
Addendum to the paper
\Simple Constructions of Almost k-wise Independent Random Variables"

by N. Alon, O. Goldreich, J. Hastad and R. Peralta
(This journal, Volume 3, No. 3, pages 289{304, 1992)

The constructions presented in the above paper use a �nite �eld which is
either GF (2m) or GF (p) for some prime p. The constructions are presented
assuming that one has a representation of the �eld (i.e., an irreducible poly-
nomial of degree m or the prime p, respectively). Such representations could
be found, with overwhelmingly high probability, in probabilistic polynomial-
time (in m or jpj, respectively). The paper contained some remarks indi-
cating how to achieve this goal using only a linear number of unbiased coin
tosses. However, in retrospective we feel that some more details should be
given.

For uniformity of exposition, we denote by m the logarithm (to base 2)
of the size of the required �eld. The �eld representations in both cases can
be encoded by strings of length m. Furthermore, in both cases about a 1

m

fraction of all m-bit long strings are valid representations, and one can e�-
ciently determine whether a string is a valid representation. Hence, selecting
a valid representation can be done by selecting candidates at random until
a valid one is found. As indicated in the paper, to save on randomness, we
use an e�cient sampling which in turn uses a construction of a sequence of
pairwise independent variables, each uniformly distributed in f0; 1gm.

The problem which arises is that the standard constructions of such
pairwise independent sequences use a �eld of similar cardinality (i.e., with
at least 2m elements), and hence we need a representation for this �eld,
which brings us to a circular argument. The solution is to use the known
pairwise independent constructions in a slightly less straightforward manner.

Speci�cally, suppose we need to generate a t-long sequence of pairwise
independent m-bit strings (e.g., in the above application t = O(m)). The
idea is to combine d m

dlog
2
tee independent sequences, each of pairwise indepen-

dent dlog2 te-bit strings. Namely, each m-bit string in the desired sequence
is obtained by concatenating the corresponding dlog2 te-bit strings of the
di�erent d m

dlog
2
tee sequences. Hence, we will use d m

dlog
2
tee � 2dlog2 te � 2m

random bits just like in the standard construction. Yet, now we need a rep-
resentation for a �eld of cardinality � t = O(m), rather than 2m, and such
a representation can be easily found by exhaustive search. An alternative
solution is obtained by taking a closer look at the standard construction of
a t-long sequence of pairwise independent elements over GF (p) for p prime.

1



The observation is that the construction remains valid when the ring ZM
is used instead of GF (p), provided that M is relatively prime to all inte-
gers up to t. Consequently, instead of looking for an 2m-bit long prime, we
merely need an 2m-bit long integer M that is relatively prime to all integers
up to t. Such an integer M can be (deterministically) constructed in time
polynomial in t (e.g., by multiplying all primes in the interval [t+ 1; 2t]).

Returning to the application in the paper, we now address the problem
of verifying that a candidate representation is indeed valid. In case of ir-
reducible polynomials, there exists an e�cient deterministic algorithm for
this purpose. However, for testing primality only randomized e�cient al-
gorithms are known. Fortunately, these e�cient algorithms require only a
linear number of coin tosses. For example, Bach's algorithm (cf., stoc87),
on input p, uniformly selects a single residue mod p, and proceeds determin-
istically, guaranteeing error probability bounded by 1=

p
p. Alternatively,

one can iterate either of the classic algorithms of Rabin and Solovay and
Strassen, using in these iterations related sequences of coin tosses generated
by a random walk on an expander.

We conclude by stressing that in case we need to generate a large prime,
we use an additional sample space to generate the coin tosses required in
all the invocations of the primality testing algorithm. Namely, we gen-
erate a sequence of candidate primes, p1; :::; pn, along with a sequence of
random strings r1; :::; rn (to be used by the primality tester). Each of
these sequences is generated independently of the other, using the same
(randomness-e�cient) scheme outlined in the paper and above. We note
that each of the pi's is uniformly distributed in f0; 1gm, and similarly each of
the ri's is uniformly distributed in f0; 1gO(m) . Hence, a prime is found with
overwhelming probability, and an error occurs with negligible probability.
(To bound the error probability, note that each ri is uniformly distributed
independently of the corresponding pi.)

We thank Aravind Srinivasan for pointing out the need for the above
clari�cations.

2


