
Factoring large integers using parallel Quadratic Sieve

Olof Åsbrink
d95-oas@nada.kth.se

Joel Brynielsson
joel@nada.kth.se

14th April 2000

Abstract

Integer factorization is a well studied topic. Parts of the cryptography we use each day rely on
the fact that this problem is di�cult. One method one can use for factorizing a large composite
number is the Quadratic Sieve algorithm. This method is among the best known today. We
present a parallel implementation of the Quadratic Sieve using the Message Passing Interface
(MPI). We also discuss the performance of this implementation which shows that this approach
is a good one.

1 Introduction
Modern cryptography relies on the fact that in-
teger factorization is a hard problem. It is easy
to create large composite numbers by multiply-
ing large primes together but it is very hard to
reconstruct the prime factors from a large num-
ber.

An example of a system that uses this fact
is the famous RSA-system that is widely used
today. Development of factorization algorithms
is therefore of great interest and research on this
is being made all over the world. The algorithms
are getting better, but no one has found a very
good algorithm. On the other hand, no one has
succeeded in proving that a good algorithm does
not exist.

2 The Quadratic Sieve algo-
rithm

2.1 Overview
The Quadratic Sieve algorithm for factoring
large numbers has several variations. The main
idea is to come up with two distinct integers,
x and y, such that x2 ≡ y2 mod n and x 6≡
±y mod n. If we can do this we know that

n|(x2 − y2) ⇐⇒ n|(x+ y)(x− y)

We also know that n does not divide x + y or
x− y so gcd(n, x+ y) and gcd(n, x− y) must be

proper factors of n.
Carl Pomerance came up with a suggestion of

how to �nd the two distinct integers[8]. Take
the polynomial

f(x) = (x+ b
√
nc)2 − n

After studying this polynomial we note that (x+
b
√
nc)2 ≡ f(x) mod n. We also note that equal-

ity in this congruence will never occur. Now
suppose we �nd some integers x1, x2, . . . , xk
such that the product f(x1)f(x2) . . . f(xk) is a
square, say y2. If we let x = (x1 + b

√
nc)(x2 +

b
√
nc) . . . (xk + b

√
nc) we have a solution to our

main equation, x2 ≡ y2 mod n.
Note that we have a 50% chance of receiving

trivial solutions (less if n is the product of more
than two primes). Therefore we might have to
run our algorithm several times.

Now we have to �nd x1, x2, . . . , xk such that
the discussion above works. We realize that we
should only consider xis such that f(xi) is not
divisible by a large prime. If f(xi) would be
divisible by a large prime, we would need to
�nd some other xj such that f(xj) is also divis-
ible by that same large prime. We do not want
that and therefore we should work with xis such
that f(xi) can be completely factored into small
primes. The sieving part of the Quadratic Sieve
algorithm gives us a technique for �nding all the
xis such that the f(xi)s are all products of some
of the (small) primes in a special vector. This
vector is referred to as the factor base.

Now let us assume that the factor base con-
sists of the primes p1, p2, . . . , pk. We then cal-
culate values of f(xi) such that they completely
factor over the factor base (the sieving step).
Then we build a matrix where each row of the
matrix consists of the exponents of the factor-
izations of f(x), i.e., if f(x) = pa1

1 · p
a2
2 · . . . · p

ak
k

then the corresponding row of the matrix be-
comes (a1, a2, . . . , ak). After this we use Gaus-
sian elimination to �nd the linear combination
of the f(xi)s that becomes a perfect square.
That means that the column sums for the cho-
sen f(xi)-rows are even.

2.2 Finding the factor base
To be able to use our factorizations in the siev-
ing step we want our f(x)s to factor completely
over the factor base so that f(x) = pa1

1 ·p
a2
2 · . . . ·

pakk . Therefore a prime, pi, in our factor base
divides f(x). We also know that pi does not
divide n (our algorithm requires trial division
before start). After looking at the polynomial
we are working with we see that this implies the
following result:

n ≡ (x+ b
√
nc)2 mod pi

This means that n must be a quadratic residue
modulo pi and thus our factor base should only
consist of primes, pi, such that n is a quadratic
residue modulo pi.

2.3 Sieving
Values of f(xi) that can be completely factored
by the primes in the factor base will be very
rare[9]. Therefore we need to be able to quickly
determine whether or not a given value will fac-
tor completely. Let p be a prime in the fac-
tor base. By our restriction on the primes in
the factor base above, n must be a quadratic
residue modulo p. This implies that n is the
square of one of two quadratic residues mod-
ulo p, i.e., n ≡ t2 mod p or n ≡ (−t)2 mod p.
This also means that x+ b

√
nc must be congru-

ent to either t or −t modulo p. We also know
that p divides f(x) (f(x) factors over the factor
base where p is). Furthermore, if we look at the
polynomial f(x), we see that p will also divide
f(x+ p), f(x+ 2p) etc.

This gives us the basis for the sieving opera-
tion. Since f(x) is the product of some primes
from the factor base, the logarithm of f(x) is
the sum of the logarithms of these primes.

We consider a bunch of xs in a large block.
For each xi we then compute zi = log f(xi).
Then for each prime, p, in the factor base we
check if xi ≡ t mod p or xi ≡ −t mod p. If
that is the case, we subtract log p from zi. If
f(xi) factors completely over the factor base,
the value of zi will be theoretically reduced to
zero.

However, since we are using computers, we
have to take round-o� into account. Also, we
don't check if a prime could be a factor with
multiple power. With this in mind, we under-
stand that the value of zi will never become zero,
so we accept all values that are �close enough�
and specify such an interval.

2.4 Gaussian elimination

To guarantee solutions we should make sure
our matrix consists of more rows than columns.
Each extra row gives us another chance of �nd-
ing a factor. The number of columns are equal
to the number of primes in the factor base so the
number of factored f(x)s should be the number
of primes in the factor base increased with some
constant (usually 10).

We want our elimination to produce a lin-
ear combination so that each prime power in
the combination is even (then the product will
become a perfect square). Thus, the Gaussian
elimination takes place in the �eld GF [2] so all
calculations can be made modulo 2. Therefore,
all operations needed are exclusive or's and row
swaps.

3 Parallel algorithm

When considering a parallel implementation of
an algorithm one has to consider the time com-
plexity for the di�erent parts in the algorithm.
Very often an algorithm has a �heavy� part and
a lot of other parts where the time complexity
is neglectable compared to this heavy part.

In the Quadratic Sieve algorithm the siev-
ing is the heavy part. This part is ideally
suited for parallel implementation. The sieving
is performed over blocks with di�erent intervals.
These blocks are easily distributed to the di�er-
ent processors. With this kind of implementa-
tion the communication between the di�erent
processors is kept to a minimum compared to
the job that is done by each processor. A master

2

process collects the results from all the proces-
sors and builds the matrix.

Another time consuming part worth men-
tioning is the Gaussian elimination. However,
the time complexity for this is minor compared
to the time complexity for the sieving part.
Good polynomial time algorithms exist[2]. Also,
Gaussian elimination is not very well suited for
parallel implementation. Therefore the master
node performs the Gaussian elimination.

To summarize, an e�ective Quadratic Sieve
algorithm has a master node that shares the
sieving job to the slave processors. When the
matrix is full, the master node performs the
Gaussian elimination and calculates the result.

An interesting �parallel� version of this idea
has been constructed by Lenstra and Manasse[7]
who distribute their program and collect the re-
sults via electronic mail. They used a slightly
di�erent version of the Quadratic Sieve which
uses di�erent polynomials. Their idea could
have been equally well used for the ordinary al-
gorithm.

4 Implementation
The algorithm was implemented in ANSI C
which gives good performance. The message
passing was implemented with the Message
Passing Interface (MPI).

To represent arbitrary large numbers that are
used in the algorithm the GNU Multiple Pre-
cision Arithmetic Library (GMP)[4] has been
used. GMP contains almost every basic func-
tion on large numbers needed in the Quadratic
Sieve algorithm. GMP is not available on all
architectures, though. This gave us some prob-
lems in our analysis.

4.1 Serial
The program has three major phases:

• calculating the factor base,

• sieving,

• Gaussian elimination.

4.1.1 Factor base

The factor base is implemented as an array of
factor base items. Each factor base item repre-
sents a prime in the factor base and contains the

prime itself, the logarithm of the prime and the
numbers t and −t (discussed in section 2.3).

The primes are generated using the GMP-
function mpz_probab_prime_p used for primal-
ity testing.

4.1.2 Sieving

The sieving process wants to �nd large numbers
xi = pe11 · p

e2
2 · . . . · penn that factorizes completely

into primes from the factor base. The numbers,
xi, are stored in an array of type mpz_t (this is
the datatype for large integers in GMP) and the
factor exponents of the primes are stored in an
exponent matrix.

The object of the sieving process is to �nd
numbers that are likely to factor completely over
the factor base and factor those numbers using
a naive trial division algorithm.

Numbers are sieved in blocks, B. First an
array, sumlog, of the same size as the sieved
block, B, is initialized with log(xi) (∀xi ∈ B).
Then the program loop over the primes, pj , in
the factor base and for each number xi that is
congruent to t or −t we subtract log(pj) from
sumlog[xi]. Then trial division is performed on
every xi where |sumlog[xi]| is less than a thresh-
old value. This threshold value is often chosen
to be the logarithm of the largest prime in the
factor base, and we have applied this view in
our implementation. All logarithm operations
are performed with base 2 and only with integer
precision. GMP does not contain a log2 oper-
ation so log2(xi) is approximated with the size
of xi in bits, i.e., the length of the number in
binary representation, divided by 2.

4.1.3 Gaussian elimination

Gaussian elimination is applied once on a large
matrix in GF [2], i.e., the matrix consists only of
ones and zeros. The amount of memory needed
to factor a number using a factor base of size
4096 is approximately 200 Megabyte. One ma-
trix is 4096 × 4096 × 4 byte (integer size) ≈ 64
Megabyte and there are three matrices:

• the exponent matrix,

• the bit matrix,

• an identity matrix used during the elimina-
tion.

Both the bit matrix and the identity matrix con-
tains only ones and zeros so representing a bit

3

with an integer would increase the memory us-
age by a factor of 32 (bit size of an integer).
Therefore integers are used to represent a group
of 32 bits in a row in the matrices. Memory
access of a single bit requires more operations
than accessing a single integer, but exclusive or
on 32 bits can be performed in one operation.
The size of the matrices with this representa-
tion is approximately 4 Megabyte each and the
total memory needed is therefore approximately
72 Megabyte.

4.2 Parallel
The parallelism is achieved using the MPI-
package for message passing. The program
starts with splitting up into multiple processes
where each node gets one process (MPI_Init is
called to set up the MPI environment). All com-
munication is performed in the default commu-
nicator called MPI_COMM_WORLD, which contains
the set of all processes. Each process is assigned
a rank and the process with rank equal to zero is
assigned the role of the master node. The other
processes become slave nodes. Each slave node
communicates with the master node only (see
�gure 1).

Master

Slave 2

Slave 3 Slave 4

Slave 1

Figure 1: The slave nodes all communicate with
the master node. The master node collects the
results and calculates an answer.

The factor base is needed by every node and
the time to compute it is minor compared to the
total execution time. Since no node can do any
work before it receives the factor base, there is
no di�erence in performance to let every node
compute the factor base by itself. The factor
base computation is implemented in the same
way as in the serial implementation.

The Gaussian elimination is performed by the
master node only. Therefore the Gaussian elim-

ination is implemented in the same way as in
the serial version.

4.2.1 Parallel sieving

When the program reaches the sieving phase the
master node enters a receive loop and the slave
nodes enter a compute-send loop.

Each slave node sieves over blocks, B, as de-
scribed above. Which block to sieve is deter-
mined by the rank of the node, i.e., if there are
16 slave nodes, each node sieves over every 16th
block of xis. When a preset number of xis �
such that f(xi) factors completely over the fac-
tor base � is found then a block of f(xi)s and
their factorizations, called a sendblock, is sent
to the master node. The send is a synchronized
blocking send using MPI_Send.

The sendblock consists of f(xi)s as mpz_ts,
the exponent matrix and the corresponding bit
matrix. The sendblock is sent to the mas-
ter node using three consecutive MPI_Sends. A
MPI_Datatype called mpi_mpz_t is de�ned for
the mpz_t datatype as a string of characters.
The f(xi)s are sent as a contiguous array of
mpi_mpz_t and the matrices are sent as contigu-
ous arrays of MPI_INT.

In the receive loop the master node is call-
ing MPI_Recv until it receives more f(xi)s than
the size of the factor base. The master node re-
ceives a complete sendblock from a slave node
before receiving another sendblock from another
slave node. To receive a complete block three
MPI_Recvs are called. The �rst message is re-
ceived (which contains the mpi_mpz_ts) from
any slave node. The second and third receive
is exclusively received from the slave node that
sent the �rst message. The �rst receive can
come from any slave node since the order of the
f(xi)s that are received by the master node is
of no importance.

After a complete block is received, the master
node acknowledge this by sending a con�rma-
tion to the slave node. However, if the mas-
ter node has received enough f(xi)s to continue
with Gaussian elimination, it tells the slave node
to terminate. The other slave nodes that are
in the middle of sieving when the master node
starts with Gaussian elimination will �nish siev-
ing their current sendblock. Then they will
have to wait until the master node is �nished
with the Gaussian elimination to get an ac-
knowledgment to terminate.

4

4.3 Reservations

In the current state of the implementation the
program does not factor a number n completely.
It �nds any two proper factors f1 and f2, not
necessarily primes, for which f1 · f2 = n holds.
We are generally only interested in numbers that
are composite of two primes more or less of equal
size. For numbers that consist of many smaller
primes, other algorithms like Pollard-ρ or trial
division are more suitable.

Not much time has been spent on optimizing
and no claims are made that this implementa-
tion is optimal.

4.4 Improvements

The sieving step in the algorithm is the major
part of the running time. Therefore the im-
provements should be made in this area. Since
the master process is idle most of the time one
easy way to get more performance would be to
have a slave process running on the same pro-
cessor as the master process resides on.

Currently communication between a slave
process and the master process uses Synchro-
nized blocking send and receive (MPI_Send and
MPI_Recv) so if the master process is occupied
with another slave process a slave node could be
blocked and precious CPU time wasted.

Maybe the master and slave approach is not
the best. MPI o�ers functions for virtual topolo-
gies and group communication like MPI_Gather
and MPI_Scather. A solution using these func-
tions could perhaps lead to a more e�cient pro-
gram. An argument against that is that Gaus-
sian elimination is hard to parallelize so in the
end one processor must gather all data and per-
form the Gaussian elimination.

Other parts of the program could also be im-
proved. The method to generate primes in the
factor base is maybe not the best one. Using
some other method like the Sieve of Eratos-
thenes may turn out to be better.

5 Performance evaluation

5.1 Test environment

The program is compiled using the mpich com-
piler. All test runs are made on SunTM Ultra5,
270 MHz model with 128Mb RAM, workstations
if not stated otherwise.

5.2 Test input

For performance evaluation several numbers of
di�erent size are factored with di�erent numbers
of slave nodes. All numbers in the test runs are
composed of two primes of similar size (see Table
1).

5.2.1 Size of the factor base

The size, m, of the factor base is crucial to the
execution time. A small size implies that only
a few f(xi)s need to be found, but these will be
very rare and time consuming to �nd. A larger
factor base will make it easier to �nd f(xi)s but
more of them are needed. Heuristics suggest[9]
that m = L(n)1/2, where L(n) is the running
time. According to [9] the running time is given

by the formula L(n) = e(1+o(1))
√

(log n log log n).
Figure 2 illustrates the execution time of T40

factored with di�erent factor base sizes, m.

750 1000 1250 1500 1750 2000 2250 2500
0

50

100

150

200

250

300

factorbase(size)

tim
e(

s)

Figure 2: Execution times with di�erent fac-
tor base sizes. White is sieve time, dark grey
is Gaussian elimination time and light grey is
other computation time.

Table 2 shows the sizes of the factor base used
in the test runs.

5.3 Program pro�le

To evaluate how much time is spent in the sieve
part and in the Gaussian elimination part, sev-
eral of the numbers were factored using a pro-
�led version of the serial program. Table 3
shows that, for the number considered, the com-
plexity of the sieve part grows faster than the

5

name number

T20 18567078082619935259 =

28540307599 · 650556341

T30 350243405507562291174415825999 =

4634293795844903 · 75576435361433

T40 5705979550618670446308578858542675373983 =

78492223909528900351 · 72694838627523822433

T45 732197471686198597184965476425281169401188191 =

46116492876183969306047 · 15877128246765026029153

T50 53468946676763197941455249471721044636943883361749 =

8949621586608250991047837 · 5974436590343814450125977

T55 5945326581537513157038636316967257854322393895035230547 =

7894869453130507058122299679 · 753062050846204567912207693

T60 676292275716558246502605230897191366469551764092181362779759 =

2188226993578711982382919035585611 · 309059470384525060888946669

Table 1: Numbers to factorize in test runs.

number factor base size

T20 100

T30 200

T40 1000

T45 3000

T50 3800

T55 5000

T60 6000

Table 2: Numbers to factorize in test runs.

complexity of the Gaussian elimination1.

number sieve gauss. elim.

T40 93.8 1.5

T45 81.8 11.8

T50 93.2 5.1

T55 95.5 4.2

Table 3: Time spent [%]

For larger numbers the Gaussian elimination
will grow faster, but it will be infeasible to fac-
tor numbers so large using the Quadratic sieve
method anyway.

5.4 Performance analysis
The problems were factored using 2, 4, 8 or 16
slave nodes or using the serial algorithm. T60

1The values in Table 3 are looking a bit strange due
to non optimal factor base sizes in Table 2.

was only factored using 16 slave nodes. T20, T30

and T40 were factored with a maximum of 2,
4 and 8 slave nodes respectively. Using more
slave nodes resulted in longer execution time
due to longer initialization time of the MPI-
environment.

5.4.1 Execution time

Figure 3 shows the total execution time in min-
utes of the program factoring numbers up to T55.
The execution time for T60 using 16 slave nodes
was nearly 400 minutes.

20 25 30 35 40 45 50 55 60 65 70
0

50

100

150

200

250

300

Parallel vs non−parallel Quadratic Sieve

decimal size of n

w
al

lc
lo

ck
 ti

m
e

[m
in

]

serial

2 nodes

4 nodes

8 nodes

16 nodes

Figure 3: Total execution time.

Figure 4 shows the execution times of the
sieve part only. The minor di�erences in execu-
tion time between Figure 3 and Figure 4 shows

6

that the sieving phase is a major part of the
program.

20 25 30 35 40 45 50 55 60 65 70
0

50

100

150

200

250

300
Parallel vs non−parallel Quadratic Sieve (sieve part)

decimal size of n

w
al

lc
lo

ck
 ti

m
e

[m
in

]

serial

2 nodes

4 nodes

8 nodes

16 nodes

Figure 4: Sieve execution time.

5.4.2 Speed-up

We let f denote the fraction of the program that
cannot be computed in parallel. Amdahl's law
gives the ideal speed-up, Sp:

Sp =
Ts
Tp

=
Ts

fTs + (1−f)Ts
p

where Ts denotes the best sequential time for
the best sequential program, Tp is the parallel
running time and p is the number of processors.
Figure 5 and Figure 6 shows the speed-up for
T55 with di�erent numbers of processors.

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16
Measured vs ideal performance [n=55]

number of nodes

S
pe

ed
up

linear

ideal

absolute

Figure 5: Total speedup.

2 4 6 8 10 12 14 16
0

50

100

150

200

250

300

Measured vs ideal performance [n=55]

number of nodes

w
al

lc
lo

ck
 ti

m
e

pe
r

no
de

 [m
in

]

linear

ideal

measured

Figure 6: Measured time vs ideal time.

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16
Measured vs ideal performance (sieve part)[n=55]

number of nodes

S
pe

ed
up linear

absolute

Figure 7: Sieve speedup.

5.4.3 E�ciency

The e�ciency, ηp, of a p-node computation with
speed-up Sp is given by:

ηp =
Sp
p

Figure 9 shows the e�ciency when factoring T55

with di�erent numbers of processors.

5.4.4 Sources of ine�ciency

One source of ine�ciency is communication
overhead. The number of messages sent is
O
(
|factorbase|
|sendblock|

)
. The average rate of messages

is so low that the master node is idle most of the
time. Therefore, the communication overhead is
neglectable.

7

2 4 6 8 10 12 14 16
0

50

100

150

200

250

Measured vs ideal performance (sieve part)[n=55]

number of nodes

w
al

lc
lo

ck
 ti

m
e

pe
r

no
de

 [m
in

]

ideal

measured

Figure 8: Measured sieve time vs ideal sieve
time.

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100
Efficiency [n=55]

number of nodes

E
ffi

ci
en

cy
 [%

]

Figure 9: Total e�ciency

Another source of ine�ciency is load imbal-
ance. All the slave nodes work independently so
the nodes have equal work load. If the master
node is included in the e�ciency computation
it lowers the e�ciency notably since the master
node is idle most of the time. Since the master
node is idle most of the time it is possible to
run it on the same processor as one of the slave
nodes without major performance loss. As an
example, the sieve phase of factoring T40 with a
factor base size of 1019 and a sendblock size of
8 was completed in 66.8 seconds with the mas-
ter node sharing a processor with a slave node,
compared to 64.3 seconds when the master node
used a processor for itself.

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100
Efficiency (sieve part)[n=55]

number of nodes

E
ffi

ci
en

cy
 [%

]

Figure 10: Sieve e�ciency

6 Conclusions
We have veri�ed that the Quadratic Sieve algo-
rithm is a very powerful algorithm for factoring
large composite numbers. Together with other
methods, like trial division and Pollard-ρ, it can
be used for factoring any type of numbers with
a very good result.

The tests that we have made on the paral-
lel implementation shows that the algorithm is
very well suited for parallel use. Theoretically
the Gaussian elimination will be a problem when
you want to factor really large numbers. With
the resources available today this is not a prob-
lem, though.

Some parts of modern cryptography works
with really big numbers that one wants to fac-
tor. This implies the use of libraries that can
handle large numbers, like GMP[4]. When de-
veloping our algorithm here at the Royal Insti-
tute of Technology we have been able to use a
lot of di�erent computer resources. We soon
discovered that it is not very common that a li-
brary that can handle big numbers is installed.
If you want to use for example GMP you have
to install it yourself. We think that this prob-
lem will be solved and more standardized in the
future.

7 Acknowledgments
We got all the help we needed from our teach-
ers here at the Royal Institute of Technology,
Sweden. We wish to thank Johan Håstad at the
theoretical computer science group at the De-

8

partment of Numerical analysis and computer
science (Nada) for helping us to come up with
an interesting problem and for the joy of letting
us join his courses once again to beat all other
participants with our implementation. We also
wish to thank Mike Hammill at the Center for
Parallel Computers (PDC) for answering ques-
tions on the Message Passing Interface (MPI).

References
[1] Steve Beattie. A Java Implementation of

the Quadratic Sieve. Technical report, Ore-
gon Graduate Institute, 1997.

[2] Gerd Eriksson. Numeriska algoritmer med
MATLAB. Technical report, Royal Insti-
tute of Technology, Stockholm, June 1998.

[3] Joseph L. Gerver. Factoring large num-
bers with a quadratic sieve. Mathematics of
Computation, 41(163):287�294, July 1983.

[4] Torbjörn Granlund. The GNU Multiple
Precision Arithmetic Library. TMG Data-
konsult, Boston, MA, USA, 2.0.2 edition,
June 1996.

[5] William Gropp, Ewing Lusk, and Anthony
Skjellum. Using MPI: Portable Parallel
Programming with the Message-Passing In-
terface. Scienti�c and engineering compu-
tation. MIT Press, Cambridge, MA, USA,
1994.

[6] Johan Håstad. Notes for the course ad-
vanced algorithms. Technical report, Royal
Institute of Technology, Stockholm, 1998.

[7] Arjen K. Lenstra and Mark S. Manasse.
Factoring by electronic mail. In J. J.
Quisquater and J. Vandewalle, editors, Ad-
vances in Cryptology�EUROCRYPT 89,
volume 434 of Lecture Notes in Computer
Science, pages 355�371. Springer-Verlag,
1990, 10�13 April 1989.

[8] Carl Pomerance. The quadratic sieve fac-
toring algorithm. In T. Beth, N. Cot, and
I. Ingemarsson, editors, Advances in Cryp-
tology: Proceedings of EUROCRYPT 84,
volume 209 of Lecture Notes in Computer
Science, pages 169�182. Springer-Verlag,
1985, 9�11 April 1984.

[9] Carl Pomerance. Factoring. In Carl Pome-
rance, editor, Cryptology and Computa-
tional Number Theory, volume 42 of Pro-
ceedings of Symposia in applied Mathemat-
ics, pages 27�47. American Mathematical
Society, 1990.

[10] Douglas R. Stinson. Cryptography Theory
and Practice. CRC Press, Boca Raton,
1995.

9

