
On small-depth Frege proofs for PHP
Johan Håstad

dept. of Mathematics
KTH Royal Institute of Technology

Stockholm, Sweden
johanh@kth.se

Abstract—We study Frege proofs for the one-to-one graph
Pigeon Hole Principle defined on the n×n grid where n is odd.
We are interested in the case where each formula in the proof is
a depth d formula in the basis given by ∧, ∨, and ¬. We prove
that in this situation the proof needs to be of size exponential
in nΩ(1/d). If we restrict the size of each line in the proof to
be of size M then the number of lines needed is exponential in
n/(logM)O(d). The main technical component of the proofs is
to design a new family of random restrictions and to prove the
appropriate switching lemmas.

Index Terms—complexity of proof procedures

I. INTRODUCTION

In this paper we study formal proofs of formulas in Boolean
variables encoding natural combinatorial principles. We can
think of these as tautologies but it is often more convenient to
think of them as contradictions. When a certain formula, F , is
a contradiction then its negation, F̄ is a tautology and we do
not distinguish the two. In particular in the below discussion
we might call something a tautology that the reader, possibly
rightly, thinks of as a contradiction. We are equally liberal
with usage of the word “proof” which might more accurately
be called “a derivation of contradiction”.

We are given a set of local constraints that we call “axioms”.
These are locally satisfiable but not globally in that there is no
global assignment that satisfies all the axioms. A proof derives
consequences of the axioms and it is complete when it reaches
an obvious contradiction such as 1=0 or that an empty clause
contains a true literal.

A key property of such a proof system is the kind of
statements that can be used and in this paper we allow Boolean
formulas over the basis ∧, ∨, and ¬ where the alternation
depth is d. Here d is a constant independent of the formula
size or a slowly growing function of the size. A fundamental
and popular case is resolution corresponding to d = 1, where
each formula is a disjunction of literals.

It is far from easy to analyze resolution but this proof system
has been studied for a long time and many questions are now
resolved. We do not want to discuss the history of resolution
but as it is very relevant for the current paper let us mention
that an early milestone was obtained by Haken [Hak85] in
1985 when he proved that the Pigeon Hole Principle (PHP)
requires exponential size resolution proofs. The PHP states that
m + 1 pigeons can fly to m holes such that no two pigeons
fly to the same hole. It has (m + 1)m Boolean variables xij
which is true iff pigeon i flies to the hole j. The axioms say

that for each i there is a value of j such that xij is true and
for each j there is at most one i such that xij is true. This is
clearly a contradiction but to prove this counting is useful and
resolution is not very efficient when it comes to counting.

The focus of this paper is the more powerful proof system
obtained for larger values of d and here a pioneering result
was obtained by Ajtai [Ajt94] proving superpolynomial lower
bounds for the size of any proof for PHP for any fixed constant
d. The lower bounds of Ajtai were not explicit and [BPU92]
gave the first such bounds, namely that depth Ω(log∗ n) is
needed for the size of the proof to be polynomial. This
was greatly improved in two independent works by Krajı́ček,
Pudlák, and Woods [KPW95] and Pitassi, Beame, and Im-
pagliazzo [PBI93], respectively. These two papers established
lower bounds for the size of any proof of the PHP of the form
exponential in nc

−d

where c > 1, and gave non-trivial bounds
for depths as high as Θ(log log n).

Related questions were studied in circuit complexity where
the central question is to study the size of a circuit needed
to compute a particular function. Here a sequence of results
[FSS84], [Sip83], [Yao85], [Hås86] established size lower
bounds of the form exponential in nΩ(1/d) and obtained
strong lower bounds for d as large as Θ(log n/ log log n).
The results were obtained for the parity function and here
it is easy to show that this function can be computed by
circuits of matching size. To see that PHP allows proof of size
exponential in nO(1/d) is more difficult but was established in
2001 by Atserias et al [AAG01].

A technique used in many of these papers is called “restric-
tions”. The idea is simply to, in a more or less clever way, give
values to most of the variables in the object under study and to
analyze the effect. One must preserve1 the function computed
(or tautology being proved) while at the same time be able to
simplify the circuits assumed to compute the function or the
formulas in the claimed proof. An important reason that the
lower bounds in circuit complexity were stronger than those
in proof complexity is that it is easier to preserve a single
function than an entire tautology with many axioms.

After being stuck at d = O(log log n) for decades we have
recently seen significant progress. The first step was taken
by Pitassi et al [PRST16] who obtained super-polynomial
lower bounds for depths up to any o(

√
log n). The tautology

1One does not really preserve a function or a formula and an object of size
n is reduced to a similar object of size f(n) for some f(n) < n.

considered was first studied by Tseitin [Tse68] and considers
a set linear equations modulo two defined by a graph. The
underlying graph for [PRST16] is an expander. These results
were later extended to depth almost logarithmic by Håstad
[Hås20] and in this case the underlying graph is the two-
dimensional grid. The bounds obtained were further improved
by Håstad and Risse [HR22].

All results mentioned so far only discuss total size. For
resolution each formula derived is a clause and hence of size at
most n but for other proof systems it is interesting to study the
number of lines in the proof and the sizes of lines separately.
Pitassi, Ramakrishnan and Tan [PRT21] had the great insight
that a technical strengthening of the used methods yields much
stronger bounds for this measure than implied by the size
bounds. They combined some of the techniques of [Hås20]
with some methods from [PRST16] to establish that if each
line is of size at most M then the number of lines in a proof
that establishes the Tseitin principle over the grid needs to be
exponential in n2−d

√
logM . By using some additional ideas

Håstad and Risse [HR22] fully extended the techniques of
[Hås20] to this setting improving the bounds to exponential in
n/(logM)O(d).

Despite this progress, the thirty year old question whether
the PHP allows polynomial size proof of depth O(log log n)
remained open. The purpose of this paper is to prove that
it does not and that lower bounds similar to those for the
Tseitin tautology also apply to the PHP. To build on previous
techniques we study what is known as the graph PHP where
the underlying graph is an odd size two-dimensional grid.

As the side length of the grid is odd, if one colors it as
a chess board, the corners are of the same color and let us
assume this is white. In the graph PHP on the grid, there is
a pigeon on each white square and it should fly to one of the
adjacent black squares that define the holes. This graph PHP is
the result of the general PHP where most variables are forced
to be 0. Each pigeon is only given at most four alternatives.
Clearly any proof for the general PHP can be modified to give
a proof of the graph PHP. To limit ourselves further we prove
our lower bounds for the one-to-one PHP where we also have
the axioms that each hole receives exactly one pigeon.

Phrased slightly differently, the one-to-one PHP on the grid
says that there is a perfect matching of the odd size grid and
we heavily use local matchings. We can compare this to the
Tseitin tautology on the grid studied by [Hås20], [PRT21],
[HR22] that states that it is possible to assign Boolean values
to the edges of the grid such that there is an odd number of
true variables next to any node. As a perfect matching would
immediately yield such an assignment, the PHP is a stronger
statement and possibly easier to refute. In particular, the result
of the current paper implies a result similar to [HR22], but with
slightly weaker bounds. Our methods are quite similar to those
of that paper so this is not a different proof. Let us discuss the
main technical point, namely to prove a “switching lemma”.

By assigning values to most variables in a formula it is pos-
sible to switch a small depth-two formula from being a CNF to
being a DNF and the other way around. In the basic switching

lemma used to prove circuit lower bounds [FSS84], [Yao85],
[Hås86], uniformly random constant values are substituted for
a majority of the variables. Such restrictions are the easiest to
analyze but are less useful in proof complexity as they do not
preserve any interesting tautology.

To preserve a tautology or a complicated function it is useful
to replace several old variables by the same new variable,
possibly negated. It is possible to be even more liberal and
allow old variables to be replaced by slightly more complicated
expressions in the new variable. This technique was first
introduced explicitly by Rossman, Servedio, and Tan [RST15]
when studying the depth hierarchy for small-depth circuits but
had been used in more primitive form in earlier papers. We
use such generalized restrictions in this paper.

The technical strengthening needed by [PRT21] that we
discussed above is to improve the standard switching lemma
to what is commonly known as a multi-switching lemma. This
concept was first introduced independently by Håstad [Hås14]
and Impagliazzo, Mathews, and Paturi [IMP12] to study the
correlation of small-depths circuits and simple functions such
as parity.

In this setting one considers many formulas (F i)mi=1 and
the goal is to switch them all simultaneously in the following
sense. There is a small depth (common) decision tree such
that at any leaf of the tree it is possible to represent each F i

by a small formula of the other type. It was the insight that
multi-switching could be used in the proof complexity setting
that made it possible for [PRT21] to derive the strong bounds
on the number of lines in a proof when each line is short.

The techniques used in this paper offer no surprise. We
introduce a new space of restrictions that preserves the grid
one-to-one PHP and for which it is possible to prove a standard
switching lemma and then extend it to a multi-switching
lemma. The most novel part is to design this new space of
restrictions. It has many similarities with the space introduced
in [Hås20] and from a very high level point of view, the
proofs follow the same path. At the more detailed level in
this paper we work with partial matchings of the grid which
is a more rigid object than assignment that only satisfy the
Tseitin condition of an odd number of true variables next to
any node. This results in considerable changes in the details
and as a result we get slightly worse bounds.

Once the space of restrictions is in place, two tasks remain.
Namely to prove the switching lemmas and then use these
bounds to derive the claimed bounds on proof size. This latter
part hardly changes and we do not even repeat all details here.

An outline of the paper is as follows. We start with some
preliminaries and recall some facts from previous papers in
Section II. We introduce our new space of random restrictions
in Section III. The basic switching lemma is proved in
Section IV and we use it to establish the lower bound for
proof size in Section V. We give the multi-switch lemma in
Section VI and use it, in Section VII, to derive the lower
bounds on the number of lines in a proof. We end with some
very brief comments in Section VIII.

II. PRELIMINARIES

In this section we give some basic definitions and derive
some simple properties. We also recall some useful facts from
related papers.

A. The formula to refute

We study the one-to-one PHP on the odd size grid. Nodes
are given indexed by (i, j) where 1 ≤ i, j ≤ n and a node
is connected to other nodes where one of the two coordinates
is the same and the other differ by 1. As opposed to some
previous papers it is here important that we are on the grid
and not on the torus as we want a bipartite graph. There is
one variable for each edge of the grid and an axiom saying
that exactly one of the four variables next to a node is true.

We assume that there is one more white node than black
node and hence pigeons are white nodes and holes are black
nodes. Locally, however, holes and pigeons are very similar.

B. Frege proofs

We consider proofs where each line in the proof is either
an axiom or derived from previous lines. The derivation rules
are not important and all we need is that they are of constant
size and sound. We use the same rules as [PRST16], [Hås20],
[PRT21], and [HR22]. We demand that each formula that
appears is of depth at most d and, as several previous papers,
we do not allow ∧ and count the number of alternations of ¬
and ∨. The ∧ operator simulated by ¬ ∨ ¬. The rules are as
follows.
• (Excluded middle) (p ∨ ¬p)
• (Expansion rule) (p→ p ∨ q)
• (Contraction rule) (p ∨ p)→ p
• (Association rule) p ∨ (q ∨ r)→ (p ∨ q) ∨ r
• (Cut rule) p ∨ q,¬p ∨ r → q ∨ r.
The concept of t-evaluations was introduced by Krajı́ček

et al. [KPW95] and is a very convenient tool for proving
lower bounds on proof size. Here we follow the presentation of
Urquhart and Fu [UF96] while using the notation of [Hås20]
and [HR22]. A t-evaluation is a map from formulas to decision
trees of depth at most t. It is important that values along any
branch in such a decision tree are locally consistent and hence
let us first look at decision trees.

C. Decision trees and t-evaluations

Normally a decision tree asks for values of variables but we
instead allow only questions of the form

“To which node is i matched?”

Clearly the answer to this question determines the value of
any variable next to i and thus is more powerful than a single
variable question. On the other hand it can be simulated by
asking ordinary variable questions for three variables around
i. Thus within a factor of three in the number of questions,
this type of questions is equivalent to variable queries.

We say that a decision tree is a 1-tree if all its leafs are
labeled one and similarly we have 0-trees. It might seem
redundant to allow such trees but when doing operations on

decision trees such as taking the logical or of a number of
trees, they naturally occur.

We maintain the property that values obtained along any
branch in any decision tree are locally consistent.

Definition 2.1: The matching M of size t is locally consis-
tent if it can be extended to a complete matching of a larger
set S × T . We require that each of S and T is the union of
even size intervals such that the total length of all intervals in
each of the sets is at most 2t.

The reason for the above definition is that locally consis-
tent matchings can always be extended to include additional
vertices.

Lemma 2.2: Given a locally consistent matching, M of size
at most n/20 − 1, and a node v not matched by M . It is
possible to find a partner, w, of v, such that M jointly with
(u,w) is a locally consistent matching.

Proof: If v is already in S × T we can use the same
extension. Suppose v = (a, b) where a ∈ S and b 6∈ T . It is
easy to find b′ such that T ∪ {b, b′} is a union of even size
intervals. Now we can add matchings of S × b and S × b′

using that S is a union of even size intervals.
The case when a 6∈ S and b ∈ T is symmetric and let us

handle the case a 6∈ S and b 6∈ T . We can find b′ as in the
previous case enlarging T to T ′ = T∪{b, b′} and then proceed
by adding a and a suitable a′ to S.

We are interested in collections of formulas (F i)mi=1 and the
simultaneous evaluation of these formulas. We say that these
have an ` common decision tree of depth s if there is a single
decision tree of depth s such that at any leaf of this decision
tree, each F i can be represented by a depth ` decision tree.

Remark. In the intuitive notion of “locally consistent” a natu-
ral property is that any sub-assignment of a locally consistent
assignment is locally consistent. This is not obviously true in
our definition as the sizes of S and T depend on the size
of the matching. From now on we let the informal notion
“locally consistent” be short for “formally locally consistent
or extendable to a formally locally consistent assignment”.

As stated above, a t-evaluation is a mapping, ϕ, of formulas
to decision trees of depth at most t and we want it to have
some properties.

1) The constant true is represented by a 1-tree and the
constant 0 is represented by a 0-tree.

2) If F is an axiom of the PHP contradiction then ϕ(F) is
a 1-tree.

3) If ϕ(F) = T then ϕ(¬F) is a decision tree with the
same topology as T but where the value at each leaf is
negated.

4) Suppose F = ∨Fi. Consider a leaf in ϕ(F) and the
assignment, τ leading to this leaf. If the leaf is labeled
0 then for each i ϕ(Fi)dτ is a 0-tree and if the leaf is
labeled 1 then for some i, ϕ(Fi)dτ is a 1-tree.

The key property for t-evaluations is the following lemma.
Lemma 2.3: Suppose we have a derivation using the rules

of Section II-B starting with the axioms of the one-to-one
PHP on the n × n grid. Let Γ be the set of all sub-formulas

of this derivation and suppose there is a t-evaluation whose
range includes Γ where t ≤ n/10. Then each line in the
derivation is mapped to a 1-tree. In particular we do not reach
a contradiction.

Proof: We only sketch the proof as it is tedious and the
essentially the same as the proof of the similar lemma in
[Hås20]. We need two properties, namely that each axiom is
represented by a 1-tree, and that the derivation rules preserve
this property. The first property is true by definition. The
second property follows from the fact that the derivation rules
are sound and we never “get stuck” in a decision tree. By
this we mean that it always possible to continue a branch in
a decision tree keeping the values locally consistent. This is
ensured by Lemma 2.2.

When studying the number of lines in a proof where each
line is short, an extension of Lemma 2.3 is needed. This was
first done in [PRT21] and we rely on the argument in the full
version of [HR22]. We do not repeat the argument here and
just give a short summary. We refer to [HR22] for the full
version.

The bottom line is that once we have a multi-switching
lemma such as Lemma 6.1 below we can construct t-
evaluations for each line of the proof separately. If these
evaluations admit a t common decision tree of depth s and
are consistent then it is sufficient to obtain a contradiction
provided that s+ t ≤ cn for a sufficiently small constant c.

III. RESTRICTIONS

As stated in the introduction we use a slightly more com-
plicated object than a restriction which normally only gives
values to some variables. A restriction in our setting fixes many
variables to constants but also substitutes the same variable or
its negation for some variables. In a few cases an old variable
is substituted by a small logical formula which is a disjunction
of size at most three.

We are given an instance of the PHP on the n×n grid and a
restriction, for a suitable parameter T , reduces it to a smaller
instance on the (n/T)× (n/T) grid.

We divide the grid in to (n/T)2 squares, each with side
length T . Inside each square there are ∆ (for a parameter to
be fixed) smaller squares that we from now on call “mini-
squares”. In the end we pick one mini-square inside each
square and let these represent the smaller instance. Each square
has a color in the natural way and exactly as the nodes in the
original grid and the corner squares are white.

Between each mini-square, si and any mini-square s′j in an
adjacent square we have 3R (for a parameter to be chosen)
edge disjoint paths, each of even length. We can map exactly
all vertices on this path by matching each node of the path
to the appropriate adjacent node. We are also interested in
matching each node to the other neighbor on the path and in
case we need to include one node in each of the mini-squares
to which it is attached. We think of this as using the path
as an augmenting path and hence we refer to these paths as
“augmenting paths”. A matching on such a path is of type 0
if it does not include any node from the attached mini-squares

and otherwise it is of type 1. We call the node from the mini-
square included in a type 1 path a “dent” in the mini-square.
This possible dent is also called the point of attachment of the
path.

We group the 3R paths in groups of three and within each
group two attach at a node which is the same color as the color
as the mini-square, while the third one attaches to a node of
opposite color. Please note that as each path is of even length,
the nodes of attachment are of different colors but so are the
mini-squares to which the path attaches. Hence the attachment
points are either both the same color as the respective mini-
square or both the opposite color. The first two augmenting
paths may be of type 0 or 1. The third path is always of type
1 and as these paths play little role in the argument we mostly
ignore them from now on.

For each augmenting path P we have a corresponding
Boolean variable xP which indicates whether it is of type 0 or
type 1. By the R fixed paths of type 1 we can conclude that
for any mini-square, if exactly half of its varying paths are of
type 0 (and hence the other half is type 1) then its central area
has equally many white nodes as black nodes remaining.

We set up our restrictions such that it is uniquely determined
by the values for the variables xP . Outside the paths and and
the mini-squares we more or less have a fixed matching and we
give details below. Let us start by describing how to construct
a matching inside a square with some dents on the perimeter.

A. Matching a square with dents

In this section we prove the following lemma.
Lemma 3.1: Suppose have square with even side length and

which has the same number of white and black dents. Suppose
further that there are at most M dents and no dent is within
M of a corner. In this situation there is always a matching of
the square. If we have a square with odd side length with one
more white node, then the similar statement is true assuming
we have one more white dent.

We do not explicitly give a bound for the side length of the
square. It must be at least 2M to have any dent at distance
M from all corners. On the other hand a side length of 4M
certainly allows for M dents fulfilling the requirement.

Proof: Let us first do the case of even side length.
Suppose the side length is S. Take any dent, and assume
for concreteness that it is white. Start matching nodes along
the perimeter starting with the node next to this dent. This is
straightforward until we hit the next dent. If this dent is black
we get a perfect match along the perimeter while if it is white
we are forced to create a new white dent. We continue on the
other side of this dent and go all around the square. We get
a new square of side length S − 2 and some dents. A dent
remains iff it is the same color as the dent preceding it.

As we have both black and white dents, the number of dents
has decreased by at least two and the distance to the corner
has decreased by at most 2. We repeat this until there are no
remaining dents. The rest is easy to match.

If the side length is odd then the process stops when there
is only one white dent on the boundary. Also in this case the
remaining square is easy to match.

We use this lemma on mini-squares but also on small
squares called bricks that we define below.

B. Details of mini-squares and paths

Let us specify some details of the construction. It is con-
venient to use the concept of brick which is a square of size
α × α where α is a small even integer and the reader might
think of it as 20. Thus a brick is a small even size sub-graph
where, if it is not affected from the outside it is easy to find
a matching.

All but one mini-square have side length 6α∆R. We think
of its interior as one square where we can apply Lemma 3.1.
To the exterior we have 6∆R bricks on each side and the
interesting part is the middle 2∆R bricks. Half of these are
used to route the 3∆R paths to the ∆ mini-squares in the
square in the given direction. The bricks next to the corners
are only used to get the distance to the corners needed by
Lemma 3.1.

We have a special single mini-square in the top left corner
square2. It has side length 6α∆R+1 which in particular is an
odd number but is otherwise like the other mini-squares. We
call this the “designated survivor”.

T

T

Fig. 1. The placement of mini-squares and squares and some paths. The
designated survivor is the checkered mini-square. The matchings along top
row and leftmost column are indicated by solid lines.

In the top row, the n − 6αR∆ − 1 nodes outside the
designated survivor are matched in a horizontal matching.
Similarly the nodes in the leftmost column outside the des-
ignated survivor are matched in a vertical matching. This
basically eliminates one row and one column and we assume

2This could be any white square and choosing this particular square is just
to make some fixed choice.

for convenience that n ≡ 1 modulo α and we cover the rest
of the grid with bricks.

A square is a square of bricks of side length 7∆2R bricks
and starting in the top left corner we have ∆ mini-squares
along the diagonal. This leaves ∆2R empty rows of bricks
in the bottom of each square and ∆2R empty columns at
the right. By our placement of the designated survivor and
the elimination of the top row and first column also the top
left square looks essentially the same as other squares. Let us
describe how to route horizontal paths.

Fix a mini-square si in a square S and let us see how to
route paths to mini-squares s′j in the square to its right. For
each pair (i, j) we reserve R columns, ckij , 1 ≤ k ≤ R, of
bricks in the right part of S. This can be done has we have
∆2 pairs of mini-squares and ∆2R empty columns of bricks.

For each j, we reserve R bricks, all with even index, on the
right perimeter of si and the kth brick contains three paths that
we route straight right to ckij . Similarly we route paths straight
left from the kth brick in the ith part of s′j to the same column.
This time using odd index bricks. The path is completed by
using the suitable part of ckij to connect the two pieces.

Connecting mini-squares vertically is done completely anal-
ogously and we omit the description.

It is easy to see that in a brick we either have no path
going through, one path moving horizontally, one path moving
vertically, one path making a bend, or one horizontal and one
vertical path. A path has a point of attachment at the brick
which is included in the path iff the path is of type 1. Making
sure that colors of the points of attachment are the different
entering and leaving a brick and that they are not too close
to the corners (that is why we need to make α larger than
four) we can appeal to Lemma 3.1. As long as we maintain
the type of a path throughout it passage, we can always match
the interior of each brick.

We summarize the properties we need from this construc-
tion.

Lemma 3.2: The values of the path variables xP uniquely
determines a matching on all paths and in any brick outside
the mini-squares. In any mini-square except the designated
survivor such that half of its adjacent xP variables are true
we can find a unique matching of the remainder of this mini-
square. In the designated survivor we can, under the same
condition match all but one node.

C. Almost complete matchings and restrictions

We let an almost complete matching, usually denoted τ , be
an assignment to all variables xP such that exactly half the
variables next to any mini-square are true. Note that many
such τ do exist and in particular we can pick half the paths
in any group of 2R paths to be of the each type. There are
many other ways to pick τ but we do not need this explicitly.

Let us describe how to pick a random restriction from our
space. We make uniformly random choices but if some choice
is very unlucky we start all over again. Let π1 be a fixed
matching of all squares except that of the designated survivor
in the top left corner. We pick a restriction σ as follows.

1) Pick a uniformly random τ respecting the condition that
half the variables next to any mini-square are true. If any
group of 2R variables between two fixed mini-squares
has fewer than R/2 variables of either value, restart. We
denote this event as “lopsided group”.

2) Pick a random mini-square from each square, except
the square of the designated survivor. Match these mini-
squares according to π1. Hopefully without causing
confusion we keep the name π1 for this matching of
mini-squares. These nodes jointly with the designated
survivor are the chosen mini-squares and we call this
set U .

3) For each pair of mini-squares (s1, s2) matched in π1

pick one augmenting path of type 1 and convert it to
type 0. These are called chosen paths. The choice is
based on an advice string B and discussed below.

4) For each pair of mini-squares (s1, s2) in U in adjacent
squares but not matched in π1 pick one augmenting path
of type 0 and make it a chosen path. The choice of the
path is based on the advice string. This is also done with
s1 being the designated survivor.

Let us see that this defines a smaller instance of PHP.

D. The reduced instance

The nodes of the new instance are given by the elements
in U . They naturally form a (n/T) × (n/T) grid. We have
chosen paths that are of type 0 that connect any two adjacent
elements in U while for any other path P , the value of xP is
now fixed.

For each chosen path, P , we introduce a new variable,
which we call yP , indicating whether it should be switched
to type 1. By Lemma 3.2 if exactly one variable on a path
next to a mini-square in U is true, then it is possible to find
a matching of this mini-square. Thus the local conditions of a
mini-square turn in to an axiom of the new instance of PHP.
Let us see how to replace the old variables in a supposed proof
with these new variables.

Old variables not on edges in chosen mini-squares or in
bricks with at least one chosen path are now fixed in a way
respecting the corresponding axioms.

Consider a brick with at least one chosen path going
through. There is only one chosen path between any two
adjacent squares and it is not difficult to see that at most
one chosen path goes through any brick. There are two
possible matchings of this brick depending on the value of the
corresponding variable yP . If an edge e is present in neither
we replace xe by 0 and if it is present in both we replace it
by 1. If e is present in only one we replace it by yP or ȳP in
the natural way. It is easy to see that any axiom related to a
node in the brick becomes true.

Similarly in a mini-square we have four (or fewer if it is on
the perimeter) chosen paths next to it. These are controlled by
four new variables that we here locally call yi for 1 ≤ i ≤ 4.
The new local axiom is that exactly one of these four variables
is true.

We have four different matchings of the mini-square de-
pending on which yi is chosen to be true. Look at an edge, e
and suppose it appears in the matchings corresponding to y2

and y3 being true. In such a case we replace xe by y2∨y3 and
similarly in other cases. If e is in none of the four matchings
we replace xe by the constant 0 and if it is in all four we
replace it by the constant 1.

It is easy to check that any original axiom inside the mini-
square either reduces to true or that exactly one of the four yi
is true. Indeed looking at the disjunctions replacing the four
variables xe around any node, each yi appears in exactly one.
We summarize the discussion of this section as follows.

Lemma 3.3: A restriction σ reduces an axiom in the PHP
in the grid of size n × n either to the constant true or an
axiom in the PHP of the new variables yP . Each variable xe
is substituted by a conjunction of up to three literals.

We do make a composition of restrictions and let us note
that even after a sequence of compositions and original vari-
able is only the conjunction of three variables in the restricted
PHP. This follows from the fact that any local area is only
affected by the local variables in the PHP.

As in previous papers these full restrictions are not used in
the main argument and we work with partial restrictions that
we now turn to.

E. Partial restrictions

A full restriction is a very rigid object with exactly one live
mini-square in each square and we proceed to make a more
random looking object.

Let k be a parameter equal to C log n(n/T)2 for a suf-
ficiently large constant C. After we have completed the
construction of σ we add the following steps.

1) Pick, without replacement of mini-squares, k uniformly
random pairs of mini-squares in adjacent squares. This
yields a matching π2. If this pick is unbalanced as
defined below redo this step.

2) Change the type of one augmenting path between any
pairs of nodes in π2 from 1 to 0. The choice of which of
the at least R/2 paths of type 1 is based on the advice
string and discussed below.

As we pick 2k mini-squares we expect roughly3 2C log n
live mini-squares in any square. If this number is larger than
4C log n for any square then we consider the pick unbalanced
and we restart. For any two adjacent squares S1 and S2 we
expect C log n/2 pairs (s1, s2) picked such that si ∈ Si. If
this number is smaller than C log n/4 for any pair (S1, S2)
we consider this unbalanced and restart.

We call the resulting restriction ρ. The mini-squares picked
by π1 and π2 jointly with the designated survivor are called
“live”. Note that for any mini-square that is not live we have
fixed the matching in this mini-square permanently. Outside

3The reason this is not exactly true is squares at the perimeter have only
two or three neighboring squares. Such squares are less likely to have many
live mini-squares. This results in a factor (1 + o(1)) more mini-squares in
other squares but this small factor does not matter and we ignore it.

the mini-squares the matching is also fixed except in bricks
with at least one live path going through.

F. Changing types of augmenting paths

In the above procedure, in two places we need to select an
augmenting path and (possibly) change its type. This happens
when changing a path from type 1 to type 0 because its end-
points are matched in π1 or π2 and when opening up for
changing the type from 0 to 1 by making it a chosen path.

We could accept to make this choice arbitrary by losing
some factors of R in our bounds, but as it is always nice to
avoid unnecessary loss let us describe a more efficient choice.

The choices of the 2R variables in a group corresponds to
a vector in {0, 1}2R and we want to modify one coordinate in
order to change the Hamming weight from t to either t+ 1 or
t− 1 and let us suppose the latter. We want the choice to be
limited and as invertible as possible. As the number of strings
of weights t and t− 1 are different we cannot achieve perfect
invertability. Suppose first that t ≤ R.

Definition 3.4: Suppose t ≤ R. A mapping f mapping
(

2R
t

)
to
(

2R
t−1

)
and which maps each set to a subset, is a k-almost

bijection if it is surjective and |f−1(x)| ≤ k for any x.
The following below lemma is probably well known but as

the proof is not difficult we prove it. It is likely that 4 can be
improved to 3 but this does not matter greatly for us, as this
only affects unspecified constants.

Lemma 3.5: If R/2 ≤ t ≤ R then there is a 4-almost
bijection.

Proof: Consider a bipartite graph where the the left hand
side elements are subsets of size t − 1 and the right hand
side elements are subsets of size t. Connect two sets iff one
is a subset of the other. It is well known (see for instance
Corollary 2.4 in [Bol86]) that this graph has a matching, M1,
of size

(
2R
t−1

)
.

Modify the construction by making three copies of each
left hand side node. Each copy is again connected to any set
that contains it. It follows by the LYM inequality (stated as
Theorem 3.3 in [Bol86]) that this graph has a matching M2

of size
(

2R
t

)
.

Now define f(x) as follows. If x is matched in M1 let it be
its partner in this matching. If x is not matched in M1 define
f(x) to be the partner under M2.

Due to the first condition f is onto. The property that
|f−1(y)| ≤ 4 for follows as a preimage of y is either its
partner under M1 or a partner of one of its three copies under
M2.

Taking the complement of both input and output we define
a 4-almost bijection, g mapping

(
2R
t

)
to
(

2R
t+1

)
for R ≤ t ≤

3R/4. We use f and g to guide our choices and in addition
we have two bits of advice for each group.

When we want to convert a path from type 1 to type 0
between si and s′j we look the types of all paths between
the two mini-squares. This is a vector, v, in {0, 1}2R which
by the non-lopsidedness has Hamming weight t which is in
the interval [R/2, 3R/2]. If t > R we look at g−1(v) and
consider the two bits of advice, b1 and b2. All we need to do

is to ensure that each choice in g−1(v) is possible but to be
explicit we can proceed as follows.
• If g−1(v) is of size one we pick the unique element.
• If g−1(v) is of size two we use b1 to make the choice.
• If g−1(v) is of size three then b1 = b2 we pick the

lexicographically first path and otherwise we use b1 to
choose between the other two paths.

• If g−1(v) is of size four then use the pair (b1, b2) to make
the choice.

The reason for the advice string is to get a pure counting
argument when we later analyze probabilities. It would have
worked to pick a random element from g−1(v).

To make the situation uniform we have two advice bits for
any pair of mini-squares in adjacent squares. Thus most of
these bits are never used. We let B denote the values of all
these bits.

If t ≤ R we instead consider f(v) and change the type of
the corresponding path. Finally if we want to allow to change
the weight from t to t+ 1 we reverse the two cases.

G. Analyzing the probability of a restart

We make a restart either because of a lopsided group or an
unbalanced pick of π2 and we analyze these separately. We
start with lopsided groups.

Lemma 3.6: The probability that uniformly random τ has
lopsided group is O(n22−cR) for a positive constant c.

Based on this lemma we fix R to be C log n for a sufficiently
large constant C such that the probability of having a lopsided
group is o(1). Let us prove Lemma 3.6.

Proof: The almost complete matching τ is defined by the
variables xP which we in this section choose to take values 1
and −1. For a uniformly random assignment to all variables,
let Z be the vector of all mini-square sums. Let us denote
the number of mini-squares by d making Z an integer vector
of length d. When constructing τ we are conditioning on the
event Z = 0d.

Fix any two mini-squares s1 and s2 and let g be the group
of 2R variables associated with paths between s1 and s2. Let
Xg be sum of the variables in this group. We want to estimate
the probability that Xg = x where x is either at least R or
at most −R. Let Z ′g be the set of mini-square sums when
the paths between s1 and s2 are removed. As these two mini-
squares also have other adjacent augmenting paths this is still
a vector length d. Let vx be the vector of length d that has x
at positions s1 and s2 and is otherwise 0. We want to estimate

Pr[Xg = x | Z = 0d] = Pr[Xg = x ∧ Z = 0d]/Pr[Z = 0d]

which equals

Pr[Xg = x ∧ Z ′g = −vx]/Pr[Z = 0d]

and as the two events are independent this equals

Pr[Xg = x]Pr[Z ′g = −vx]/Pr[Z = 0d].

We have the following lemma of which we postpone the proof.

Lemma 3.7: For any outcome v ∈ Zd we have Pr[Z ′g =
v] ≤ Pr[Z ′g = 0d]. The similar statement is true for any multi-
graph where each edge appear an even number of times.

In view of the lemma we get the upper bound

Pr[Xg = x]Pr[Z ′g = 0d]/Pr[Z = 0d]

for the probability we want to estimate. Clearly Pr[Z =
0d] ≥ Pr[Xg = 0]Pr[Z ′g = 0d] and substituting this into the
equation we get the upper bound Pr[Xg = x]/Pr[Xg = 0].
When |x| ≥ R this probability is 2−cR for some explicit c and
since there are at most n2 pairs of mini-squares the lemma
follows.

Let us prove Lemma 3.7.
Proof: Let f(v) be the probability that Z ′g = v. As v is

the vector sum of contributions of single xP , f(v) is a giant
convolution. A typical term, f0, is a probability distribution
that give weight 1

2 to the vector v1 and weight 1
2 to the vector

−v1 where v1 is similar to the vector vx in the above proof.
Consider the corresponding Fourier expansion

f̂0(x) =
∑
v

f0(v)e2πi(v,x)

where (v, x) is the inner product of v and x and x belongs to
the d-dimensional torus. As f0 is symmetric under negation, f̂0

is real-valued. Summing all variables in a given group gives a
distribution function which is a 2R-fold convolution of f0. Its
Fourier expansion represents f̂2R

0 which is a positive function.
Summing the contribution from all edges corresponds, on the
Fourier side, of taking the product. We conclude that

f̂(x) =
∑
v

f(v)e2πi(v,x)

is a real-valued positive function. The largest Fourier coeffi-
cients of such a function is the constant coefficient and this is
exactly what we wanted to prove.

Let us next discuss the balance condition when picking π2.
Lemma 3.8: The probability that π2 is unbalanced is O(n−2)

provided C > C0 for some fixed constant C0.
Proof: As this is a very standard argument let us only

sketch it. If we picked the pairs of mini-squares with replace-
ment the lemma would be completely standard. Let us analyze
the dynamic process. To see that we do not pick more than
4C log n mini-squares in any square with high probability we
note two facts.
• As we only pick an o(1) fraction of all mini-squares, at

each point in time a fraction (1 − o(1) of all pairs are
available.

• In view of this the probability that any single mini-square
is picked is only a (1 + o(1)) factor larger compared to
the procedure with replacement.

That we are unlikely to pick many mini-squares in a single
square now follows from the corresponding result for the
process of picking with replacement.

We turn to the condition that we have at least C log n/4
pairs in any two adjacent squares. Also this analysis is
completely standard if edges are picked with replacement. If

we condition on not picking more than 4C log n mini-squares
in any square the probability that a picked edge is between two
given squares does not decrease by more than a factor 1−o(1).
Hence the probability of picking very few edges between two
given squares in the process without replacement is not so
different compared to the probability of the same event in the
process with replacement. We leave it to the reader to fill in
the details.

IV. THE SWITCHING LEMMA

In this section we establish the following basic switching
lemma.

Lemma 4.1: There is a constant A such that the following
holds. Suppose there is a t-evaluation that includes Fi, 1 ≤
i ≤ m in its range and let F = ∨mi=1Fi. Let σ be a random
restriction from the space of restrictions defined in Section III.
Then the probability that F dσ cannot be represented by a
decision tree of depth at most 2s is at most

∆(A(log n)3t∆−1)s.

Proof: We are interested in a σ that gives a long path in
the decision tree. As in previous papers [Hås20], [HR22] we
explore the canonical decision tree under the partial restriction
ρ which we from now on call simply “a restriction” dropping
the word “partial”.

The restriction ρ determines the values of many variables.
In fact values are unknown only in central areas of the live
mini-squares and in bricks that contain an augmenting path
between two live mini-squares.

For any variable xe we define its influential mini-square(s).
This is either a single mini-squares or two mini-squares. We
want the property that if we know the values of all xP around
the influential mini-squares then this uniquely determines the
value of xe. If e is within a mini-square then this mini-square is
its influential mini-square. If e is in a brick outside the mini-
squares then the influential mini-squares are the closest end
point(s) of the live path(s) in this brick. We do not consider
the value of xe known unless we completely know the situation
at its influential mini-square(s). Such information is supplied
by something we call matched pairs.

Definition 4.2: A matched pair (s1, s2) is the information
that s1 and s2 should be matched by changing the type of an
augmenting path from 0 to 1 between the two mini-squares.

Once we have the pair to match we need to select which
augmenting path to change. We keep this information implicit.
In the case of π2 this is the path that it type changed when
going from τ to ρ and in the case of a pair of chosen mini-
squares it is the identity of the chosen path.

The above discussion says that if we want to know the value
of xe we look at its influential mini-squares. If there is no live
influential mini-square its value is determined and otherwise
we need additional information in the form of a matched pair
containing the influential mini-square.

We now proceed to define the canonical decision tree. The
process is guided by ρ and a set I of matched pairs. The

support of the set I is the mini-squares appearing in any
matched pair and this is initially empty.

Letting Ti denote ϕ(Fi), we go over the branches of Ti
for increasing values of i and a fixed order for each tree. The
forceable branch is the first branch leading to a one that can
be followed given the current I and ρ. Let us be formal.

Before stage j we have information set Ij in the form of
some matched pairs. It contains some pairs from π2 and some
pairs based on answers in the decision tree. In stage j we
have forcing information Jj that makes us follow the forceable
branch and it contains.

1) A set of matched pairs from π2.
2) A set of matched pairs of chosen mini-squares, compat-

ible with the information set Ij .

By “compatible” we mean that the resulting partial matching
on chosen mini-squares is locally consistent in the sense of
Definition 2.1.

For any chosen mini-square mentioned in Jj we ask for its
partner in the decision tree. This information, jointly with the
matched pairs from π2 in Jj , forms the jth information set,
Ij , and we set Ij+1 = Ij ∪ Ij .

Given Ij+1 we can determine whether the forceable branch
is followed. If it is, we answer 1 in the canonical decision
tree and halt the process. Otherwise we go to the next stage
and look for the next forceable branch. If there is no more
forceable branch we halt with answer 0. Let T be the resulting
decision tree. To see that this is a an acceptable choice for
ϕ(F), we have a pair of lemmas.

Lemma 4.3: Let γ be a set of answers in the decision tree.
If there is no forceable branch given this information, then,
for each i, Tidσγ is a 0-tree.

Proof: Suppose there is a locally consistent branch in
Tidσγ that leads to a leaf labeled one. The information used
to follow this branch can be used as forcing information.

Lemma 4.4: Let γ be a set of answers in the decision tree.
If we answer 1 then there is an i such that Tidσγ is a 1-tree.

Proof: In fact for Ti used for the construction of the
forceable path we have now reached a leaf that is labeled
1.

We use Razborov’s labeling argument [Raz95] to analyze
the probability that we make 2s queries in the canonical
decision tree. Take any branch of this length and suppose it
was constructed during g stages using information sets Jj .
Let J∗ = ∪gj=1Jj and as any query is a result of including
an element in J∗ we know that it contains at least s pairs
and for notational convenience we assume that this number
is exactly s. We proceed to analyze the probability that the
process results in a J∗ of this size. Let us start with an easy
observation.

Lemma 4.5: The support sets of Jj are disjoint. The support
of Jj is also disjoint with the support of Ii as long as i 6= j.

Proof: The parts coming from π2 are clearly disjoint as
π2 is a matching. The pairs of chosen nodes are also disjoint
as any mini-square included in Jj is included in Ij and later
Jj′ are disjoint from Ij .

In the spirit of [Hås20] and [HR22] we want to find a
restriction ρ∗ with fewer live centers and then show how to
reconstruct ρ from ρ∗ and some external information. As we
need to be careful with counting we construct a quadruple
τ∗, U∗, π∗2 , B

∗ yielding ρ∗ and use this together with external
information to reconstruct τ, U, π2, B that was used to define
ρ.

Define ρ∗ to be ρ joint with the information set J∗. In
other words for a matched pair in J∗ we change the type of
one augmenting path between the two mini-squares and now
consider the two endpoints to be dead. We proceed to find a
quadruple that gives this restriction.

Initially we let π∗2 be π2 with all matched pairs in J∗

removed and U∗ = U . For any edge in J∗ between two chosen
mini-squares s1 and s2 remove these two mini-squares from
U∗. If there is a pair (s′1, s

′
2) in π∗2 where s′i is in the same

square as si then remove this pair from π∗2 and put s′1 and s′2
in to U∗. If there is no such edge we allow for two “holes”
of two empty squares in U∗.

After we have constructed U∗ and π∗2 we construct τ∗ and
B∗ to complete the quadruple. Initially set τ∗ to equal ρ∗ and
B∗ to equal B.

We use the fixed matching of squares that defined π1 to
create matching π∗1 on U∗. Consider pairs of mini-squares
matched in π∗1 or π∗2 . Any pair matched in π∗2 is also matched
in π2 and most pairs in π∗1 come from π1 and some might
come from π2. In such a case we restore the augmenting path
used to go from τ to ρ to its original type. We also keep the
same values of the corresponding advice bits.

For pairs in π1 not matched in π1 or π2 we find some
possible preimage in the form of one augmenting path to
change and some advice bits. By the original τ not being
lopsided and the choice of how to use the advice bits this
is always possible. This gives almost an almost complete
matching τ∗ and a set of advice bits B∗ such that the tuple
τ∗, U∗, π∗2 and B∗ produces ρ∗.

The reason that is not quite an almost complete matching is
due to holes in U∗ and the square of the designated survivor.
If the designated survivor was included in J∗ then the sum of
the variables around this mini-square is +2 and the sum around
the mini-square that replaced it is −2. The sum around any
hole and any unmatched mini-center in U∗ (due to hole) is
also −2.

We continue to define a process that, using external infor-
mation, reconstructs τ , U , π2 and B from τ∗, U∗, π∗2 and B∗

and the trees Ti.
The important process is to reconstruct all forceable

branches used in the construction of the canonical decision
tree. The collection of information sets Ii and Jj might not all
be consistent and we need the concept of a signature to make
sure that this does not confuse the reconstruction process.

Definition 4.6: The signature of a live center determines
whether it is chosen and in such a case which direction it is
matched in its forceable branch.

The reconstruction is now as follows. We start with ρ∗ and
we reconstruct Ii and Ji in order. We let ρ∗j be the restriction

obtained from ρ jointly with Ii for i < j and Ji for i ≥ j.
Thus ρ∗1 is simply ρ∗ which is the starting point. We have a
set E of prematurely found chosen mini-squares jointly with
their signatures. This is initially the empty set. We proceed as
follows.

1) Find the next branch forced to one in any of the Ti by
ρ∗j .

2) Find, if any, mini-square of E whose information is used
to follow this path. If this information would not have
been consistent with Ij−1 go to the next branch.

3) Read a bit to determine whether there are more live
variables to be found on this branch. In such a case,
read a number in [t] to determine its position. If this
variable has two influential mini-squares read another
two bits to determine which of these two mini-squares
are alive. For any alive influential mini-square, retrieve
the corresponding signature(s) from external information
and, if chosen, include the mini-squares in E. Go to step
2.

4) Reconstruct Ij and Jj . Details below.
5) Remove any chosen center included in Jj from E.

We need a lemma.
Lemma 4.7: If the information in E is consistent with the

information in Ij−1 then we found have the forceable branch.
Proof: Suppose v ∈ E. As it is in E it is a chosen mini-

square and was included in Jj′ for some j′ ≥ j. As the current
path is forced to one it must have been a potential forceable
branch. If it was not the actual forceable branch it must be
that at least one of the matched pairs needed was not allowed.
Forcing information from π2 is always allowed and thus the
only problem could have been consistency on the chosen mini-
squares. If none of the elements used on the current path gives
any conflict with Ij−1, it was allowed and hence we must have
the forceable branch.

We need to discuss how to reconstruct Ij and Jj and start
with the latter. For each matched pair in Jj we have recovered
at least one end-point. If needed we use external information to
recover the other end-point. This costs at most ∆. Whenever
we recover a pair of adjacent mini-squares we use external
information to recover the advice bits. This only costs 2 bits
and thus we below focus on identifying mini-squares and do
not mention the reconstruction of advice bits.

For each element in Jj we need to discover whether it is
chosen (this is O(1) external information) and to which node
is is matched in Ij . If it is not chosen then the information in
Ij is the same as the one in Jj . If it is chosen then the partner
is either the same as in Jj and we are done or it is live in
ρ∗j . In the latter case, at cost 2C log n, we can find its identity.
Once we have identified the two partners in a matching, at cost
O(1) we can reconstruct which augmenting path was used.

We reconstruct Ij and Jj and compute ρ∗j+1 and proceed to
the next stage. At the end of this process we have reconstructed
ρ and in the process we have also identified all the sets Ij and
Jj and we know which pairs in Jj are chosen and which
belong to π2. For the pairs of chosen mini-squares we put
them back in to U and any replacements are moved back to

π2. At cost O(1) we can identify the advice bits of all mini-
squares involved in a single move. This way we recover U ,
the full π2, and B. Once we have these we can read off the
original τ .

Let us calculate how much information was used. For each
edge in J∗ at least one end-point is discovered at cost at most
t and the other at cost at most ∆. On top of this we have
information such as the whether it is chosen and the signature
at cost O(1). This gives a total cost of at most 2O(s)(t∆)s. In
reconstructing Ii we might incur an additional cost of O(log n)
per mini-square for an additional factor of 2O(s)(log n)2s and
finally a factor 2O(s) to get advice bits for nodes that move
out and into U . Thus the total cost for the external information
is bounded by 2O(s)(log n)2s(t∆)s.

We proceed to compare the number of quadruples
τ, U, π2, B to the number of quadruples τ∗, U∗, π∗2 , B

∗, and let
us first assume that there are no holes. Both U and U∗ contain
one mini-square from each square but there is a difference that
U contains the designated survivor while U∗ might contain a
different mini-square from this square. Thus the number of
possibilities for U∗ is a factor ∆ larger than the number of
possibilities for U .

Both τ and τ∗ are essentially almost complete matchings.
We do not allow τ to be lopsided but this only reduces the
number of possibilities, by Lemma 3.6, by a factor 1 + o(1).
It is the case that τ∗ is only slightly more general but we
only need an upper bound on the number of possibilities. On
the other hand if U∗ does not contain the designated survivor
there are two mini-squares in τ∗ where the sum is not zero.
This is the designated survivor and its replacement in U∗ in
the same square. The number of τ∗ with these fixed sums
is, however, smaller by Lemma 3.7. There is no difference
between B and B∗ and thus the number of alternatives is the
same. We conclude that if we denote the number of different
τ, U and B by N , then the number of triples τ∗, U∗, and B∗

is bounded by ∆N(1 + o(1)).
The big difference is in the number of matchings π2 and

π∗2 . The former contains k edges and the latter only k−s. The
former is also not unbalanced, but as this, by Lemma 3.8, only
changes the number of possibilities by a factor (1 + o(1)) we
from now on ignore this condition. Let Tk′ be the number of
matchings of k′ pairs of mini-squares picked without repeated
mini-squares. The non-replacement makes it difficult to count
exactly but we only need an approximate number and this is
easier.

Lemma 4.8: For k′ ≤ (n/T)2∆/4 we have Tk′−1 ≤
Tk′k

′∆−2(n/T)−2.
Proof: Let us make a bipartite graph where on one side

we have matchings of size k′ and the other side matchings of
size k′ − 1. There is an edge between two matchings iff the
smaller matching is a subset of the larger one. The degree on
the k′-side is clearly k′.

Now take any matching of size k′−1. This involves 2(k′−1)
mini-squares. As this is fewer than a quarter of all mini-
squares, at most half of all edges are disqualified from being
added due to intersecting with an existing edge. We have

∆(n/T)2 mini-squares to start with and each has at least
2∆ possible partners. We conclude that there are at least
∆2(n/T)2 edges to add and hence this is the minimal degree
on the k′ − 1-side. Double-counting edges we conclude that

k′Tk′ ≥ ∆2(n/T)2Tk′−1

and this proves the lemma.
By a repeated application of the above lemma and

using k = Θ(log n(n/T)2) we conclude that that
Tk−s ≤ 2O(s)(log n)s∆−2sTk. Recalling that we have
2O(s)(∆t)s(log n)2s possibilities for the external information,
and ∆N(1+o(1)) possibilities for U∗, τ∗, B we conclude that,
ignoring the (1 + o(1)) factors, that the number of quadruples
reconstructed is

2O(s)(∆t)s(log n)2s∆N(log n)s∆−2sTk

which by collecting factors equals

2O(s)(t(log n)3∆−1)s∆NTk.

As the total number of quadruples is NTk, this completes the
proof of Lemma 4.1 in the case when there are no holes.

If we allow r holes then the number of possibilities of U∗

increases by a factor at most n2r. The number of τ∗ is different
as some sums are no longer 0, but the sum at each mini-square
is uniquely determined by U∗. Once this is fixed the number
of τ∗ is at most the number of almost complete matchings by
Lemma 3.7.

For there to be a hole, by the balance condition, all the at
least C log n/8 edges between two squares must be present
in J∗. This implies that r = O(s/ log n) and the factor nO(r)

can be absorbed in the factor 2O(s). This completes the proof
also in this case.

V. THE LOWER BOUND FOR PROOF SIZE

In this section we establish one of the two main theorems
of the paper.

Theorem 5.1: Assume that d ≤ O(logn
log logn) and let n be an

odd integer. Then any depth-d Frege proof of the one-to-one
PHP on the n× n grid requires size

exp(Ω(n1/(2d−1)(log n)O(1))).

Proof: The proof follows the standard path. We use a
sequence of restrictions and after the ith restriction any sub-
formula of the proof of original depth at most i is in the range
of the t-evaluation.

In particular after d restrictions, any sub-formula of the
proof is in the range of the t-evaluation. By Lemma 3.3
what remains is a smaller one-to-one PHP instance and by
Lemma 2.3, provided the size of the remaining grid is sig-
nificantly larger than t, the proof cannot derive contradiction.
We just need to specify the parameters to make sure that the
switching lemma can be applied to all formulas simultane-
ously.

If the proof is of size 2S and we ensure that the base of
the exponential is at most 1

4 in each iteration, we apply the

switching lemma with s = Θ(S). For the first iteration we
have t = 1 while for later iterations t = s.

To get the base of the exponential small it is sufficient to set
∆ = Ω((log n)3) in the first iteration and ∆ = Ω((log n)3S)
in later operations. Using that T = Θ(∆2R) we get that after
d iterations the side length of the grid has shrunk from n to

n2−O(d)(log n)−7dS2−2d.

Provided that this is larger than 10s we get a contradiction
and we this is true if

S2d−1 ≤ cn2−O(d)(log n)−7d

for a sufficiently small constant c. This concludes the proof
of the theorem.

Next we turn to the multi-switching lemma.

VI. MULTI-SWITCHING

The extension to multi-switching only requires minor mod-
ifications and we start by stating the lemma.

Lemma 6.1: There is a constants A such that the following
holds. Consider formulas Fmi , for m ∈ [M] and i ∈ [nm],
each associated with a decision tree of depth at most t and
let Fm = ∨nm

i=1F
m
i . Let σ be a random full restriction

from the space of restrictions defined in Section III. Then
the probability that (Fm)Mm=1 cannot be represented by an
` common partial decision tree of depth at most 4s is at most

∆M4s/`
(
A(log n)7t∆−1

)s
.

Proof: We need to construct an ` common decision tree
and we treat the formulas for increasing values of m. We have
counter j, starting at 0, indicating the number of times we have
found a long branch in a decision tree. We have an information
set I+ which initially is empty.

If a formula Fm admits a decision tree of depth at most `
under ρ and the current I+ then there we proceed to the next
formula. If not we set mj = m and execute the process of
forming a canonical decision tree. Its discovers a branch of
length at least ` in this tree and constructs the corresponding
sets Jji for i = 1, 2 . . . gj . We also have the information sets
Iji .

After this branch has been discovered we ask, now in the `
common decision tree, for the partner of any chosen element
in Ij∗ = ∪gji=1I

j
i . The answers jointly with the matching

pairs from π2 in Ij∗ forms a new information set Ij∗+. This
information set is added to I+ and we look for the next
formula that needs a decision tree of depth at least `. It might
be the same formula Fmj , but in such a case a later branch.

The sets Jji again have independent supports and there is
no problem to construct ρ∗ which is defined by ρ jointly with
∪i,jJji . Let Jj∗ = ∪iJji be the information set obtained during
the jth stage. It contains at least ` matched pairs but let us
assume that the true number is sj .

The external information determines which formulas where
processed in the ` common decision tree. There are at most
M4s/` possibilities and this gives an extra factor in the cost
of the external information.

Once we know the value of mj we can run the reconstruc-
tion process based on Fmj exactly as in the single switching
lemma and in particular reconstruct the sets Iji and Jji . The
first element of each edge in Jji is identified at cost at most
O(t) and the second at cost at most O(∆). To specify their
partners inside Iji costs at most another factor O(log n)2. For
each element in Iji we need to later specify a partner inside
I∗j+ and thus for the four mini-squares just found this gives an
extra factor of O(log n)4. This implies that the total external
cost at stage j is at most 2O(sj)(log n)6sj (t∆)sj .

As any edge in Jji might result in four queries in the
common decision tree, if we have 4s questions in the this
tree, then

∑
sj ≥ s and let us for convenience assume we

have equality. The total cost of external information is in
such a case 2O(s)(log n)6s(t∆)s. By the same argument as
in the single switching lemma case, the ratio of the number of
matching with k−s elements and the number with k elements
is 2O(s)(log n/∆2)s.

We conclude that the fraction of quadruples τ , U π2, B
that can reconstructed for a single choice of which formulas
to process is bounded by

∆2O(s)((log n)7t∆−1)s.

This combined the the above claimed bound M4s/` for the
number of possible choices of 4s/` formulas to process
completes the proof of the lemma.

VII. THE LOWER BOUND FOR NUMBER OF LINES

We finally arrive at our second main theorem.
Theorem 7.1: Assume that d ≤ O(logn

log logn) and let n be an
odd integer and M a parameter. Then any depth-d Frege proof
of the one-to-one PHP on the n × n grid where each line is
of size M requires at least

exp
(

Ω

(
n

(logM)2d−1(log n)O(1)

))
lines.

Proof: The proof is analogous to the proof in the full
version of [HR22] and let us only sketch it, mostly giving
parameters. We have t = 1 in the first iteration but in later
iterations we use t = ` = Θ(logM) and hence the first factor
M4s/` turns in to 2O(s) and can be included in the constant.

We have ∆ = Θ((log n)7t) to ensure that the base of the
exponent (including the contribution from the M4s/` factor) is
bounded by 1

4 . In the ith iteration we use si = 2i logN where
N is the number of lines in the proof. In the ith iteration we
need to apply the switching lemma N2

∑i−1
j=0 sj = N2i

times.
In each of the lines and in each leaf of the common decision
tree that we have created so far and which is of depth

∑i−1
j=0 sj .

After d rounds of restrictions we have reduced the size of
the PHP from n to n/(log n)O(d)(logM)2d−2. If this is larger
than 10(

∑d
j=0 sj + logM) we can conclude that there is no

proof and this gives the bound of the theorem.

VIII. FINAL WORDS

It seems that to be able to prove a switching lemma for
a space of restrictions one essential property is that for any
given variable, the probability of setting it to either constant
should be significantly higher than keeping it undetermined.
In the unrestricted PHP the probability that any variable is
true is about 1

n and to make the probability of the variables
remaining undetermined smaller we must go from size n to
a size smaller than

√
n. With such a quick decrease in size

we can only apply the switching lemma O(log logn) times.
In the graph PHP on the grid the probability of a variable
being true to about 1

4 and at the same time the probability of
keeping a variable undetermined is about log n/∆. It is harder
to preserve a graph PHP, but this is made possible by using
augmenting paths as the new variables. Thus it seems that
both decision were forced upon us but certainly there might be
other possibilities and it would be interesting to see alternative
proofs for a switching lemma for a space of restrictions that
preserve the PHP.

In this paper we have proved yet another switching lemma
and it might not even be the last one. There are many
remaining questions in both proof complexity and circuit
complexity and some might be attackable by these types of
techniques. It would be very interesting, however, to find a
different technique to attack questions of Frege proofs where
each formula is relatively simple.

While proofs of switching lemmas are non-trivial, the prop-
erties of the proof we use are rather limited. In the assumed
proof of contradiction, after the restrictions, the proof, more or
less, only contain formulas of constant size. It is not difficult
to see that such a proof cannot find a contradiction for a set of
axioms that are locally consistent. It would be interesting with
a reasoning that used more interesting properties of being a
proof.

ACKNOWLEDGMENTS

I am deeply grateful to Svante Janson for suggesting the
proof of Lemma 3.6. I am also very grateful to Per Austrin,
Kilian Risse, Ben Rossman, and Aleksa Stanković for a
sequence of discussions that lead to the start of the ideas
for this paper. The research leading to this publication was
supported by the Knut and Alice Wallenberg foundation.

REFERENCES

[AAG01] N. Galesi A. Atserias and R. Gavaldà. Monotoe proofs of the
pigeon hole principle. Mathematical Logic Quaterly, 47:461–474,
2001.

[Ajt94] Miklós Ajtai. The complexity of the pigeonhole principle. Combi-
natorica, 14(4):417–433, 1994. Preliminary version in FOCS ’88.

[Bol86] B. Bollobás. Combinatorics: Set Systems, Hypergraphs, Families
of Vectors, and Combinatorial Probability. Cambridge University
Press, 1986.

[BPU92] Stephen Bellantoni, Toniann Pitassi, and Alasdair Urquhart. Ap-
proximation and small-depth frege proofs. SIAM J. Comput.,
21:1161–1179, 1992.

[FSS84] M. Furst, J.B. Saxe, and M. Sipser. Parity, circuits and the
polynomial-time hierarchy. Mathematical Systems Theory, 17:13–
27, 1984.

[Hak85] A. Haken. The intractability of resolution. Theoretical Computer
Science, 39:297 – 308, 1985.

[Hås86] J. Håstad. Almost optimal lower bounds for small depth circuits. In
Proceedings of the eighteenth annual ACM symposium on Theory
of computing, STOC ’86, pages 6–20, New York, NY, USA, 1986.
ACM.

[Hås14] J. Håstad. On the correlation of parity and small-depth circuits.
SIAM Journal on Computing, 43:1699–1708, 2014.

[Hås20] J. Håstad. On small-depth frege proofs for tseitin for grids. Journal
of the ACM, 68:1–31, 2020.

[HR22] J. Håstad and K. Risse. On bounded depth proofs for tseitin
formulas on the grid; revisited. In 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS), pages
1138–1149, 2022. Full version is available at ArXiv:2209.05839
https://arxiv.org/abs/2209.05839.

[IMP12] Russell Impagliazzo, William Matthews, and Ramamohan Paturi.
A satisfiability algorithms for AC0. In Proceeding of the 23rd
Annual ACM-SIAM Symposium on Discrete Algorithms, pages
961–972, 2012.

[KPW95] Jan Krajı́ček, Pavel Pudlák, and Alan Woods. An exponential
lower bound to the size of bounded depth frege proofs of the
pigeonhole principle. Random Structures & Algorithms, 7(1):15–
39, 1995.

[PBI93] Toniann Pitassi, Paul Beame, and Russell Impagliazzo. Exponen-
tial lower bounds for the pigeonhole principle. Computational
Complexity, 3:97–140, 1993. Preliminary version in STOC ’92.

[PRST16] Toniann Pitassi, Benjamin Rossman, Rocco A. Servedio, and
Li-Yang Tan. Poly-logarithmic frege depth lower bounds via
an expander switching lemma. In Proceedings of the Forty-
Eighth Annual ACM Symposium on Theory of Computing, STOC
’16, page 644–657, New York, NY, USA, 2016. Association for
Computing Machinery.

[PRT21] T. Pitassi, P. Ramakrishnan, and L. Tan. Tradeoffs for small-
depth frege proofs. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 445–456, Los
Alamitos, CA, USA, feb 2021. IEEE Computer Society.

[Raz95] A. A. Razborov. Bounded Arithmetic and Lower Bounds in
Boolean Complexity, pages 344–386. Birkhäuser Boston, Boston,
MA, 1995. Editors Peter Clote and Jeffrey Remmel.

[RST15] Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. An
average-case depth hierarchy theorem for boolean circuits. In IEEE
56th Annual Symposium on Foundations of Computer Science,
FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages
1030–1048, 2015.

[Sip83] M. Sipser. Borel sets and circuit complexity. In Proceedings of the
fifteenth annual ACM symposium on Theory of computing, STOC
’83, pages 61–69, New York, NY, USA, 1983. ACM.

[Tse68] G. S. Tseitin. On the complexity of derivation in the proposistional
calculus. In A. O. Slisenko, editor, Studies in constructive
mathematics and mathematical logic, Part II, 1968.

[UF96] Alasdair Urquhart and Xudong Fu. Simplified lower bounds
for propositional proofs. Notre Dame Journal of Formal Logic,
37(4):523–544, 1996.

[Yao85] A. C-C. Yao. Separating the polynomial-time hierarchy by
oracles. In Foundations of Computer Science, 1985., 26th Annual
Symposium on, pages 1 –10, oct. 1985.

