
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Optimal Inapproximability with Universal Factor Graphs

PER AUSTRIN, KTH Royal Institute of Technology, Sweden

JONAH BROWN-COHEN, Chalmers University of Technology, Sweden

JOHAN HÅSTAD, KTH Royal Institute of Technology, Sweden

The factor graph of an instance of a constraint satisfaction problem (CSP) is the bipartite graph indicating

which variables appear in each constraint. An instance of the CSP is given by the factor graph together with a

list of which predicate is applied for each constraint. We establish that many Max-CSPs remain as hard to

approximate as in the general case even when the factor graph is fixed (depending only on the size of the

instance) and known in advance.

Examples of results obtained for this restricted setting are:

(1) Optimal inapproximability for Max-3-Lin and Max-3-Sat (Håstad, J. ACM 2001).

(2) Approximation resistance for predicates supporting pairwise independent subgroups (Chan, J. ACM

2016).

(3) Hardness of the “(2 + 𝜀)-Sat” problem and other Promise CSPs (Austrin et al., SIAM J. Comput. 2017).

The main technical tool used to establish these results is a new way of folding the long code which we call

“functional folding”.

CCS Concepts: • Theory of computation→ Problems, reductions and completeness.

Additional Key Words and Phrases: hardness of approximation, factor graphs

ACM Reference Format:
Per Austrin, Jonah Brown-Cohen, and Johan Håstad. 2022. Optimal Inapproximability with Universal Factor

Graphs. ACM Trans. Algor. 1, 1 (October 2022), 39 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Constraint Satisfaction Problems (CSPs), such as 𝑘-Lin and 𝑘-Sat, are some of the most well-studied

problems in computational complexity. Already when considered as decision problems most CSPs

are NP-complete and their maximization versions are hence NP-hard. In order to further investigate

the computational complexity of these problems it is interesting to study restricted versions.

The factor graph of an instance of a CSP is the bipartite graph that connects 𝑢𝑖 to 𝑣 𝑗 iff variable

𝑥𝑖 appears in the 𝑗 th constraint. The description of the instance is completed by indicating for each

constraint which predicate is applied (in the case of e.g. Max-3-Sat this simply means specifying

which variables are negated and which appear in their positive form). It is not difficult to find

examples of factor graphs where the resulting Max-CSP instances are always easy; one example

would be that the graph has bounded tree-width as such instances can be solved efficiently by

dynamic programming. More generally, there has been extensive research on the tractability of

CSPs with “left-hand side restrictions”, i.e., restrictions on the structure of the factor graph [9, 13].

Authors’ addresses: Per Austrin, austrin@kth.se, KTH Royal Institute of Technology, Stockholm, Sweden; Jonah Brown-

Cohen, jonahb@chalmers.se, Chalmers University of Technology, Gothenburg, Sweden; Johan Håstad, johanh@kth.se, KTH

Royal Institute of Technology, Stockholm, Sweden.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1549-6325/2022/10-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Austrin, Brown-Cohen, and Håstad

In this paper we are interested in the other end of the spectrum, namely to see if there is a

sequence of factor graphs, one for each length of the input, such that the underlying Max-CSP

remains hard if we restrict the instances to use these factor graphs. This general class of questions

was first systematically considered by Feige and Jozeph [10] who coined the term universal factor
graphs for such sequences of factor graphs.

There are several reasons for studying this setting. On a fundamental level it is interesting to

understand whether this separation into the factor graph and the predicate types applied can help

us better understand the problem. In some situations one might have many instances with the

same factor graph and it is interesting to study whether this is beneficial for a solver. This leads

to the concept of “CSPs with preprocessing”. A particularly interesting case of this is for a linear

problem such as Max-𝑘-Lin where a factor graph with 𝑛 variables and𝑚 constraints determines

a fixed linear subspace of F𝑚 of dimension at most 𝑛, the negations give a point in F𝑚 , and the

problem is equivalent to finding a point in this fixed subspace that is close to the given point. This

is a decoding problem for a linear code, but note that, in this case, the distances between the points

supplied and the linear code is much larger than the minimal distance of the code. Hence, this

problem is not really a traditional decoding problem for error correcting codes.

It is not surprising that some problems remain NP-hard in this setting. For instance, it is not

difficult to see that if some basic parameters, such as the alphabet and the number of tapes for the

involved Turing machine, are fixed then the standard proof of the Cook-Levin theorem produces

an instance that can easily be made to have a universal factor graph.

Using a different approach Feige and Jozeph [10] proved that universal factor graphs exist

for the problem of deciding 𝑘-Sat. Furthermore, they also showed that the PCP Theorem can be

established in the universal factor graph setting, opening up the possibility to proving hardness

of approximation results for universal factor graphs. They went on to show that universal factor

graphs exist for the problem of approximating Max-𝑘-Sat to within some constant factor, which

for 𝑘 = 3 was 77/80 + 𝜀 for any 𝜀 > 0
1
. Since general Max-3-Sat is well-known to be NP-hard to

approximate within any constant larger than 7/8 + 𝜀 [15] this left open the problem whether fixing

the factor graph might make Max-3-Sat easier to approximate.

In a follow-up work, Jozeph [18] showed that there are universal factor graphs for every NP-hard

Boolean CSP and for every APX-hard Boolean Max-CSP, but with possibly weaker approximation

gaps than in the standard setting.

1.1 Our Results
We show that the hardness ratio of Max-3-Sat as well as those of many other problems carry over to

the universal factor graph setting. Essentially all our results are stated in the form of approximation
resistance, i.e., that it is hard to approximate a certain Max-CSP significantly better than picking an

assignment at random.

We show that the following problems are all approximation resistant also in the universal factor

graph setting.

(1) The Max-𝑘-Sat problem on satisfiable instances for all 𝑘 ≥ 3.

(2) The Max-TSA problem (each constraint is a Tri-Sum-And constraint, i.e., of the form 𝑥1 +
𝑥2 + 𝑥3 + 𝑥4 · 𝑥5 = 𝑏 (mod 2)).

(3) The Max-Not-2 problem on satisfiable instances (The Boolean predicate which is one if and

only if the input does not contain two bits set to one).

(4) Any predicate supporting a pairwise independent subgroup such as linear equations modulo

𝑞 for any 𝑞 ≥ 2, and the very sparse “Hadamard predicate”.

1
From now on we use the convention that 𝜀 is used for a positive constant that can be chosen to be arbitrarily small

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Optimal Inapproximability with Universal Factor Graphs 3

Approximation resistance for the Hadamard predicate is of particular interest because this gives

optimal hardness of approximation for the general Max-𝑘-CSP problem (up to a constant factor

independent of 𝑘) [7]. This result only applies to problems for which solving satisfiable instances is

easy. Therefore we also show that, in the universal factor graph setting, the general Max-𝐾-CSP

problem is hard to approximate on satisfiable instances to within a factor of 𝐾𝑐𝐾
1/3/2𝐾 for some

constant 𝑐 [17].

In fact, we also prove uselessness in the sense of [3]. This means that it is NP-hard to find an

assignment such that when picking a random constraint, the resulting distribution of values of the

𝑘-tuples of literals that are fed into the predicate deviates significantly from uniform, even under

the promise that there exists an assignment that satisfies almost all or even all of the constraints.

This concept only applies to CSPs in which we have free negations of variables and as such does

not apply to the Max-TSA problem, but for the other problems we do obtain uselessness.

Hardness results for Max-TSA and similar problems are somewhat related to the one-way

functions and pseudorandom generators proposed by Goldreich [12]. For instance the Tri-Sum-And

predicate is one of the current standard candidate predicates for his construction, and our results

show that there is a fixed set system such that it is NP-hard to distinguish strings that are in the

image of the one-way function from strings that are at almost maximal distance from any output of

the function. Of course in a cryptographic situation one is interested in an average case results while

we are in a worst case setting. In any case we feel that our results give at least moral support to the

conjecture that the functions proposed by Goldreich are indeed good pseudorandom generators.

We also consider hardness of Promise CSPs (PCSPs) as studied in several recent works [2, 5, 6].

In this setting we are given a satisfiable instance of some hard CSP (e.g. a 3-colorable graph) and are

asked to find an assignment where each constraint is replaced by a weaker constraint (e.g. finding

a 𝑐-coloring for some large 𝑐). One example of this is the “(2 + 𝜀)-Sat” problem, in which we are

given a (2𝑘 + 1)-Sat instance where it is promised that there is an assignment that satisfies at

least 𝑘 literals in every clause, and the goal is to find an assignment that satisfies at least 1 literal

in every clause. A fairly general hardness result of Brakensiek and Guruswami [5] states that if

all the so-called polymorphisms of a PCSP satisfy a property called “𝐶-fixing” then the PCSP is

NP-hard. They further showed that this result is sufficient to establish a complete dichotomy for

PCSPs where all constraints are symmetric functions. We were not able to obtain this result under

universal factor graphs, but we can obtain an earlier result of Austrin et al. [2], which applies if all

the polymorphisms are 𝐶-juntas and the problem allows negations of variables. This in particular

shows that the “(2 + 𝜀)-Sat” problem remains NP-hard in the universal factor graph setting.

Finally we also note that many typical gadget reductions carry over without modification to

the universal factor graph setting and as a consequence our optimal hardness for Max-3-Lin also

implies hardness of, e.g., (11/12 + 𝜀)-approximating Max-2-Lin and (21/22 + 𝜀)-approximating

Max-2-Sat.

Our results generally apply to any domain, but to keep the notation as simple as possible in order

to focus on the main new ideas, most parts of the paper present the details only for the Boolean

case. We then briefly comment towards the end of the paper on the (minor) modifications needed

for general domains.

1.2 Overview of Proof Techniques
The first results on hardness of approximation for universal factor graphs are those of Feige and

Jozeph [10]. They begin with a (possibly folklore) reduction showing that the decision version of

3-Sat is NP-hard with universal factor graphs (i.e., NP-hard to solve even when the factor graph is

fixed in advance).

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Austrin, Brown-Cohen, and Håstad

Much of the rest of the work in that paper is then dedicated to showing how to make classical

reductions from hardness of approximation factor graph-preserving. That is, to ensure that applying
the reduction to two 3-Sat instances with the same factor graph results in two instances of the

target Max-CSP with the same factor graph. Such a reduction then implies that the target Max-CSP

is hard to approximate with universal factor graphs. Indeed, the authors show that Dinur’s proof of

the PCP theorem can be made factor graph-preserving. They also successfully follow the work of

Bellare et al. [4] and show how their reductions can be made factor graph-preserving, enabling them

to obtain for instance a hardness of approximation of 77/80+𝜀 for Max-3-Sat. Feige and Jozeph were

not, however, able to make the result of Håstad [15] factor graph-preserving. As a consequence,

they do not get the optimal hardness 7/8 + 𝜀 for Max-3-Sat and they do not get inapproximability

for Max-3-Lin with any fixed constant soundness and arbitrarily good completeness.

Therefore, to establish strong hardness results in the universal factor graph framework the key is

to combine the universal factor graph property with an, at least somewhat, more modern soundness

analysis of the underlying PCPs. It turns out that the main obstacle to achieving this combination

arises in the folding of the long code. In the remainder of this section we first explain why the

folding used in Håstad’s reduction is not factor graph-preserving while that used by Bellare et al.

is. We then introduce our new folding of the long code and give some intuition for why it is both

factor graph preserving and able to achieve optimal inapproximability.

The classical “parallel repetition + long coding” paradigm begins with some Max-CSP, often

Max-𝑘-Sat, that is known to be hard to approximate within some small constant factor. Then, in

the intended solution to the target Max-CSP, satisfying assignments to subsets of the variables of

the original Max-CSP are encoded with the long code, i.e., by encoding x ∈ {0, 1}𝑟 by the string

𝐴x ∈ {0, 1}22
𝑟

consisting of the evaluation of every Boolean function on 𝑟 bits at the point x. To
prove that such a reduction is sound with optimal approximation ratio, one then constructs what

is known as a long code testing gadget. This gadget has for each Boolean function 𝑓 on 𝑟 bits a

variable 𝐴(𝑓) intended to take the value 𝐴x (𝑓) of the long code of some good assignment x. On
these variables constraints of the target Max-CSP are added, designed so that given an assignment

satisfying many of the gadget constraints it is possible to “decode” this assignment to a valid code

word 𝐴x where x is a satisfying assignment to a subset of the variables of the original Max-CSP.

Note that there are two distinct tasks: (a) decoding to a code word, and (b) checking that x
satisfies the constraints of the original Max-CSP. In order to achieve both at the same time, a key

step used in classical reductions is folding of the long code. Folding identifies coordinates (possibly

with negations) of the long code in an attempt to implicitly enforce the second condition (b), i.e.

that x satisfies the original constraints.

The folding used by Håstad (sometimes also called conditioning) can be described as follows. If

for some constant 𝑏 ∈ {0, 1} it holds that 𝑓 (x) = 𝑔(x) +𝑏 for all x satisfying the original constraints,
then we identify the corresponding long code entries by 𝐴(𝑓) = 𝐴(𝑔) + 𝑏. Notice that this folding
depends heavily on precisely which constraints appear on the subset of original variables x. For
example, if our reduction started with an instance of Max-𝑘-Sat, changing the negation on one

of the original variables in x will completely change which coordinates are identified under this

strong folding. Since the gadget we construct has these coordinates as variables, this will in turn

change the factor graph of the gadget output by the reduction. Thus, this folding does not lead to

factor graph preserving reductions. However, it was—until now—the only way known to obtain

optimal hardness of approximation results for many fundamental problems.

In the earlier and weaker type of folding used by Bellare et al. we apply a similar folding, but

we fold over each constraint on x individually instead of over all of them at once. Specifically, for

each individual original constraint ℎ(x) = 𝑏 on x, we identify all pairs of functions 𝑓 and 𝑔 = 𝑓 + ℎ

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Optimal Inapproximability with Universal Factor Graphs 5

by 𝐴(𝑓) = 𝐴(𝑔) + 𝑏. Notice that if we change the value of 𝑏 ∈ {0, 1}, instead of changing which

coordinates are identified, all that changes is the negation applied to the coordinate. Thus, if the

constraint functions ℎ are fixed in advance and only the right-hand sides 𝑏 vary, this folding does

produce factor graph preserving gadgets. This fact was the key to the reduction in [10]. We refer to

CSPs of this type, where all constraints are of the form ℎ(x) = 𝑏 where the function ℎ is fixed in

advance and 𝑏 ∈ {0, 1}, as equational CSPs. The issue with this approach is that this weaker folding

does not sufficiently enforce that the decoded long code word 𝐴x corresponds to an x satisfying

the original constraints. For this reason, the long code testing gadget constructed in the reduction

contains extra constraints to explicitly enforce this, leading to sub-optimal approximation ratios.

Our solution to the problems mentioned above is a new method of folding the long code which

we call functional folding. It can be viewed as a strengthening of the folding of Bellare et al. Let

{ℎ𝑖 (x) = 𝑏𝑖 }𝑡𝑖=1 be the set of original constraints on the subset of variables x. Our folding identifies

the coordinates 𝑓 and 𝑔 which differ by 𝐹 (ℎ1 (x), . . . , ℎ𝑡 (x)) where 𝐹 is any Boolean function on 𝑡

bits. We then identify the corresponding long code entries by 𝐴(𝑔) = 𝐴(𝑓) + 𝐹 (𝑏1, . . . , 𝑏𝑡). Notice
that just as in the case of the weaker folding above, changing the value of 𝑏𝑖 in one of the original

constraints will possibly change the negations on the coordinates of the long code testing gadget, but

will not change which coordinates are identified. Therefore, this folding is factor graph-preserving

when we start with an equational CSP. Furthermore, we show that our new folding does enforce

the constraints on x strongly enough to allow for optimal approximation ratios.

In more detail, the folding of Håstad yields a gadget which, from a proof accepted with high

probability, allows us to find a set of long code words, all of which correspond to satisfying

assignments to the original constraints. Our new folding does not quite allow for this, but instead

guarantees that we find a set of long codes words, at least one of which satisfies the original

constraints. This is formalized in Lemma 3.4.

Having only this weaker guarantee, it turns out to be possible to reprove many earlier results

in the universal factor graph setting after some modifications in the constructions and the proofs.

The most important modification is that, even in the easiest cases of proving that Max-3-Lin is

NP-hard to approximate within
1

2
+ 𝜀 or that (2+ 𝜀)-Sat is NP-hard, we need to use a smooth parallel

repetition as the starting point. This allows us to cope with the issue that only some of the set of

long code words we find correspond to satisfying assignments.

Another difference, albeit a purely notational one, is the following. Because of the property of

functional folding that only some of the coordinates correspond to feasible assignments in the

parallel repeated game, we need to keep track for each long code of how the coordinates represent

partial assignments to the underlying equational CSP. Due to this, we cannot view the parallel

repeated game as an abstract label cover instance and in the process we lose most of the simplified

notation afforded by this “modern” view. For example we have to view the purported long codes

given to the PCP verifier as Boolean functions of Boolean functions rather than simply Boolean

functions of generic bit strings.

The fact that we need a smooth parallel repetition implies that if we look more closely at the

parameters of our results we do not get as strong results as in the general case. In the black and

white world of polynomial vs non-polynomial time we match the general results, but in more

fine-grained measures our results are weaker than the general case. Here we are referring to (i) the

question of how small 𝜀 can be as a function of 𝑛, and (ii) the question of what quantitative lower

bounds can be given on the running time assuming the Exponential Time Hypothesis. For these

questions, our results for universal factor graphs do not match the state of art for the general case.

We elaborate a bit more on this in the concluding remarks towards the end of the paper.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Austrin, Brown-Cohen, and Håstad

1.3 Organization
An outline of the paper is as follows. In Section 2 we cover some background material. In Section 3

we define our new notion of functional folding and set up the general framework for our hardness

reductions. Section 4 is devoted to the reproving the results of Håstad [15] for basic problems such

as Max-3-Lin and Max-3-Sat (and also Max-TSA and Max-Not-2 for which the hardness is proved

in the same way). In Section 5 we show how to adapt the results of Chan [7], and in Section 6 we

do the same with the results of Huang [17]. In Section 7 we give results for Promise CSPs. Then in

Section 8 we discuss small extensions such as gadget reductions and larger domains, and finally in

Section 9 we round off with some remaining open questions.

2 PRELIMINARIES
For a vector v ∈ Σ𝐼 indexed by 𝐼 over some set Σ, and a vector 𝑆 = (𝑖1, . . . , 𝑖𝑘) ∈ 𝐼𝑘 of indices, we
write v𝑆 for the vector (𝑣𝑖1 , . . . , 𝑣𝑖𝑘). For a set 𝛽 of vectors we let 𝛽𝑆 = { v𝑆 | v ∈ 𝛽 } (viewed as a set

and not a multiset).

For any event 𝐸 (𝑥) we let 1(𝐸 (𝑥)) denote the function that is one exactly when 𝐸 (𝑥) is true and
zero otherwise. In a similar vein for a set 𝛽 ⊆ 𝐼 of indices 1𝛽 ∈ {0, 1}𝐼 is the vector that is one
exactly on the set 𝛽 and zero outside this set. If 𝛽 is a single index, this is a unit vector.

For an index set 𝐼 of coordinates we write F𝐼 = { 𝑓 : {0, 1}𝐼 → {0, 1} } for the set of all Boolean
functions on 𝐼 , and for an integer 𝑛 we write F𝑛 = F[𝑛] .

When arguing about Boolean functions we let “+” denote exclusive-or. We also have addition of

real numbers but hopefully the meaning of each + is clear from the context.

2.1 Constraint Satisfaction Problems
We begin by introducing notation for CSPs. As this paper focuses on the case of Boolean inputs we

only give formal definitions in this special case. We expect that the reader is able to guess the more

general definitions needed for our brief discussion of larger domains in Section 8.2.

Definition 2.1. A 𝑘-ary constraint language Γ is a finite set of functions 𝑓 : {0, 1}𝑘 → {0, 1}.

Different constraint languages give rise to different CSPs as formalized in the following definition.

Definition 2.2. An instance of the Max-CSP(Γ) problem is of the form 𝐼 = (𝑋,𝐶) where 𝑋 is a

set of 𝑛 variables and 𝐶 is a set of𝑚 constraints. Each constraint 𝑐 ∈ 𝐶 is a pair 𝑐 = (𝑓 , 𝑆) where
𝑆 ∈ 𝑋𝑘 (the scope of 𝑐) is a tuple of 𝑘 distinct variables and 𝑓 ∈ Γ (the constraint type of 𝑐). An
assignment a ∈ {0, 1}𝑋 of values to the variables satisfies the constraint 𝑐 = (𝑓 , 𝑆) if 𝑓 (a𝑆) = 1.

The objective is to find an assignment to the variables satisfying as many constraints as possible.

An instance of Max-CSP(Γ) is 𝛼-satisfiable if there is an assignment that satisfies an 𝛼 fraction of

the constraints.

For every Max-CSP and some approximation parameters, there is a naturally associated approxi-

mation problem, which we generally phrase as the following promise decision problem.

Definition 2.3. For parameters 0 ≤ 𝑠 ≤ 𝑐 ≤ 1, the problem of (𝑐, 𝑠)-approximating Max-CSP(Γ) is
the promise problem where the goal is to distinguish between instances of Max-CSP(Γ) that are at
least 𝑐-satisfiable, and those that are at most 𝑠-satisfiable.

For example, Max-3-Lin is the problem Max-CSP(Γ) where Γ consists of the two functions

𝑓0 (𝑥,𝑦, 𝑧) = 𝑥 + 𝑦 + 𝑧 and 𝑓1 (𝑥,𝑦, 𝑧) = 𝑥 + 𝑦 + 𝑧 + 1. In fact Max-3-Lin is a prototypical example of

the following important subclass of CSPs which plays a critical role in our reductions.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Optimal Inapproximability with Universal Factor Graphs 7

Definition 2.4. An equational CSP is a CSP where the constraint language Γ contains exactly two

functions: 𝑓 and ¬𝑓 for some 𝑓 : {0, 1}𝑘 → {0, 1}. Equivalently, an equational CSP is one where

each constraint 𝑐 has the form either 𝑓 (x𝑆) = 0 or 𝑓 (x𝑆) = 1.

Definition 2.5. For a predicate 𝑓 : {0, 1}𝑘 → {0, 1}, Max-CSP(𝑓 ±) is the CSPwhere each constraint
is of the form 𝑓 (x𝑆 + b) = 1 for some scope 𝑆 and vector b ∈ {0, 1}𝑘 .

We now formally define the CSPs of interest in this paper.

Definition 2.6. The Tri-Sum-And predicate 𝑓TSA : {0, 1}5 → {0, 1} is given by

𝑓TSA (𝑥,𝑦, 𝑧,𝑢, 𝑣) = 𝑥 + 𝑦 + 𝑧 + 𝑢𝑣.

We write Max-TSA for the (equational) Max-CSP({𝑓TSA,¬𝑓TSA}) problem which is a well known

NP-hard problem.

Definition 2.7. Max-𝑘-Sat is the Max-CSP(∨±
𝑘
) problem, where ∨𝑘 : {0, 1}𝑘 → {0, 1} is the OR

function on 𝑘 Boolean variables.

Definition 2.8. Max-𝑘-Lin is the (equational) Max-CSP({+𝑘 ,¬+𝑘 }) problem, where +𝑘 : {0, 1}𝑘 →
{0, 1} is the parity function on 𝑘 Boolean variables.

Definition 2.9. For 𝑘 of the form 2
ℓ − 1 for some integer ℓ , Had𝑘 : {0, 1}𝑘 → {0, 1} is the predicate

where the indices are in one-to-one correspondence with the nonempty subsets of [ℓ] and a string

x satisfies Had𝑘 iff 𝑥𝛼 + 𝑥𝛽 = 𝑥𝛾 whenever 𝛼△𝛽 = 𝛾 .2

It is easy to see that an accepted x is determined by the ℓ singleton variables 𝑥 {𝑖 } and that Had𝑘

accepts exactly 2
ℓ = 𝑘 + 1 strings. We write Max-Had𝑘 for the Max-CSP(Had±

𝑘
) problem.

2.2 Factor Graphs and Preprocessing
Next we define the factor graph of a CSP.

Definition 2.10. The factor graph of an instance 𝐼 = (𝑋,𝐶) of Max-CSP(Γ) is the bipartite graph
𝐺 = (𝑋,𝑌, 𝐸), where 𝑌 = { 𝑆 | (𝑓 , 𝑆) ∈ 𝐶 } is the multiset of scopes of the constraints of 𝐼 , and there

is an edge between a variable 𝑥 ∈ 𝑋 and scope 𝑆 ∈ 𝑌 whenever 𝑥 ∈ 𝑆 .

Note that the factor graph precisely describes the scopes of the constraints of 𝐼 but is independent

of the constraint types 𝑓 used for each constraint. Our results are about hardness of approximation

for Max-CSPs where the factor graph is fixed in advance and the instance only consists of the

constraint types. To this end, we make the following definitions.

Definition 2.11. A family G = {G𝑛}𝑛>0 of factor graphs parameterized by 𝑛 is explicit if G𝑛 can
be constructed in time poly(𝑛).

Definition 2.12. We say that Max-CSP(Γ) is (𝑐, 𝑠)-UFG-NP-hard if there is an explicit family

{G𝑛} of factor graphs and a polynomial time reduction 𝑅 from 3-Sat instances 𝐼 on 𝑛 variables to

Max-CSP(Γ) instances 𝑅(𝐼) having factor graph G𝑛 such that

(1) If 𝐼 is satisfiable, then 𝑅(𝐼) is 𝑐-satisfiable.
(2) If 𝐼 is unsatisfiable, then 𝑅(𝐼) is not 𝑠-satisfiable.

We often say that a problem “has universal factor graphs” when it is UFG-NP-hard.

2
Here 𝛼△𝛽 is the symmetric difference of the two sets 𝛼 and 𝛽 , i.e., the set of elements that appear in exactly one of the

two sets.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Austrin, Brown-Cohen, and Håstad

Remark 2.13. As a 3-Sat instance might have up to 𝑛3 clauses this definition is rather relaxed in how

it handles size parameters. In this paper this does not matter as we do not keep track of degrees of

various polynomials appearing in our proofs. If a more fine-grained theory was desired it would be

useful to introduce also a parameter𝑚 for the number of clauses in the 3-Sat formula and see how

this parameter enters into the size of the resulting factor graph family.

Our definitions here have minor technical differences with those in [10]. This was done for

reasons of presentation, and it is easy to check that all of the results in both this paper and [10] hold

for both (very similar) sets of definitions for universal factor graphs. In particular, it is not difficult

to see that if Max-CSP(Γ) is (𝑐, 𝑠)-UFG-NP-hard using a family G then there is no poly(𝑛)-size
circuit family {𝐶𝑛} that (𝑐, 𝑠)-approximates Max-CSP(Γ) on instances with factor graph G𝑛 unless

NP ⊆ P/poly (in other words, Max-CSP(Γ) is hard to (𝑐, 𝑠)-approximate with preprocesssing of the

factor graph).

To prove our hardness results, we start with some problem already known to have universal

factor graphs, and then do a reduction to a CSP achieving the optimal approximation ratio. The

key difference from the standard version of such reductions is that, given two instances with the

same factor graph, our reductions must produce two instances with the same factor graphs.

Definition 2.14. A reduction 𝑅 from Max-CSP(Γ) to Max-CSP(Λ) is factor graph-preserving if,

whenever two Max-CSP(Γ) instances 𝐼 and 𝐼 ′ have the same factor graph, then 𝑅(𝐼) and 𝑅(𝐼 ′) also
have the same factor graph.

The key property of factor graph-preserving reductions is the following immediate fact.

Fact 2.15. IfMax-CSP(Γ) is (𝑐, 𝑠)-UFG-NP-hard and there is a factor graph-preserving polynomial
time reduction from (𝑐, 𝑠)-approximatingMax-CSP(Γ) to (𝑐 ′, 𝑠 ′)-approximatingMax-CSP(Λ), then
Max-CSP(Λ) is (𝑐 ′, 𝑠 ′)-UFG-NP-hard.
The starting point for our reductions is the following hardness result for Max-TSA.

Theorem 2.16 ([18]). There is a constant 𝑠 < 1 such that Max-TSA is (1, 𝑠)-UFG-NP-hard.

2.3 Analysis of Boolean Functions
We use standard notation, but in a slightly non-standard set-up. As mentioned in Section 1.2 we are

mostly concerned with analysing tables which are Boolean functions of Boolean functions, rather

than functions taking generic bit strings as inputs. Of course there is no real difference between a

Boolean function 𝑓 ∈ F𝑛 and a bit string of length 2
𝑛
as long as we identify {0, 1}𝑛 and [2𝑛] but

the notation looks slightly different. Furthermore, our choice to make Boolean functions take value

in {0, 1} rather than {−1, 1} causes us to many times replace what would have been 𝐴(𝑓) in the

latter notation by (−1)𝐴(𝑓)
in our current notation. Let us turn to some definitions.

Definition 2.17. For 𝛼 ⊆ {0, 1}𝑛 we have a character 𝜒𝛼 : F𝑛 → {−1, 1} defined by

𝜒𝛼 (𝑓) = (−1)
∑

x∈𝛼 𝑓 (x) .

Definition 2.18. For a Boolean function 𝐴 : F𝑛 → {0, 1} we define the Fourier coefficients by

𝐴𝛼 = E
𝑓
[(−1)𝐴(𝑓) 𝜒𝛼 (𝑓)] .

We have the Fourier inversion formula

(−1)𝐴(𝑓) =
∑︁
𝛼

𝐴𝛼 𝜒𝛼 (𝑓)

and Plancherel’s identity

∑
𝛼 𝐴

2

𝛼 = 1. The Boolean-valued function 𝐴(𝑓) and the real-valued

function (−1)𝐴(𝑓)
are of course just different views of the same mathematical object.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Optimal Inapproximability with Universal Factor Graphs 9

2.4 Parallel Repetition
An instance 𝐼 = (𝑋,𝐶) of a Max-CSP can be naturally associated with a basic two-prover game. The

verifier picks a random constraint (𝑆, 𝑓) ∈ 𝐶 and a uniformly random variable 𝑥𝑖 from the tuple x𝑆 .
It sends 𝑥𝑖 to prover 𝑃1 and x𝑆 to prover 𝑃2. 𝑃1 responds with a value for 𝑥𝑖 and 𝑃2 responds with

values for all the variables in x𝑆 . The verifier accepts if and only if the values given to 𝑥𝑖 by the

two provers are the same, and the value given to x𝑆 satisfies 𝑓 .
If the instance 𝐼 is satisfiable then the provers can win this game with probability 1 (perfect

completeness), and if 𝐼 is at most (1 − 𝛿)-satisfiable then they can win with probability at most

1−𝛿/𝑘 where 𝑘 is the arity of each constraint and thus we preserve soundness strictly smaller than

one.

In the 𝑟 -wise parallel repetition of this game the verifier chooses 𝑟 random constraints which

it sends to 𝑃2 and randomly one variable from each constraint which it sends to 𝑃1. The provers

respond with values for all the variables they are sent. The verifier accepts if an only if the values

from 𝑃2 satisfy the constraints and match those sent by 𝑃1 on the common variables. The 𝑟 -parallel

repeated game has perfect completeness and soundness 𝑐𝑟 for some 𝑐 < 1 [23].

The 𝑟 -parallel repeated game corresponds naturally to the constraint satisfaction problem known

as label cover where the answers of the two provers are the assignments (known as labels) to

collections of variables, and the constraints are the tests made by the prover. In classical optimal

inapproximability it is often not necessary for subsequent reductions to remember the details of

how labels and constraints correspond to collections of variables for the original problem. Thus

many standard reductions ignore these details and instead focus only on the abstract label cover

problem.

In our reductions we need a variant called smooth parallel repetition. In this version an extra set

of 𝑡 constraints are sent to both provers. Of course for this to be useful, 𝑃2 does not know which 𝑡

of its 𝑡 + 𝑟 constraints are sent to 𝑃1. The verifier now also checks that it gets the same values for

the 𝑡𝑘 values requested from both provers. It is easy to see that these extra variables sent to both

provers do not increase soundness which remains at most 𝑐𝑟 . As with standard parallel repetition,

one may view the smooth parallel repeated game as an instance of a constraint satisfaction problem

known as smooth label cover, where again assignments to sets of variables sent to each prover are

known as labels.

We use smooth parallel repetition in order to ensure that for any two distinct answers, 𝑎1 and 𝑎2
sent by 𝑃2 it is unlikely that there is one answer by 𝑃1 that is accepting for both 𝑎𝑖 . This is ensured

by setting 𝑡 significantly larger than 𝑟 , while keeping both parameters constant independent of the

number of variables in the CSP. Let us give a formal description.

Definition 2.19. Given a CSP instance 𝐼 = (𝑋,𝐶) the (𝑟, 𝑡)-smooth parallel repetition is the

following two-prover game.

(1) For 𝑗 = 1, . . . , 𝑡 + 𝑟 choose a constraint 𝑐 𝑗 = (𝑆 𝑗 , 𝑓𝑗) ∈ 𝐶 uniformly at random.

(2) For 𝑗 = 1, . . . , 𝑟 choose a variable 𝑥𝑖 𝑗 ∈ x𝑆𝑡+𝑗 uniformly at random.

(3) Send (x𝑆 𝑗)𝑡+𝑟𝑗=1 in random order to 𝑃2, and send both (x𝑆 𝑗)𝑡𝑗=1 and (𝑥𝑖 𝑗)𝑟𝑗=1 to 𝑃1.
(4) Receive values for the variables sent to each prover, and check that for each 𝑗 the values a𝑆 𝑗 ,

given by 𝑃2 to x𝑆 𝑗 satisfy 𝑐 𝑗 , and that the two values given to each of (x𝑆 𝑗)𝑡𝑗=1 and (𝑥𝑖 𝑗)𝑟𝑗=1
by the two provers agree.

We denote the set of variables sent to 𝑃1 by𝑈 and the set sent to 𝑃2 by𝑊 .

The smoothness property of the repeated game is quantified by the following claim.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Austrin, Brown-Cohen, and Håstad

Claim 2.20. For a fixed set of variables𝑊 sent to 𝑃2 and any set of possible answers 𝑆 ⊆ {0, 1}𝑊
from 𝑃2 in the (𝑟, 𝑡)-smooth parallel repetition, the probability (over the choice of𝑈 conditioned

on𝑊) that there exists two different answers a and a′ in 𝑆 such that a𝑈 = a′
𝑈
is at most

|𝑆 |2𝑟
𝑡+𝑟 .

Proof. For any two fixed elements a and a′ in 𝑆 , the probability that a𝑈 = a′
𝑈

is at most

(𝑘−1)𝑟
𝑘 (𝑡+𝑟) ≤ 𝑟

𝑡+𝑟 . This follows as they differ in at least one coordinate, the variables of𝑊 are sent in

random order to 𝑃2, and only (𝑘 − 1)𝑟 of the 𝑘 (𝑡 + 𝑟) coordinates are projected away. The claim

follows by a union bound over all

(|𝑆 |
2

)
pairs of elements of 𝑆 . □

3 FUNCTIONAL FOLDING AND REDUCTION TEMPLATE
Most parts of our proofs are standard. We apply parallel repetition to a constraint-versus-variable

two-prover proof and then code the answers of the provers by the long code. The main novelty is

a new way of folding the long code in a factor graph-preserving way and we now describe this

mechanism.

3.1 Factor Graph-Preserving Folding of Long Codes
The full long code of a string x ∈ {0, 1}ℓ is a table 𝐴 : Fℓ → {0, 1} indexed by the set Fℓ of all
functions 𝑓 : {0, 1}ℓ → {0, 1}, where 𝐴(𝑓) is supposed to take the value 𝑓 (x).

When giving a long code of a string x that is supposed to satisfy some conditions, say ℎ𝑖 (x) = 𝑏𝑖
for 𝑖 = 1, 2, . . . , 𝑟 , it turns out to be essential to incorporate these conditions directly into the long

code. The idea is to divide the functions into equivalence classes such that the value on one function

in the equivalence class determines the value of all other functions in the same equivalence class. It

is then sufficient to give only one bit for each equivalence class of functions. This has, in the past,

been done in two different ways.

(1) Put 𝑓 and 𝑔 in the same equivalence class if and only if 𝑓 (x) = 𝑔(x) +∑𝑟
𝑖=1 𝜎𝑖ℎ𝑖 (x) for some

constants 𝜎𝑖 .

(2) Put 𝑓 and 𝑔 in the same equivalence class if 𝑓 (x) = 𝑔(x) for all x that satisfy ℎ𝑖 (x) = 𝑏𝑖 for
all 𝑖 . In many situations we also allow for the possibility that 𝑓 (x) = ¬𝑔(x) for all such x.

In particular, the former method, which we call linear folding, was used by Bellare et al. [4] and

the latter, which we call conditioning, by Håstad [15]. The second method creates fewer equivalence

classes.

In the current situation we want the construction to be factor graph-preserving and this turns

out to be equivalent to the property that the equivalence classes do not depend on the unknown

negations. If each constraint comes from a CNF clause on some known set of variables 𝑆 with

unknown negations then it is easy to see that not even linear folding has this property. Once we

write such a condition on the form ℎ(x𝑆) = 𝑏 then the identity of ℎ and hence the folding depends

on the negations.

On the other hand if we start with an equational CSP, linear folding does have the desired

property. Linear folding was sufficient in the case when the soundness analysis of the PCP protocol

used established that a table given by the prover was close in Hamming distance to a correct long

code. In most sharp inapproximability results one is not able to establish such a strong property

and in such situations linear folding is not sufficient for the analysis of the protocol. However, even

in the situation of equational CSPs it is easy to see that conditioning creates equivalence classes

that are dependent on the right hand sides and thus it seems too strong to use in our setting.

The main new technical tool of this paper is to define an intermediate type of folding that is

factor graph-preserving, but is still strong enough to be used instead of conditioning in many

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Optimal Inapproximability with Universal Factor Graphs 11

situations where a PCP is analyzed using Fourier analysis and/or the Invariance principle. We

proceed to define this folding which is based on the following equivalence relation.

Definition 3.1. Let 𝐻 = {ℎ1, . . . , ℎ𝑟 } ⊆ Fℓ . Two functions 𝑓 , 𝑔 ∈ Fℓ are 𝐻 -equivalent if there exists
𝐹 : {0, 1}𝑟 → {0, 1} such that

𝑓 (x) = 𝑔(x) + 𝐹 (ℎ1 (x), . . . , ℎ𝑟 (x))
for all x ∈ {0, 1}ℓ .

It is easy to check that this definition gives an equivalence relation, and we refer to the classes of

this relation as 𝐻 -equivalence classes. Now we can define the folding of 𝐴 over all functions on the

constraints.

Definition 3.2. Let𝐴 : Fℓ → {0, 1} be a supposed long code, {ℎ𝑖 (x) = 𝑏𝑖 }𝑟𝑖=1 be a set of constraints,
b = (𝑏1, . . . , 𝑏𝑟) ∈ {0, 1}𝑟 , and 𝐻 = {ℎ1, . . . , ℎ𝑟 }. For each class of 𝐻 -equivalent functions we choose

one representative. The folding of 𝐴 over all functions on 𝐻 with respect to b, denoted by 𝐴𝐻,𝑏 ,

is now defined as follows. If 𝑔 is the representative for an 𝐻 -equivalence class containing some

function 𝑓 , then we define

𝐴𝐻,𝑏 (𝑓)
def

= 𝐴(𝑔) + 𝐹 (𝑏1, 𝑏2, . . . 𝑏𝑟).
where 𝑓 = 𝑔 + 𝐹 (ℎ1, ℎ2, . . . ℎ𝑟).

We call this folding functional folding, and it is easy to see that if𝐴𝐻,𝑏 is functionally folded, then
changing the choice of representative for each 𝐻 equivalence class does not change the function.

Note that even if 𝑟 = 0 we always fold over the function that is identically true.

Given 𝐴, we simulate queries to 𝐴𝐻,𝑏 in the standard way. Whenever we want to read the value

of 𝐴𝐻,𝑏 (𝑓), we find the representative 𝑔 = 𝑓 + 𝐹 (ℎ1, . . . , ℎ𝑟) of the 𝐻 -equivalence class for 𝑓 , and
return the value 𝐴(𝑔) + 𝐹 (𝑏1, 𝑏2, . . . 𝑏𝑟). Since the equivalence classes depend only on the ℎ𝑖 and

not on the 𝑏𝑖 , we immediately have that this folding is factor graph-preserving when we start with

an equational CSP.

Fact 3.3. Let 𝐴,𝐻 and b be as above. If a PCP verifier simulates queries to 𝐴𝐻,𝑏 by querying the
table 𝐴, then the query locations depend only on 𝐻 .

While this folding is factor graph-preserving, it is not yet clear that it is actually useful in enforcing

the constraints. The next lemma shows that the folding does indeed enforce the constraints in the

sense that all non-zero Fourier coefficients correspond to sets of assignments with an odd number

of them satisfying the constraints.

Lemma 3.4. Let 𝐴 : Fℓ → {0, 1} be a supposed long code, {ℎ𝑖 (x) = 𝑏𝑖 }𝑟𝑖=1 be a set of constraints,
b = (𝑏1, . . . , 𝑏𝑟) ∈ {0, 1}𝑟 , and 𝐻 = {ℎ1, . . . , ℎ𝑟 }. Let 𝐴𝐻,𝑏 be 𝐴 folded over all functions on 𝐻 with
respect to b. If 𝐴𝐻,𝑏 (𝛼) ≠ 0 then the number of x ∈ 𝛼 that simultaneously satisfy ℎ𝑖 (x) = 𝑏𝑖 for all 𝑖 is
odd.

Proof. Let ℎ(x) = (ℎ1 (x), . . . , ℎ𝑟 (x)). Suppose that the number of x ∈ 𝛼 that satisfy all of the

constraints ℎ𝑖 (x) = 𝑏𝑖 is even. Recall that

𝐴𝐻,𝑏 (𝛼) = E
𝑓 ∈Fℓ

[
(−1)𝐴𝐻,𝑏 (𝑓) 𝜒𝛼 (𝑓)

]
= E
𝑓 ∈Fℓ

[
(−1)𝐴𝐻,𝑏 (𝑓)

∏
x∈𝛼

(−1) 𝑓 (x)
]
. (3.1)

Consider the function 1𝑏 : {0, 1}𝑟 → {0, 1} which is one only at the point b. Now we pair up the

functions 𝑓 and 𝑓 + 1𝑏 (ℎ) in (3.1). By the folding we have

𝐴𝐻,𝑏 (𝑓 + 1𝑏 (ℎ)) = 𝐴𝐻,𝑏 (𝑓) + 1𝑏 (b) = 𝐴𝐻,𝑏 (𝑓) + 1.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Austrin, Brown-Cohen, and Håstad

In particular this implies that (−1)𝐴𝐻,𝑏 (𝑓 +1𝑏 (ℎ)) = −((−1)𝐴𝐻,𝑏 (𝑓)). On the other hand, since the

number of x ∈ 𝛼 satisfying ℎ(x) = b is even we have∏
x∈𝛼

(−1) 𝑓 (x)+1𝑏 (ℎ (x)) =
∏
x∈𝛼

(−1) 𝑓 (x) (−1)1𝑏 (ℎ (x)) =
∏
x∈𝛼

(−1) 𝑓 (x)

Thus the terms corresponding to 𝑓 and 𝑓 +1𝑏 (ℎ) cancel in pairs and the expectation (3.1) is zero. □

Remark. By a similar argument, for any fixed choice of c ≠ b, if 𝐴𝐻,𝑏 (𝛽) ≠ 0 the number of

elements x ∈ 𝛽 such that ℎ(x) = c is even. As this is not needed in our arguments we leave the

verification of this to the reader.

Lemma 3.4 shows that if we use functional folding then for any non-zero Fourier coefficient at

least one element satisfies all the constraints. This should be compared with conditioning where all
elements in a non-zero Fourier coefficient satisfies all the constraints. On the other hand with linear

folding where we have no such guarantees and it is difficult to find an assignment that satisfies the

constraints given a non-zero Fourier coefficient.

3.2 Basic Setup of Hardness Reductions
It turns out that by using some minor modifications, the guarantee of Lemma 3.4 is sufficient to

analyze many of the classical protocols.

We follow the standard setup: start with a Max-CSP having some hardness of approximation,

apply parallel repetition to create a two-prover game with perfect completeness and arbitrarily

small soundness, and then long code the answers of the two provers and test the long codes using

constraints from the target CSP. In order to apply functional folding to the long codes, we start with

an equational CSP and in particular use the hardness of the Max-TSA problem (Theorem 2.16), and

in order to be able to use the weaker guarantee of functional folding as compared to conditioning

we use smooth parallel repetition (Definition 2.19).

As all the reductions follow the same initial steps and only the exact choice of constraints varies

from CSP to CSP, we summarize these first steps and the notation used in the following definition.

Definition 3.5 (Reduction template for Max-CSPs with universal factor graphs). Given a Max-TSA

instance 𝐼 = (𝑋,𝐶) and parameters 𝑟 and 𝑡 , we construct a new set 𝑋 ′
of Boolean variables as

follows.

First, form the (𝑟, 𝑡)-smooth parallel repeated game of 𝐼 as in Definition 2.19. For any set of

variables 𝑈 ⊆ 𝑋 that may be sent to 𝑃1, we introduce a supposed long code 𝐴𝑈 : F𝑊 → {0, 1} of
the assignment to𝑈 . We write 𝐴⊞

𝑈
for 𝐴𝑈 functionally folded over all constraints of 𝐼 induced by

𝑈 . For a set𝑊 ⊆ 𝑋 that may be sent to 𝑃2 we define 𝐵𝑊 and 𝐵⊞
𝑊

analogously.

The variables 𝑋 ′
consist of all values of 𝐴𝑈 (𝑓) and 𝐵𝑊 (𝑔) over all𝑈 ,𝑊 , 𝑓 ∈ F𝑈 and 𝑔 ∈ F𝑊 .

In the concrete reductions in the rest of the paper, a set 𝑈 (resp.𝑊) always refers to a query to

𝑃1 (resp. 𝑃2) in the repeated game.

Note that, as per the definition of functional folding in the previous section, queries to 𝐴⊞
𝑈
and

𝐵⊞
𝑊

are made by querying fixed entries of 𝐴𝑈 and 𝐵𝑊 (depending only on the factor graph of 𝐼)

and then possibly negating the result (depending on the right hand sides of 𝐼).

4 CLASSICAL OPTIMAL INAPPROXIMABILITY
Using the folding introduced in the previous section we prove classical optimal inapproximability

results with universal factor graphs. The first two problems, Max-3-Sat and Max-3-Lin, were first

proven to be approximation resistant in [15]. The third problem, Max-TSA, did not appear in

that original paper, but the techniques used follow the standard dictatorship testing analysis via

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Optimal Inapproximability with Universal Factor Graphs 13

the Fourier transform introduced there. In each case, we start with the reduction template from

Definition 3.5 and then construct a PCP verifier for the target problem.

In the hardness results for Max-3-Sat and Max-TSA, we use the notation 𝛽⊕𝑈 to denote the set

of vectors x ∈ 𝛽𝑈 such that there is an odd number of y ∈ 𝛽 with y𝑈 = x. In the notation of [15],

this is the 𝜋2 operator.

Remark 4.1. In this section we only explicitly give proofs of approximation resistance and not

uselessness. However the proofs implicitly yield the stronger property of uselessness. We elaborate

on this in Section 5 where uselessness is defined and discussed in more detail.

4.1 Max-3-Lin
Theorem 4.2. For any 𝜀 > 0, Max-3-Lin is (1 − 𝜀, 1

2
+ 𝜀)-UFG-NP-hard.

We remark that an a priori alternative route (and simpler, compared to what we do below)

to obtaining this theorem would be to use as starting point (1 − 𝜀, 0.999)-UFG-NP-hardness of
Max-3-Lin. Starting with such a hardness result, one could derive Theorem 4.2 with a simpler (and

more efficient) reduction based on Hadamard codes rather than long codes. However, prior to this

paper, such a starting point was not known (for instance Feige and Jozeph, obtaining the hardness

results of Bellare et al., prove a (6/7, 3/4 + 𝜀)-UFG-NP-hardness for Max-3-Lin). The only way we

know how to derive the starting point needed for such a Hadamard code-based reduction to go

through is using our reduction here which already establishes Theorem 4.2.

The long code test we use to establish the result is exactly the same as the original test of Håstad

in [15], but as explained in Section 3, we can only access the functional foldings of the long codes,

and not condition them on the constraints of the underlying CSP.

Definition 4.3. The Max-3-Lin PCP verifier does the following:

(1) Pick a random pair of sets (𝑈 ,𝑊) sent to the two provers in the parallel game.

(2) Pick a uniform random function 𝑓 ∈ F𝑈 and a uniform random 𝑔1 ∈ F𝑊 .

(3) Define 𝑔2 ∈ F𝑊 by setting 𝑔2 (y) = 𝑔1 (y) + 𝑓 (y𝑈) with probability 1 − 𝜀 and the negation of

this value otherwise, independently for each y ∈ {0, 1}𝑊 .

(4) Accept if and only if 𝐴⊞
𝑈
(𝑓) + 𝐵⊞

𝑊
(𝑔1) + 𝐵⊞𝑊 (𝑔2) = 0.

The tests defined above correspond to checking three variable linear equations over F2, and
so the PCP defines a Max-3-Lin instance. Also we have immediately by Fact 3.3 that the overall

reduction from Max-TSA to Max-3-Lin given by this PCP is factor graph-preserving.

Now we analyze the completeness and soundness of the PCP.

Lemma 4.4. The completeness of the Max-3-Lin verifier in Definition 4.3 is 1 − 𝜀.

Proof. Let a be a satisfying assignment to the original Max-TSA constraints. Then we set

𝐴𝑈 (𝑓) = 𝑓 (a𝑈) and 𝐵𝑊 (𝑔) = 𝑓 (a𝑊) for all subsets of variables in the two prover game. Note that

𝐵𝑊 (𝑔) = 𝐵⊞
𝑊
(𝑔) since functional folding does not affect a true long code of a satisfying assignment.

Second, with probability 1 − 𝜀 we have 𝐴⊞
𝑈
(𝑓) + 𝐵⊞

𝑊
(𝑔1) +𝐴⊞𝑊 (𝑔2) = 𝑓 (a𝑈) + 𝑔1 (a𝑊) + 𝑔2 (a𝑊) = 0

and hence the test accepts with probability 1 − 𝜀. □

We now prove soundness for the test.

Lemma 4.5. Let 𝜀, 𝛿 > 0 and set𝐶𝜀,𝛿
def

= (2𝜀)−1 log(2
𝛿
). For 𝑟 > 0 set 𝑡 = 𝑟 · 4

𝛿2
𝐶2

𝜀,𝛿
. If the Max-3-Lin

PCP verifier accepts with probability at least 1+𝛿
2

then there is a strategy for the provers in the (𝑟, 𝑡)-
smooth parallel repeated game that causes the verifier to accept with probability at least 𝛿4

16𝐶𝜀,𝛿
.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Austrin, Brown-Cohen, and Håstad

Proof. For notational convenience, throughout this proof we write 𝐴𝑈 and 𝐵𝑊 instead of

𝐴⊞
𝑈
and 𝐵⊞

𝑊
, but it is important to keep in mind that all long codes are folded. By construction,

(−1)𝐴𝑈 (𝑓) (−1)𝐵𝑊 (𝑔1) (−1)𝐵𝑊 (𝑔2)
is 1 when the test accepts and −1 when it rejects. Now the standard

analysis (see [15]) gives that, if the test accepts with probability (1 + 𝛿)/2 then

𝛿 = E
𝑈 ,𝑊

[
E

𝑓 ,𝑔1,𝑔2

[
(−1)𝐴𝑈 (𝑓) (−1)𝐵𝑊 (𝑔1) (−1)𝐵𝑊 (𝑔2)

]]
= E
𝑈 ,𝑊


∑︁
𝛼,𝛽1,𝛽2

𝐴𝑈 (𝛼)𝐵̂𝑊 (𝛽1)𝐵̂𝑊 (𝛽2) E
𝑓 ,𝑔1,𝑔2

[
𝜒𝛼 (𝑓)𝜒𝛽1 (𝑔1)𝜒𝛽2 (𝑔2)

]
= E
𝑈 ,𝑊


∑︁
𝛽

𝐴𝑈 (𝛽⊕𝑈)𝐵̂𝑊 (𝛽)2 E
[
𝜒𝛽⊕𝑈 (𝑓)𝜒𝛽 (𝑔1 + 𝑔2)

]
= E
𝑈 ,𝑊


∑︁
𝛽

𝐴𝑈 (𝛽⊕𝑈)𝐵̂𝑊 (𝛽)2 (1 − 2𝜀) |𝛽 |


where the final equality follows from step (3) in Definition 4.3, in particular from the fact that

(−1) 𝑓 (𝑦𝑈) = (−1)𝑔1 (𝑦)+𝑔2 (𝑦) with probability 1 − 𝜀, and is equal to the negation otherwise. An

application of Cauchy-Schwartz to the sum over 𝛽 yields

𝛿2 ≤ E
𝑈 ,𝑊

©­«
∑︁
𝛽

𝐴𝑈 (𝛽⊕𝑈)2𝐵̂𝑊 (𝛽)2 (1 − 2𝜀)2 |𝛽 |ª®¬ ©­«
∑︁
𝛽

𝐵̂𝑊 (𝛽)2ª®¬
 .

Plancherel applied to the second term inside the expectation gives

𝛿2 ≤ E
𝑈 ,𝑊


∑︁
𝛽

𝐴𝑈 (𝛽⊕𝑈)2𝐵̂𝑊 (𝛽)2 (1 − 2𝜀)2 |𝛽 |
 . (4.1)

Note that the contribution to the inner sum from 𝛽 that are larger than 𝐶𝜀,𝛿 is at most 𝛿2/4. Thus
we have

3

4

𝛿2 ≤ E
𝑈 ,𝑊


∑︁

|𝛽 | ≤𝐶𝜀,𝛿

𝐴𝑈 (𝛽⊕𝑈)2𝐵̂𝑊 (𝛽)2
 . (4.2)

The strategies for the two provers are as follows. With probability 𝐴𝑈 (𝛼)2 prover 𝑃1 outputs
a random x ∈ 𝛼 , and with probability 𝐵̂𝑊 (𝛽)2 prover 𝑃2 outputs a random y ∈ 𝛽 which satisfies

all the constraints on𝑊 . By Lemma 3.4 for any 𝛽 with 𝐵̂𝑊 (𝛽) ≠ 0 there are an odd number of

assignments y ∈ 𝛽 satisfying the constraints on𝑊 . In particular, there is at least one assignment

y∗ ∈ 𝛽 satisfying all the constraints. However, if y∗ and another assignment y ∈ 𝛽 collide under the

map y → y𝑈 , then there may be no corresponding assignment x = y∗
𝑈
in 𝛽⊕𝑈 .

We now analyze the contribution to (4.2) of terms where such collisions occur. By Claim 2.20,

we have that for each fixed𝑊 and 𝛽 , the probability over the choice of𝑈 of a collision is at most

|𝛽 |2 𝑟
𝑡+𝑟 . Let 𝑆𝑊,𝛽 be the set of𝑈 which cause a collision. Then∑︁

|𝛽 | ≤𝐶𝜀,𝛿

E
𝑈

[
1(𝑈 ∈ 𝑆𝑊,𝛽)𝐴𝑈 (𝛽⊕𝑈)2𝐵̂𝑊 (𝛽)2

]
≤

∑︁
|𝛽 | ≤𝐶𝜀,𝛿

E
𝑈

[
1(𝑈 ∈ 𝑆𝑊,𝛽)

]
ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Optimal Inapproximability with Universal Factor Graphs 15

≤ 𝐶2

𝜀,𝛿

𝑟

𝑡 + 𝑟 ≤ 𝛿2

4

.

Combining this with (4.2) yields

𝛿2

2

≤ E
𝑈 ,𝑊


∑︁

|𝛽 | ≤𝐶𝜀,𝛿

1(𝑈 ∉ 𝑆𝑊,𝛽)𝐴𝑈 (𝛽⊕𝑈)2𝐵̂𝑊 (𝛽)2
 .

Since the inner sum is non-negative and bounded by one, we have by Markov’s inequality that

with probability at least
𝛿2

4
over the choice of𝑈 and𝑊

𝛿2

4

≤
∑︁

|𝛽 | ≤𝐶𝜀,𝛿

1(𝑈 ∉ 𝑆𝑊,𝛽)𝐴𝑈 (𝛽⊕𝑈)2𝐵̂𝑊 (𝛽)2.

This implies that for each such pair (𝑈 ,𝑊), with probability at least
𝛿2

4
the following events all

occur:

• 𝑃2 chooses some 𝛽 with |𝛽 | ≤ 𝐶𝜀,𝛿 .
• 𝑃1 chooses 𝛼 = 𝛽⊕𝑈 .
• 𝑈 ∉ 𝑆𝑊,𝛽 i.e. no two elements of 𝛽 collide under projection to𝑈 .

If no two elements of 𝛽 collide under the map y ↦→ y𝑈 , then the projection y∗
𝑈
of the good

assignment y∗ ∈ 𝛽 satisfying all the constraints on𝑊 is also an element of 𝛽⊕𝑈 . Therefore 𝑃1
chooses y∗

𝑈
with probability at least |𝛼 |−1 ≥ |𝛽 |−1 ≥ 𝐶−1

𝜀,𝛿
. When this happens, the responses of 𝑃1

and 𝑃2 to𝑈 and𝑊 are accepted in the parallel repeated game. Thus, as these three events happen

for a
𝛿2

4
fraction of all queries (𝑈 ,𝑊), the strategy of the two provers is accepted with probability

at least
𝛿4

16
𝐶−1
𝜀,𝛿
, as desired. □

The reduction can now be completed by recalling that the parallel repeated game has soundness

𝑐𝑟 for some constant 𝑐 . But by Lemma 4.5 (setting 𝛿 = 2𝜀) the value of the repeated game is larger

than 𝑐𝑟 for sufficiently large 𝑟 , unless fewer than a
1

2
+ 𝜀 fraction of equations in the Max-3-Lin

instance can be satisfied.

4.2 Max-3-Sat
As with Max-3-Lin, we can use our new folding along with a variant of the Max-3-Sat test in [15]

to obtain UFG-NP-hardness. Here we do not follow exactly the same long code test as [15] but

instead follow a subsequent simplified test and analysis using smooth label cover [14, 19].

Theorem 4.6. For any 𝜀 > 0, Max-3-Sat is (1, 7
8
+ 𝜀)-UFG-NP-hard.

The PCP we construct for Max-3-Sat is described below.

Definition 4.7. The Max-3-Sat PCP verifier does the following:

(1) Pick a random pair of sets (𝑈 ,𝑊) sent to the two provers in the parallel game.

(2) Pick a uniform random function 𝑓 ∈ F𝑈 and a uniform random 𝑔1 ∈ F𝑊 .

(3) Pick a function 𝑔2 ∈ W as follows. For each y ∈ {0, 1}𝑊 , if 𝑓 (y𝑈) = 0 then assign

𝑔2 (y) = 𝑔1 (y) + 1. If 𝑓 (y𝑈) = 1 then with probability 1 − 𝜀 assign 𝑔2 (y) = 𝑔1 (y) and
otherwise assign 𝑔2 (y) = 𝑔1 (y) + 1.

(4) Accept unless 𝐴⊞
𝑈
(𝑓) = 𝐵⊞

𝑊
(𝑔1) = 𝐵⊞𝑊 (𝑔2) = 0.

It is easy to prove that this test has perfect completeness, and as the proof is near-identical to

that of Lemma 4.4 we omit it.

Lemma 4.8. The completeness of the Max-3-Sat verifier in Definition 4.7 is 1.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Austrin, Brown-Cohen, and Håstad

Lemma 4.9. Let 𝛿 > 0, and let 0 < 𝜀 <

(
𝛿
64

)
2

log(16
𝛿
)−2. Set 𝐶𝜀,𝛿 = 2

𝜀
log(16

𝛿
). For 𝑟 > 0, let

𝑡 = 𝑟 · 16
𝛿
𝐶2

𝜀,𝛿
. If the Max-3-Sat PCP verifier accepts with probability at least 7+𝛿

8
then there is a strategy

for the provers in the (𝑟, 𝑡)-smooth parallel repeated game that causes the verifier to accept with
probability at least 𝛿4

64𝐶𝜀,𝛿
.

Proof. As in the soundness analysis for Max-3-Lin, we write 𝐴𝑈 and 𝐵𝑊 instead of 𝐴⊞
𝑈
and

𝐵⊞
𝑊

throughout this proof in order to keep the notation manageable. The probability that the test

accepts is given by

E
𝑈 ,𝑊

[
E

𝑓 ,𝑔1,𝑔2

[
1 − 1

8

(1 + (−1)𝐴𝑈 (𝑓)) (1 + (−1)𝐵𝑊 (𝑔1)) (1 + (−1)𝐵𝑊 (𝑔2))
]]
. (4.3)

Recall that the long codes 𝐴𝑈 and 𝐵𝑊 are both folded over true i.e. 𝐴𝑈 (𝑓 + 1) = 𝐴𝑈 (𝑓) +
1 which can be seen by taking 𝐹 ≡ 1 in Definition 3.1. Folding over true implies that

E
[
(−1)𝐴𝑈 (𝑓)] = E

[
(−1)𝐵𝑊 (𝑔𝑖)

]
= 0. Furthermore since 𝑓 and 𝑔𝑖 are independent we have

E
[
(−1)𝐴𝑈 (𝑓) (−1)𝐵𝑊 (𝑔𝑖)

]
= E

[
(−1)𝐴𝑈 (𝑓)] E [

(−1)𝐵𝑊 (𝑔𝑖)
]
= 0. In other words, after expanding

(4.3), any non-constant term which does not contain (−1)𝐵𝑊 (𝑔1) (−1)𝐵𝑊 (𝑔2)
becomes 0, so the

acceptance probability equals

7

8

− 1

8

E
𝑈 ,𝑊

[
E

𝑓 ,𝑔1,𝑔2

[
(−1)𝐵𝑊 (𝑔1) (−1)𝐵𝑊 (𝑔2) + (−1)𝐴𝑈 (𝑓) (−1)𝐵𝑊 (𝑔1) (−1)𝐵𝑊 (𝑔2)

]]
≥ 7 + 𝛿

8

(4.4)

We analyze the two terms in the above expectation one at a time.

Claim 4.10. ���� E𝑈 ,𝑊 [
E
𝑔1,𝑔2

[
(−1)𝐵𝑊 (𝑔1) (−1)𝐵𝑊 (𝑔2)

]] ���� ≤ 𝛿/4. (4.5)

Proof. For a fixed choice of𝑈 and𝑊 , writing out the Fourier expansion of the inner expectation

of this term yields:

E
𝑔1,𝑔2

[
(−1)𝐵𝑊 (𝑔1) (−1)𝐵𝑊 (𝑔2)

]
=

∑︁
𝛽1,𝛽2

𝐵̂𝑊 (𝛽1)𝐵̂𝑊 (𝛽2) E
[
𝜒𝛽1 (𝑔1)𝜒𝛽2 (𝑔2)

]
=

∑︁
𝛽

𝐵̂𝑊 (𝛽)2 E
[
𝜒𝛽 (𝑔1 + 𝑔2)

]
, (4.6)

where we used the fact that for 𝛽1 ≠ 𝛽2 the expectation inside the above sum is zero. Now observe

that if y𝑈 ≠ y′
𝑈
, then 𝑔1 (y) + 𝑔2 (y) is independent of 𝑔1 (y′) + 𝑔2 (y′). Using this fact we have

E
[
𝜒𝛽 (𝑔1 + 𝑔2)

]
= E


∏
y∈𝛽

(−1)𝑔1 (y)+𝑔2 (y)
 =

∏
x∈𝛽𝑈

E


∏

y∈𝛽 :y𝑈 =x

(−1)𝑔1 (y)+𝑔2 (y)


Let 𝑠x be the number of y ∈ 𝛽 with y𝑈 = x. The expectation over y which project to the same x is

equal to

E


∏

y∈𝛽 :y𝑈 =x

(−1)𝑔1 (y)+𝑔2 (y)
 =

1

2

((−1)𝑠x + (1 − 2𝜀)𝑠x).

We bound such terms in two different ways depending on the size of 𝛽 . First, observe that�� 1
2
((−1)𝑠x + (1 − 2𝜀)𝑠x)

�� ≤ 1 − 𝜀 and so

��E [
𝜒𝛽 (𝑔1 + 𝑔2)

] �� ≤ (1 − 𝜀) |𝛽𝑈 |
. Applying Claim 2.20 to

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Optimal Inapproximability with Universal Factor Graphs 17

the first 𝐶𝜀,𝛿 elements of 𝛽 for |𝛽 | > 𝐶𝜀,𝛿 , we have |𝛽𝑈 | ≥ 𝐶𝜀,𝛿 except with probability at most

𝑟
𝑡+𝑟𝐶

2

𝜀,𝛿
≤ 𝛿/16 over the choice of𝑈 . Thus, averaging over𝑈 and𝑊 we get������ E𝑈 ,𝑊


∑︁
𝛽 : |𝛽 |>𝐶𝜀,𝛿

𝐵̂𝑊 (𝛽)2 E
[
𝜒𝛽 (𝑔1 + 𝑔2)

]
������ ≤ E

𝑈 ,𝑊


∑︁

𝛽 : |𝛽 |>𝐶𝜀,𝛿

𝐵̂𝑊 (𝛽)2 (1 − 𝜀) |𝛽𝑈 |


≤ E
𝑊


∑︁

𝛽 : |𝛽 |>𝐶𝜀,𝛿

𝐵̂𝑊 (𝛽)2
(
(1 − 𝜀)𝐶𝜀,𝛿 + 𝛿/16

) ≤ 𝛿

8

, (4.7)

where the last inequality used our choice of 𝐶𝜀,𝛿 and Plancherel. We turn to 𝛽 of size at most 𝐶𝜀,𝛿
and, again by Claim 2.20, except with probability at most

𝑟
𝑡+𝑟 |𝛽 |

2 ≤ 𝛿/16 over the choice of𝑈 , there

is at least one y in 𝛽 that does not collide with any other y′ ∈ 𝛽 . Letting x = y𝑈 we then have

𝑠x = 1. For such “good” choices of 𝑈 we have
1

2
((−1)𝑠x + (1 − 2𝜀)𝑠x) = −𝜀. Thus after averaging

over𝑈 and𝑊 we have that������ E𝑈 ,𝑊


∑︁
𝛽 : |𝛽 | ≤𝐶𝜀,𝛿

𝐵̂𝑊 (𝛽)2 E
[
𝜒𝛽 (𝑔1 + 𝑔2)

]
������ ≤ 𝜀 + 𝛿/16 <

𝛿

8

. (4.8)

Adding up (4.7) and (4.8) we obtain (4.5) (via (4.6)). □

We now analyze the second term.

Claim 4.11.���� E𝑈 ,𝑊 [
E
𝑔1,𝑔2

[
(−1)𝐴𝑈 (𝑓) (−1)𝐵𝑊 (𝑔1) (−1)𝐵𝑊 (𝑔2)

]] ���� ≤ 𝛿

4

+ E
𝑈 ,𝑊


∑︁

|𝛽 | ≤𝐶𝜀,𝛿

𝐴𝑈 (𝛽𝑈)2𝐵̂𝑊 (𝛽)2 (1 − 𝜀)2 |𝛽𝑈 |

1/2

(4.9)

Proof. For a fixed choice of𝑈 and𝑊 , writing the Fourier expansion of the inner expectation

yields

E
𝑔1,𝑔2

[
(−1)𝐴𝑈 (𝑓) (−1)𝐵𝑊 (𝑔1) (−1)𝐵𝑊 (𝑔2)

]
=

∑︁
𝛼,𝛽1,𝛽2

𝐴𝑈 (𝛼)𝐵̂𝑊 (𝛽1)𝐵̂𝑊 (𝛽2) E
[
𝜒𝛼 (𝑓)𝜒𝛽1 (𝑔1)𝜒𝛽2 (𝑔2)

]
=

∑︁
𝛽,𝛼⊆𝛽𝑈

𝐴𝑈 (𝛼)𝐵̂𝑊 (𝛽)2 E
[
𝜒𝛼 (𝑓)𝜒𝛽 (𝑔1 + 𝑔2)

]
(4.10)

where we have used the fact that the expectation is zero unless 𝛽1 = 𝛽2 = 𝛽 and 𝛼 ⊆ 𝛽𝑈 . Let us

define 𝐸 (𝛼, 𝛽) def

= E
[
𝜒𝛼 (𝑓)𝜒𝛽 (𝑔1 + 𝑔2)

]
to denote the inner expectation above (and note that this

function depends on 𝑈 and𝑊). Next let 𝑠x be the number of y ∈ 𝛽 such that y𝑈 = x. Then for

𝛼 ⊆ 𝛽𝑈

𝐸 (𝛼, 𝛽) =
∏
x∈𝛼

1

2

((−1)𝑠x − (1 − 2𝜀)𝑠x)
∏

x∈𝛽𝑈 \𝛼

1

2

((−1)𝑠x + (1 − 2𝜀)𝑠x). (4.11)

Observe that this implies |𝐸 (𝛼, 𝛽) | ≤ (1 − 𝜀) |𝛽𝑈 |
, since every factor in the product is bounded in

magnitude by 1 − 𝜀. Further note that∑︁
𝛼⊆𝛽𝑈

𝐸 (𝛼, 𝛽)2 =
∏
x∈𝛽𝑈

((
1

2

((−1)𝑠x − (1 − 2𝜀)𝑠x)
)
2

+
(
1

2

((−1)𝑠x + (1 − 2𝜀)𝑠x)
)
2

)
≤ (1 − 𝜀) |𝛽𝑈 |

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Austrin, Brown-Cohen, and Håstad

where the final inequality follows from the fact that each factor above has the form 𝑎2 + 𝑏2 where
both |𝑎 | and |𝑏 | are bounded by 1 − 𝜀, and |𝑎 | + |𝑏 | = 1. Therefore each factor is bounded by

(1 − 𝜀)2 + 𝜀2 which is at most 1 − 𝜀 whenever 𝜀 ≤ 1/2.
As in Claim 4.10 we split the sum depending on the size of 𝛽 . First by Cauchy-Schwarz applied

to the inner sum over 𝛼 ⊆ 𝛽𝑈 and then Plancherel we have∑︁
𝛽 : |𝛽 | ≥𝐶𝜀,𝛿

𝐵̂𝑊 (𝛽)2
∑︁
𝛼⊆𝛽𝑈

𝐴𝑈 (𝛼)𝐸 (𝛼, 𝛽) ≤
∑︁

𝛽 : |𝛽 | ≥𝐶𝜀,𝛿

𝐵̂𝑊 (𝛽)2 ©­«
∑︁
𝛼⊆𝛽𝑈

𝐴𝑈 (𝛼)2
ª®¬
1/2 ©­«

∑︁
𝛼⊆𝛽𝑈

𝐸 (𝛼, 𝛽)2ª®¬
1/2

≤
∑︁

𝛽 : |𝛽 | ≥𝐶𝜀,𝛿

𝐵̂𝑊 (𝛽)2 (1 − 𝜀)
|𝛽𝑈 |
2 (4.12)

As in (4.7) it follows from our choice of 𝐶𝜀,𝛿 that, when averaging over𝑈 and𝑊 , (4.12) is bounded

in absolute value by 𝛿/8, i.e.,������ E𝑈 ,𝑊


∑︁
𝛽 : |𝛽 | ≥𝐶𝜀,𝛿

𝐵̂𝑊 (𝛽)2
∑︁
𝛼⊆𝛽𝑈

𝐴𝑈 (𝛼)𝐸 (𝛼, 𝛽)

������ ≤ 𝛿/8. (4.13)

Turning to the low-degree terms where |𝛽 | ≤ 𝐶𝜀,𝛿 , we apply Claim 2.20 to conclude that except

with probability
𝑟
𝑡+𝑟 |𝛽 | ≤ 𝛿/16 over the choice of 𝑈 , there are no collisions between any y, y′ in 𝛽

under the map y ↦→ y𝑈 . Letting x = y𝑈 we then have 𝑠x = 1. So restricting to such good choices of

𝑈 we have
1

2
((−1)𝑠x + (1 − 2𝜀)𝑠x) = −𝜀. Since all other factors in the product in (4.11) are bounded

in magnitude by 1 we have for such “good” 𝑈 that |𝐸 (𝛼, 𝛽) | ≤ 𝜀 |𝛽𝑈 \𝛼 |
. Thus, in this case summing

over all 𝛼 ⊊ 𝛽𝑈 yields∑︁
|𝛽 | ≤𝐶𝜀,𝛿

𝐵̂𝑊 (𝛽)2
∑︁
𝛼⊊𝛽𝑈

𝐴𝑈 (𝛼)𝐸 (𝛼, 𝛽) ≤
∑︁

|𝛽 | ≤𝐶𝜀,𝛿

𝐵̂𝑊 (𝛽)2 ©­«
∑︁
𝛼⊊𝛽𝑈

𝐴𝑈 (𝛼)2
ª®¬
1/2 ©­«

∑︁
𝛼⊊𝛽𝑈

𝐸 (𝛼, 𝛽)2ª®¬
1/2

≤
∑︁

|𝛽 | ≤𝐶𝜀,𝛿

𝐵̂𝑊 (𝛽)2 ©­«
∑︁
𝛼⊊𝛽𝑈

𝜀2 |𝛽𝑈 \𝛼 |ª®¬
1/2

=
∑︁

|𝛽 | ≤𝐶𝜀,𝛿

𝐵̂𝑊 (𝛽)2
(
(1 + 𝜀2) |𝛽𝑈 | − 1

)
1/2

≤
∑︁

|𝛽 | ≤𝐶𝜀,𝛿

𝐵̂𝑊 (𝛽)22𝜀𝐶1/2
𝜀,𝛿
,

since (1 + 𝑎)𝑏 ≤ 1 + 2𝑎𝑏 whenever 0 ≤ 𝑎𝑏 ≤ 1

32
. For the remaining at most 𝛿/16 fraction of choices

of𝑈 where collisions occur, we simply use the previous bound

∑
𝛼⊆𝛽𝑈 𝐸 (𝛼, 𝛽)2 ≤ (1 − 𝜀) |𝛽𝑈 | ≤ 1.

Thus averaging over𝑈 and𝑊 yields������ E𝑈 ,𝑊


∑︁
|𝛽 | ≤𝐶𝜀,𝛿

∑︁
𝛼⊊𝛽𝑈

𝐴𝑈 (𝛼)𝐵̂𝑊 (𝛽)2𝐸 (𝛼, 𝛽)

������ ≤ E𝑊


∑︁

|𝛽 | ≤𝐶𝜀,𝛿

𝐵̂𝑊 (𝛽)2
(
2𝜀𝐶

1/2
𝜀,𝛿

+ 𝛿/16
) ≤ 𝛿

8

. (4.14)

Finally, applying Cauchy-Schwarz and Plancherel to the sum where 𝛼 = 𝛽𝑈 yields������ E𝑈 ,𝑊


∑︁
|𝛽 | ≤𝐶𝜀,𝛿

𝐴𝑈 (𝛽𝑈)𝐵̂𝑊 (𝛽)2𝐸 (𝛼, 𝛽)

������ ≤ E

𝑈 ,𝑊


∑︁

|𝛽 | ≤𝐶𝜀,𝛿

𝐴𝑈 (𝛽𝑈)2𝐵̂𝑊 (𝛽)2 (1 − 𝜀)2 |𝛽𝑈 |

1/2

(4.15)

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Optimal Inapproximability with Universal Factor Graphs 19

Adding up (4.13), (4.14), and (4.15), we obtain (4.9) (via (4.10)). □

Now plugging the bounds of Claim 4.10 and Claim 4.11 into (4.4), we see that

𝛿2

4

≤ E
𝑈 ,𝑊


∑︁

|𝛽 | ≤𝐶𝜀,𝛿

𝐴𝑈 (𝛽𝑈)2𝐵̂𝑊 (𝛽)2 (1 − 𝜀)2 |𝛽𝑈 |
 . (4.16)

Note this is similar to the expression we obtained for the Max-3-Lin verifier in Lemma 4.5, with

slightly different parameters. Using exactly the same strategy for the two provers with a similar

analysis, we obtain a strategy with success probability
𝛿4

64𝐶𝜀,𝛿
. □

4.3 Max-TSA
Thus far we have used Max-TSA with constant, but non-optimal, soundness as the starting point

for all of our reductions. Now we also show that even obtaining any non-trivial approximation of

Max-TSAis UFG-NP-hard.

Theorem 4.12. For any 𝜀 > 0, Max-TSA is (1, 1/2 + 𝜀)-UFG-NP-hard.

We now construct the following PCP verifier, which makes queries of the form 𝑓TSA (𝑥) = 𝑏.

Definition 4.13. The TSA PCP verifier does the following:

(1) Pick a random pair of sets (𝑈 ,𝑊) sent to the two provers in the parallel game.

(2) Sample 𝑓 ∈ F𝑈 and 𝑔1, 𝑔3, 𝑔4 ∈ F𝑊 all independently and uniformly at random.

(3) Set 𝑔2 (y) = 𝑓 (y𝑈) + 𝑔1 (y) + 𝑔3 (y) ∧ 𝑔4 (y).
(4) Accept if and only if 𝐴⊞

𝑈
(𝑓) + 𝐵⊞

𝑊
(𝑔1) + 𝐵⊞𝑊 (𝑔2) + 𝐵𝑊 (𝑔3) ∧ 𝐵𝑊 (𝑔4) = 0

A subtle yet crucial point is that the queries for 𝑔3 and 𝑔4 are done in the completely unfolded

table 𝐵𝑊 (not even folded over true). In this way, the negations introduced by the folding only ever

appear on the queries for 𝑓 , 𝑔1, and 𝑔2. Since these queries appear linearly in the test of the verifier,

any negations added by the folding can be added up and moved to the right hand side of the test.

Thus, the queries of the verifier are indeed all of the form 𝑓TSA (x) = 1 or 𝑓TSA (x) = 0 as desired.

As usual, Fact 3.3 implies that the reduction given by this PCP verifier is factor graph-preserving.

The fact that this PCP has completeness 1 is immediate and again the proof is near-identical to the

proof of Lemma 4.4 so we omit it.

Lemma 4.14. The PCP from Definition 4.13 has completeness 1.

Next we prove soundness.

Lemma 4.15. Let 𝛿 > 0 and set 𝐶𝛿 = log(2
𝛿
). For 𝑟 > 0 set 𝑡 = 𝑟 4

𝛿2
𝐶𝛿 . If the PCP verifier from

Definition 4.13 accepts with probability at least 1+𝛿
2
, then there is a strategy in the original parallel

game that makes the verifier accept with probability at least 𝛿4

16𝐶𝛿
.

Proof. To emphasize the difference from the folded tables, we write 𝐶𝑊 = 𝐵𝑊 throughout this

proof for the unfolded table 𝐵𝑊 . If the verifier accepts with probability at least
1+𝛿
2
, then

𝛿 = E
[
(−1)𝐴⊞𝑈 (𝑓) (−1)𝐵⊞𝑊 (𝑔1) (−1)𝐵⊞𝑊 (𝑔2) (−1)𝐶𝑊 (𝑔3)∧𝐶𝑊 (𝑔4)

]
= E
𝑈 ,𝑊


∑︁
𝛼,𝛽1,𝛽2

𝐴⊞𝑈 (𝛼)𝐵̂⊞𝑊 (𝛽1)𝐵̂⊞𝑊 (𝛽2) E
[
𝜒𝛼 (𝑓)𝜒𝛽1 (𝑔1)𝜒𝛽2 (𝑔2) (−1)𝐶𝑊 (𝑔3)∧𝐶𝑊 (𝑔4)

]
ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Austrin, Brown-Cohen, and Håstad

= E
𝑈 ,𝑊


∑︁
𝛼,𝛽1,𝛽2

𝐴⊞𝑈 (𝛼)𝐵̂⊞𝑊 (𝛽1)𝐵̂⊞𝑊 (𝛽2) E
[
𝜒𝛼 (𝑓)𝜒𝛽1 (𝑔1)𝜒𝛽2 (𝑓 + 𝑔1 + 𝑔3 ∧ 𝑔4) (−1)𝐶𝑊 (𝑔3)∧𝐶𝑊 (𝑔4)

]
= E
𝑈 ,𝑊


∑︁
𝛽

𝐴⊞𝑈 (𝛽⊕𝑈)𝐵̂⊞𝑊 (𝛽)2 E
𝑔3,𝑔4

[
𝜒𝛽 (𝑔3 ∧ 𝑔4) (−1)𝐶𝑊 (𝑔3)∧𝐶𝑊 (𝑔4)

] .
Our goal is now to show that the inner expectation over 𝑔3 and 𝑔4 is bounded by a function tending

to zero with |𝛽 |. First observe that

E
𝑔3,𝑔4

[
𝜒𝛽 (𝑔3 ∧ 𝑔4) (−1)𝐶𝑊 (𝑔3)∧𝐶𝑊 (𝑔4)

]
=
1

4

E
𝑔3,𝑔4

[
𝜒𝛽 (𝑔3 ∧ 𝑔4) (1 − (−1)𝐶𝑊 (𝑔3) − (−1)𝐶𝑊 (𝑔4) + (−1)𝐶𝑊 (𝑔3) (−1)𝐶𝑊 (𝑔4))

]
.

Observe that by independence of 𝑔3 and 𝑔4,

E
𝑔3,𝑔4

[
𝜒𝛽 (𝑔3 ∧ 𝑔4)

]
= E
𝑔3


∏
𝑦∈𝛽
E
𝑔4

[
(−1)𝑔3 (𝑦)𝑔4 (𝑦)

] = 2
−|𝛽 |

since the product of expectations over 𝑔4 is zero unless 𝑔3 is identically zero on 𝛽 . Similarly,���� E𝑔3,𝑔4 [
𝜒𝛽 (𝑔3 ∧ 𝑔4) (−1)𝐶𝑊 (𝑔3)

] ���� =
������E𝑔3

(−1)𝐶𝑊 (𝑔3)
∏
y∈𝛽
E
𝑔4

[
(−1)𝑔3 (y)𝑔4 (y)

]
������ ≤ 2

−|𝛽 |

with the same inequality holding for E
[
𝜒𝛽 (𝑔3 ∧ 𝑔4) (−1)𝐶𝑊 (𝑔4)

]
by symmetry. Therefore we con-

clude that���� E𝑔3,𝑔4 [
𝜒𝛽 (𝑔3 ∧ 𝑔4) (−1)𝐶𝑊 (𝑔3)∧𝐶𝑊 (𝑔4)

] ���� ≤ 3

4

· 2−|𝛽 | + 1

4

���� E𝑔3,𝑔4 [
𝜒𝛽 (𝑔3 ∧ 𝑔4) (−1)𝐶𝑊 (𝑔3) (−1)𝐶𝑊 (𝑔4)

] ���� .
Next we take the Fourier expansion of 𝐶𝑊 in the above expectation and get

E
𝑔3,𝑔4

[
𝜒𝛽 (𝑔3 ∧ 𝑔4) (−1)𝐶𝑊 (𝑔3) (−1)𝐶𝑊 (𝑔4)

]
=

∑︁
𝛾1,𝛾2

𝐶𝑊 (𝛾1)𝐶𝑊 (𝛾2) E
𝑔3,𝑔4

[
𝜒𝛽 (𝑔3 ∧ 𝑔4)𝜒𝛾1 (𝑔3)𝜒𝛾2 (𝑔4)

]
.

Any term above with 𝛾1, 𝛾2 not both being subsets of 𝛽 has expectation zero. Furthermore, for any

choice of 𝑔4 where 𝑔4 ∧ 1𝛽 ≠ 1𝛾1 , taking the expectation over 𝑔3 gives us zero, while if 𝑔4 ∧ 1𝛽 = 1𝛾1
the expectation over 𝑔3 equals 1. In the latter case, which happens with probability 2

−|𝛽 |
over the

choice of 𝑔4, we have 𝜒𝛾2 (𝑔4) = 𝜒𝛾2 (1𝛾1) and thus we are left with

2
−|𝛽 |

∑︁
𝛾1,𝛾2⊆𝛽

𝐶𝑊 (𝛾1)𝐶𝑊 (𝛾2)𝜒𝛾2 (1𝛾1). (4.17)

Now observe that for any fixed 𝛾1, ������∑︁𝛾2⊆𝛽𝐶𝑊 (𝛾2)𝜒𝛾2 (1𝛾1)

������ ≤ 1,

because the sum equals the expected value of (−1)𝐶𝑊 (𝑔)
over all 𝑔 ∈ F𝑊 which agree with 1𝛾1 on 𝛽 .

Therefore we can bound (4.17) by

2
−|𝛽 |

∑︁
𝛾1⊆𝛽

|𝐶𝑊 (𝛾1) | ≤ 2
−|𝛽 |/2

∑︁
𝛾1⊆𝛽

𝐶𝑊 (𝛾1)2 ≤ 2
−|𝛽 |/2 .

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Optimal Inapproximability with Universal Factor Graphs 21

So we conclude that���� E𝑔3,𝑔4 [
𝜒𝛽 (𝑔3 ∧ 𝑔4) (−1)𝐶𝑊 (𝑔3)∧𝐶𝑊 (𝑔4)

] ���� ≤ 3

4

· 2−|𝛽 | + 1

4

· 2−|𝛽 |/2 < 2
−|𝛽 |/2.

Returning to our original formula for the acceptance probability we have by Cauchy-Schwartz and

Plancherel

𝛿2 ≤ E
𝑈 ,𝑊

©­«
∑︁
𝛽

���𝐴⊞𝑈 (𝛽⊕𝑈)𝐵̂⊞𝑊 (𝛽)22−|𝛽 |/2
���ª®¬
2 ≤ E

𝑈 ,𝑊


∑︁
𝛽

𝐴⊞𝑈 (𝛽⊕𝑈)2𝐵̂⊞𝑊 (𝛽)22−|𝛽 |
 . (4.18)

This is essentially the same as the bound (4.1) we obtained in Lemma 4.5 for Max-3-Lin, except

with 2
−|𝛽 |

in place of (1 − 2𝜀)2 |𝛽 | . We can now use exactly the same strategies for the provers as in

that proof and succeed in the smooth parallel repeated game with probability at least
𝛿4

16𝐶𝛿
. □

4.4 Max-Not-2 with perfect completeness
In this section we look at the predicate “Not-2” which is a predicate of arity 3 that accepts iff the

input does not contain two bits that are one. As this is implied by the negation of the 3-Lin predicate,

it follows from the proof of Theorem 4.2 that it is UFG-NP-hard to approximate Max-Not-2 within

any constant greater than
5

8
. We are, however, interested in perfect completeness and following in

the footsteps of [16] we establish the following theorem.

Theorem 4.16. For any 𝜀 > 0, Max-Not-2 is (1, 5/8 + 𝜀)-UFG-NP-hard.

It turns out that we only need minor modifications to the argument of [16]. Already that paper

uses smooth label cover and we start by defining the underlying basic PCPs.

Definition 4.17. The 𝑁𝑇𝑊𝛿 PCP verifier does the following:

(1) Pick a random pair of sets (𝑈 ,𝑊) sent to the two provers in the parallel game.

(2) Pick a uniform random function 𝑓 ∈ F𝑈 and a uniform random 𝑔1 ∈ F𝑊 .

(3) Define 𝑔2 ∈ F𝑊 by setting 𝑔2 (y) = 1 + 𝑔1 (y) + 𝑓 (y𝑈) for all 𝑦.
(4) For each x ∈ {0, 1}𝑈 with probability 𝛿 pick one y such that y𝑈 = x and reassign 𝑔2 (y) and

𝑔1 (y) to the value 𝑓 (x).
(5) Accept if and only if not two of the bits 𝐴⊞

𝑈
(𝑓), 𝐵⊞

𝑊
(𝑔1), and 𝐵⊞𝑊 (𝑔2) are one.

The parameter 𝑑 which, for any 𝑥 , bounds the number of y such y𝑈 = 𝑥 is crucial in [16] and let

us use it also here. Note that 𝑑 depends on 𝑟 but not on 𝑡 . For each 𝛿 [16] defines two parameters

𝑠𝛿 = 𝑂 (log(1/𝛿)/log𝑑), and 𝑆𝛿 = 𝑂 (log(1/𝛿)𝑑322𝑑𝛿−2). The final PCP, 𝑁𝑇𝑊 𝑘
𝛿′ is now as follows:

Definition 4.18. The 𝑁𝑇𝑊 𝑘
𝛿′ PCP verifier does the following:

(1) Set 𝛿0 = 𝛿
′
and for 𝑖 = 1, . . . 𝑘 − 1 choose 𝛿𝑖 such that 𝑠𝛿𝑖 = 𝑆𝛿𝑖−1 .

(2) Pick a random 𝑖 ∈ [𝑘] uniformly at random and run 𝑁𝑇𝑊𝛿𝑖 .

First note that, as 𝑠𝛿 tends to infinity when 𝛿 tends to 0, we do get a well defined sequence 𝛿𝑖 .

We can also observe that log(1/𝛿𝑘) is a constant that only depends on 𝑑 , 𝑘 and 𝛿 ′ and that it is

bounded by a tower of exponentials of height around 𝑘 .

The analysis of [16] is quite involved but the conclusion is that given any proof accepted by the

verifier with probability
5

8
+ 𝜀 then, in our notation, it is possible to conclude that

E
𝑈 ,𝑊


∑︁
𝛽

𝐴𝑈 (𝛽𝑈)2𝐵̂𝑊 (𝛽)2 (1 − 𝛾) |𝛽 |
 ≥ 𝜀2. (4.19)

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Austrin, Brown-Cohen, and Håstad

The reasoning requires that 𝑘 is sufficiently large compared to 𝜀 and 𝛿 ′ is sufficiently small compared

to 𝜀. The constant 𝛾 also depends on 𝜀 and 𝛿 ′, but also on the constant 𝑑 (and hence on our constant

𝑟). A key fact is that 𝛾 does not depend on 𝑡 . Following [16] we now extract a strategy for the basic

two-prover game with 𝑡 = 0.

First we find a bound 𝑇 (𝛿 ′, 𝜀, 𝑟) such that if restrict the sum (4.19) to 𝛽 of size at most 𝑇 (𝛿 ′, 𝜀, 𝑟)
then it remains at least 𝜀2/2. Now by choosing 𝑡 = 𝑡 (𝜀, 𝛿 ′, 𝑟) large enough we can assume two more

properties of the elements in the sum while still keeping it large.

The first property, also used in [16], and there described as “𝛽 is shattered” is the property of

Claim 2.20, namely, that any two elements in 𝛽 project onto different elements. The second property

is automatic in [16] because there conditioning is used instead of functional folding. In particular,

we require that for any 𝑗 ∈ 𝛽 , this assignment satisfies all the 𝑡 + 𝑟 constraints on𝑊 if and only if

𝑗𝑈 satisfies all the constraints of 𝑈 . Clearly, we can find 𝑡 large enough so that (4.19) remains at

least 𝜀2/4 when restricted to terms satisfying these two properties.

Finally we can find a set 𝐶 of 𝑡 constraints sent to both players such that sum (4.19) (of course

with all the restrictions just mentioned), conditioned on these 𝑡 constraints being the 𝑡 constraints

sent to both players, is at least 𝜀2/4. This follows by an averaging argument over the random choice

of𝑈 and𝑊 .

Now we can define a strategy for the provers in the basic two-prover game with a given value of

𝑟 and 𝑡 = 0. Each prover adds the fixed constraint set 𝐶 to its question and finds the corresponding

tables 𝐴𝑈 and 𝐵𝑊 . Now the strategy is essentially the standard strategy.

• 𝑃1 picks a set 𝛼 with probability 𝐴𝑈 (𝛼)2 and looks at all elements of 𝛼 that satisfy all

constraints on𝑈 . Of these it picks the element that is lexicographically first when considered

only on the common variables of the fixed constraints 𝐶 .

• 𝑃2 picks a set 𝛽 with probability 𝐵̂𝑊 (𝛽)2 and looks at all elements of 𝛽 that satisfies all

constraints on𝑊 . Of these it picks the element that is lexicographically first when considered

only on the common variables.

This strategy succeeds with a probability 𝜀2/4 and in particular it is independent of 𝑟 . As a final

step we pick 𝑟 large enough (and 𝑡 = 𝑡 (𝜀, 𝛿 ′, 𝑟) as discussed above) to make this strategy violate the

soundness of the two-prover game.

5 PAIRWISE INDEPENDENCE AND HADAMARD PREDICATES
In this section we establish that the results of Chan [7] can be obtained with a universal factor graph.

Chan showed that any predicate supporting a pairwise independent subgroup is approximation

resistant. In fact, he even showed that such predicates satisfy a strong property called uselessness,

introduced by Austrin and Håstad [3].

Definition 5.1. The predicate 𝑓 : {0, 1}𝑘 → {0, 1} is useless for a set of functions𝐺 = {𝑔 : {0, 1}𝑘 →
R} if for every 𝜀 > 0, the following promise decision problem is NP-hard. Given a Max-CSP(𝑓 ±)
instance 𝐼 = (𝑋,𝐶), distinguish between

(1) (Yes) 𝐼 is (1 − 𝜀)-satisfiable.
(2) (No) for every 𝑔 ∈ 𝐺 and assignment a : 𝑋 → {0, 1} it holds that���� E(𝑆,b)∼𝐶

[𝑔(a𝑆 + b)] − E
u∼{0,1}𝑘

[𝑔(u)]
���� ≤ 𝜀.

If 𝐺 is the set of all functions on 𝑘 bits then we say that 𝑓 is universally useless (or simply useless,
if there is no risk of ambiguity). If the uselessness is established by a factor-graph preserving

reduction from any problem that is UFG-NP-hard then we say that 𝑓 is UFG-useless (for 𝐺).

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Optimal Inapproximability with Universal Factor Graphs 23

Note that approximation resistance is the property that 𝑓 is useless for the set of functions

𝐺 = {𝑓 } consisting only of 𝑓 itself. Also observe that (universal) uselessness is equivalent to being

useless for the set 𝐺 consisting of all 2
𝑘
parity functions on 𝑘 bits (since any 𝑔 : {0, 1}𝑘 → {0, 1} is

a linear combination over the reals of such functions). From this observation it is not hard to see

that the proofs of approximation resistance for Max-3-Sat and Max-3-Lin in Section 4 in fact also

establish universal uselessness. E.g. in the reduction of Max-3-Sat, we have in the soundness case:

(1) Claim 4.11 establishes that the parity of all three variables is within 𝛿/4+𝑡 of being unbiased,
where 𝑡 is a quantity that is small unless we are able to decode the Long Codes to a good

strategy of the parallel repeated game.

(2) Claim 4.10 establishes that the parity of the two variables read from the 𝐵⊞
𝑊

table is within

𝛿/4 of being unbiased.

(3) The observations following (4.3) establish that the remaining five non-constant parities are

completely unbiased.

The case of Max-3-Lin is easier, and as it also is a special case of the main topic of this section,

namely Theorem 5.3 below, we omit the details.

The class of predicates for which Chan’s results hold are those supporting a pairwise independent

subgroup.

Definition 5.2. A predicate 𝑓 : {0, 1}𝑘 → {0, 1} supports a pairwise independent subgroup if there

exists a subgroup𝐻 ⊆ 𝑓 −1 (1) where the group operation is coordinate-wise addition modulo 2, and

a distribution 𝜇 supported on 𝐻 such that for all pairs 𝑖, 𝑗 ∈ [𝑘], the joint probability distribution of

𝑥𝑖 , 𝑥 𝑗 for 𝑥 ∼ 𝜇 is equal to the uniform distribution on {0, 1}2.

The main result of Chan, that we establish with a universal factor graph, can be stated as follows.

Theorem 5.3 ([7], Theorem 1.1, with a universal factor graph). Let 𝑓 : {0, 1}𝑘 → {0, 1} be
any predicate that supports a pairwise independent subgroup of {0, 1}𝑘 (under the group operation of
addition mod 2). Then 𝑓 is UFG-useless.

As the Hadamard predicates Had𝑘 support a pairwise independent subgroup, an immediate and

often used corollary is the following.

Corollary 5.4. For any 𝜀 > 0, Max-Had𝑘 is (1 − 𝜀, (𝑘 + 1)2−𝑘 + 𝜀)-UFG-NP-hard.

5.1 Analytic Notation, Influences, and Noise
For the purposes of proving Chan’s result with universal factor graphs, it turns out to be more

notationally convenient to use the {−1, 1} domain for Fourier analysis. Therefore, just for this

section, we make the following notational changes. If 𝐼 is a set of coordinates F𝐼 denotes the set of
functions 𝑓 : {0, 1}𝐼 → {−1, 1}, and we use F𝑛 to denote F[𝑛] as before. All of the long code tables𝐴
will be functions 𝐴 : F𝑛 → {−1, 1}. Finally, for 𝛼 ⊆ {0, 1}𝑛 the Fourier character 𝜒𝛼 : F𝑛 → {−1, 1}
will be given by

𝜒𝛼 (𝑓) =
∏
x∈𝛼

𝑓 (x).

With this notation set up, we additionally need to define influences and the noise operator.

Definition 5.5. For a function𝐴 : F𝑛 → R and set B ⊆ {0, 1}𝑛 of coordinates, the influence of B is

InfB (𝐴) =
∑︁

𝛼∩B≠∅
𝐴(𝛼)2.

For a single coordinate x ∈ {0, 1}𝑛 we write Infx (𝐴) for Inf {x} (𝐴).

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Austrin, Brown-Cohen, and Håstad

Fact 5.6. InfB (𝐴) ≤
∑

x∈B Infx (𝐴)

Definition 5.7. For a noise rate 0 ≤ 𝜂 ≤ 1 the noise operator 𝑇1−𝜂 maps functions 𝐴 : F𝑛 → R, to
noisy functions 𝑇1−𝜂𝐴 : F𝑛 → R defined by

𝑇1−𝜂𝐴(𝑓) = E
˜𝑓 ∼1−𝜂 𝑓

[𝐴(˜𝑓)],

where
˜𝑓 ∼1−𝜂 𝑓 indicates that ˜𝑓 (x) is chosen as 𝑓 (x) with probability 1 − 𝜂, and as a uniformly

random bit with probability 𝜂, independently for each x ∈ {0, 1}𝑛 .

Fact 5.8. For every 𝜂 > 0 and every table 𝐴 : F𝑛 → R,∑︁
x∈{0,1}𝑛

Infx (𝑇1−𝜂𝐴) ≤ 1/𝜂.

5.2 Overview
As with other results, we very much follow in the footsteps of the original proof. Given that Chan’s

proof is rather long we do not repeat the entire argument here. We only recall some crucial details

and describe how to modify them in our setting. The main difference is, not surprisingly, that [7]

uses conditioning and this leads both to a simpler proof and the possibility to use simpler notation.

To keep notation here simpler, we only present the arguments for the concrete case of Hadamard

predicates, but they generalize easily.

The high level view of Chan’s proof is what can be expected. He starts with an instance of

label cover with very good soundness. To get better numerical dependencies Chan uses a different

starting point, but let us here assume that the starting point is the 𝑟 -fold parallel repetition game

described in Section 2.4. He then produces a PCP whose acceptance condition is given by Had𝑘 and

proves that whenever there is a PCP proof where some function 𝑔 exceeds its expectation on the

answers to a random query, this can be used to derive successful strategies in the two-prover game.

It turns out to be difficult to directly define a PCP where every 𝑔 has small expectation. An easier

task is to define a PCP where all characters 𝜓 : {−1, 1}𝑘 → {−1, 1} that are 𝑗-relevant for some

fixed 𝑗 ∈ [𝑘] have small expectation. In the Boolean setting, each character is simply a product

𝜓 (𝑏1, . . . , 𝑏𝑘) =
∏
𝑖∈𝑆 𝑏𝑖 for some 𝑆 ⊆ [𝑘], and𝜓 is 𝑗-relevant if 𝑗 ∈ 𝑆 .

We have the following theorem.

Theorem 5.9 ([7], Theorem 5.4, with a universal factor graph). For every 𝑗 ∈ [𝑘], Had𝑘 is
UFG-useless for the set of all 𝑗-relevant characters𝜓 : {−1, 1}𝑘 → {−1, 1}.

The proof of this theorem is the main technical part of Chan’s work, and it is also the part that

needs modifications in our setting with functional folding in lieu of conditioning. We describe these

modifications and the proof in Section 5.3 below.

When we have Theorem 5.9, we can combine it with the very powerful construction, discovered

by Chan, of taking the direct sum of instances.

Definition 5.10. Given two Max-CSP(𝑓 ±) instances 𝐼 = (𝑋,𝐶) and 𝐼 ′ = (𝑋 ′,𝐶 ′), their direct sum
is defined as 𝐼 ⊕ 𝐼 ′ = (𝑋 × 𝑋 ′,𝐶 ⊕ 𝐶 ′). For each constraint 𝑓 (x𝑆 + b) = 1 in 𝐶 and each constraint

𝑓 (x′
𝑆′ + b′) = 1 in 𝐶 ′

, we have the constraint 𝑓 (x′′
𝑆⊚𝑆′ + b + b′) = 1 in 𝐶 ⊕ 𝐶 ′

, where for two tuples

u = (𝑢1, . . . , 𝑢𝑘) and v = (𝑣1, . . . , 𝑣𝑘) we write u ⊚ v to denote coordinate-wise concatenation of u
and v, i.e., the tuple of pairs ((𝑢1, 𝑣1), . . . , (𝑢𝑘 , 𝑣𝑘)).

As shown by Chan ([7], Lemma 5.3), taking direct sum preserves uselessness for characters (if

either 𝐼 or 𝐼 ′ satisfies the “No” case of Definition 5.1 with respect to some character𝜓 then 𝐼 ⊕ 𝐼 ′ does
as well). Thus, since the characters form an orthonormal basis for all functions 𝑔 : {−1, 1}𝑘 → R,

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Optimal Inapproximability with Universal Factor Graphs 25

taking the direct sum of the 𝑘 instances arising from Theorem 5.9 and making the following

observation we obtain Theorem 5.3.

Observation 5.11. The factor graph of 𝐼 ⊕ 𝐼 ′ depends only on the factor graphs of 𝐼 and 𝐼 ′, and not

on the negation patterns in 𝐼 and 𝐼 ′.

5.3 Protocol For a Single Coordinate
In this section we sketch Chan’s proof of Theorem 5.9 and the modifications needed to make it

hold with a universal factor graph.

Throughout this section, fix the value of the index 𝑗 ∈ [𝑘], and let 𝐽 = [𝑘] \ { 𝑗}, i.e., all elements

except 𝑗 . Let 𝜂 > 0 be a small parameter to be chosen later.

Given a Max-TSA instance 𝐼 we construct a new set of variables 𝑋 ′
as in the reduction template

Definition 3.5, and construct the following PCP verifier.

(1) Pick a random pair of sets (𝑈 ,𝑊) sent to the two provers in the parallel game.

(2) Pick a uniformly random function 𝑓 ∈ F𝑈 .
(3) For 𝑖 ∈ 𝐽 and y ∈ {0, 1}𝑊 choose 𝑔𝑖 (y) uniformly at random subject to condition that the

string (𝑔𝑖 (y))𝑖∈𝐽 with 𝑓 (y𝑈) inserted in position 𝑗 satisfies Had𝑘 .

(4) Let
˜𝑓 and 𝑔𝑖 be 𝜂-noisy perturbations of 𝑓 and 𝑔𝑖 .

(5) Accept if and only if (𝐵⊞
𝑊
(𝑔𝑖))𝑖∈𝐽 with 𝐴⊞𝑈 (˜𝑓) inserted in the 𝑗th position satisfies Had𝑘 .

Remark 5.12. Let us briefly compare the notation used here to the notation used in Chan’s protocol.

The following table shows the notation used for the main objects.

𝑗 ’th coordinate 𝑖’th coordinate for 𝑖 ≠ 𝑗

Chan’s notation 𝑓𝑗 ˜𝑓𝑗 𝑔 𝑗 z(𝑗) z(𝑗)𝑡 𝑓𝑖 ˜𝑓𝑖 𝑔𝑖 z(𝑖) z(𝑖)𝑠
Our notation 𝐴𝑈 𝐴⊞

𝑈
𝑇1−𝜂𝐴⊞𝑈 𝑓 𝑓 (x) 𝐵𝑊 𝐵⊞

𝑊
𝑇1−𝜂𝐵⊞𝑊 𝑔𝑖 𝑔𝑖 (y)

Note in particular that while the 𝑔𝑖 ’s in Chan’s protocol are the purported long codes with 𝜂-noise

applied, the 𝑔𝑖 ’s in our protocol are the inputs to the purported long codes on the𝑊 side.

The completeness analysis of the above protocol is easy and is not affected by the modifications

we have made, so let us turn to the soundness analysis.

Fix some 𝑗-relevant character𝜓 and suppose that the expectation of𝜓 over the answers to the

provers deviates from its expectation (0) by at least 𝜀, i.e.,����� E(𝑈 ,𝑊)

[
E

˜𝑓 ,{𝑔𝑖 }𝑖∈𝐽
[𝜓 (𝐴⊞𝑈 (˜𝑓), {𝐵⊞𝑊 (𝑔𝑖)}𝑖∈𝐽)]

] ����� > 𝜀.
By Markov’s inequality, it holds that for at least an 𝜀/2 fraction of all query pairs (𝑈 ,𝑊), the
inner expectation is at least 𝜀/2 in absolute value. Fix one such “good” pair (𝑈 ,𝑊) and to simplify

notation let 𝐴(𝑓) = 𝑇1−𝜂𝐴⊞𝑈 and 𝐵(𝑔) = 𝑇1−𝜂𝐵⊞𝑊 . Thus we have���� E
𝑓 ,{𝑔𝑖 }𝑖∈𝐽

[𝜓 (𝐴(𝑓), {𝐵(𝑔𝑖)}𝑖∈𝐽)]
���� > 𝜀/2. (5.1)

For x ∈ {0, 1}𝑈 , define B(x) to be the set of y ∈ {0, 1}𝑊 such that y𝑈 = x (in Chan’s notation, this

is the “block” 𝐵(𝑡)). The key quantity to study is∑︁
x

Infx (𝐴) InfB(x) (𝐵), (5.2)

which measures the presence of common influences between the noised tables 𝐴 and 𝐵. Using an

invariance-style proof, it is shown that when (5.1) holds then (5.2) must also be large. Concretely

we have the following theorem.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Austrin, Brown-Cohen, and Håstad

Theorem 5.13 ([7], Theorem 6.7). In the notation above, letZ ⊆ {0, 1}𝑈 be any set of assignments
such that ∑︁

x∉Z
Infx (𝐴) InfB(x) (𝐵) ≤ 𝜏,

and define 𝐴Z
: F𝑈 → [0, 1] to be the part of 𝐴 depending only on Z.3 Then���� E

𝑓 ,{𝑔𝑖 }𝑖∈𝐽
[𝜓 (𝐴(𝑓), {𝐵(𝑔𝑖)}𝑖∈𝐽)]

���� ≤ ���� E
𝑓 ,{𝑔𝑖 }𝑖∈𝐽

[𝜓 (𝐴Z (𝑓), {𝐵(𝑔𝑖)}𝑖∈𝐽)]
���� + 𝛿 (𝑘, 𝜂, 𝜏)

where for every fixed 𝑘 and 𝜂, 𝛿 (𝑘, 𝜂, 𝜏) tends to 0 as 𝜏 tends to 0.

This is a theorem purely about analysis of Boolean functions and its proof relies only on the

pairwise independence of the underlying CSP and not on the structure of the parallel repeated

game, and as such it applies without modification in our setting. Chan only states the theorem

forZ = ∅ but inspection of the proof, which is based on rerandomizing one coordinate at a time,

reveals that it holds for anyZ.

In Chan’s original proof, the case Z = ∅ is all that is needed, since combined with (5.1) it lets us

conclude that the tables 𝐴 and 𝐵 have shared influential coordinates, which can then immediately

be used in a standard way to define strategies that are accepted with constant probability in the

parallel repeated game.

In our setting it is not á priori clear that this yields a good strategy, since the functional folding

might not guarantee that any influential coordinate of 𝐴 or 𝐵 actually satisfies the constraints.

However, as we shall now see, it turns out that this is indeed the case, so the same strategy does

work also in our setting
4
.

Since 𝐴 and 𝐵 are tables with noise applied, it follows from Fact 5.8 and Fact 5.6 that if we let Z
be the set of assignments x such that both

Infx (𝐴) ≥ 𝜏𝜂/2 and InfB(x) (𝐵) ≥ 𝜏𝜂/2 (5.3)

then ∑︁
x∉Z

Infx (𝐴) InfB(x) (𝐵) ≤ 𝜏 .

Choosing 𝜏 small enough so that 𝛿 (𝑘, 𝜂, 𝜏) < 𝜀/2, it follows from Theorem 5.13 and (5.1) that���� E
𝑓 ,{𝑔𝑖 }𝑖∈𝐽

[𝜓 (𝐴Z (𝑓), {𝐵(𝑔𝑖)}𝑖∈𝐽)]
���� > 0 (5.4)

We now use the functional folding, and have the following observation.

Claim 5.14. If no x ∈ Z satisfies all equations ℎ𝑖 (x) = 𝑏𝑖 for 𝑖 = 1, . . . , 𝑡 , then 𝐴Z
is identically 0.

Proof. By Lemma 3.4 each non-zero Fourier coefficient of 𝐴 contains an element that satisfies

all the constraints. If we rerandomize all these values then the expectation is zero. □

Since𝜓 is a 𝑗-relevant character, the left hand side of (5.4) would be 0 if 𝐴Z
was identically 0, so

it follows that there must be some x∗ ∈ Z which satisfies all equations on𝑈 .

We now define the strategies for the provers in the repeated game in a standard way: we choose

answer x for𝑈 with probability proportional to Infx (𝐴) and, independently, analogously for𝑊 . By

Fact 5.8, x and y are chosen with probabilities at least 𝜂 Infx (𝐴) and 𝜂 Infy (𝐵), so the probability

3
Equivalently, 𝐴Z (𝑓) is the expectation of 𝐴(𝑓) on a copy of 𝑓 where all coordinates outside Z have been rerandomized.

4
Of course, there is no reason why the provers would ever output a value that does not satisfy the relevant constraints but

it is slightly easier to analyze this variant of their strategies.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Optimal Inapproximability with Universal Factor Graphs 27

that the good assignment x∗ is chosen and is consistent with the answer of the other prover is at

least

𝜂 Infx∗ (𝐴)
∑︁

y∈B(x∗)
𝜂 Infy (𝐵) ≥ 𝜂2 Infx∗ (𝐴) InfB(x∗) (𝐵) ≥ 𝜂4𝜏2/4.

Aggregating this over the 𝜀/2 fraction of good pairs (𝑈 ,𝑊) of queries in the repeated game, we

conclude that in expectation a fraction 𝜀𝜂4𝜏2/8 of all query pairs are assigned answers that are

consistent and where all constraints on 𝑈 are satisfied. The only remaining issue is to establish

that the answers of the other prover often satisfy the additional constraints on𝑊 .

Fix any assignment to the variables in𝑊 which does not satisfy all constraints. By Claim 2.20 the

probability, over the choice of𝑈 , that it projects to an assignment that satisfies all constraints on

this smaller set is bounded by 𝑟/(𝑟 + 𝑡). It follows that if we choose 𝑡 ≥ 16𝑟𝜀−1𝜂−4𝜏−2 then the total

expected fraction of query pairs where the assignments are consistent and satisfy the constraints

on 𝑈 but not those on𝑊 is bounded by
𝑟
𝑟+𝑡 ≤ 𝜀𝜂4𝜏2/16. We conclude that in expectation the

influence-based random strategy wins the repeated game with probability at least 𝜀𝜂4𝜏2/16. This
concludes the description of the modifications of the proof Chan and our proof of Theorem 5.9.

6 Max-𝐾-CSP WITH PERFECT COMPLETENESS
In this section we establish that the results of Huang [17] can be obtained with a universal factor

graph, showing that it is hard to approximate the Max-𝐾-CSP problem within a factor 𝐾𝑐𝐾
1/3/2𝐾

for some constant 𝑐 , even on satisfiable instances. More concretely, Huang, building upon the

work of Chan discussed in Section 5, showed that for infinitely many 𝐾 there exists a 𝐾-ary

predicate 𝑃 : {0, 1}𝐾 → {0, 1} with |𝑃−1 (1) | = 2
𝑂 (𝐾1/3

log𝐾)
accepting assignments such that the

Max-CSP(𝑃±) is approximation resistant on satisfiable instances, i.e., it is NP-hard to distinguish

satisfiable instances from those where with value |𝑃−1 (1) |/2𝐾 .
In this section we show how his proof carries over to the UFG setting. In order to do this, we

need to somewhat generalize the reduction framework used in the previous results. In particular,

rather than employing the standard label cover problem (derived from parallel repetition of the

basic two-prover game), we need a multilayered label cover (derived from parallel repetition of a

𝑘-prover game).

As these results build upon the hardness based on pairwise independence described in Section 5,

we reuse the notational conventions and concepts introduced there.

6.1 The Predicate
Fix a parameter 𝑘 . Let S𝑖 =

([𝑘]
𝑖

)
be the family of all size-𝑖 subsets of [𝑘].

The base predicate we are interested in is 𝑃0 : {−1, 1}S1∪S3 → {−1, 1} which accepts an input

(𝑥𝑆)𝑆 ∈S1∪S3
if and only if

𝑥𝑖 𝑗𝑘 = 𝑥𝑖 · 𝑥 𝑗 · 𝑥𝑘
for all {𝑖, 𝑗, 𝑘} ∈ S3. The arity of 𝑃0 is 𝐾 := 𝑘 +

(
𝑘
3

)
= Θ(𝑘3), and 𝑃0 has exactly 2

𝑘
satisfying

assignments.

The actual predicate that we prove is hard with perfect completeness is the predicate 𝑃 :

{−1, 1}S1∪S3 → {−1, 1} which accepts an input x if and only if x is within Hamming distance at

most 𝑘 of a satisfying assignment to 𝑃0. Note that the number of satisfying assignments to 𝑃 is at

most

(𝑘+(𝑘
3
)

𝑘

)
· 2𝑘 = 2

𝑂 (𝑘 log𝑘)
.

To that end we also consider the predicate 𝑃1, accepting the set of inputs that are at Hamming

distance 1 away from 𝑃0. The structure of the proof is that we construct a PCP with perfect

completeness for 𝑃1 and soundness against a certain family of characters. This “certain family” is

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Austrin, Brown-Cohen, and Håstad

such that we can cover all characters using 𝑘 such families and thus taking the direct sum of the 𝑘

resulting PCPs we get a new PCP which has perfect completeness for 𝑃 , and soundness against all

characters.

6.2 The Parallel Repetition
For this result we need a 𝑘-layered smooth label cover. For parameters 0 = 𝑟1 ≤ 𝑟2 ≤ . . . ≤ 𝑟𝑘 and 𝑡
we have the following 𝑘-prover verifier, starting from a MaxTSA instance (or any other equational

MaxCSP which is hard with perfect completeness).

(1) The verifier picks 𝑟𝑘 + 𝑡 random equations with scopes 𝑆1, . . . , 𝑆𝑟𝑘+𝑡 uniformly at random.

(2) For 𝑗 = 1, . . . , 𝑟𝑘 , choose a variable 𝑥𝑖 𝑗 ∈ x𝑆𝑡+𝑗 uniformly at random.

(3) For 𝑖 = 1, . . . , 𝑘 , send the list of variables (x𝑆 𝑗)
𝑡+𝑟𝑖
𝑗=1

and (𝑥𝑖 𝑗)
𝑟𝑘
𝑟𝑖+1 in random order to the 𝑖th

prover.

(4) Receive from each prover an assignment to the variables sent to that prover. Check that

• for each prover 𝑖 and each 𝑗 = 1, . . . 𝑡 +𝑟𝑖 , the assignment a𝑆 𝑗 given by 𝑃1 to x𝑆 𝑗 satisfies
the corresponding equation, and

• for each variable, all provers providing a value for that variable gave the same value.

The soundness of this protocol is that if any pair (𝑖, 𝑗) of provers provide consistent and acceptable
answers with non-negligible (as a function of the parameters 𝑡 and r) then we can find a good

assignment to the underlying MaxTSA instance.

We also have smoothness between all pairs of layers analogous to Claim 2.20.

As in our standard setup used previously, we will do a reduction where the answers from the

provers are long-coded and functionally folded. We shall denote by𝑈𝑖 the set of variables sent to

prover 𝑃𝑖 (note that𝑈1 ⊆ 𝑈2 ⊆ . . . ⊆ 𝑈𝑘), and by 𝐴𝑈𝑖
: F𝑈𝑖

→ {−1, 1} the corresponding purported

long code which we take to be functionally folded over the equations induced by𝑈𝑖 .

6.3 The Long Code Test
For sets of variables 𝑈1 ⊆ . . . ⊆ 𝑈𝑘 sent to the 𝑘 provers, we define the distribution T :=

T (𝑈1, . . . ,𝑈𝑘) over vectors of functions (𝑓𝑆)𝑆 ∈S1∪S3
with 𝑓𝑆 ∈ F𝑈max𝑆

as follows.

(1) For 𝑖 ∈ [𝑘] pick 𝑓 0𝑖 ∈ F𝑈𝑖
uniformly at random.

(2) For {𝑖, 𝑗, 𝑘} ∈ S3, let 𝑓
0

𝑖 𝑗𝑘
∈ F𝑈

max(𝑖 𝑗𝑘) be defined by 𝑓 0
𝑖 𝑗𝑘

(x) = 𝑓 0𝑖 (x𝑈𝑖
) · 𝑓 0𝑗 (x𝑈 𝑗

) · 𝑓 0
𝑘
(x𝑈𝑘

).
(3) Add “noise”, by defining 𝜂𝑆 ∈ F𝑈max𝑆

as follows. For each x ∈ {0, 1}𝑈1
, pick one 𝑆 ∈ S1 ∪ S3

uniformly at random, and for all y with y𝑈1
= x, set 𝜂𝑆 (y) to a uniformly random bit. All

other values of 𝜂𝑆 are 1.

(4) For all 𝑆 let 𝑓𝑆 = 𝑓 0
𝑆
⊙ 𝜂𝑆 (coordinatewise multiplication).

The verifier acts by picking a random𝑈1, . . . ,𝑈𝑘 , sampling (𝑓𝑆) according to T (𝑈1, . . . ,𝑈𝑘) and
querying 𝐴𝑈max𝑆

(𝑓𝑆) for all 𝑆 , obtaining bits 𝑏𝑆 .
The completeness is clear.

Lemma 6.1. If we start with a satisfiable MaxCSP instance then there is an assignment to the 𝐴𝑈 ’s
such that the (𝑏𝑆)𝑆 ∈S1∪S3

satisfies 𝑃1 with probability 1 over the randomness of the verifier.

To state the soundness we need the following definition. Let𝜓 be some non-constant character

over the variables of the predicate and let S ⊆ S1 ∪ S3 be the set of variables it depends on. For

𝑗, ℓ ∈ [𝑘] we say that S (and𝜓) is (𝑗, ℓ)-odd if

|{ 𝑆 ∈ S | 𝑗 ∈ 𝑆 ∧max(𝑆) = ℓ}|
is odd.

The key soundness lemma is (somewhat informally) as follows.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Optimal Inapproximability with Universal Factor Graphs 29

Lemma 6.2. If the character 𝜓 is (𝑗, ℓ)-odd for some 𝑗, ℓ and the expected value of 𝜓 on (𝑏𝑆) is
non-negligible then there is a strategy in the parallel repeated game.

It was further shown in [17] that by taking all 𝑘 cyclic permutations of the base set [𝑘], every
character 𝜓 becomes (𝑗, ℓ)-odd for some 𝑗, ℓ and at least one of these permutations, so our final

construction is to take the direct sum of those resulting PCPs. The details of this are unaffected in

the UFG setting so we focus on the above lemma.

6.4 Soundness Analysis
Throughout this section, fix the character 𝜓 and the set S of coordinates it depends on, and fix

𝑗, ℓ ∈ [𝑘] to be the values such that S is (𝑗, ℓ)-odd.
The first step is to add a bit more noise. In particular we define the distribution T ′

:=

T ′(𝑈1, . . . ,𝑈𝑘) as the distribution obtained by sampling (𝑓𝑆) according to T and then applying

independent 𝛾-noise to all bits. As shown by Huang ([17] Lemma 4.7), the expectation of𝜓 w.r.t. T
differs from the expectation of𝜓 w.r.t. T ′

only by an error that can be made arbitrarily small as a

function of 𝛾 . This bound relies on smoothness. Thus from now on we may think of the long code

tables as being noised and having decaying tails.

As with Chan’s result the idea of the soundness is based on rerandomizing some long code inputs

to decouple the test distribution, and to show that this does not change the expectation by much

unless there is noticeable shared influences. We will do the argument slightly differently from how

we did it in Section 5. There we choseZ to be the set of all assignments that were influential in

both long codes and then argued that this must contain a satisfying assignment.

In the present setting it seems a bit more convenient to do it the other way around. Concretely,

let Z ⊆ {0, 1}𝑈𝑘
be the set of all assignments that satisfy all equations on𝑈1 (note, not𝑈𝑘 !). Note

that Z𝑈𝑖
contains the set of all assignments that satisfy all equations on 𝑈𝑖 . We consider what

happens when we rerandomize these coordinates of the 𝑓𝑆 ’s. Informally, there are three things to

establish:

(1) That if no consistent pair of assignments in Z𝑖 have high influence in their corresponding

tables then the rerandomization essentially does not change the expectation of𝜓 .

(2) That if we rerandomize these coordinates then the expectation of 𝜓 on the (partially)

decoupled distribution is 0.

(3) If some consistent pair of assignments have high influence then we can define a good

strategy for the provers.

To simplify notation here let us fix a choice of𝑈1, . . . ,𝑈𝑘 and write𝐴𝑖 instead of𝐴𝑈𝑖
and similarly

Z𝑖 instead of Z𝑈𝑖
.

Let L𝑖 = { 𝑆 ∈ S | max(𝑆) = 𝑖}. We can then write the expectation of𝜓 as

𝐸 := 𝐸 (𝐴1, . . . , 𝐴𝑘) = E
(𝑓𝑆)∼T′

[∏
𝑆 ∈S

𝐴max𝑆 (𝑓𝑆)
]
= E

(𝑓𝑆)∼T′

[
𝑘∏
𝑖=1

∏
𝑆 ∈L𝑖

𝐴𝑖 (𝑓𝑆)
]
.

We can write the rerandomized expectation as

𝐸Z
:= E

(𝑓𝑆)∼T′

[
𝑘∏
𝑖=1

E
(𝑓 ′
𝑆
)∼T′

[∏
𝑆 ∈L𝑖

𝐴𝑖 (𝑓 ′𝑆 |Z𝑖
, 𝑓𝑆 |Z𝑖

)
]]
.

Here, the notation 𝐴𝑖 (𝑓 ′𝑆 |Z𝑖
, 𝑓𝑆 |Z𝑖

) means the value 𝐴𝑖 (𝑔), where 𝑔 : {0, 1}𝑈𝑖 → {−1, 1} is the
function defined by

𝑔(x) =
{
𝑓 ′
𝑆
(x) if x ∈ Z𝑖

𝑓𝑆 (x) otherwise

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 Austrin, Brown-Cohen, and Håstad

Item 1 above is then formalized as follows.

Theorem 6.3. For every choice ofZ ⊆ {0, 1}𝑈𝑘 the following holds. If for all 1 ≤ 𝑖 < 𝑖 ′ ≤ 𝑘 it holds
that ∑︁

x∈{0,1}𝑈𝑖

y∈{0,1}𝑈𝑖′

y𝑈
1
=x𝑈

1
∈Z𝑈

1

Infx (𝑇1−𝛾𝐴𝑖) Infy (𝑇1−𝛾𝐴𝑖′) ≤ 𝜀

then |𝐸 − 𝐸Z | ≤ 𝛿 (𝜀, 𝑘,𝛾) where 𝛿 tends to 0 with 𝜀.

[17] proves this for Z = {0, 1}𝑈1
(i.e., all coordinates). In the next section we show that the

general case can be reduced to that special case.

For item 2, we wish to establish the following, which is where functional folding comes to our

aid.

Lemma 6.4. If Zℓ ⊆ {0, 1}𝑈ℓ contains all assignments that satisfy all equations on𝑈ℓ then 𝐸Z = 0.

Proof. Recall that

𝐸Z = E
(𝑓𝑆)∼T′

[
𝑘∏
𝑖=1

E
(𝑓 ′
𝑆
)∼T′

[∏
𝑆 ∈L𝑖

𝐴𝑖 (𝑓 ′𝑆 |Z𝑖
, 𝑓𝑆 |Z𝑖

)
]]
.

For any fixed choice of (𝑓𝑆) in the outer expectation, let 𝐵ℓ denote the restriction of 𝐴ℓ under the

partial assignment 𝑓𝑆 |Z𝑖
, i.e., 𝐵ℓ (𝑓 ′𝑆) = 𝐴ℓ (𝑓 ′𝑆 |Z𝑖

, 𝑓𝑆 |Z𝑖
) (but note that this is a table that depends

only on the coordinates Zℓ). By the functional folding, we know that every non-zero Fourier

coefficient 𝛼 of 𝐴ℓ contains an odd number of assignments from Zℓ . This implies that 𝐵ℓ is an odd

function.

Now consider the factor in the above expectation at 𝑖 = ℓ . By the definition of 𝐵ℓ this equals

E
(𝑓 ′
𝑆
)∼T′

[∏
𝑆 ∈Lℓ

𝐵ℓ (𝑓 ′𝑆)
]
. (6.1)

By the (𝑗, ℓ)-odd property, we know that an odd number of 𝑆 ∈ Lℓ contain 𝑗 . This, combined

with the fact that 𝐵ℓ is odd, implies that if in the sampling procedure for T we negate 𝑓 0𝑗 then∏
𝑆 ∈Lℓ

𝐵ℓ (𝑓 ′𝑆) changes sign. Thus we conclude that (6.1) equals 0 and by extension 𝐸Z
does as

well. □

There then only remains the third item on our list of tasks above, namely to use these properties

to decode the long codes to good strategies in the 𝑘-prover game. This part works essentially the

same way as in Section 5 so let us only outline the steps.

Recall that we let Z ⊆ {0, 1}𝑈𝑘
be the set of all assignments that satisfy all equations on 𝑈1,

and that for each 1 ≤ 𝑖 ≤ 𝑘 , Z𝑈𝑖
contains all assignments that satisfy all equations on 𝑈𝑖 . By

Theorem 6.3 applied toZ and Lemma 6.4, whenever our𝜓 has non-negligible expectation there

must exist 𝑖 < 𝑖 ′ such that ∑︁
x∈{0,1}𝑈𝑖

y∈{0,1}𝑈𝑖′

y𝑈
1
=x𝑈

1
∈Z𝑈

1

Infx (𝑇1−𝛾𝐴𝑖) Infy (𝑇1−𝛾𝐴𝑖′) ≥ 𝜀

Furthermore, by a Markov argument we may assume that in aggregate over a random choice of

questions (𝑈1, . . . ,𝑈𝑘) to the provers some pair of layers 𝑖 , 𝑖 ′ satisfy this inequality a 𝛾 fraction of

the time for some positive constant 𝛾 (depending on 𝜀, 𝑘 and the expectation of𝜓).

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Optimal Inapproximability with Universal Factor Graphs 31

Thus, just like at the end of Section 5, if we assign strategies for the provers based on influences

(i.e., we choose answer x for 𝑈𝑖 with probability proportional to Infx (𝑇1−𝛾𝐴𝑈𝑖
)) we conclude that

the answers from provers 𝑖 and 𝑖 ′ have a positive constant probability of being consistent and

satisfying all equations on 𝑈1. Repeating the smoothness argument from the end of Section 5 we

then conclude that with sufficient smoothness the answers furthermore have a positive constant

probability of satisfying all equations on𝑈𝑖′ (and when the answers on𝑈𝑖′ are consistent with those

on𝑈𝑖 this implies that all equations on𝑈𝑖 are satisfied as well).

6.5 Invariance Under Partial Rerandomization
It remains to establish Theorem 6.3, a more general form of equations (4.23)-(4.24) in [17]. Instead

of the tedious labor of going over the invariance proof used and checking that all steps work out

when only rerandomizing some variables instead of all, let us do this in a somewhat more black-box

way.

We are interested in bounding |𝐸 − 𝐸Z |. For 𝑆 ∈ L𝑖 define 𝐵𝑓𝑆 : F𝑈𝑖
→ {−1, 1} depending only

on Z𝑖 by 𝐵𝑓𝑆 (𝑓) = 𝐴𝑖 (𝑓 |Z𝑖
, 𝑓𝑆 |Z𝑖

). Then

|𝐸 − 𝐸Z | =
�����ET′

[
𝑘∏
𝑖=1

∏
𝑆 ∈L𝑖

𝐴𝑖 (𝑓𝑆)
]
− E

(𝑓𝑆)∼T′

[
𝑘∏
𝑖=1

E
(𝑓 ′
𝑆
)∼T′

[∏
𝑆 ∈L𝑖

𝐴𝑖 (𝑓 ′𝑆 |Z𝑖
, 𝑓𝑆 |Z𝑖

)
]] �����

≤ E
(𝑓𝑆)∼T′

[����� 𝑘∏
𝑖=1

∏
𝑆 ∈L𝑖

𝐴𝑖 (𝑓𝑆) −
𝑘∏
𝑖=1

E
(𝑓 ′
𝑆
)∼T′

[∏
𝑆 ∈L𝑖

𝐴𝑖 (𝑓 ′𝑆 |Z𝑖
, 𝑓𝑆 |Z𝑖

)
] �����
]

= E
(𝑓𝑆)∼T′

[����� E(𝑓 ′
𝑆
)∼T′

[
𝑘∏
𝑖=1

∏
𝑆 ∈L𝑖

𝐴𝑖 (𝑓 ′𝑆 |Z𝑖
, 𝑓𝑆 |Z𝑖

)
]
−

𝑘∏
𝑖=1

E
(𝑓 ′
𝑆
)∼T′

[∏
𝑆 ∈L𝑖

𝐴𝑖 (𝑓 ′𝑆 |Z𝑖
, 𝑓𝑆 |Z𝑖

)
] �����
]

= E
(𝑓𝑆)∼T′

[����� E(𝑓 ′
𝑆
)∼T′

[
𝑘∏
𝑖=1

∏
𝑆 ∈L𝑖

𝐵𝑓𝑆 (𝑓 ′𝑆)
]
−

𝑘∏
𝑖=1

E
(𝑓 ′
𝑆
)∼T′

[∏
𝑆 ∈L𝑖

𝐵𝑓𝑆 (𝑓 ′𝑆)
] �����
]

= E
(𝑓𝑆)∼T′

[���𝐸 ({𝐵𝑓𝑆 }) − 𝐸Z ({𝐵𝑓𝑆 })
���]

where the equality between the second and third lines relied on the property of Z𝑖 that it does not

“split” any block of the input space {0, 1}𝑈𝑖
(i.e., if 𝑥 ∈ Z𝑖 then all 𝑥 ′ with 𝑥 ′

𝑈1

= 𝑥𝑈1
are also in Z𝑖).

Note that since 𝐵𝑓𝑆 only depends on the variables in Z𝑖 , 𝐸
Z ({𝐵𝑓𝑆 }) is the same as when we

rerandomize all coordinates and this lets us apply the bounds of [17] (equations (4.23)-(4.24)). There

is still a slight difference in that we now have a function 𝐵𝑓𝑆 for each subset 𝑆 , whereas before all

functions belonging to layer 𝑖 had the same function𝐴𝑖 . However it is easy to see that this property

is not really used in [17].

What remains is to bound the influences of 𝐵𝑓𝑆 and we have the following bound.

Lemma 6.5. For all 𝑆 ∈ L𝑖 and 𝑆 ′ ∈ L𝑖′ and all 𝑥 ∈ {0, 1}𝑈𝑖 and 𝑦 ∈ {0, 1}𝑈𝑖′ we have

E
(𝑓𝑆)∼T

[
Inf𝑥 (𝑇1−𝛾𝐵𝑓𝑆) Inf𝑦 (𝑇1−𝛾𝐵𝑓𝑆′)

]
≤ 𝑐 (𝛾) Inf𝑥 (𝑇1−𝛾𝐴𝑖) Inf𝑦 (𝑇1−𝛾𝐴𝑖′)

where 𝑐 (𝛾) is a universal constant depending only on 𝛾 .

This is a relatively straightforward application of hypercontractivity but let us do the proof.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

32 Austrin, Brown-Cohen, and Håstad

Proof. Let us write 𝐶𝑆 = 𝑇1−𝛾𝐵𝑓𝑆 . We have Inf𝑥 (𝐶𝑆) =
∑
𝛼 ∋𝑥 𝐶𝑆 (𝛼)2, so the LHS we seek to

bound is the sum over all 𝛼 ∋ 𝑥 , 𝛽 ∋ 𝑦 of

E
(𝑓𝑆)∼T

[
𝐶𝑆 (𝛼)2𝐶𝑆′ (𝛽)2

]
≤

√︂
E

(𝑓𝑆)∼T

[
𝐶𝑆 (𝛼)4

]
E

(𝑓𝑆)∼T

[
𝐶𝑆′ (𝛽)4

]
(6.2)

We also have

𝐶𝑆 (𝛼) =
∑︁
𝛽⊆Z𝑖

�𝑇1−𝛾𝐴𝑖 (𝛼 ∪ 𝛽)𝜒𝛽 (𝑓𝑆),

which is a polynomial in the (𝑓𝑆) with exponentially decaying tails and hence we can bound its

fourth moment using hypercontractivity by

E
(𝑓𝑆)∼T

[
𝐶𝑆 (𝛼)4

]
≤ 𝑐 (𝛾) E

(𝑓𝑆)∼T

[
𝐶𝑆 (𝛼)2

]
2

.

Plugging this into (6.2) we see that

E
(𝑓𝑆)∼T

[
𝐶𝑆 (𝛼)2𝐶𝑆′ (𝛽)2

]
≤ 𝑐 (𝛾) E

(𝑓𝑆)∼T

[
𝐶𝑆 (𝛼)2

]
E

(𝑓𝑆)∼T

[
𝐶𝑆′ (𝛽)2

]
Summing over all 𝛼 ∋ 𝑖 , 𝛽 ∋ 𝑖 ′, we obtain the desired bound. □

From Lemma 6.5, Markov’s inequality, and a union bound over all 𝑘6 pairs (𝑆, 𝑆 ′), it follows that
with probability at least 1 −

√
𝜀𝑐 (𝛾)𝑘6 over the choice of (𝑓𝑆), it holds that∑︁

𝑥 ∈{0,1}𝑈𝑖

𝑦∈{0,1}𝑈𝑖′
𝑦𝑈

1
=𝑥𝑈

1

Inf𝑥 (𝑇1−𝛾𝐵𝑓𝑆) Inf𝑦 (𝑇1−𝛾𝐵𝑓𝑆′) ≤
√
𝜀𝑐 (𝛾)

for all 𝑆, 𝑆 ′. For such choices of (𝑓𝑆), applying the special case of Theorem 6.3 proved by Huang [17]

implies that |𝐸 ({𝐵𝑓𝑆 }) − 𝐸Z ({𝐵𝑓𝑆 }) | ≤ 𝛿 (
√
𝜀𝑐 (𝛾), 𝑘, 𝛾), which tends to 0 with 𝜀. For the remaining

bad choices of (𝑓𝑆), |𝐸 ({𝐵𝑓𝑆 }) − 𝐸Z ({𝐵𝑓𝑆 }) | ≤ 2 and hence these contribute at most 2

√
𝜀𝑐 (𝛾)𝑘6

which also tends to 0 with 𝜀.

7 PROMISE CSPS
Functional folding can also be used to obtain hardness results for promise CSPs (PCSPs) with
universal factor graphs. The search version of a promise CSP is a constraint satisfaction problem in

which the instance is promised to have a satisfying assignment to every constraint, but the goal

is to output an assignment which need only satisfy a weakened version of each constraint. The

decision version, which we consider here, is to decide between the case where all the stronger

"promised" constraints are satisfied, and the case where not even the weakened version can be

satisfied. A prototypical example of a PCSP is the “(2 + 𝜀)-Sat” problem, in which we are given a

(2𝑘 + 1)-CNF formula 𝜙 and the objective is to distinguish the case where there is an assignment

satisfying at least 𝑘 literals in every clause of 𝜙 , from the case where 𝜙 is unsatisfiable. Here the

stronger "promise" constraint is that 𝑘 literals of each clause can be satisfied, and the weakened

version is that at least one literal of each clause needs to be satisfied.

One can view 3-Sat as the problem of deciding whether at least 1-in-3 of the literals in each

clause can be satisfied, and 2-Sat as deciding whether at least 1-in-2 of the literals in each clause

can be satisfied. Thus the reason for the name “(2 + 𝜀)-Sat” is that, as 𝑘 grows the goal is to decide

whether
1

2+𝜀 fraction of the clauses can be satisfied, or the formula is unsatisfiable.

We now recall the pertinent definitions.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Optimal Inapproximability with Universal Factor Graphs 33

Definition 7.1. A PCSP language is a pair (Γ,Λ) of two indexed constraint languages Γ =

{𝑓1, . . . , 𝑓𝑡 } and Λ = {𝑔1, . . . , 𝑔𝑡 } such that 𝑓𝑖 and 𝑔𝑖 have the same arity and 𝑓𝑖 (x) ≤ 𝑔𝑖 (x) for
all 𝑖 and 𝑥 .

A PCSP language has free negations, if for every 𝑘-ary constraint pair (𝑓𝑖 , 𝑔𝑖) and every b ∈ {0, 1}𝑘 ,
the constraint pair (𝑓 b𝑖 , 𝑔b𝑖) is also in the language, where 𝑓 b (x) = 𝑓 (x + b).

An instance 𝐼 of the PCSP(Γ,Λ) problem is a pair (𝑋,𝐶) where 𝑋 is a set of variables and𝐶 a set

of constraints. Each constraint 𝑐 ∈ 𝐶 is a pair (𝑖, 𝑆), for a constraint type 𝑖 ∈ [𝑡] and scope 𝑆 . We

write 𝐼Γ for the induced CSP(Γ) instance where each constraint (𝑖, 𝑆) is replaced by (𝑓𝑖 , 𝑆) and 𝐼Λ
for the induced CSP(Λ) instance where (𝑖, 𝑆) is replaced by (𝑔𝑖 , 𝑆).

PCSP(Γ,Λ) is the promise decision problem where given an instance 𝐼 the objective is to distin-

guish whether 𝐼Γ is satisfiable or 𝐼Λ is unsatisfiable.

Definition 2.12 of UFG-NP-hardness extends naturally to PCSP problems. To state the hardness

result for PCSPs, we also need the notion of polymorphisms, defined next.

Definition 7.2. A polymorphism of a PCSP language (Γ,Λ) is a function 𝑝 : Σℓ → Σ such that, for

every pair of constraint types (𝑓𝑖 , 𝑔𝑖) ∈ (Γ,Λ) and all 𝑥1, . . . , 𝑥𝑛 ∈ 𝑓 −1𝑖 (1) (where 𝑘 is the arity of 𝑓𝑖
and 𝑔𝑖) it holds that

(𝑝 (𝑥1,1, . . . , 𝑥ℓ,1), 𝑝 (𝑥1,2, . . . , 𝑥ℓ,2), . . . , 𝑝 (𝑥1,𝑘 , . . . , 𝑥ℓ,𝑘)) ∈ 𝑔−1𝑖 (1).
A polymorphism 𝑝 is folded if 𝑝 (¬x) = ¬𝑝 (x) for all x ∈ {0, 1}ℓ .

In short, a polymorphism is any operation that, when applied coordinate-wise to a set of assign-

ments satisfying 𝑓𝑖 , outputs an assignment satisfying 𝑔𝑖 . One natural example is in the case where

𝑓 : Z4
4
→ {0, 1} outputs one if the sum of the inputs is zero mod 4, and 𝑔 : Z4

4
→ {0, 1} outputs one

if the sum of the inputs is zero mod 2. In this case, the operation 𝑝 : Z2
4
→ Z4 which sums up its

inputs mod 2 is a polymorphism of the PCSP language ({𝑓 }, {𝑔}).
Our main hardness result of PCSPs having universal factor graphs is the following.

Theorem 7.3. Let (Γ,Λ) be a finite PCSP language with free negations, and suppose that there exists
a universal constant 𝐶 = 𝐶 (Γ,Λ) < ∞ such that every folded polymorphism of (Γ,Λ) is a 𝐶-junta.
Then PCSP(Γ,Λ) is UFG-NP-hard.

This theorem is approximately Theorem 4.7 of [2]. That theorem was simplified and generalized

by Brakensiek and Guruswami [5] to PCSP languages where the polymorphisms are only required

to be𝐶-fixing, a weaker condition than being a𝐶-junta where it is only required that setting all the

𝐶 coordinates to 0 fixes the value of the function. Another difference is that the result of Brakensiek

and Guruswami does not require the PCSP language to have free negations, which is something

we require in order to be able to apply functional folding. The proof below follows the simplified

proof of Brakensiek and Guruswami very closely but there is one step where we need the stronger

condition of being a 𝐶-junta instead of just 𝐶-fixing—see Footnote 5 for further details.

Using the fact that the polymorphisms of (2 + 𝜀)-Sat are juntas [2], we have the following

immediate corollary.

Corollary 7.4. (2 + 𝜀)-Sat is UFG-NP-hard.
Proof of Theorem 7.3. Given a Max-TSA instance 𝐼 we construct a new set of variables 𝑋 ′

as

in the reduction template Definition 3.5.

For every query 𝑈 (resp.𝑊 to 𝑃2) in the repeated game, we add constraints on 𝐴⊞
𝑈
(resp. 𝐵⊞

𝑊
)

forcing it to be a polymorphism of (Γ,Λ). In particular, for every𝑘-ary constraint pair (𝑓 , 𝑔) ∈ (Γ,Λ),
and for every sequence of functions ℎ1, . . . , ℎ𝑘 ∈ F𝑈 such that 𝑓 (ℎ1 (x), . . . , ℎ𝑘 (x)) = 1 for all x,
we add the constraint 𝑔(𝐴⊞

𝑈
(ℎ1), . . . , 𝐴⊞𝑈 (ℎ𝑘)) = 1. An equivalent set of constraints is added for

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

34 Austrin, Brown-Cohen, and Håstad

𝐵⊞
𝑊
. Clearly, this set of constraints does not depend on the Max-TSA instance 𝐼 , except via the

functional folding of 𝐴⊞
𝑈
, and thus this part of the construction is factor-graph preserving.

Furthermore, for every pair of queries𝑈 ⊆𝑊 sent to the two provers in the parallel game, and

all functions 𝑓 ∈ F𝑈 , we identify the values of 𝐴⊞
𝑈
(𝑓) and 𝐵⊞

𝑊
(𝑓) (where we think of 𝑓 ∈ F𝑈 as

a function 𝑓 ∈ F𝑊 that only depends on the coordinates in 𝑈 , in the obvious way). This simply

means that whenever we would have accessed 𝐴⊞
𝑈
(𝑓), we instead access 𝐵⊞

𝑊
(𝑓). It is clear that this

construction is factor graph-preserving.

Claim 7.5 (Completeness). If 𝐼 is satisfiable then 𝑅(𝐼)Γ is satisfiable.

The proof of completeness is immediate from the definitions and we omit it.

Claim 7.6 (Soundness). If 𝑅(𝐼)Λ is satisfiable and 𝑡 ≥ 𝐶2𝑟 then the repeated game is
1

2𝐶
-satisfiable.

Proof. Given a satisfying assignment (consisting of supposed long codes) to 𝑅(𝐼)Λ, let 𝛼𝑈
(resp. 𝛽𝑊) be the set of up to 𝐶 coordinates that 𝐴⊞

𝑈
(resp. 𝐵⊞

𝑊
) depends on.

The key observation, that we now proceed to establish, is that for a pair of queries𝑈 ⊆𝑊 sent

to the two provers such that |𝛽𝑊
𝑈
| = |𝛽𝑊 | (which, by the choice 𝑡 ≥ 𝐶2𝑟 and Claim 2.20, are at least

1/2 of all query pairs), we must have 𝛽𝑊
𝑈

⊆ 𝛼𝑈 . Indeed, suppose for contradiction that x∗ ∈ 𝛽𝑊
but x∗

𝑈
∉ 𝛼𝑈 . Let 𝑔 ∈ F𝑊 be a function such that 𝐵⊞

𝑊
(𝑔) ≠ 𝐵⊞

𝑊
(𝑔 + 1x∗) and 𝑔(x) = 1 for all x ∉ 𝛽𝑊 .

Because |𝛽𝑊
𝑈
| = |𝛽𝑊 | we can also view 𝑔 as a function 𝑓 ∈ F𝑈 (defined by 𝑓 (x) = 1 if y ∉ 𝛽𝑊

𝑈
and

otherwise 𝑓 (x) = 𝑔(y) where y is the unique y ∈ 𝛽𝑊 such that y𝑈 = x). Then using that x∗
𝑈
∉ 𝛼𝑈

and the identification of values in 𝐴⊞
𝑈
and 𝐵⊞

𝑊
we have the contradiction

𝐵⊞𝑊 (𝑔 + 1x∗) = 𝐴⊞𝑈 (𝑓 + 1x∗
𝑈
) = 𝐴⊞𝑈 (𝑓) = 𝐵⊞𝑊 (𝑔) ≠ 𝐵⊞𝑊 (𝑔 + 1x∗)

and the key observation follows.
5

By Lemma 3.4, at least one x ∈ 𝛽𝑊 satisfies all constraints in𝑊 , and the strategy for 𝑃2 in the

repeated game is to use an arbitrary such x. The strategy for 𝑃1 is to select a random assignment

x ∈ 𝛼𝑈 . Since at least half the query pairs satisfy |𝛽𝑊
𝑈
| = |𝛼𝑈 | and |𝛼𝑈 | ≤ 𝐶 for all𝑈 , this strategy

is accepted with probability at least
1

2𝐶
. □

Combining the completeness and soundness claims, the theorem follows. □

8 MISCELLANEOUS EXTENSIONS
In this section we discuss various further extensions to our results.

8.1 More Hardness Results by Gadgets
One major method for deriving new hardness results is by a method usually referred to as “gadget

reductions”. In such a reduction from Max-CSP(Γ1) to Max-CSP(Γ2) one takes one constraint in the

source problem and produces one or several constraints in the target problem. These new constraints

contain the variables from the original problem and some new variables which are unique to the

constraint processed. A general theory for constructing optimal gadgets was introduced by Trevisan

et al. [24].

To make such a reduction factor graph-preserving one simply needs to ensure that the factor

graph of constant size obtained from a single constraint does not the depend on which constraint

5
This argument is where we use that the polymorphisms are𝐶-juntas as opposed to just𝐶-fixing. In the previous PCSP

hardness results it was sufficient to establish that 𝛽𝑊
𝑈

∩𝛼𝑈 ≠ ∅, but this is not sufficient for us. In our setting the functional

folding only guarantees that at least one x ∈ 𝛽𝑊 satisfies the equations on𝑊 (and this property is easy to establish also for

tables that are𝐶-fixing rather than𝐶-juntas), and we need to make sure that this specific x projects to an element of 𝛼𝑈 .

For this reason, just having non-empty intersection between 𝛽𝑊
𝑈

and 𝛼𝑈 is not sufficient.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Optimal Inapproximability with Universal Factor Graphs 35

from the family Γ1 was used. This is a simple property to test and turns out to be true for most

reductions. In particular, one favorite starting point of such a reduction is Max-3-Lin and if we allow

negations of variables then Γ1 is the single predicate parity. This implies that as soon as we reduce

to another Max-CSP that allows negations, the reduction is automatically factor graph-preserving.

Let us state a couple of immediate corollaries to this observation and some reductions described in

[15] and constructed based on the methods of [24].

Corollary 8.1. For any 𝜀 > 0, Max-2-Lin is (3
4
− 𝜀, 11

16
+ 𝜀)-UFG-NP-hard.

The reduction takes a single equation of the form 𝑥 + 𝑦 + 𝑧 = 0 and produces 16 equations each

containing two variables from the set {𝑥,𝑦, 𝑧} joint with 5 new variables. If the equation is satisfied

then we can set the new variables to satisfy 12 equations while if it is not satisfied it is only possible

to satisfy 10 equations. For 2-Sat we have the following corollary.

Corollary 8.2. For any 𝜀 > 0 Max-2-Sat is (11
12

− 𝜀, 21
24

+ 𝜀)-UFG-NP-hard.

Here the reduction takes one equation and produces 12 clauses of size two of which 11 can be

satisfied if the equation is satisfied while if it is not, the optimum is 10.

It might be instructive to see what happens to the gadget reduction from Max-3-Lin to Max-Cut

in [24]. Here each variable in the original problem corresponds to a node in the resulting Max-Cut

instance. Each equation containing 𝑥,𝑦 and 𝑧 produces a set of new variables which are connected

in one of two ways depending on whether the right hand size of the equation is 0 or 1. This implies

that the reduction is not factor graph-preserving. Of course, this is not very surprising since when

Max-Cut is viewed as a Max-CSP the predicate family is the single predicate of non-equality. This

implies that the factor graph uniquely defines the instance and thus it is not an interesting problem

in the current context.

8.2 Larger Domains
Several of the hardness results that we reproved with universal factor graphs are known to apply

also to CSPs with larger domains (e.g., the Max-3-Lin mod 𝑞 problem). While we have chosen to

focus on Boolean CSPs throughout the paper to keep the notation as simple as possible and focus

on the core ideas, these results for larger domains can also be obtained in the universal factor graph

setting.

In particular, the approximation resistance of Max-3-Lin (Theorem 4.2) and Max-TSA (Theo-

rem 4.12), and the uselessness of predicates supporting pairwise independent subgroups (Theo-

rem 5.3) can be generalized to arbitrary domains. Let us briefly describe how. Here we do not go

into depth and assume to a greater extent than in other parts of the paper that the reader is familiar

with the corresponding results in the standard settings, and the Fourier transform over Z𝑞 .
For a domain of size 𝑞, the long code-based reductions from the parallel repeated game are

modified in the exact same way as one modifies the standard hardness reductions for these problems,

by working with 𝑞-ary long code tables 𝐴𝑈 : Z𝑈𝑞 → Z𝑞 and 𝐵𝑊 : Z𝑊𝑞 → Z𝑞 and doing Fourier

analysis over Z𝑛𝑞 instead of over {0, 1}𝑛 . However, we can not start from a parallel repetition of the

Max-TSA problem, but instead need to start over some system of equations over Z𝑞 . This is because

the functional folding involves taking quotients of the domain Z𝑈𝑞 over the constraint equations of

our CSP instance and hence those constraint equations also need to be over Z𝑞 rather than Z2.
Fortunately, there are several easy ways to overcome this obstacle to obtain a starting point

that can be used and we now sketch one. Starting with a Max-3-Sat instance 𝐼 , we construct the

following system of equations over Z𝑞 . For each clause 𝑥𝑎 ∨𝑦𝑏 ∨ 𝑧𝑐 , where 𝑥 , 𝑦, and 𝑧 are variables,
and 𝑎, 𝑏, 𝑐 ∈ {−1, 1} indicate whether a variable appears positively or negatively, add three new

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

36 Austrin, Brown-Cohen, and Håstad

variables 𝑋 , 𝑌 , 𝑍 (separately for each clause of 𝐼) and four equations

𝑜 (𝑋,𝑌, 𝑍) = 1 𝑥 · 𝑋 = 𝑎 𝑦 · 𝑌 = 𝑏 𝑧 · 𝑍 = 𝑐

over Z𝑞 , where the function 𝑜 (𝑋,𝑌, 𝑍) is 1 if and only if at least one of 𝑋 , 𝑌 , and 𝑍 equals −1. It is
easy to see that if the best assignment to 𝐼 falsifies a 𝛿 fraction of clauses then the best assignment

to the system of equations falsifies a 𝛿/4 fraction of equations.

Furthermore, the left hand sides of the equations depend only on the factor graph of 𝐼 , and

the negations of 𝐼 only appear as right hand sides of equations. Thus this is a factor graph-

preserving reduction establishing (1, 1 − 𝛿)-UFG-NP-hardness for an equational
6
Max-CSP over

Z𝑞 . So analogously to the Boolean case, we apply smooth parallel repetition, introduce 𝑞-ary long

codes and apply functional folding to these. We then have the following analogue over Lemma 3.4

which says that any non-zero Fourier coefficient of a functionally folded table must depend on an

assignment satisfying all the constraints.

Lemma 8.3. Let 𝐴 be a supposed 𝑞-ary long code, {ℎ𝑖 (x) = 𝑏𝑖 }𝑟𝑖=1 be a set of equational constraints
over Z𝑞 , b = (𝑏1, . . . , 𝑏𝑟) ∈ {0, 1}𝑟 , and 𝐻 = {ℎ1, . . . , ℎ𝑟 }. Let 𝐴𝐻,𝑏 be 𝐴 folded over all functions on
𝐻 with respect to b. If 𝐴𝐻,𝑏 (𝛼) ≠ 0 then the sum of 𝛼 (x) over the assignments x that satisfy all 𝑟
equations equals 1 mod 𝑞.

Proof. Let ℎ(x) = (ℎ1 (x), . . . , ℎ𝑟 (x)). Recall that

𝐴𝐻,𝑏 (𝛼) = E
𝑓

[
𝜔𝐴𝐻,𝑏 (𝑓)−⟨𝛼,𝑓 ⟩

]
,

where 𝜔 = 𝑒2𝜋𝑖/𝑞 is a complex 𝑞’th root of unity and ⟨𝛼, 𝑓 ⟩ = ∑
x 𝛼 (x) 𝑓 (x) is the inner product of

the functions 𝛼 and 𝑓 .

By the folding we have for every 𝑐 ∈ Z𝑞 that

𝐴𝐻,𝑏 (𝑓 + 𝑐 · 1𝑏 (ℎ)) = 𝐴𝐻,𝑏 (𝑓) + 𝑐 · 1𝑏 (b) = 𝐴𝐻,𝑏 (𝑓) + 𝑐.

Let 𝑧 be the sum of 𝛼 (x) over all x satisfying all 𝑟 equations. Then

𝜔 ⟨𝛼,𝑓 +𝑐1𝑏 (ℎ) ⟩ = 𝜔 ⟨𝛼,𝑓 ⟩+𝑐∑
1𝑏 (ℎ (x))=1 𝛼 (x) = 𝜔 ⟨𝛼,𝑓 ⟩+𝑐𝑧 .

Since the distribution over 𝑓 + 𝑐1𝑏 (ℎ) over randomly chosen 𝑓 and 𝑐 is the same as the distribution

over 𝑓 , it follows that

𝐴𝐻,𝑏 (𝛼) = E
𝑓 ,𝑐

[
𝜔𝐴𝐻,𝑏 (𝑓)+𝑐−⟨𝛼,𝑓 ⟩−𝑐𝑧

]
= 𝐴𝐻,𝑏 (𝛼) · E

𝑐

[
𝜔𝑐 (1−𝑧)

]
.

The expectation over 𝑐 is 0 unless 𝑧 = 1, so the claim follows. □

With this key property of functional folding established, it is a straightforward but tedious task

to go over the existing hardness of approximation proofs for these results and adapt them to the

universal factor graph setting in exactly the same way as done for the Boolean case in the preceding

sections.

6
For an appropriate generalization of equational CSPs to the setting where we have two different types of equations instead

of just one as in Definition 2.4.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

Optimal Inapproximability with Universal Factor Graphs 37

9 CONCLUDING REMARKS AND OPEN QUESTIONS
We have established that many of the current best inapproximability results for various Max-CSPs

and PCSPs can be made to hold with universal factor graphs, meaning that the hardness of the

problems stem from the variable negations and not from the constraint-variable incidence structure.

Given these new hardness results one can wonder whether there are any natural situations

where preprocessing helps. As discussed in the introduction, Max-3-Lin in the universal factor

graph setting corresponds to having a fixed linear code and the input is only the vector to which

one wants to find a close point. In a similar situation, where one is given a fixed integer lattice and

asked to find close points to input vectors, preprocessing seems to help [8, 21], but we do not know

of a corresponding result for the problem on codes.

The only natural example we are aware of where preprocessing seems to help in the CSP setting

is the example [11] pointed out in [10]. Here a graph structure in the the factor graph can be used

to efficiently refute random instances of 3-Sat with 𝑛1.4 clauses. In addition to this one can come up

with contrived examples, for instance by taking a Max-CSP consisting of only two predicates, one

being very sparse and hard to approximate and one being very dense. Then without universal factor

graphs this problem is very hard to approximate due to the sparse predicate, but in the universal

factor graph setting an algorithm can precompute the optimal solution to the instance when all

constraints use the sparse predicate, and then either use this assignment or a random assignment

to get a better approximation ratio.

The landscape of CSPs would certainly be more interesting if preprocessing was helpful in more

general situations, and as we mention below there are some natural problems where we currently

do not know whether preprocessing helps or not.

Let us mention some interesting avenues for potential future work.

(1) From an efficiency point of view our reductions leave something to be desired. The main

source of this is our need to use smooth parallel repetition, which incurs a large polynomial

blow-up with the degree depending on 𝜀. E.g. starting from an 𝑛-variable Max-TSA instance

that is (1, 1 − 𝛿)-UFG-NP-hard our reduction produces a (1, 7
8
)-UFG-NP-hard instance of

Max-3-Sat on 𝑛Ω (1/𝜀5+1/𝛿3)
variables. As a consequence our results do not rule out approxi-

mating Max-3-Lin with factor graph preprocessing within a factor 1/2 + 𝜀 in time exp(𝑛𝜀),
whereas approximating Max-3-Lin without factor graph preprocessing to within 1/2 + 𝑜 (1)
does not even have exp(𝑛1−𝑜 (1)) time algorithms assuming ETH [22].

(2) All our hardness results are based on functional folding, which inherently introduces

negations, either through negated literals or through linearity as inMax-3-Lin andMax-TSA.

As such, our methods can not be used to prove hardness of problems where folding over

true is not possible, such as the Max-3-Sat problem without mixed clauses, which is known

to be NP-hard to approximate within 7/8 + 𝜀 (even on satisfiable instances) [14]. Does this

and similar problems remain equally hard to approximate with factor graph preprocessing?

(3) It would be interesting to obtain universal factor graphs for problems whose hardness is

based on the Unique Games Conjecture (UGC), such as approximating Max-2-Lin to within

a factor 0.879 [20] or Max-2-Sat to within a factor 0.941 [1]. Any such result would probably

have to be based on some strengthened version of the UGC, but it is very unclear to us even

what a suitable formulation of such a strengthened UGC could be that would allow us to

perform the reduction to Max-2-Lin in a factor graph-preserving way.

ACKNOWLEDGMENTS
Research supported by the Approximability and Proof Complexity project funded by the Knut and

Alice Wallenberg Foundation.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

38 Austrin, Brown-Cohen, and Håstad

REFERENCES
[1] Per Austrin. 2007. Balanced max 2-sat might not be the hardest. In Proceedings of the 39th Annual ACM Symposium on

Theory of Computing, San Diego, California, USA, June 11-13, 2007. 189–197. https://doi.org/10.1145/1250790.1250818

[2] Per Austrin, Venkatesan Guruswami, and Johan Håstad. 2017. (2+𝜀)-Sat Is NP-hard. SIAM J. Comput. 46, 5 (2017),
1554–1573. https://doi.org/10.1137/15M1006507

[3] Per Austrin and Johan Håstad. 2013. On the usefulness of predicates. TOCT 5, 1 (2013), 1:1–1:24. https://doi.org/10.

1145/2462896.2462897

[4] M. Bellare, O. Goldreich, and M. Sudan. 1998. Free Bits, PCPs and Non-Approximability—Towards tight Results. SIAM
J. Comput. 27 (1998), 804–915.

[5] Joshua Brakensiek and Venkatesan Guruswami. 2018. Promise Constraint Satisfaction: Structure Theory and a Sym-

metric Boolean Dichotomy. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10, 2018. 1782–1801. https://doi.org/10.1137/1.9781611975031.117

[6] Jakub Bulín, Andrei A. Krokhin, and Jakub Oprsal. 2019. Algebraic approach to promise constraint satisfaction. In

Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June
23-26, 2019. 602–613. https://doi.org/10.1145/3313276.3316300

[7] Siu On Chan. 2016. Approximation resistance from pairwise independent subgroups. J. ACM 63 (2016), 1–32.

[8] Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. 2014. On the Closest Vector Problem with a Distance

Guarantee. In IEEE 29th Conference on Computational Complexity, CCC 2014, Vancouver, BC, Canada, June 11-13, 2014.
98–109. https://doi.org/10.1109/CCC.2014.18

[9] Víctor Dalmau, Phokion G. Kolaitis, and Moshe Y. Vardi. 2002. Constraint Satisfaction, Bounded Treewidth, and

Finite-Variable Logics. In Principles and Practice of Constraint Programming - CP 2002, Pascal Van Hentenryck (Ed.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 310–326.

[10] Uriel Feige and Shlomo Jozeph. 2012. Universal Factor Graphs. In Automata, Languages, and Programming - 39th
International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 7391), Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer (Eds.). Springer, 339–350.

https://doi.org/10.1007/978-3-642-31594-7_29

[11] Uriel Feige, Jeong Han Kim, and Eran Ofek. 2006. Witnesses for Non-satisfiability of Dense Random 3CNF Formulas.

In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’06). IEEE Computer

Society, Washington, DC, USA, 497–508. https://doi.org/10.1109/FOCS.2006.78

[12] Oded Goldreich. 2011. Candidate One-Way Functions Based on Expander Graphs. Springer Berlin Heidelberg, Berlin,

Heidelberg, 76–87. https://doi.org/10.1007/978-3-642-22670-0_10

[13] Martin Grohe. 2007. The Complexity of Homomorphism and Constraint Satisfaction Problems Seen from the Other

Side. J. ACM 54, 1, Article 1 (March 2007), 24 pages. https://doi.org/10.1145/1206035.1206036

[14] Venkatesan Guruswami and Subhash Khot. 2005. Hardness of Max 3SAT with No Mixed Clauses. In 20th Annual
IEEE Conference on Computational Complexity (CCC 2005), 11-15 June 2005, San Jose, CA, USA. 154–162. https:

//doi.org/10.1109/CCC.2005.10

[15] Johan Håstad. 2001. Some Optimal Inapproximability Results. J. ACM 48, 4 (July 2001), 798–859. https://doi.org/10.

1145/502090.502098

[16] Johan Håstad. 2014. On the NP-hardness of Max-Not-2. SIAM J. Comput. 43 (2014), 179–193.
[17] Sangxia Huang. 2014. Approximation Resistance on Satisfiable Instances for Sparse Predicates. Theory of Computing

10, 14 (2014), 359–388. https://doi.org/10.4086/toc.2014.v010a014

[18] Shlomo Jozeph. 2014. Universal Factor Graphs for Every NP-Hard Boolean CSP. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014) (Leibniz International Proceedings in
Informatics (LIPIcs), Vol. 28), Klaus Jansen, José D. P. Rolim, Nikhil R. Devanur, and Cristopher Moore (Eds.). Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 274–283. https://doi.org/10.4230/LIPIcs.APPROX-

RANDOM.2014.274

[19] Subhash Khot. 2002. Hardness Results for Coloring 3 -Colorable 3 -Uniform Hypergraphs. In 43rd Symposium
on Foundations of Computer Science (FOCS 2002), 16-19 November 2002, Vancouver, BC, Canada, Proceedings. 23–32.
https://doi.org/10.1109/SFCS.2002.1181879

[20] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. 2007. Optimal Inapproximability Results for MAX-

CUT and Other 2-Variable CSPs? SIAM J. Comput. 37, 1 (2007), 319–357. https://doi.org/10.1137/S0097539705447372

[21] J. C. Lagarias, H. W. Lenstra, and C. P. Schnorr. 1990. Korkin-Zolotarev bases and successive minima of a lattice and

its reciprocal lattice. Combinatorica 10, 4 (01 Dec 1990), 333–348. https://doi.org/10.1007/BF02128669

[22] Dana Moshkovitz and Ran Raz. 2008. Two-query PCP with Subconstant Error. J. ACM 57, 5 (2008), 29:1–29:29.

https://doi.org/10.1145/1754399.1754402

[23] R. Raz. 1998. A parallel repetition theorem. SIAM J. on Computing 27 (1998), 763–803.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

https://doi.org/10.1145/1250790.1250818
https://doi.org/10.1137/15M1006507
https://doi.org/10.1145/2462896.2462897
https://doi.org/10.1145/2462896.2462897
https://doi.org/10.1137/1.9781611975031.117
https://doi.org/10.1145/3313276.3316300
https://doi.org/10.1109/CCC.2014.18
https://doi.org/10.1007/978-3-642-31594-7_29
https://doi.org/10.1109/FOCS.2006.78
https://doi.org/10.1007/978-3-642-22670-0_10
https://doi.org/10.1145/1206035.1206036
https://doi.org/10.1109/CCC.2005.10
https://doi.org/10.1109/CCC.2005.10
https://doi.org/10.1145/502090.502098
https://doi.org/10.1145/502090.502098
https://doi.org/10.4086/toc.2014.v010a014
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.274
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.274
https://doi.org/10.1109/SFCS.2002.1181879
https://doi.org/10.1137/S0097539705447372
https://doi.org/10.1007/BF02128669
https://doi.org/10.1145/1754399.1754402

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

Optimal Inapproximability with Universal Factor Graphs 39

[24] L. Trevisan, G. Sorkin, M. Sudan, and D. Williamson. 2000. Gadgets, approximation and linear programming. SIAM J.
Comput. 29 (2000), 2074–2097.

ACM Trans. Algor., Vol. 1, No. 1, Article . Publication date: October 2022.

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Overview of Proof Techniques
	1.3 Organization

	2 Preliminaries
	2.1 Constraint Satisfaction Problems
	2.2 Factor Graphs and Preprocessing
	2.3 Analysis of Boolean Functions
	2.4 Parallel Repetition

	3 Functional Folding and Reduction Template
	3.1 Factor Graph-Preserving Folding of Long Codes
	3.2 Basic Setup of Hardness Reductions

	4 Classical Optimal Inapproximability
	4.1 Max-3-Lin
	4.2 Max-3-Sat
	4.3 Max-TSA
	4.4 Max-Not-2 with perfect completeness

	5 Pairwise Independence and Hadamard Predicates
	5.1 Analytic Notation, Influences, and Noise
	5.2 Overview
	5.3 Protocol For a Single Coordinate

	6 Max-K-CSP with perfect completeness
	6.1 The Predicate
	6.2 The Parallel Repetition
	6.3 The Long Code Test
	6.4 Soundness Analysis
	6.5 Invariance Under Partial Rerandomization

	7 Promise CSPs
	8 Miscellaneous Extensions
	8.1 More Hardness Results by Gadgets
	8.2 Larger Domains

	9 Concluding Remarks and Open Questions
	Acknowledgments
	References

