M \Q\/ o

C)

J

P
&
p.
,
S
o e g

N
Y
i

J
g

/\A‘\ r/\ \r\
Ny b

[
\/)\

P

Fig. 4. Lattice consisting of p? large masses and (p — 1)? small masses.

Each large point mass is of size M = 100 and each small point mass is of size
m = 107'2, giving a large time scale of size ~10 and a small time scale of
size ~ 1076,

The fast oscillations of the small point masses make the initially stationary
structure of large point masses contract. Without resolving the fast time scales and
ignoring the subgrid model, the distance D between the lower left large point mass
at = (0,0) and the upper right large point mass at z = (1, 1) remains constant,
D = /2. In Fig. 5, we show the computed solution with 7 = 10~%, which manages
to correctly capture the oscillation in the diameter D of the lattice as a consequence
of the internal vibrations at time scale 107°.

Computational Modeling of Dynamical Systems 479

1.415 T T T T T T T T T

1.414

1.413

1.412

1.411

D)

141

1.409

1.408

1.407

1.406
0

1 2 3 4 5 6 7 8 9 10
t
(a)
0.2 T T T
0.195 | R
0.19 | i
5
0.185 | R
0.18 | B
17 ' ' '
0 50 1 2 3 4
t x 1074

(b)

Fig. 5. (a) Distance D between the lower left large mass and the upper right large mass and
(b) the distance d between the lower left large mass and the lower left small mass as function of
time on [0, 10] and on [0,4 x 10~4], respectively.

480 J. Jansson, C. Johnson & A. Logg

142 T T T 142 T T T T

D(t)

1.39

1.36 : . . 1.36 ' ' ' '
0

Fig. 6. The diameter D of the lattice as function of time on (a) [0,20] and on (b) [0,100] for
m = 10~% and 7 = 1. The solid line represents the diameter for the solution of the reduced system
(3.3) and the dashed line represents the solution of the full system (1.1).

With a constant subgrid model g as in the example, the reduced model stays
accurate until the configuration of the lattice has changed sufficiently. When the
change becomes too large, the reduced model can no longer give an accurate rep-
resentation of the full system, as shown in Fig. 6. At this point, the reduced model
needs to be reconstructed in a new short time simulation.

References

1. K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods
for differential equations, Acta Numer. 4 (1995) 105-158.

2. ——, Computational Differential Equations (Cambridge Univ. Press, 1996).

3. J. Hoffman, Computational modeling of complex flows, PhD thesis, Chalmers Univ. of
Technology, 2002.

4. J. Hoffman, J. Jansson and A. Logg, DOLFIN, http://www.fenics.org/dolfin/

5. J. Hoffman and C. Johnson, Computability and adaptivity in CFD, to appear in Fncy-
clopedia of Computational Mechanics (2004).

6. H.-O. Kreiss, Problems with different time scales, Acta Numer. (1991) 1.

Computational Modeling of Dynamical Systems 481

7. A. Logg, Automation of computational mathematical modeling, PhD thesis, Chalmers

8.

Univ. of Technology, 2004.

A. Ruhe and D. Skoogh, Rational Krylov algorithms for eigenvalue computation and
model reduction, in Applied Parallel Computing — Large Scale Scientific and Industrial
Problems, eds. B. Kagstrom, J. Dongarra, E. Elmroth and J. Wasniewski, Lecture Notes
in Computer Science, No. 1541, 1988, pp. 491-502.

DOLFIN: AN AUTOMATED PROBLEM SOLVING ENVIRONMENT

JOHAN HOFFMAN, JOHAN JANSSON, ANDERS LOGG, AND GARTH N. WELLS

1. INTRODUCTION

Natural science can be broken down into two components:

(I) formulating mathematical equations (modeling),
II) solving equations (computation).
g

Problem solving is the task of selecting appropriate equations and data (geometry, co-
efficients) and interpreting the solution of the equations to solve a specific problem.

By discretization a given set of differential equations is translated into a discrete system
of algebraic equations, which is solved using numerical algebra on a computer, to produce
an approximation U of the solution u. Traditionally this has been done by hand. DOLFIN
is part of the FENICS project which is free software for the Automation of Computational
Mathematical Modeling (ACMM) based on the finite element method (FEM). DOLFIN
improves problem solving by providing automated discretization, error control (in time,
with space in sight) and equation solving.

A differential equation can be written in the form:

(1) Au)=f inQ

where A is a differential operator on some domain €2, f is given input, i.e. forces and u
is the solution.
Typically differential equations are used in variational form:

(2) a(u,v) = L(v) in Q Vv eV,
with

Date: May 12, 2006.

Key words and phrases. ODE, PDE, FEM.

Johan Hoffman, School of Computer Science and Communication, Royal Institute of Technology KTH,
SE-10044 Stockholm, Sweden, email: jhoffman@csc.kth.se

Johan Jansson, Computational Technology Group, Department of Applied Mechanics, Chalmers Uni-
versity of Technology, SE-412 96 Gteborg, Sweden, email: johan.jansson@chalmers.se

Anders Logg, Toyota Technological Institute at Chicago, University Press Building, 1427 East 60th
Street, Chicago, Illinois 60637, USA, email: logg@Qtti-c.org

Garth N. Wells, Delft University of Technology, Faculty of Civil Engineering and Geosciences, Stevinweg
1, 2628 CN Delft, The Netherlands, email: g.n.wellsQtudelft.nl.

1

2 JOHAN HOFFMAN, JOHAN JANSSON, ANDERS LOGG, AND GARTH N. WELLS

(3) a(u,v) = /QA(U)U
(4) L(f) = [fv

where V is a function space with some integrability requirement, typically V = H'(Q)"
for a system of n equations.

Traditionally problem solving has been equation-specific. An equation is selected, a
method and solver is then derived or chosen specifically for that equation. For example, it
is common to talk about a “Maxwell solver” or a “Navier-Stokes solver” which have been
developed specifically for those equations.

When the equation is significantly changed, or a new equation is selected, the process
needs to start from the beginning again. This implies much redundant manual work.

There exists tools which have a general perspective. However, they are typically limited
either by flexibility (the form must be input in a specialized language) or performance (the
form is slow to evaluate). See [8] for a survey of existing tools.

We present a free software tool called DOLFIN which combines generality with optimal
efficiency. “Generality” means here that any equation can be input into DOLFIN essen-
tially as it looks on paper. “Optimal” means here that DOLFIN is able to reach the same
efficiency as a manually-developed solver for a specific equation.

DOLFIN is a component of the FENICS tool-chain, where the role of DOLFIN is the
problem solving environment, or programmer user interface for formulating and solving
equations.

FENICS is an implementation of the Finite Element Method (FEM) for arbitrary equa-
tions and arbitrary finite elements. The FEM is a general method for automating dis-
cretization of differential equations. However, this has seldom been reflected in practice.
Traditionally, the FEM has been applied individually to a specific equation, and a solver
has been manually constructed from the resulting formulation. We remedy this situation
with FENICS.

In this paper we will illustrate the generality and efficiency of DOLFIN by presenting
the following aspects:

Q

Simple form language: We can input any equation into DOLFIN in mathemati-
cal notation, meaning that no extensive re-formatting or manual manipulation is
required.

Assembly efficiency: Assembly is the forming of a discrete system (equation system
for the degrees of freedom) given a discretization (finite element and mesh) of an
equation. This is the key step for solving an equation. DOLFIN achieves generality
and full efficiency by generating assembly code from a description of the equation.

High-level programming interface: Generality means that we should enforce a
high level of abstraction, and this also applies to the programming interface. DOLFIN
publishes a high-level programming interface in C++ and Python. The Python in-
terface enables Just-In-Time (JIT) compilation of generated assembly code, which

DOLFIN: AN AUTOMATED PROBLEM SOLVING ENVIRONMENT 3

means that the code generation and compilation is transparent to the user of the
interface.

PDE/ODE solver integration: DOLFIN provides capability for solving both ini-
tial value Ordinary Differential Equations (ODE) as well as Partial Differential
Equations (PDE). We present a method which allows the general ODE solver in
DOLFIN to be used for solving PDE by writing the PDE in the form u = f(¢, u).

Applications: We present applications in incompressible fluid flow (Navier-Stokes’
equations) and large deformation elasto-plasticity (Euler-Almansi and hyperelastic
strain models).

2. FENICS

DOLFIN is a component of FENICS [2], a free software [1] system for the Automation of
Computational Mathematical Modeling (ACMM). The overall goal of ACMM is to build
a computational machine which takes any PDE (in variational form) and a tolerance for
the error as input, and automatically computes a solution to the model which satisfies the
tolerance.

This task can be broken down into several sub-tasks, automation of:

a) discretization of differential equations,
b) solution of discrete systems,

¢) error control of computed solutions,
d) optimization,

(e) modeling.

(
(
(

The essential step of (a), which concerns both (al) time-discretization and (a2) space-
discretization, is automated computation of finite element stiffness matrices and assembly
to a global stiffness matrix. This requires efficient evaluation of integrals of combinations
of derivatives of finite element basis functions over finite elements. FENICS achieves this
in the Fenics Form Compiler (FFC) by factorization of the element stiffness matrix into
a reference and geometry tensor. The reference tensor contains integrals over a reference
element computed once, which for each element upon multiplication a geometry tensor
gives the element stiffness matrix for each element. The input to FFCis then the equation
(2) in standard mathematical notation and a given finite element mesh and finite elements,
and the output is computer code (e.g. C++) specifying the discrete system.

The step (b) is automated in FENICS using, with input from FFC, the parallel numerical
linear algebra package Petsc.

The essential step of (¢) is automated computation of (c1) discrete residuals and (c2)
stability factors/weights by automated formulation and solution of a dual linearized prob-
lem. FENICS currently achives these requirements partially, with a full implementation in
sight.

FENICS consists of the following components:

FIAT: Flnite element Automatic Tabulator [5]. Automates the generation of finite el-

ements. Provides representation of finite elements and evaluation of basis functions
as well as general quadrature for integrating basis functions.

4 JOHAN HOFFMAN, JOHAN JANSSON, ANDERS LOGG, AND GARTH N. WELLS

FFC: Fenics Form Compiler [6]. Automates the evaluation of variational forms. Pro-
vides assembly code generation and a form language for equation input.

FErari: Finite Element rearrangement to automatically reduce instructions [7]. Opti-
mizes the evaluation of variational forms. Detects and exploits structure in element
tensors.

DOLFIN: Dynamic Object oriented Library for FINite element computation. The
programmer user interface for solving equations. Provides a high-level C++ and
Python interface to:

e assembly

e variational form representation

e finite element representation

e function representation (typically a solution or coefficient)
e mesh representation

e linear algebra algorithms

e initial value multi- and mono-adaptive ODE solver

e file input/output

The assembly algorithm of a finite element method is typically of high complexity, and
is not trivial to implement efficiently manually. A modification of the variational form
or the choice of finite element normally means that large parts of the code need to be
reimplemented. This is a waste of human resources and, due to the complexity of the
algorithm, may easily introduce errors in the implementation.

The finite element assembly algorithm for a bilinear form a(-,-) generating a matrix A
can be formulated as follows: For each element K, add the local element matrix Af](- =

ax(¢i,d;) to A, where ag(-,-) is the bilinear form restricted to the current element K.

FFC parses the form and, together with a description of the finite element, generates
source code for evaluation of the local element matrix AX. FFC (using FIAT) precomputes
integrals on the reference element. FFC uses FErari to exploit the structure of A¥ to
produce efficient code. This results in automatically generated source code which is as
efficient as hand-written code. The generated assembly code is then linked into DOLFIN
and can be accessed through the assembly interface.

3. FORM LANGUAGE

Performance of the form parsing and code generation stage is not critical. It’s a one-time
cost which does not scale with the size of the final problem. This means that we can afford
to implement and present the form language at a high level of abstraction, which enables
a powerful, user-friendly and easily extendable form language.

FFC defines a form language which is very close to standard mathematical notation.
The language is implemented as Python functions and operators.

A form is expressed using a combination of basic data types and operators. FFC compiles
a given multilinear form

(5) a: Vi xVEx..xVi =R

DOLFIN: AN AUTOMATED PROBLEM SOLVING ENVIRONMENT 5

into code that can be used to compute the corresponding tensor

(6) Aiza(gb%l,gﬁi,...,gb;)-
In the form language, a multilinear form is defined by first specifying the set of function
spaces, VI, V;2 ... V' and then expressing the multilinear form in terms of the basis

functions of these functions spaces.

A function space is defined in the form language through a FiniteElement, and a
corresponding basis function is represented as a BasisFunction. The following code defines
a pair of basis functions v and U for a first-order Lagrange finite element on triangles:

element = FiniteElement(‘‘Lagrange’’, ‘‘triangle’’, 1)
v = BasisFunction(element)
U = BasisFunction(element)

The two basis functions can now be used to define a bilinear form:
a = v¥D(U, 0)*dx

corresponding to the mathematical notation

(7) a(v,U)= [v L dz.
o Oxg

The arity of a multilinear form is determined by the number of basis functions appearing
in the definition of the form. Thus, a = v*Uxdx defines a bilinear form, namely a(v,U) =
Jo vudz, whereas L = v*f*dx defines a linear form, namely L(v) = [, v f dx.

In the case of a bilinear form, the first of the two basis functions is referred to as the
test function and the second is referred to as the trial function.

See the FFC manual [2] for more detailed reference.

4. ASSEMBLY EFFICIENCY

The assembly algorithm is the core component of a PDE solver. It is thus imperative that
it is efficient. A comparison between automatically generated FFC code and quadrature,
which is what is typically used for general PDE, can be seen in figure 1 showing massive
speedups [6].

5. HIGH-LEVEL PROGRAMMING INTERFACE

5.1. Interface documentation. DOLFIN publishes a high-level programming interface
in C++ (see the DOLFIN manual [3] for detailed reference). From this we automatically
generate a Python interface by using SWIG: an interface generator. Such tools give us the
choice of generating an interface in most major high-level langauges from a base C/C++
interface. We will thus not be language-specific when we describe the interface.

Having a high-level interface does not sacrifice performance. The interface wraps high-
performance data structures and algorithms:

Linear algebra: Wraps PETSc parallel data structures and algorithms.

6 JOHAN HOFFMAN, JOHAN JANSSON, ANDERS LOGG, AND GARTH N. WELLS

FFC vs Quadrature at g = 3 (3D)

B Quadrature
mEmm FFC
0.8} i
(4]
=
o6} .
2
o
O
o
Q
N
©
0.4} .
£
[e)
=2
0.2 _
0

Mass Poisson Navier-Stokes Elasticity

FiGURE 1. Benchmark of FFC-generated assembly code versus quadrature
of some standard forms.

Form evaluation: FFC generates optimal C++ code for evaluating a form (the el-
ement tensor).

Mesh: Arguably not high-performance, but a full implementation of an adaptive
mesh. Planned to be replaced by a high-performance parallel mesh representation.

Assembly: Implementation based on the mesh, form evaluation and linear algebra
(insert element tensor into global matrix, vector). Reaches high performance due
to the underlying components.

We present a list of the fundamental data structures and algorithms in the DOLFIN
interface:

Data structures:
Fundamental data structures of DOLFIN.
Variational form:
Represents a PDE: a(u,v) = L(v).

DOLFIN: AN AUTOMATED PROBLEM SOLVING ENVIRONMENT 7

Form:
A general form.
LinearForm:
The linear form L(v) representing the right hand side in a PDE. Publishes
an evaluation function for computing the element vector representing the
discrete form.
BilinearForm:
The bilinear form a(u, v) representing the left hand side in a PDE. Pub-
lishes an evaluation function for computing the element matrix repre-
senting the discrete form.
Finite element:
Represents the programming interface of a finite element. Publishes functions
such as a node map, mapping local to global degrees of freedom, and dimension
of the finite element space.
FiniteElement:
Function:
Represents a spatial function u(x,y, z) at a fixed time ¢. Used for representing
solutions and coefficients of PDE.
Function:
A general spatial function.
UserFunction:
An arbitrary user-defined function.
DiscreteFunction:
A discrete function U defined on a finite element space V}, (spanned by
basis functions {¢;}~,), represented by its degrees of freedom & on a
mesh: U = Zﬁo &
Mesh:
Data structures related to a computational mesh.
Mesh:
A mesh, publishing selector functions for cells, vertices, etc. and number
of cells, vertices, etc. and mesh entitity iterators.
Cell:
A cell in the mesh: Tetrahedron or Triangle.
Vertex:
A vertex in the mesh.
Linear algebra:
Represents vectors and (sparse) matrices of values.
Vector:
Typically used for storing degrees of freedom £ or an assembled discrete
linear form L(v).
Matrix:
Typically used for storing an assembled discrete bilinear form a(u,v).

8 JOHAN HOFFMAN, JOHAN JANSSON, ANDERS LOGG, AND GARTH N. WELLS

ODE:
Represents an ordinary differential equation (ODE) in the form: @ = f(¢,u)
with initial value u(0) = up and ¢ € [0,7]. Can be used to discretize time-
dependent PDE in time.
ODE:
Input/output:
Data structures for input/output to files.
File:
Represents a file. Can be used to input/output meshes, functions, vec-
tors, etc.
Algorithms:
Fundamental algorithms of DOLFIN.
Assembly:
Form a discrete system (equation system for the degrees of freedom) given a
discretization (finite element and mesh) of a PDE.
FEM: :assemble():
Assembles a Vector given a LinearForm or aMatrix given a BilinearForm,
together with a Mesh.
Linear algebra:
Standard algorithms for linear algebra, such as direct and iterative (Krylov)
linear solve, eigenvalue computation, etc.
LinearSolver: :solve():
Solve a linear system Ax = b.
Time stepping:
Multi-adaptive (allows individual timestep selection per component) arbitrary
order ¢G(q) and dG(q) Galerkin time-stepping methods for solving initial value
ODE problems.
ODE: :solve():
Solve the ODE generating an approximate solution U(t), t € (0,7].
TimeStepper: :step():
Take one step at a time, or one timeslab at a time in the multi-adaptive
case.

5.2. Example usage. We present a simple example of using the interface in Python due
to compactness and readability, demonstrating the elements of the interface. Coefficients
need to be implemented in C++ (but can be accessed in Python) for full efficiency. Here
we have implemented coefficients in Python.

The example consists of solving Poisson’s equation: Au = f.

We define a form (figure 2), representing the PDE and a solver (figure 3), where we define
coefficients and problem parameters and construct the solution. The form is compiled
transparently to the user by a JIT (Just In Time) procedure, using FFC and a C++
compiler.

DOLFIN: AN AUTOMATED PROBLEM SOLVING ENVIRONMENT 9

Alternatively, we could use the DOLFIN abstraction LinearPDE which encapsulates the
solver. We would then only need to input the form, coefficients and parameters (tolerances,
etc.).

The bilinear form a(v, U) and linear form L(v) for
Poisson’s equation, 2D version

element = FiniteElement("Lagrange", "triangle", 1)
v = TestFunction(element)

U = TrialFunction(element)

f = Function(element)

a = dot(grad(v), grad(U))*dx

L = f*xv*dx

FIGURE 2. Poisson2D.form

6. PDE/ODE SOLVER INTEGRATION

We define a time-dependent PDE as a differential equation:

A(u) = g(t) in Q x (0,7],
u(-,0) =u’ in Q,
u=gp on dp x (0,T],
Opu =gy on 00y x (0,7

(8)

where u = u(t,x), A has derivatives of variables t and x and gp and gy are known
boundary conditions on 0f).
We rewrite the equation (8) as:

9) i = f(t,u) inQx (0,T]

with f now containing the part of A depending on x and keeping the inital and boundary
conditions on wu.
We construct a variational formulation in x:

(10) /qu - /Qf(t,u)v inQx(0,T,YveV

Choosing V' =V}, a finite element space allows us to formulate an algebraic equation
system in x:

10 JOHAN HOFFMAN, JOHAN JANSSON, ANDERS LOGG, AND GARTH N. WELLS

from dolfin import *
from math import *

Define coefficients
class Source(Function):
def eval(self, point, i):
return point.y + 1.0

class SimpleBC(BoundaryCondition):
def eval(self, value, point, i):
if point.x == 0.0 or point.x == 1.0:
value.set(0.0)
return value

Construct data

f = Source()

bc = SimpleBC()

mesh = UnitSquare(10, 10)

Import forms
forms = import_formfile("Poisson.form")

a = forms.PoissonBilinearForm()
L = forms.PoissonLinearForm(f)
Define linear algebra objects
A = Matrix()

x = Vector()

b = Vector()

Assemble the discrete system
assemble(a, L, A, b, mesh, bc)

Solve discrete (linear) system
linearsolver = KrylovSolver ()
linearsolver.solve(A, x, b)

Represent the solution (U)
trialelement = a.trial()
U = Function(x, mesh, trialelement)

Output solution to ParaView (.pvd) format
vtkfile = File("poisson.pvd")
vtkfile << U

FIGURE 3. poissonsolver.py

DOLFIN: AN AUTOMATED PROBLEM SOLVING ENVIRONMENT 11

(11) ME =b(t,€) in (0,7]

where U(t,x) = S &(t)és(x) is the finite element approximation of u and the basis
functions {¢;}Y, span V},, and N = dim(V}). Equation (11) is now in ODE form for the
spatial degrees of freedom ().

DOLFIN can automatically construct M and b(t,&) from a description of fQ uv and
Jo, f(t,u)v in the FFC form language, where 4 is treated as the unknown in the case of M
and u is represented as a coefficient in the case of b. The ODE (11) can thus be input to the
DOLFIN ODE solver, which then automatially and efficiently computes a finite element
discretization in time.

This representation can be encapsulated in a DOLFIN abstraction which we can call
TimeDependentPDE which encapsulates the solver. We would then only need to input the
form for f(t,u), coefficients and parameters (tolerances, etc.).

This concept is exemplified in the elasticity application below.

7. APPLICATIONS

7.1. Incompressible fluid flow. Johan Hoffman has developed a General Galerkin (G2)
solver in DOLFIN for the incompressible Navier-Stokes” equations expressing conservation
of momentum and incompressibility [4]. In G2 the incompressibility equation takes the form
of the following equation for the pressure P, velocity U and ¢ a stabilization parameter:

(12) /(5Vq-VP:/5Vq~f—Vq~5V-U—5Vq-(U-VU), Vg eV,
Q Q

This equation is expressed in the FFC form language in figure 4. Example output can
be seen in figures 5, 7 and 6.

7.2. Elasto-plasticity. The following equations represent the equilibrium equation of

elasticity with directly computed B™* = (FFT)™! and the Euler-Almansi constitutive
relation for o

o= (I~ (FFT)™),

Dv)

thvff-l-f 1IlQ(t),
(13) Dx .

o = v in Q(t),

v(0,-) =" in QY
z(0,y) =y inQ°

together with suitable boundary conditions where F' is the Jacobian of the deformation.

12

JOHAN HOFFMAN, JOHAN JANSSON, ANDERS LOGG, AND GARTH N. WELLS

#
#

The contiuity equation for the incompressible
Navier-Stokes equations using cG(1)cG(1)

name = "NSEContinuity3D"

SC
ve
Cco

uc

de

um

10
il

[oY)

alar = FiniteElement("Lagrange", "tetrahedron", 1)

ctor = FiniteElement("Vector Lagrange", "tetrahedron", 1)

nstant_scalar = FiniteElement("Discontinuous Lagrange",
"tetrahedron", 0)

TestFunction(scalar) # test basis function
TrialFunction(scalar) # trial basis function
Function(vector) # linearized velocity
Function(vector) # force term

ltal = Function(constant_scalar) # stabilization parameter

mean(uc) # cell mean value of linearized velocity

Index() # index for tensor notation
Index() # index for tensor notation

Bilinear and linear forms

deltal*dot(grad(q), grad(P))*dx;
deltal*dot(grad(q), f)*dx - g*uc[iO].dx(i0)*dx -
deltal*q.dx(i0)*um[il]*uc[i0] .dx(i1)*dx

FIGURE 4. Form for the continuity equation of Navier-Stokes.

F1GURE 5. Turbulent flow around a spinning tennis ball.

DOLFIN: AN AUTOMATED PROBLEM SOLVING ENVIRONMENT 13

Y
y7=\1

F1GURE 6. Turbulent flow around a wing.

FIGURE 7. Turbulent flow around a car (geometry and mesh from Volvo
Car Corporation).

This equation is expressed in the FFC form language in figure 8. Example output can
be seen in figures 10 and 11 with the latter demonstrating a variant of the model in stress
rate formulation with a model for plasticity.

The actual DOLFIN solver is very small and simple: most of the work is automated. It
consists of declarations of solution and coefficient functions, the variational forms and using
the interface of the DOLFIN ODE solver (time discretization) by implementing the right
hand side f(t,u) of an ODE: % = f(t,u). The solver is mostly written using the DOLFIN
Python interface, with some utility functions implemented in C++. As an illustration, we
present the implementation of f(¢,u) for the elasticity model where the task is to compute
the vector dotx from the vector x.

14 JOHAN HOFFMAN, JOHAN JANSSON, ANDERS LOGG, AND GARTH N. WELLS

Form representing the equilibrium equation of elasticity

name = "ElasticityDirect"
elementl = FiniteElement("Vector Lagrange", "tetrahedron", 1)
element2 = FiniteElement("Discontinuous vector Lagrange",

"tetrahedron", 0, 9)

q = TestFunction(elementl) # Test function

dotv = TrialFunction(elementl) # Trial function
f = Function(elementl) # Body force

B = Function(element2) # Deformation measure

lmbda = Constant() # Lame coefficient
mu Constant() # Lame coefficient

Dimension
d = len(q)

Manual tensor representation
def tomatrix(q):
return [[q[3 * j + i] for i in range(d)] for j in range(d)]

Bmatrix = tomatrix(B)

def E(e, 1lmbda, mu):
Ee = 2.0 * mult(mu, e) + mult(lmbda, mult(trace(e), Identity(d)))

return Ee
ematrix = 0.5 * (Identity(d) - Bmatrix)

sigmamatrix = E(ematrix, lmbda, mu)

a
L

dot(dotv, q) * dx
(-dot(sigmamatrix, grad(q)) + dot(f, q)) * dx

F1GURE 8. Form for a total stress Euler-Almansi elasticity model.

REFERENCES

[1] FREE SOFTWARE FOUNDATION, GNU GPL. http://www.gnu.org/copyleft/gpl.html.

DOLFIN: AN AUTOMATED PROBLEM SOLVING ENVIRONMENT 15

def fu(self, x, dotx, t):

Scatter from x to components
Vector_scatter(self.xu, self.x, self.dotxu_sc)
Vector_scatter(self.xv, self.x, self.dotxv_sc)

Mesh
Elasticity_deform(self.mesh(), self.U)

B (computed directly)
Elasticity_computeB(self.xB, self.xFO, self.xF1,
self .B.element (), self.mesh())

U
self.dotxu.copy(self.xv)

#V
assemble(self.L(), self.dotxv, self.mesh())
self.dotxv.div(self.m)

Gather components into dotx
Vector_gather(self.dotxu, self.dotx, self.dotxu_sc)
Vector_gather(self.dotxv, self.dotx, self.dotxv_sc)

2]

FIGurE 9. DOLFIN Python code for the Ko elasticity solver (right hand
side of ODE).

J. HorrMmAN, J. JANSsoON, C. JoHNSON, M. KNEPLEY, R. C. KirBY, A. LOGG, AND L. R. ScoTT,
FEniCS. http://www.fenics.org/.

J. HOFFMAN, J. JANSSON, AND A. LocG, DOLFIN, 2005. http://www.fenics.org/dolfin/.

J. HoFFMAN AND C. JOHNSON, Applied Mathematics: Body and Soul, vol. IV, Springer-Verlag, 2006.
In press.

R. C. KIRBY, FIAT: A new paradigm for computing finite element basis functions, ACM Trans. Math.
Software, 30 (2004), pp. 502-516.

R. C. KIRBY AND A. LOGG, A compiler for variational forms. submitted to ACM Trans. Math. Softw.,
2005.

R. C. KirBY, A. Loca, L. R. ScorT, AND A. R. TERREL, Topological optimization of the evaluation
of finite element matrices. submitted to STAM J. Sci. Comput., 2005.

A. LoGa, Automating the finite element method, Tech. Rep. 2006-01, Finite Element Center Preprint
Series, 2006.

16

JOHAN HOFFMAN, JOHAN JANSSON, ANDERS LOGG, AND GARTH N. WELLS

FiGUrRE 10. Example DOLFIN output of visco-elasto-plastic model solid
mechanics model with contact, simulating a cow and a block being thrown
in a room.

DOLFIN: AN AUTOMATED PROBLEM SOLVING ENVIRONMENT

FIGURE 11. Bent beam simulated using a plastic stress rate model. The
right image is the final deformed rest state after an initial velocity.

17

KO: A FENICS SOLID MECHANICS SOLVER

JOHAN JANSSON

1. INTRODUCTION

We present a solid mechanics finite element method (FEM) solver according to the
following design specifications:

(a) Constitutive modeling including elastic, viscous and plastic materials.
(b) Large displacements, rotations and deformations.

(¢) Contact and friction boundary conditions.

(d) Adaptive modeling and discretization with error control.

(e) Efficiency.

The solver is named Ko and is part of the FENICS[3] project of Automation of Computa-
tional Mathematical Modeling (ACMM) [9]. Our objective is to develop an automated solid
mechanics solver which can be used e.g. in real-time in computer games and simulators
for surgical training, for which flexibility and execution speed represent key requirements.

The solver is based on an updated Lagrangian continuum formulation where the equilib-
rium equation is formulated on the current deformed configuration in terms of the Cauchy
stress, and the constitutive model couples the Cauchy stress to the deformation, or rates
thereof, on the current configuration.

We will find that the efficiency of Ko is comparable to that of mass-spring models,
which represent the current standard for high-performance and flexibility in the computer
graphics industry. We achieve this goal by using the FENICS Form Compiler (FFC) to
compute the element stiffness tensor in each time step or iteration, which represents the
main computational work. We show computations on a PC allowing realistic simulations
in real-time using adaptive meshes with up to a couple of thousand nodes.

The present continuum model allows automation of modeling and discretization, while
automation of mass-spring models is much more difficult (if at all possible) to achieve. We
can thus reach the execution speed of a mass-spring model while keeping the advantages
of a continuum model as concerns automation of modeling and discretization. We thus
present a concrete example of Automated Solid Mechanics (ASM) as a basic aspect of the
ACMM of FENICS.

Debunne et. al. [1] have previously presented a manually implemented similar pure
elasticity model for real-time applications.

2. ELASTO-VIsco-PrLasTic MODEL

We consider an elasto-visco-plastic body B subject to large deformations under some

load. We assume that B occupies the bounded domain Q° in R? at time ¢ = 0, and we
1

2 JOHAN JANSSON

denote by z(t, X) the coordinates at time ¢ > 0 of a material point in B with coordinates
X € QY at time t = 0. Let Q(t) = {x(¢t,X) : X € Q°} be the domain in R* occupied by
the elastic body B at time ¢ > 0. The model consists of a system of partial differential
equations on the current configuration €2(¢) expressing for ¢t > 0:

(i) equilibrium of forces.
(i) constitutive model coupling stress to strain, or rates thereof,

combined with initial and boundary conditions. The equilibrium equation has a generic
form, while there is a very large variety of constitutive models. We will limit the constitutive
models to a few basic forms including elastic-visco-plastic materials. We focus on the
development of an efficient solver including (a)-(d), and not constitutive modeling, which
is a very rich (and complex) field.

For purely elastic materials the constitutive equation may relate the total stress to the
total strain, from which rate models may be derived. With visco-plastic materials it is
natural to formulate the constitutive equation directly in rate form.

We will below denote by E a constant matrix of elasticity coefficients, typically of the
form

Fe =\ Z exr0 + 2p€,
k

where A > 0 and p > 0 are Lamé coefficients, e = (e;;) is a strain tensor and ¢ denotes the
Kronecker delta.

2.1. Deformation and Strain. Define F'(¢,y) with y = z(¢; X) € Q(t) by
0
F(ty) = F(t,2(t: X)) = —a(t; X
(t.9) = Pt (1 X)) = (6 X),

that is, F'(¢,y) is the Jacobian of the mapping X — y = z(¢, X) evaluated at X.
The Euler-Almansi strain tensor e(t,y) defined by

elt9) = 5T — (F(t,9)F(t,5)) ™),

measures the strain (or deformation) with respect to the deformed configuration. Here and
below, T denotes the transpose and [is the identity matrix.

2.2. Material Time-Derivative. We define the velocity v(t,y) for y = z(t; X) € Q(¢)
by

v(t,z(t, X)) = %x(t;X).

We also introduce the material time derivative 2% of a function w(t,y) by

Dw

d
Dt (twr(t;X)) = Ew(tx(t;X))'

KO: A FENICS SOLID MECHANICS SOLVER 3

2.3. Deformation Rate. We compute

o Lat X)) = 2 Ft,a(t X)) = 5 52t X)
0 ov ox
- —8Xv(t,:1:(t; X)) = a—x(t,x(t;X))a—X(t,x(t;X))

= Vo(t, z(t; X)) F(t, x(t; X)),
where Vu(t,y) is the gradient of v(¢,y) with respect to y. Thus

DF
1 — = F
(1) D Vo
and using that ZZF~1 + FL F~1 = 0, which follows by differentiating FF~* = I, we have
D
2 —F ' =—F"'Vu.
(2) D v

2.4. Equilibrium Equation. The equilibrium equation at time ¢ > 0 in terms of the
Cauchy stress o(t,y) takes the form

Dv
(3) Py (ty) = V-alty) = ft.y) forye Q)
where V - o denotes the divergence of o(¢,y) with respect to the y-coordinates, p denotes

the density, and f(¢,y) is a given volume force. For simplicity, we assume here p to be
constant p = 1.

2.5. Hyper/hypo-elasticity. A simple hyper-elastic constitutive model derived from a a
stored-energy functional, takes the form ([10]):

J?—1

(4) Jo=r(ty) =N+ u(B - 1),
where J = detF, 7 is the Kirchhoff stress, B = FF' and A\ > 0 and ¢ > 0 are Lamé
parameters.

We derive a rate form of (4) by computing, assuming A = 0 for simplicity,

D . :
FZ = w(EFT + FFT) = u(VoB + BVv')

= 2ue(v) + Vor + 7V,

where we used that B = I+ iT and we define the strain rate ¢(v) = %(VU—I—V’UT). Defining

Nnow H
-
tF=——Vor—7Vu',
Dt
which coincides with the Lie derivative of 7, we can write the hyper-elastic constitutive

equation (4) in rate form as

(5) T = 2ue(v).

4 JOHAN JANSSON

More generally, we may consider a hypo-elastic rate model of the form

(6) 7 = Fe(v)
(7) o = Fe(v).

where the dot may indicate any objective stress rate, such as the Jaumann rate.

2.6. Hypo-elasto-visco-plasticity. We shall consider a basic hypo-elasto-visco-plastic
model of the following rate form:

(8) g+ %(0 — 7o) = Ee(v),

where v > 0 is a viscosity and 7o denotes the projection of ¢ onto a (convex) set of
plastically admissible stresses.

2.7. Euler-Almansi. A simple constitutive model based on the Euler-Almansi strain e,
takes the form

o=l — (FFT)™)
or more generally 0 = Fe. The corresponding rate model takes the form.

D
FCZ = 2ue(v) — oVo — Vo' o,

which is similar, but not identical to the above hyper-elastic model.

3. HYPERELASTICITY: TOTAL STRESS

We formulate the hyperelastic problem with total stress constitutive model as follows:
Find the motion X — z(t; X) with velocity v(t, z(t; X)) = 42(¢; X) and 2(0; X) = X,
such that for ¢ > 0
DF

E:VUF inQ(t),
IV LE| _
o=J"(\ 5 I+ w(B—=1)) in Q(t),
D
Vo Veootf Q)
(D
2 in Q(¢)
o = ¢ o ,

v(0,-) =" in Q°,
2(0,y) =y in Q°,
F(0,)=F° in Q°
together with suitable boundary conditions. Note that here V refers to the coordinates y €

Q)(t) in the current deformed configuration, while the coordinates in the initial configuration
are denoted by X € QY.

KO: A FENICS SOLID MECHANICS SOLVER 5

In this formulation, the initial configuration of the elastic body is not kept, and the Jaco-
bian F'is successively updated using the equation for %. It is possible to directly compute
F by direct differentiation of z(¢; X') with respect to X, in which case the initial configura-
tion must be kept. We prefer the rate equation without storage of the initial configuration
since it reflects the physics better by storing only the current deformed configuration. In
both cases we of course expect the elastic body to return to the initial configuration under
appropriate unloading.

We can may replace the constitutive equation with a different stress-strain relation, for
example the Euler-Almansi model. We may also introduce a viscous effect by modifying

the equlibrium equation to:

Dv :
E—VV-E(U):V-O'-I-JC in Q(t),

where v is a viscosity.

4. HYPO-ELASTO-VISCO-PLASTICITY: STRESS RATE

We formulate a hypo-elasto-visco-plastic model with stress rate constitutive equation
as follows: Find the motion X — z(t;X) with velocity v(t,z(t; X)) = Lz(t; X) and
x(0; X)) = X, such that for ¢t > 0

o = Fe(v) — %(U — 7o) in Q(t),

Dv .

(1()) E —VO'"‘f 1mn Q(t),
Dx)
D_t =7v 1l Q(t),

v(0,-) =v° in QY
z(0,y) =y in Q"
where 7o is the projection on to the set of admissible stresses, Y; is the yield stress of
the material and v, is the plastic viscosity.

If the stress o in a body remains within the elastic region: ||o|| < Y, the plastic term
becomes:

(11) l(J — 7o) = i(g —0)) =0

Vp Vp

and the body remains fully elastic.

5. VARIATIONAL FORMULATION

We use FFC to automate discretization in space and FENICS MG ode-solver to automate
discretization in time. The input is the model in variational form, a finite element mesh
on the initial configuration and a choice finite elements in space and time.

6 JOHAN JANSSON

For the FEM discretization in space, we use piecewise linear continuous functions in
the equilibrium equation and piecewise constants in the constitutive law. For the FEM
discretization in time we use dG(0) or ¢G(1).

6. AUTOMATED DISCRETIZATION IN FENICS

Ko is implemented based on FENICS[3], a free software [2] system for ACMM. The
overall goal of ACMM is to build a computational machine which takes any PDE (in
variational form) and a tolerance for the error as input, and automatically computes a
solution to the model which satisfies the tolerance.

FENICS consists of the following components:

FIAT: Flnite element Automatic Tabulator [5]. Automates the generation of finite el-
ements. Provides representation of finite elements and evaluation of basis functions
as well as general quadrature for integrating basis functions.

FFC: Fenics Form Compiler [6]. Automates the evaluation of variational forms. Pro-
vides assembly code generation and a form language for equation input.

FErari: Finite Element rearrangement to automatically reduce instructions [7]. Opti-
mizes the evaluation of variational forms. Detects and exploits structure in element
tensors.

DOLFIN: Dynamic Object oriented Library for FINite element computation. The
programmer user interface for solving equations. Provides a high-level C++ and
Python interface to:

e assembly

e variational form representation

e finite element representation

e function representation (typically a solution or coefficient)
e mesh representation

e linear algebra algorithms

e initial value multi- and mono-adaptive ODE solver

e file input/output

The form for the total stress model with directly computed B~! = (FFT)~! is presented
in figure 1. The forms for the stress rate model are presented in figures 2, 3 and 4.

A high-performance combination of the models should adaptively transition to the plastic
model when the yield condition is exceeded. Currently we implement the elastic and plastic
models separately.

FFC currently does not fully support tensor-valued forms. We remedy this by manually
defining a function which represents tensors as vectors.

FENICS supports composing several finite elements into one, this would allow us to
express every model as a single form. For now we use separate forms, which implies a
small overhead.

6.1. Solver. The actual FENICS solver is very small and simple: most of the work is
automated. It consists of declarations of solution and coefficient functions, the variational

KO: A FENICS SOLID MECHANICS SOLVER 7

Form representing the equilibrium equation

name = "ElasticityDirect"

elementl = FiniteElement("Vector Lagrange", "tetrahedron", 1)

element2 = FiniteElement("Discontinuous vector Lagrange",
"tetrahedron", 0, 9)

v = BasisFunction(elementl)
#f = Function(elementl)
B = Function(element?2)

Imbda
mu

Constant() # Lame coefficient
Constant() # Lame coefficient

Dimension
d = len(v)

def tomatrix(q):
return [[q[3 * j + i] for i in range(3)] for j in range(3)]

Bmatrix = tomatrix(B)

def E(e, lmbda, mu):
Ee = 2.0 * mult(mu, e) + mult(lmbda, mult(trace(e), Identity(d)))

return Ee
epsilonm = 0.5 * (Identity(d) - Bmatrix)
sigmamatrix = E(epsilonm, lmbda, mu)

L = (-dot(sigmamatrix, grad(v))) * dx

F1GURE 1. Equilibrium equation of total Euler-Almansi model.

forms and using the interface of the MG ODE solver (time discretization) by implementing
the right hand side f(¢,u) of an ODE: % = f(t,u). The solver is mostly written in
Python, using DOLFIN as a module, with some utility functions implemented in C++.
As an illustration, we present the implementation of f(¢,u) for the Euler-Almansi rate
model where the task is to compute the vector dotx from the vector x.

We lump the mass matrix resulting from discretization of % in space which allows us to
efficiently use the MG fixed-point iteration solver for the resulting algebraic system.

8 JOHAN JANSSON

Form representing the equilibrium equation

name = "ElasticityUpdatedEquilibrium"

elementl = FiniteElement("Discontinuous vector Lagrange",
"tetrahedron", 0, 9)

element2 = FiniteElement("Vector Lagrange", "tetrahedron", 1)

nuv = Constant () # viscosity coefficient

v = TestFunction(element2)
#f = Function(element?2)
sigma = Function(elementl)
epsilon = Function(elementl)

def tomatrix(q):
return [[q[3 * i + j] for i in range(3)] for j in range(3)]

sigmamatrix = tomatrix(sigma)
epsilonmatrix = tomatrix(epsilon)

L = (-dot(sigmamatrix, grad(v)) -
nuv * (dot(epsilonmatrix, grad(v)))) * dx

FIGURE 2. Equilibrium equation of stress rate Euler-Almansi model.

7. THE MASS-SPRING MODEL

We have earlier in [4] described an extended mass—spring model for the simulation of
systems of deformable bodies.

The mass—spring model represent bodies as systems of discrete mass elements, with the
forces between the mass elements transmitted using explicit spring connections. (Note that
“spring” is a historical term, and is not limited to pure Hookian interactions). Given the
forces acting on an element, we can determine its motion from Newton’s second law,

(12) o _ I

dat m
where I’ denotes the force acting on the element, m is the mass of the element and v is
the velocity of the element with = the current coordinate of the element. The motion of
the entire body is then implicitly described by the motion of its individual mass elements.
The force given by a standard spring is assumed to be proportional to the elongation of
the spring from its rest length. We extend the standard model with contact, collision and
fracture, by adding a radius of interaction to each mass element, and dynamically creating

and destroying spring connections based on contact and fracture conditions.

KO: A FENICS SOLID MECHANICS SOLVER

Form representing the stress equation

name = "ElasticityUpdatedStress"
elementl = FiniteElement("Vector Lagrange", "tetrahedron", 1)

element2 = FiniteElement("Discontinuous vector Lagrange",
"tetrahedron", 0, 9)

element3 = FiniteElement("Discontinuous Lagrange", "tetrahedron", 0)

lmbda = Constant() # Lame coefficient

Constant() # Lame coefficient
Constant() # Plastic viscosity

mu
nuplast

q = TestFunction(element?2)

v = Function(elementl)

sigma = Function(element?2)

B = Function(element?2)
sigmanorm = Function(element3)

Dimension
d = len(v)

def epsilon(u):
return 0.5 x (grad(u) + transp(grad(u)))

def E(e, 1lmbda, mu):
Ee = 2.0 * mult(mu, e) + mult(lmbda, mult(trace(e), Identity(d)))

return Ee

def tomatrix(q):
return [[q[3 * j + i] for i in range(3)] for j in range(3)]

gmatrix = tomatrix(q)
sigmamatrix = tomatrix(sigma)
Bmatrix = tomatrix(B)

Lplast = dot(E(sigmamatrix, lmbda, mu), gqmatrix)
ederiv = 0.5 * (mult(Bmatrix, grad(v)) + mult(transp(grad(v)), Bmatrix))
Lelast = dot(E(ederiv, lmbda, mu), gmatrix)

L = (Lelast - nuplast * (1 - sigmanorm) * Lplast) * dx

FIGURE 3. Stress rate equation of differentiated Euler-Almansi model.

10 JOHAN JANSSON

Form representing the deformation equation

name = "ElasticityUpdatedDeformation"
elementl = FiniteElement("Vector Lagrange", "tetrahedron", 1)
element2 = FiniteElement("Discontinuous vector Lagrange",

"tetrahedron", 0, 9)

q = TestFunction(element?2)
= Function(elementl)
Function(element?2)

o<
o

Dimension
d = len(v)

def tomatrix(q):
return [[q[3 * j + i] for i in range(3)] for j in range(3)]

tomatrix(q)
tomatrix(Fmatrix)

gmatrix
Fmatrix

L = dot(-mult(Fmatrix, grad(v)), gmatrix) * dx

FIGURE 4. Deformation equation of differentiated Euler-Almansi model.

In Table 1, we give the basic properties of the mass—spring model consisting of mass
elements and spring connections. With these definitions, a mass—spring model may thus
be given by just listing the mass elements and spring connections of the model.

The mass-spring model is analogous to the Euler-Almansi model with directly computed
deformation B (or F)).

8. THE CONTACT MODEL

Traditionally, contact models in solid mechanics (i.e. the penalty method) have been
based on kinematics. This means that that a condition of non-penetration of bodies is
enforced. We believe that a model should describe the mechanics and not kinematics of a
phenomenon: the contact model should model the forces resulting from the contact.

Contact (and its inverse: fracture) is an elastoplastic pheonomenon, and we have formu-
lated several such a model above. However, contact introduces complexity in geometry: the
topology of the domain of the problem changes when bodies contact or fracture. We do not
yet have geometrical representations which are robust enough to handle these challenges.

KO: A FENICS SOLID MECHANICS SOLVER

11

def fu(self, x, dotx, t):

Scatter from x to components

Vector_scatter(self.xu, self.x, self.dotxu_sc)
Vector_scatter(self.xv, self.x, self.dotxv_sc)
Vector_scatter(self.xF, self.x, self.dotxF_sc)
Vector_scatter(self.xSigma, self.x, self.dotxSigma_sc)

Mesh
Elasticity_deform(self.mesh(), self.U)

Compute B = FF'T

Elasticity_computeB(self.xF, self.xB,
self .F.element (),
self .mesh())

Mass matrix
Elasticity_computemsigma(self.msigma, self.Sigma.element(),
self .mesh())

U
self .dotxu.copy(self.xv)

#V
assemble(self.L(), self.dotxv, self.mesh())
self.dotxv.div(self.m)

Sigma

assemble(self.Lstress, self.dotxSigma, self.mesh())
self.dotxSigma.div(self.msigma)
self.xEpsilon.copy(self.dotxSigma)

F
assemble(self.LF, self.dotxF, self.mesh())
self .dotxF.div(self .msigma)

Gather components into dotx

Vector_gather(self.dotxu, self.dotx, self.dotxu_sc)
Vector_gather(self.dotxv, self.dotx, self.dotxv_sc)
Vector_gather (self.dotxF, self.dotx, self.dotxF_sc)
Vector_gather (self.dotxSigma, self.dotx, self.dotxSigma_sc)

FIGURE 5. Python code for the FEniCS elasticity solver (right hand side of ODE).

12 JOHAN JANSSON

A mass element e is a set of parameters {z, v, m, r, C}:

T current coordinate

v velocity

m : mass

r radius

C a set of spring connections

A spring connection c is a set of parameters {ey, e, k, b, [, d}:

e; : the first mass element connected to the spring
ey : the second mass element connected to the spring
k . Hooke spring constant

b : damping constant

lop : rest distance

ly : fracture distance

TABLE 1. Descriptions of the basic elements of the mass—spring model: mass
elements and spring connections.

Until we have such representations, we use the mass-spring model to model contact. We
represent nodes on the surface of the computational mesh as masses in the mass-spring
model, and then simply use the mass-spring model to compute forces on the masses.

This leads to the following discrete contact model:

DV _ _
(13) Ft = MFéM<BE+Fbody) +MMchontact
where Mpg)s is the mass matrix resulting from a FEM discretization of the PDE model

and Mg is the mass matrix resulting from the mass-spring model.

9. SIMULATION EXAMPLES

We present some simulation examples of the elastoplastic models. In figure 6 a cow
object and a block are thrown in a room, displaying elastic, viscous, contact and friction
phenomena. In figure 7 a beam is fixed at one end, and an initial velocity deforms the
beam. The beam is plastic and the deformation is permanent, illustrating the plastic stress
rate Euler-Almansi model.

See [3] for more mature and larger-scale examples.

10. PERFORMANCE COMPARISON

10.1. Experimental setup. We let an implementation of the mass-spring model (part of
Ko in FENICS) represent the minimal amount of work needed to model systems of elastic
bodies under large deformation. It is the industry standard for high-performance elastic
simulation (see [4] and [8] for a survey) and serves as the benchmark. We then make

KO: A FENICS SOLID MECHANICS SOLVER 13

sseeew
= & 2 Jd d & J
LA 4 4 4 4 4 J
E A B & & 4 & 3
e ww

F1GURE 6. Cow and a block thrown in a room, illustrating a solution of the
rate form of the Euler-Almansi model. The spheres on the surface of the
bodies are the representation of the contact model.

a comparison with an automated implementation (DOLFIN in FENICS) of the FEM
discretization of the elastic PDE (9).

Both implementations perform the task of assembling a discrete (in space) system rep-
resenting their corresponding equations. In this case the discrete system is the ODE:

14 JOHAN JANSSON

- A
L

FIGURE 7. Bent beam simulated using the plastic stress rate model. The
lower right image is the permanently deformed rest state resulting from an
initial velocity.

du
14 — = f(t
(14) = (b w)
This means the task is computing f (¢, u) for a given t and u. The ODE is then discretized
by the same method, so that is the same amount of work for both models.

KO: A FENICS SOLID MECHANICS SOLVER

Ficure 8. Ko simulation of cow falling down stairs. Here we map the
deformation from the mechanics representation to the original boundary rep-
resentation.

15

16 JOHAN JANSSON

The mass-spring assembly and the FEM assembly both use PETSc for linear algebra
operations. We also use the same operating system, compiler and optimization flags. The
source code for both implementations is published and available at the FENICS website
3].

The experimental setup consists of a unit cube discretized into cells (tetrahedrons). We
vary the number of cells in the discretized cube and measure the time to compute f(¢,u).

We compare two versions of the PDE: one fully elastic and one viscoelastic.

10.2. Results. The results can be seen in plots 10.2 and 10.2. The fully elastic PDE is a
factor 2-3 slower and the viscous PDE is a factor 3-4 slower than the mass-spring model.

The fully elastic PDE performs very well. There is still work to be done in making
FENICS as a whole more efficient (see performance analysis below), mesh representation
for example. We carry out a performance analysis of the implementation below to find out
which parts of the implementation are taking the most execution time.

Performance analysis (see figures 11 and 12) tells us that the form evaluation does
not dominate the total execution time, which means that the automated discretization in
FENICS lives up to its goals. The assembly does dominate the total execution time, but
this is expected, since that’s what the benchmark consists of. The PDE model spends a
considerable time in primitive mesh functions, which means we should find or design a
more efficient mesh interface and representation.

With a more efficient mesh representation, we should be able to reach a factor 1-2. We
cannot expect better if the mass-spring model is representative of the minimal amount of
work.

The PDE model allows space adaptivity, while the mass-spring model does not. This
will give the PDE model an efficiency improvement of many factors, depending on the
problem parameters. This would mean that the PDE model with space adaptivity is more
efficient than the mass-spring model.

10.3. Performance analysis. Profiling information (generated by the gprof profiler) of
the PDE and mass-spring implementations can be seen in figures 11 and 12 respectively.
The flat list gives execution time spent in individual functions while the call graph gives
execution time spent in functions including their children.

REFERENCES

[1] G. DEBUNNE, M. DESBRUN, M.-P. CANI, AND A. H. BARR, Dynamic real-time deformations using
space and time adaptive sampling, in SIGGRAPH 2001 Computer Graphics Proceedings, ACM Press
/ ACM SIGGRAPH, 2001, pp. 31-36.

[2] FREE SOFTWARE FOUNDATION, GNU GPL. http://www.gnu.org/copyleft/gpl.html.

[3] J. HOFFMAN, J. JANsSON, C. JouNsON, M. KNEPLEY, R. C. KirBY, A. LoGaG, AND L. R. ScorT,
FEniCS. http://www.fenics.org/.

[4] J. JANSSON AND J. S. M. VERGEEST, A discrete mechanics model for deformable bodies, Computer-
Aided Design, 34 (2002).

[5] R. C. KIRBY, FIAT: A new paradigm for computing finite element basis functions, ACM Trans. Math.
Software, 30 (2004), pp. 502-516.

KO: A FENICS SOLID MECHANICS SOLVER 17

Assembly performance (individual)

120 T

| AN — A— S
B0 —— S
sof S— A —

seconds

ol SO R R
S . .

Il Il Il Il
8.0 0.5 1.5 2.0 2.5
4.0 :

35| e T T

3.0

2.5

1 1 1 1
2'8.0 0.5 1.0 1.5 2.0 2.5
cells xle4

FiGURE 9. Plot of execution time against number of cells for the elastic
PDE model (9) versus the mass-spring model.

[6] R. C. KIRBY AND A. LoGG, A compiler for variational forms. submitted to ACM Trans. Math.
Softw., 2005.

[7] R. C. KirBY, A. LoGa, L. R. ScoTT, AND A. R. TERREL, Topological optimization of the evaluation
of finite element matrices. submitted to STAM J. Sci. Comput., 2005.

[8] A. Liu, F. TENDICK, K. CLEARY, AND C. KAUFMANN, A survey of surgical simulation: Applications,
technology and edudcation, Presence, 12 (2003).

9] A. Loca, Automation of Computational Mathematical Modeling, PhD thesis, Chalmers University of
Technology, Sweden, 2004.

[10] J. C. Simo AND T. J. R. HUuGHES, Computational Inelasticity, Springer-Verlag, 2000.

18

180

JOHAN JANSSON

160
140
120
100
80
60
40
20

seconds

5.0

8.0

e e T T

T R A—— A S—

S| R T S S —

>80

cells

.0 2.5
xle4

F1GURE 10. Plot of execution time against number of cells for the viscoelas-
tic PDE model (9) versus the mass-spring model.

KO: A FENICS SOLID MECHANICS SOLVER

19

Flat list:

time (%) Name

33.24 dolfin:
7.90 dolfin:
6.53 dolfin:
5.47 dolfin:
5.18 dolfin:
3.92 dolfin:

Call graph:

time (%) Name

:ElasticityDirect: :LinearForm: :eval(...)
:AffineMap: :updateTetrahedron(. . .)
:DiscreteFunction: :interpolate(...)
:PArray<Vertex*>: :operator () (int)

:Cell: :vertexID(int)

:GenericCell: :vertexID(int)

80.8 dolfin::FEM::assemble_common(...)
33.2 dolfin::ElasticityDirect::LinearForm::eval(...)
22.3 dolfin::Form::updateCoefficients(...)
14.8 dolfin::ElasticityUpdatedUtil::computeB(...)
FiGURE 11. Extract from profiling information: flat list and call graph of
PDE implementation.
Flat list:

time (%) Name

22.90 ko
22.18 ko
18.77 ko
11.97 ko

Call graph:

time (%) Name
99.9 ko::BasicEulerIntegrator::residualdGO(...)
49.8 ko::MechanicsModel: :force(...)

: :BasicEulerIntegrator: :residualdGO()
::SimpleVector: :norm() const

: :MechanicsModel: :force(...)
::SimpleVector: :axpy(...)

F1GURE 12. Extract from profiling information: flat list and call graph of
mass-spring implementation.

