
On Average Time Hierarchies

Mikael Goldmann Per Grape

Royal Institute of Technology

Stockholm, SWEDEN

Johan H�astad

September 26, 1997

Abstract

For a time-constructible function T we give an explicit language LT which can be
recognized in time T (n). We prove that any Turing machine that recognizes LT requires
time close to T (n) for most inputs, thus forming an average time hierarchy. The exis-
tence of the average time hierarchy was known, but depended on languages de�ned by
complicated diagonalization. We also give simple proofs for the known stricter hierarchy
for functions.

Key words: computational complexity, average time complexity, hierarchy theorems.

Warning: Essentially this paper has been published in Information Processing
Letters and is hence subject to copyright restrictions. It is for personal use only.

1 Introduction

Much e�ort is spent in the �eld of computational complexity on showing that there are
functions which are hard to compute. It has long been known that diagonalization techniques
from recursion theory can be used to obtain very strong lower bounds on, for instance, the
time needed to compute some function. Intuitively one uses a time-bounded version of the
halting problem: \Given a machine x and an input y, is it true that x halts in T (jyj) steps on
input y?" It is now easy to see that this question cannot be answered using much less than
T (jyj) steps of computation.

Without formalizing the above argument, let us point out some of its shortcomings.

1. As the \hard" problem was formulated above it is not clear how to solve it computa-
tionally at all; for some choices of T the corresponding function is not computable.

2. The results obtained in this way are \worst case" results. That is, there are hard inputs,
but they might be few and far between.

3. The functions that are proven di�cult in this way are sometimes \unnatural" and/or
not explicitly de�ned.

1



Hartmanis and Stearns [HS65] proved that there are functions computable in time T 2(n)
but not in time T (n), thus exhibiting a hierarchy of complexity classes. One of the referees
pointed out to us that these results were known earlier in the Sovietunion (by Tseitin [Tse56],
cited in [Yan59]). Since this not is not a historical paper we have not looked deeper into this
question of priority. Hennie and Stearns subsequently improved [HS65] to a tighter hierarchy
[HS66]. We use a simulation from their paper to prove our results.

The results in [HS65, Tse56, HS66] are for the worst case. The history of \average case"
hardness is longer than one might perhaps think. Rabin proved in [Rab60] that given a
recursive function T there is a function such that any machine computing it must use time
T (n) on all but a �nite number of inputs. Rabin's results are actually considerably more
general and apply to any complexity measure satisfying a small set of axioms. Rabin did not
state any other upper bound for his hard functions than that they were recursive or primitive
recursive. Blum, building on [Rab60], was �rst to show the existence of compressed predicates
[Blu67]. That is, predicates that can be \sandwiched" between two time bounds T1 and T2 in
such a way that any machine computing the predicate must use at least T2(n) steps on almost
all inputs, and there is a machine that computes the predicate in T1(n) steps. In particular,
given T one can construct a predicate which requires time T (n) for almost all inputs, but is
computable in time (T (n))7. Actually, Blum's results, like Rabin's, hold for a large class of
complexity measures.

The next question would be if one could obtain an \average-time" hierarchy as tight as
that of Hennie and Stearns, and with only a constant number of easy instances. In [Lev73]
Levin shows a result that implies such a hierarchy. Levin does this by constructing languages
that have the same worst case and best case complexity. These separating languages are
constructed by a complicated diagonalization. We obtain a less tight hierarchy but, on the
other hand, our languages are explicitly de�ned. We show that given a function T (n) and
a constant c there are predicates computable in time O(T (n) log n(log log n)2) that requires
time 
(n�cT (n)= log T (n)) on a fraction 1�O(n�c log n) of the inputs of length n.

In this paper we �rst present two average case time hierarchies, one for functions and one
for languages. In both cases we prove that for time bounds T1 and T2, which are not too
far apart, there are explicit functions which can be computed in time T1, but any program
that computes the function can halt in time T2 for only a small fraction of the inputs. The
result for functions uses a fairly straightforward generalization of the methods of [HS66], while
the result for languages uses a di�erent technique and in particular it relies on Kolmogorov
Complexity. In spite of this, the language hierarchy is less dense than the corresponding
result for functions.

An important problem which is loosely connected to the present paper is the question
whether there are problems in NP which cannot be solved in expected polynomial time with
respect to a probability measure on the input space. Our results have no direct relation to this
problem, and hence we refer the reader to [Gur91, Lev86] and their references for a discussion
of these questions.

2 Bounds by diagonalization

We use the alphabet f00; 01; 10; 11g to encode Turing machines. We will assume that a
description of a Turing machine contains a straightforward encoding of its next-step function.
We will also assume that all Turing machines have the same alphabet. The actual description

2



of a machine uses 00 and 01, while 11 marks the end of the description. Thus, we can say
that a string x 2 f0; 1g� has a (description of a) Turing machine, x0, as a pre�x if x = x011x00

where x0 2 f00; 01g� .
A standard diagonalization can now be de�ned.

Let the function F be de�ned by:

F (x) =

8><
>:

1 if x has a machine x0 as pre�x and Mx0 halts
with output 0 on input x within T (jxj) steps

0 otherwise.

Proposition 1 Let M be a Turing machine computing the function F . Then there is a

constant cM depending only on M such that M requires time T (jxj) on a fraction 2�cM of

inputs x with jxj � cM .

Proof: Let M be a machine computing F with description y. By diagonalization, M must
use time at least T (jxj) when x = y11x00. For inputs x of length at least cM = jyj + 2 the
fraction of such inputs is 2�cM .

There are two major problems with this proposition. First, there are many Turing ma-
chines that compute F , and the fraction of hard instances will depend on the actual machine
used. The proof only shows that for any machine there is a constant fraction of the inputs
that is hard. By choosing machines with long description the constant given by the proof can
be made arbitrarily small. In subsequent sections we develop hierarchies of functions where
the fraction of hard inputs tends to 1 as the input length grows, but the rate will depend on
the machine used. Second, it is not clear how hard it is to compute F . To handle this we
need a theorem by Hennie and Stearns.

Theorem 2 ([HS66, Theorem 1]) The number of operations for a two-tape Turing ma-

chine needed to simulate n operations of a k-tape Turing machine is at most �n log2 n for

n > 1, where � is a constant independent of n.

On the other hand it is not di�cult to see that if we are given extra tapes we can simulate
a Turing machine with constant over-head.

Lemma 3 There is a universal Turing machine Ak, that given the description x of a k-tape
Turing machine M and and input y to M , simulates m steps ofM in time �m. Here � � cjxj2
and c is a universal constant. The machine Ak uses k + 2 tapes.

Proof: Use the two extra tapes of Ak to store x and the state q which the machine currently
is in. The other tapes correspond to the tapes ofM . A step can now be completed by locating
the line of q in x. By a naive algorithm this can be done in time O(jqjjxj) Using jqj � jxj the
result follows.

Remark: Using more careful programming of Turing machines it might be possible to gain
up to a factor of jxj in the above lemma. This, however, would not be of any great consequence
to the current paper.

We need the following de�nition:

De�nition 1 A function U(n) is time-constructible if there is a Turing machine that on

input x prints U(jxj) ones on the output tape and halts in time O(U(jxj)).

3



Let U(n) denote an arbitrary time-constructible function and consider the following Turing
machine VU . On an input x of length n

� Write U(n) ones on a special tape.

� If pre�x x0 of x codes a two-tape Turing machine then try to simulate it on input x for
U(n) steps (of the simulating machine). If it halts with output 0 then halt with output
1. If it halts with any output di�erent from 0 then halt with output 0.

� If we run out of time or if x does not encode a Turing machine, halt with output 0.

The simulation is done using Lemma 3. By simulating for U(n) steps we mean that the
simulating machine runs for U(n) steps. Since it is easy to use the special tape as a stop-
watch, the machine VU can be made to run in O(U(n)) steps on a multitape Turing machine.
Clearly the proof of Proposition 1 applies also to this function and we get:

Theorem 4 Suppose T and U are time-constructible, T (n) > n, and

lim
n!1

T (n)

U(n)
= 0:

Then there is a language LU that can be recognized in time O(U(n)) on a multitape Turing

machine such that any two-tape Turing machine M that recognizes LU must use time at least

T on a constant fraction c of the inputs. Here c > 0 is a constant that depends on M .

Applying Theorem 2 we get an immediate corollary.

Corollary 5 If T and U are time-constructible, T (n) > n, and

lim
n!1

T (n) log T (n)

U(n)
= 0;

then there is a language LU which can be recognized in time O(U(n)) on a multitape Turing

machine such that any Turing machine M that recognizes LU must use time at least T , on a

constant fraction c of the inputs. Here c > 0 is a constant that depends on M .

This construction is however unsatisfactory since the fraction c can be arbitrarily small.
We remedy this in two steps. First we de�ne a function V that takes binary strings to binary
strings. Any machine computing V needs \long time" on almost all inputs.

3 A Function Hierarchy

We need some notation before we can construct functions that require \long time" on many
inputs.

Let l(n) be some function such that l(n)!1 and l(n) = o(n), for example, l(n) = blog nc
or l(n) = bpnc. Let m(n) = bn=l(n)c. In what follows jxj = n, l = l(n) and m = m(n). For
notational simplicity we assume that n = lm.

4



The function V is de�ned as follows:

V : f0; 1gn ! f0; 1gl
V (y1 : : : yl) = z1 : : : zl

where

x = x1 : : : xn

yi = x(i�1)m+1 : : : xim

zi =

8>>><
>>>:

1 if yi has a legal two-tape machine x0 as pre�x and Mx0 halts
within T (n) steps with 0 as its ith output bit on
input x

0 otherwise.

Like before, we will instead de�ne the function by the output of a simulating program.
Instead of running Mx0 for T (n) steps we simulate it for U(n)=l(n) steps of the simulating
machine. Otherwise we use the above de�nition.

Now consider a machine M that computes V . Let us call its description x0 and let
cM = jx0j+ 2. Suppose

lim
n!1

l(n)T (n)

U(n)
= 0:

By diagonalization M must use at least T (n) steps on input x if x0 appears as a pre�x of any
string yi and x is su�ciently long. Otherwise M makes an error in the ith output bit. When
m � cM the probability that this will happen is 1 � (1 � 2�cM )l. This proves the following
theorem.

Theorem 6 Suppose T (n) > n and U(n) are time-constructible and

lim
n!1

l(n)T (n)

U(n)
= 0:

Suppose furthermore that l(n) is computable in time U(n), then there is a function f com-

putable in time O(U(n)) on a multitape Turing machine such that any two-tape machine that

computes f must use time at least T on a fraction 1 � c�l(n) of the inputs. Here c < 1 is a

constant that depends on the machine computing f .

Again using Theorem 2 we get an immediate corollary:

Theorem 7 Suppose T (n) > n and U(n) are time-constructible and

lim
n!1

l(n)T (n) log T (n)

U(n)
= 0:

Suppose furthermore that l(n) is computable in time U(n), then there is a function f com-

putable in time O(U(n)) on a multitape Turing machine such that any Turing machine that

computes f must use time at least T on a fraction 1 � c�l(n) of the inputs. Here c < 1 is a

constant that depends on the machine computing f .

5



4 Bounds by Kolmogorov complexity

To get a stronger hierarchy for languages we will need time bounded Kolmogorov complexity.

De�nition 2 A string x has time bounded Kolmogorov complexity s = KT (x) if the smallest

two-tape Turing machine that gives output x in at most T (jxj) steps is of length s. We also

say that x has conditional complexity s = KT (xjy) if s is the length of the smallest two-tape

Turing machine that produces x in T (jxj+ jyj) steps when given y as input.

We will show that if a certain function can be computed fast on more than a small fraction
of the inputs, then we can write a short and fast program that outputs a string with high
complexity. Thus, we get a contradiction. First we de�ne what we mean by high complexity.

De�nition 3 A string x is T -y-slightly random if the complexity KT (xjy) > log jxj.

Remark: For the proof to work, the lower bound on the Kolmogorov complexity need just
go to in�nity with the length of x.

We �x a time function T and a constant c. In what follows we break the input into two
parts and refer to it as a pair (x; y), with the input length being n = jxj + jyj, and x being
the �rst bc log nc bits of the input. Let us look at the following language:

LTc = f (x; y) j x is T -y-slightly random g:
Our goal is to show that the characteristic function of LTc requires long time on most pairs

(x; y).

De�nition 4

�LTc (x; y) =

(
1 if x is T -y-slightly random,

0 otherwise.

We observe that if T is time-constructible then �LTc (x; y) can be computed on a multitape

Turing machine in time O(T (n) log n(log log n)2). Just run all programs of length at most
log jxj for T (n) steps and see if one of them produces x. There are c log n such programs and
the factor of (log logn)2 comes from Lemma 3. Please note that we require the machine in
the de�nition of the Kolmogorov complexity to have two tapes which makes the simulation
possible.

We have the following result:

Theorem 8 Suppose T 0(n) > n is time-constructible and let c be an arbitrary constant. Let

T be a function such that

lim
n!1

ncT 0(n) log T 0(n)

T (n)
= 0:

Then any multitape Turing machine that computes the characteristic function �LTc (x; y) must

use more than T 0(n) steps on a fraction 1� 2n�cc log n of all inputs.

Theorem 8 follows immediately from the following lemma:

Lemma 9 Let c, T 0, and T be as in the statement of Theorem 8. Fix a multitape Turing

machine M that computes �LTc (x; y). For any �xed su�ciently long y0 M must take more

than T 0(n) steps for a fraction � 1� 2n�cc log n of the x's.

6



Proof: Assume that we have some y0 for which the lemma does not hold. That is, we can
compute �LTc (x; y0) in time T 0(n) for more than a fraction 2n�cc log n of the x's. Consider
the following program.

P (y) :

1. Find l so that l = bc log(l + jyj)c
2. For all x; jxj = l, simulate M on input (x; y) and stop after T 0(n) steps of the simulated

machine (n = jxj+ jyj).
3. Output the smallest x that gives �LTc (x; y) = 1 in step 2 or if no such x is found, then

output 000 : : : 0

Let us see what P does on input y0. First observe that, using Lemma 3, it runs in time
O(ncT 0(n)) (since M is a �xed machine there is only constant overhead in the simulation).
Thus, P can be computed by a two-tape Turing machine in time O(ncT 0(n) log T 0(n)). The
output will be some x0 such that �LTc (x0; y0) = 1. Why is that?

By Theorem 2 and the assumption on the running time, we get, for su�ciently long y0,
the value of �LTc (x; y0) for more than 2c log n2n�cc log n = 2c log n of the x's. One of these
must be T -y0-slightly random. This follows since we have only 2c log n short programs and
more than 2c log n strings. Thus, we always end up in the �rst case of step 3 (at least for
su�ciently large n). So on input y0 the program P outputs a T -y0-slightly random string.
Since P has a description of constant length and runs in time less than T (n) on a two-tape
Turing machine (for n su�ciently large), we have a contradiction.

This gives the following hierarchy result:

Theorem 10 Let c be a constant and let T (n) be a time-constructible time bound. Then there

is a language LTc which can be recognized in time O(T (n) log n(log log n)2) on a multitape

Turing machine. On the other hand any multitape Turing machine that recognizes LTc must

use time 
(T (n)=(log T (n)nc)) on a fraction 1� 2n�cc log n of all inputs.

5 Conclusions

If we require most inputs to be \hard" neither of the two hierarchies is as tight as the standard
worst case hierarchy. Since Levin gives an average case hierarchy that is as tight as the worst
case hierarchy [Lev73], our results are lacking in this respect. However, we feel that the fact
that our functions are fairly standard and quite explicit has given us a greater understanding
of these problems. Naturally one would like to obtains as strong results as Levin's by more
explicit methods. We believe this is an important open problem.

Acknowledgment: We are grateful to Leonid Levin for telling us about his results and
pointing us to the reference [Lev73]. We also thank the referees for their helpful comments
and observations. Many thanks are due to Lane Hemachandra who, with his own comments
and by relating to us comments form Joel Seiferas and Albert Meyer, helped clarify the history
of average-case hierarchies.

7



References

[Blu67] M. Blum. A machine-independent theory of the complexity of recursive functions.
J. ACM, 14(2):322{336, 1967.

[Gur91] Y. Gurevich. Average case completeness. J. of Computer and System Sciences,
42:346{398, 1991.

[HS65] J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms.
Transactions of the American Mathematical Society, 117:285{306, 1965.

[HS66] F. C. Hennie and R. E. Stearns. Two tape simulation of multitape machines. Journal
of the Association for Computing Machinery, 13(4):533{546, 1966.

[Lev73] L. Levin. On storage capacity for algorithms. Soviet Mathematics, Doklady,
14(5):1464{1466, 1973.

[Lev86] L. Levin. Average case complete problems. SIAM Journal of Computing, 15:285{286,
1986.

[Rab60] M. O. Rabin. Degree of di�culty of computing a function and partial ordering of
recursive sets. Technical Report 2, Hebrew U., Jerusalem, Israel, 1960.

[Tse56] G.S. Tseitin. seminr on math. logic, moscow university, 11/11, 11/21, 1956.

[Yan59] S. A. Yanovskaya. Math. logic and foundations of math. In Math. in the USSR for

40 years, pages 1:13{120, 1959. (in Russian).

8


