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Abstract. Developing multiphysics �nite element methods (FEM) and
scalable HPC implementations can be very challenging in terms of soft-
ware complexity and performance, even more so with the addition of
goal-oriented adaptive mesh re�nement. To manage the complexity we in
this work present general adaptive stabilized methods with automated
implementation in the FEniCS-HPC automated open source software
framework. This allows taking the weak form of a partial di�erential
equation (PDE) as input in near-mathematical notation and aut omati-
cally generating the low-level implementation source code and auxiliary
equations and quantities necessary for the adaptivity. We dem onstrate
new optimal strong scaling results for the whole adaptive framework
applied to turbulent 
ow on massively parallel architectures do wn to
25000 vertices per core with ca. 5000 cores with the MPI-based PETSc
backend and for assembly down to 500 vertices per core with ca. 20000
cores with the PGAS-based JANPACK backend. As a demonstration of
the power of the combination of the scalability together wit h the adaptive
methodology allowing prediction of gross quantities in turbul ent 
ow
we present an application in aerodynamics of a full DLR-F11 aircraft
in connection with the HiLift-PW2 benchmarking workshop with g ood
match to experiments.
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1 Introduction

As computational methods are applied to simulate even more advanced problems
of coupled physical processes and supercomputing hardware is developed towards
massively parallel heterogeneous systems, it is a major challenge to manage the
complexity and performance of methods, algorithms and software implemen-
tations. Adaptive methods based on quantitative error control pose additional
challenges. For simulation based on partial di�erential equation (PDE) models,
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the �nite element method (FEM) o�ers a general approach to numerical discreti-
sation, which opens for automation of algorithms and software implementation.

In this paper we present the FEniCS-HPC open source software framework
with the goal to combine the generality of FEM with performance, by optimisation
of generic algorithms [4, 2, 13]. We demonstrate the performance of FEniCS-HPC
in an application to subsonic aerodynamics.

We give an overview of the methodology and the FEniCS-HPC framework,
key aspects of the framework include:

1. Automated discretization where the weak form of a PDE in mathemat-
ical notation is translated into a system of algebraic equations using code
generation.

2. Automated error control , ensures that the discretization error e = u -
U in a given quantity is smaller than a given tolerance by adaptive mesh
re�nement based on duality-based a posteriori error estimates. An a posteri
error estimate and error indicators are automatically generated from the
weak form of the PDE, by directly using the error representation.

3. Automated modeling , which includes a residual based implicit turbulence
model, where the turbulent dissipation comes only from the numerical stabi-
lization, as well as treating the 
uid and solid in 
uid-structure in teraction
(FSI) as one continuum with a phase indicator function tracked by a moving
mesh and implicitly modeling contact.

We demonstrate new optimal strong scaling results for the whole adaptive
framework applied to turbulent 
ow on massively parallel architectu res down to
25000 vertices per core with ca. 5000 cores with the MPI-based PETSc backend
and for assembly down to 500 vertices per core with ca. 20000 cores with the
PGAS-based JANPACK backend. We also present an application in aerodynamics
of a full DLR-F11 aircraft in connection with the HiLift-PW2 benchmark ing
workshop with good match to experiments.

1.1 The FEniCS project and state of the art

The software described here is part of the FEniCS project [2], withthe goal to
automate the scienti�c software process by relying on general implementations and
code generation, for robustness and to enable high speed of software development.

Deal.II [1] is a software framework with a similar goal, implementing general
PDE based on FEM in C++ where users write the \numerical integration
loop" for weak forms for computing the linear systems. The framework runs
on supercomputers with optimal strong scaling. Deal.II is based on quadrilater
(2D) and hexahedral (3D) meshes, whereas FEniCS is based on simplicialmeshes
(triangles in 2D and tetrahedra in 3D).

Another FEM software framework with a similar goal is FreeFEM++ [3], whic h
has a high-level syntax close to mathematical notation, and has demonstrated
optimal strong scaling up to ca. 100 cores.
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2 The FEniCS-HPC framework

FEniCS-HPC is a problem-solving environment (PSE) for automated solution
of PDE by the FEM with a high-level interface for the basic concepts ofFEM:
weak forms, meshes, re�nement, sparse linear algebra, and with HPC concepts
such as partitioning, load balancing abstracted away.

The framework is based on components with clearly de�ned responsibilities.
A compact description of the main components follows, with their dependencies
shown in the dependency diagram in Figure 1:

FIAT: Automated generation of �nite element spaces V and basis functions
� 2 V on the reference cell and numerical integration with FInite element
Automated Tabulator (FIAT) [13, 12]

e = ( K; V; L )

where K is a cell in a meshT , V is a �nite-dimensional function space, L is
a set of degrees of freedom.

FFC+UFL: Automated evaluation of weak forms in mathematical notation on
one cell based on code generation with Uni�ed Form Language (UFL) and
FEniCS Form Compiler (FFC) [13, 11], using the basis functions� 2 V from
FIAT. For example, in the case of the Laplacian operator

AK
ij = aK (� i ; � j ) =

Z

K
r � i � r � j dx =

Z

K
lhs(r (� i ; � j )dx)

where AK is the element sti�ness matrix and r (�; �) is the weak residual.
DOLFIN-HPC: Automated high performance assembly of weak forms and

interface to linear algebra of discrete systems and mesh re�nementon a
distributed mesh T
 [10].

A = 0
for all cells K 2 T


A += AK

Ax = b

Unicorn: Automated Uni�ed Continuum modeling with Unicorn choosing a
speci�c weak residual form for incompressible balance equations of massand
momentum with example visualizations of aircraft simulation below left and
turbulent FSI in vocal folds below right [4].

r UC ((v; q); (u; p)) = ( v; � (@t u+( u�r )u)+ r� � � g)+( q;r� u)+ LS((v; q); (u; p))

where LS is a least-squares stabilizing term described in [7].
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Fig. 1: FEniCS-HPC component dependency diagram.

A user of FEniCS-HPC writes the weak forms in the UFL language, compiles
it with FFC, and includes it in a high-level \solver" written in C+ + in DOLFIN-
HPC to read in a mesh, assemble the forms, solve linear systems, re�ne the mesh,
etc. The Unicorn solver for adaptive computation of turbulent 
ow and FSI is
developed as part of FEniCS-HPC.

2.1 Solving PDE problems in FEniCS-HPC

Poisson's equation To solve Poisson's equation in weak form
R


 (r u; r v) �
(f; u ) = 0 8v 2 V in the framework, we �rst de�ne the weak form in a UFL
\form �le", closely mapping mathematical notation (see Figure 2). The form � le
is then compiled to low-level C++ source code for assembling the local element
matrix and vector with FFC. Finally we use DOLFIN-HPC to write a high-l evel
\solver" in C++, composing the di�erent abstractions, where a mesh i s de�ned,
the global matrix and vector are assembled by interfacing to the generated source
code, the linear system is solved by an abstract parallel linear algebrainterface
(using PETSc as back-end by default), and then the solution functionis saved to
disk. The source code for an example solver is presented in Figure 2.

Q = Fini teElement ("CG" , " tetrahedron " , 1)

v = TestFunct ion ( Q) # test basis funct ion
u = TrialFunct ion ( Q) # tr ial basis funct ion
f = Coeff ic ient ( Q) # funct ion

# Bil inear and l inear forms
a = dot ( grad ( v ) , grad ( u))* dx
L = v * f * dx

// Define mesh , BCs and coeff ic ients
PoissonBoundary boundary ;
PoissonBoundaryValue u0 ( mesh);
SourceFunct ion f ( mesh);
Dir ichletBC bc ( u0, mesh, boundary );

// Define PDE
PoissonBi l inearForm a ;
PoissonLinearForm L ( f );
LinearPDE pde( a, L, mesh, bc );

// Solve PDE
Function u ;
pde. solve ( u);

// Save solut ion to fi le
File fi le ( ` ` poisson . pvd ' ' );
f i le << u;

Fig. 2: Poisson solver in FEniCS-HPC with the weak form in the UFL language
(left) and the solver in C++ using DOLFIN-HPC (right).
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The incompressible Navier-Stokes equations We formulate the General
Galerkin (G2) method for incompressible Navier-Stokes equations(1) in UFL by
a direct input of the weak residual. We can automatically derive the Jacobian
in a quasi-Newton �xed-point formulation and also automatically linearize and
generate the adjoint problem needed for adaptive error control. These examples
are presented in Figure 3

V = VectorElement ("CG" , " tetrahedron " , 1)
Q = Fini teElement ("CG" , " tetrahedron " , 1)

v = TestFunct ion ( V); q = TestFunct ion ( Q)
u_ = TrialFunct ion ( V); p_ = TrialFunct ion ( Q)
u = Coeff ic ient ( V); p = Coeff ic ient ( Q)
u0 = Coeff ic ient ( V); um = 0.5*( u + u0)

# Momentum and cont inui ty weak residuals
r_m = ( inner ( u - u0, v )/ k + \

(( nu* inner ( grad ( um), grad ( v )) + \
inner ( grad ( p) + grad ( um)* um, v ))))* dx + LS_u* dx

r_c = inner ( div ( u) , q))* dx + LS_p* dx

# Newton 's method Ju_i +1 = Ju_i - F(u_i )
a = derivat ive ( r_m, u, u_)
L = action ( a, u) - r_m

# Adjoint problem ( stat ionary part ) for r_m
a_adjoint = adjoint ( der ivat ive ( r_m - inner ( u, v )/ k * dx , u))
L_adjoint_c = derivat ive ( act ion ( r_c , p) , u, v )
L_adjoint = inner ( psi_m , v )* dx - L_adjoint_c

Fig. 3: Example of weak forms in UFL notation for the cG(1)cG(1) method for
incompressible Navier-Stokes equations (left) together with the adjoint problem
(right).

3 Parallelization strategy and performance

The parallelization is based on a fully distributed mesh approach, where everything
from preprocessing, assembly of linear systems, postprocessing and re�nement
is performed in parallel, without representing the entire problem or any pre-
/postprocessing step on a single core

Inital data distribution is de�ned by the graph partitioning of the cor respond-
ing dual graph of the mesh. Each core is assigned a set of whole elements and
the vertex overlap between cores is represented as ghosted entities.

3.1 Parallel assembly

The assembling of the global matrix is performed in a straightforward fashion.
Each core computes the local matrix of the local elements and add them tothe
global matrix. Since we assign whole elements to each core, we can minimize
data dependency during assembly. Furthermore, we renumber all the degrees
of freedom such that a minimal amount of communication is required when
modifying entries in the sparse matrix.
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3.2 Solution of discrete system

The FEM discretization generates a non-linear algebraic equation system to be
solved for each time step. In Unicorn we solve this by iterating between the
velocity and pressure equations by a Picard or quasi-Newton iteration [6].

Each iteration in turn generates a linear system to be solved. We use simple
Krylov solvers and preconditioners which scale well to many cores, typically
BiCGSTAB with a block-Jacobi preconditioner, where each block is solved with
ILU(0).

3.3 Mesh re�nement

Local mesh re�nement is based around a parallelization of the well knownrecursive
longest edge bisection method [15]. The parallelization splits up the re�nement
into two phases. First a local serial re�nement phase bisects all elements marked
for re�nement on each core (concurrently) leaving several hanging nodes on the
shared interface between cores. The second phase propagates these hanging nodes
onto adjacent cores.

The algorithm iterates between local re�nement and global propagation until
all cores are free of hanging nodes. For an e�cent implementation, one has to
detect when all cores are idling at the same time. Our implementationuses a fully
distributed termination detection scheme, which includes termination detection
in the global propagation step by using recusive doubling or hypercube exchange
type communication patterns [10]. Also, the termination detection algorithm does
not have a central point of control, hence no bottlenecks, less messagecontention,
and no problems with load imbalance.

Dynamic load balancing In order to sustain good load balance across several
adaptive iterations, dynamic load balancing is needed. DOLFIN-HPC is equipped
with a scratch and remap type load balancer, based on the widely used PLUM
scheme [14], where the new partitions are assigned in an optimal way by solving
the maximally weighted bipartite graph problem. We have improved the scheme
such that it scales linearly to thousands of cores [10, 8].

Furthermore, we have extended the load balancer with an a priori workload
estimation. With a dry run of the re�nement algorithm, we add weights t o a
dual graph of the mesh, corresponding to the workload after re�nement. Finally,
we repartition the unre�ned mesh according to the weighted dual graphand
redistribute the new partitions before the re�nement.

4 Strong scalability

To be able to take advantage of available supercomputers today the entire solver
in FEniCS-HPC needs to demonstrate good strong scaling to at least several
thousands of cores. For planned \exascale" systems with many million cores,
strong scalability has to be attained for at least hundreds of thousands of cores.
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In this section we analyze scaling results using the PETSc parallellinear
algebra backend based on pure MPI and the JANPACK backend based on PGAS.

In Figure 4 we present strong scalability results with the PETSc pure MPI
backend for the full G2 method for turbulent incompressible Navier-Stokes
equations (1) (assemble linear systems and solve the momentum and continuity
equations) in 3D on a mesh with 147M vertices on the Hornet Cray XC40
computer. We observe near-optimal scaling to ca. 4.6 kcores for all the main
algorithms (assembly and linear solves). Going from 4.6 kcores to 9.2 kcores we
start to see a degradation in the scaling with a speedup of ca. 0.7, and from 9.2
kcores to 18.4 kcores the speedup is 0.5. It's clear that it's mainly theassembly
that shows degraded scaling.

In Figure 5 we present results for assembling four di�erent equations using
the JANPACK backend, where FEniCS-HPC is running in a hybrid MPI+ PGAS
mode. We observe that for large number of cores, the low latency one-sided
communication of PGAS languages in combination with our new sparse matrix
format [9] greatly improves the scalability.
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log10(num_cores)
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Fig. 4: Strong scalabil-
ity test for the full G2
method for incompress-
ible turbulent Navier-
Stokes equations (as-
semble linear systems
and solve momentum
and continuity) in 3D
on a Cray XC40.

5 Unicorn simulation of a full aircraft

In the Unicorn component we implement the full G2 method and �x the weak
residual to the cG(1)cG(1) stabilized space-time method for incompressible
Navier-Stokes equations (or a general stress for FSI)

In a cG(1)cG(1) method [7] we seek an approximate space-time solution
Û = ( U; P) which is continuous piecewise linear in space and time (equivalent
to the implicit Crank-Nicolson method). With I a time interval with subinter-
vals I n = ( tn � 1; tn ), W n a standard spatial �nite element space of continuous
piecewise linear functions, andW n

0 the functions in W n which are zero on the
boundary � , the cG(1)cG(1) method for constant density incompressible 
ow
with homogeneous Dirichlet boundary conditions for the velocity takesthe form:
for n = 1 ; :::; N , �nd ( Un ; Pn ) � (U(tn ); P(tn )) with Un 2 V n

0 � [W n
0 ]3 and
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Fig. 5: Sparse matrix assembly timings for four di�erent equations on a Cray
XC40.

Pn 2 W n , such that

r ((U; P); (v; q)) = (( Un � Un � 1)k� 1
n + ( �Un � r ) �Un ; v) + (2 �� ( �Un ); � (v))

� (P; r � v) + ( r � �Un ; q) + LS = 0 ; ; 8v̂ = ( v; q) 2 V n
0 � W n (1)

where �Un = 1=2(Un + Un � 1) is piecewise constant in time overI n and LS a
least-squares stabilizing term described in [7].

We formulate a new general adjoint-based method for adaptive error control
based on the following error representation and adjoint weak bilinear andlinear
forms with the error ê = û � Û, adjoint solution �̂ , output quantity  and the
hat signifying the full velocity-pressure vector Û = ( U; P), with rG = r � LS :

(ê;  ) = r 0(ê; �̂ ) = rG (Û; �̂ ) aadjoint (v; �̂ ) = r 0(v; �̂ ) L adjoint (v) = ( v;  ) (2)

We have used our adaptive �nite element methodology for turbulent 
ow and
FEniCS-HPC software to solve the incompressible Navier-Stokes equations of
the 
ow past a full high-lift aircraft model (DLR-F11) with complex geom etry at
realistic Reynolds number for take-o� and landing. This work is an extension of
our contributed simulation results to the 2nd AIAA CFD High-Lift Prediction
Workshop (HiLiftPW-2), in San Diego, California, in 2013 [5].

In the following results we focus on the angle of attack� = 18:5� . To quantify
mesh-convergence we plot the coe�cients and their relative error compared to
the experimental values (serving as the reference) versus the number of vertices
in the meshes, and plot meshes and volume renderings of quantities related to
the adaptivity in Figure 6.

We see that our adaptive computational results come very close to the
experimental results on the �nest mesh, with a relative error under 1% for cl and
cd. For other angles we observe similar results presented in [5].
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Fig. 6: Plots for the aircraft simulation at � = 18:5� . Lift coe�cient, cl, and
drag coe�cient, cd, vs. angle of attack, � , for the di�erent meshes from the
iterative adaptive method (left). Slice aligned with the angle of attack showing
the tetrahedra of the starting mesh versus the �nest adaptive mesh(top right).
Volume rendering of the velocity residual and adjoint velocity magnitude (bottom
right).

6 Summary

We have given an overview of the general FEniCS-HPC software framework for
automated solution of PDE, taking the weak form as input in near-mathematical
notation, with automated discretization and a new simple method for adaptive
error control, suitable for parallel implementation. On the Hornet Cray XC40
supercomputer we demonstrate new optimal strong scaling results forthe whole
adaptive framework applied to turbulent 
ow on massively parallel architectures
down to 25000 vertices per core with ca. 5000 cores with the MPI-based PETSc
backend and for assembly down to 500 vertices per core with ca. 20000 cores
with the PGAS-based JANPACK backend.

Using the Unicorn component in FEniCS-HPC we have simulated the aero-
dynamics of a full DLR-F11 aircraft in connection with the HiLift-PW2 be nch-
marking workshop. We �nd that the simulation results compare very well with
experimental data; moreover, we show mesh-convergence by the adaptive method,
while using a low number of spatial degrees of freedom.
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