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Abstract

We discuss some results about the approximability of constraint satisfaction
problems. In particular we focus on the question of when an efficient algo-
rithm can perform significantly better than the algorithm that picks a solution
uniformly at random.

1 Introduction

The most famous problem in theoretical computer science is the question of
whether the two complexity classes P and NP are equal.

Here P is the set of problems1 that can be solved in time which is polynomial
in the size of the input. This is the mathematical definition aimed to correspond to
problems which can be solved efficiently in practice on fairly large instances. One
might object that there are very large polynomials but this has rarely been a problem
and most problems known to be in P are efficiently solvable in the everyday meaning
of the concept.

The class NP is the set of decision problems such that for instances with a positive
answer there is a short proof of this state of affairs that can be verified efficiently.
One of the most famous problems in NP is the traveling salesman problem, TSP,
in which we are given n cites and distances d(ci, cj) between the cities. The task
is, given an upper bound K, to find a tour that visits all the cities and returns to
its origin and is of total length at most K. If there is such a tour then, given the
tour, it is easy to verify that indeed it is of the desired quality. Formally “easy”
should here be interpreted as computable in time which is polynomial in the input
length. Formulated differently there is a proof, sometimes called a certificate, that
the instance has a positive answer and this short proof can be verified efficiently.

The existence of an easily verifiable certificate says little about the difficulty of
finding the certificate. Of course we can always try all certificates but apart from
this general procedure, the existence of the certificate seems to be of little help and
indeed there is no general method to find the optimal tour for TSP in time that is
subexponential in the number of cities n. Note also that the problem is very non-
symmetrical in that it is very hard, in general, to convince someone that indeed there
is no tour shorter than K. In other words there are probably no short certificates
proving tight lower bounds on tour lengths.

The question whether P equals NP is the question of whether, for any decision
problem where a positive answer has a short proof that can be verified efficiently,
this proof can be found efficiently. From an everyday perspective this would seem
absurd in that it rules out the brilliant idea, the idea that is hard to come by but
which can immediately be verified as being excellent. In the terms of mathematical

1To be precise P only contains decision problems but for simplicity let us ignore this formal
definition in this informal discussion.
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research NP=P would, informally, be the same as saying that whenever a theorem
has a short proof then this proof can be found quickly. We all “disprove” this
statement frequently but on the other hand one should not compare mathematicians
to computers.

In any case, most people working in complexity theory have a strong conviction
that NP does indeed contain problems not in P. It seems, however, that a proof
of this requires new insights. To prove that a problem does not belong to P one
is required to prove that any algorithm that solves the given problem must take
a long time. Another way to phrase this is to say that any algorithm that runs
quickly must make a mistake on some input. This quantification over algorithms
is very difficult to handle. There are many ways to proceed in a computation and
for some problems there are very counter-intuitive algorithms that turn out to be
both efficient and correct. Before continuing with our main topic let us take a small
detour.

Consider ordinary arithmetic with large integers. It is easy to add two n-bit
numbers with O(n) operations. This is clearly, up to constants, the best we can do
as each input bit needs to participate in some operation.

Multiplication done the standard, grade school, way requires O(n2) operations
to multiply two n-bit numbers. There are more efficient methods and the most
efficient algorithm [24] is based on the discrete Fourier transform and runs in time
O(n log n log log n). It is unknown if this is best possible or even more embarrassingly
it is unknown whether multiplication can be done in time O(n). In other words we
do not know whether multiplication is a more difficult operation to perform than
addition or whether it is simply that we have not found the best way to do it. It is
not obvious which is the most difficult problem, to prove that NP�= P, or to prove
that multiplication needs super-linear time, but with our inability to prove lower
bounds for computation a major new idea seems to be needed to succeed with either
task. Let us return to our main line of reasoning.

Even if we have not been able to prove that NP contains difficult problem we
have identified the best candidates for such problems; the NP-complete problems.
Loosely speaking a problem in NP is NP-complete if it belonging to P is equivalent
to NP=P. Thus, as we strongly believe that NP�= P, being NP-complete is strong
evidence that a problem is computationally difficult. A slight variant is to prove
that a problem is NP-hard. Such a problem has the property that it belonging to
P implies that NP=P, but as opposed to the NP-complete problem such a problem
need not itself belong to NP. For instance it might not be a decision problem or it
might be a decision problem of even higher complexity.

Many problems are known to be NP-complete problem and in particular TSP
discussed above is NP-complete. Ever since Cook [5], in 1971, first defined the
class of NP-complete problems, one problem, Satisfiability, has turned out to play a
central role. In Satisfiability we are given a Boolean formula and the question is to
find an assignment that satisfies the formula. One example is given by the formula

ϕ = (x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x̄3 ∨ x̄4) ∧ (x̄1 ∨ x̄2 ∨ x4).

This formula has the further property that it is a conjunction of disjunctions of
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literals2 and this type of formula is usually called 3-CNF, where 3 is a bound on the
number of literals in each disjunction (or clause) and CNF is short for Conjunctive
Normal Form. It was proved by Cook that satisfiability of 3-CNF formulas is NP-
complete. One might note that satisfiability of 2-CNF formulas is decidable in
polynomial time and we invite the reader to find an efficient algorithm in this case
when each disjunction only contains at most 2 literals.

The problem of deciding satisfiability of 3-CNF formulas is known as 3-Sat. It
is a prime example of what it is called a Constraint Satisfaction Problem (CSP)
as it is a collection of constraints each on a small set of variables. As 3-Sat would
seem like a rather simple CSP one might expect that most CSPs are NP-complete
and this is indeed correct. Already in 1978 Schaefer [24] constructed the short list
of classes3 of Boolean CSPs for which the problem is in P while in all other cases
it is NP-complete. Over larger domains the situation is more complicated and a
complete characterization over the domain of three values was found only recently
by Bulatov [4]. The general case is still not resolved.

In this paper, however, we focus on the Boolean case where each variable only
takes two values. As mentioned above almost all problems in their basic form are
NP-complete but we turn to a more refined question. Above we described a black
or white world where we want to satisfy all constraints. We now turn to a world of
shades of gray where we want to satisfy as many constraints as possible. Let us try
to formulate the central question.

Consider an instance ϕ of 3-Sat where each clause is of length exactly 3. We
know that it is NP-complete to decide whether we can satisfy all the constraints,
but maybe we are happy if we can satisfy almost all the constraints. It is easy to
see that a random assignment satisfies a fraction 7

8 of the constraints and hence we
want to find an assignment that satisfies significantly more than this fraction. There
are instances where no assignment satisfies more than a fraction 7

8 of the constraints
and hence the question is most interesting when we, for one reason or another, are
guaranteed that there is some unknown assignment that satisfies all, or almost all
of the constraints.

It turns out that for 3-Sat we cannot efficiently find a good assignment even in
this case while for some other NP-complete problems we can find an assignment
that does asymptotically better than a random assignment. The goal of the current
paper is to survey these results.

2 Efficient computation

As our arguments are quite informal almost any definition of efficient compu-
tation would be sufficient. A reader desiring a precise definition can think of the
Turing machine or consult any standard text such as [21].

Many of our efficient algorithms are randomized. Again the precise details are
not important but as we in some cases count the number of possible random choices
let us fix a model.

2A literal is a variable or a negated variable.

30-valid, 1-valid, weakly positive, weakly negative, affine or 2-CNF: consult [24] for definitions.
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We assume that the algorithms has the possibility to choose independent random
bits to use in the computation. These random bits are recorded on the work tape of
the Turing machine. As is commonly done we sometimes refer to these bits as the
“random coin flips” made by the algorithm.

3 Maximal constraint satisfaction problems

On the input side it turns out that it is more convenient to use {−1, 1} rather
than {0, 1} for our two possible values. A predicate P of arity k is a mapping
{−1, 1}k → {0, 1}. An instance of Max-CSP-P is given by a collection (Ci)mi=1 of
k-tuples of literals 4. When we want to emphasize the arity of P we call Max-CSP-P
a k-CSP.

For an assignment to the variables, a particular k-tuple is satisfied if P , when
applied to values of the literals, returns 1. For an instance I and an assignment x we
let N(I, x, P ) be the number of constraints of I satisfied by x under the predicate
P .

We could allow positive weights giving different constraints different importance.
As we do allow repetition of the same constraints we can, to a large extent, simulate
weights and the existence of weights turn out not to be of any significant importance
for our discussion.

Definition Max-CSP-P is the problem of, given an instance I, to find the assign-
ment x that maximizes N(I, x, P ).

A key parameter for a Max-CSP is the number of assignments that satisfy the
predicate P .

Definition The density, d(P ), of a predicate P on k Boolean variables is defined
as p2−k where p is the number of assignments in {−1, 1}k that satisfy P .

Definition A k-CSP where each constraint is a disjunction of at most k literals is
an instance of Max-k-Sat. The subproblem where each constraint is the disjunction
of exactly k literals is denoted by Max-Ek-Sat.

Next we look at linear equations modulo 2. As we use {−1, 1} as our two values
with −1 corresponding to true, addition modulo 2 is in fact multiplication.

Definition A k-CSP where each constraint is that a product of at most k literals
equals a constant is an instance of Max-k-Lin. If each product contains exactly k
variables we denote it by Max-Ek-Lin.

Note that, by Gaussian elimination, if all equations can be satisfied then such
an assignment can be found in polynomial time. Thus the interesting case of the
problem is when we cannot satisfy all the constraints.

In this paper we mostly consider linear equations modulo 2 but many results
apply to linear equations modulo m for larger values of m which need not even

4Note that we allow both variables and negated variables.
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be prime. This problem is most natural in the case when the variables are also
allowed to take values modulo m and in such a case we would speak of the problems
Max-k-Lin-m and Max-Ek-Lin-m.

Normally we allow negation of variables for free but to make the next problem
both a Max-CSP and a graph problem we make an exception.

Definition A 2-CSP where each constraint is an inequality xi �= xj is an instance
of Max-Cut.

To see that Max-Cut is a graph problem think of each pair (i, j) that appears
as a constraint as an edge between vertices i and j in a graph. The task is now to
divide the vertices into two parts in such a way as the number of edges between the
two classes is maximized. Note also that Max-Cut is a special case of Max-E2-Lin
with each equation of the form

xixj = −1.

4 Approximation algorithms

In the best of all worlds we would, given a Max-CSP, efficiently find the optimal
solution. As stated in the introduction, however, for almost all Max-CSPs this is an
NP-hard task and hence we have to ask for less. We focus on algorithms that are
guaranteed to return a reasonably good solution.

Definition Let O be a maximization problem and let C ≤ 1 be a real number. For
an instance x of O let OPT (x) be the optimal value. A C-approximation algorithm
is an algorithm that on each input x outputs a number V such that C ·OPT (x) ≤
V ≤ OPT (x).

One might require the algorithm to return a proof, in the case of a Max-CSP an
assignment of the given quality, that indeed its output satisfies the given condition.
In fact all algorithms we discuss will have this property and thus they do more than
required. On the other hand it turns out that when we prove that some computa-
tional problem is hard we usually prove that already finding the approximate answer
in the above sense is hard.

We have of course a similar definition for minimization problems but as we here
only deal with maximization problems we do not state it formally.

Definition An efficient C-approximation algorithm is a C-approximation algo-
rithm that runs in worst case polynomial time.

We also allow randomized approximation algorithms in which case we require
the upper bound V ≤ OPT (x) to always hold while V ≥ C ·OPT (x) is relaxed to
hold only in expectation. Note that the expectation is taken only over the random
coin flips of the algorithm and is assumed to hold for each individual input. In
particular, there is no randomness associated with the input.

Most of the algorithms described can, at an arbitrarily small loss, be derandom-
ized and in any case running the algorithm repeatedly can make sure that, with very
high probability, we get an output within (almost) a factor C of optimal.
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The formulation “having approximation ratio C” is sometimes used as an alter-
native to saying “being a C-approximation algorithm”.

Any Max-CSP-P has an approximation algorithm with constant approximation
ratio.

Theorem 4.1 Max-CSP-Padmits a polynomial time approximation algorithm with
approximation ratio d(P ).

Proof Assume that we are given an instance with m constraints. A random as-
signment satisfies any given constraint with probability d(P ) and thus it satisfied
d(P )m constraints on the average. As the optimal assignment can satisfy at most
all m constraints we get a randomized d(P )-approximation algorithm. �

Let us note that it is not difficult to deterministically find an assignment that
satisfies a fraction d(P ) of the constraints by the method of conditional expectation.
We leave the details to the reader.

The random assignment algorithm finds an assignment that satisfies d(P )m con-
straints independent of OPT (x). If we want to have a better approximation ratio
then it is sufficient to do better in the case when OPT (x) is close to the maximal
value m.

The main classification we study in this paper is inspired by this fact and is
slightly different from approximation ratio. We concentrate on what is needed from
the optimal solution in order for an efficient algorithm to find an assignment that
does significantly better than the naive randomized algorithm used above which
simply picks a random assignment.

Definition A Max-CSP given by predicate P on k variables is approximation re-
sistant on satisfiable instances if for any ε > 0 it is NP-hard to distinguish instances
where all constraints can be simultaneously satisfied from those where only a fraction
d(P ) + ε of the constraints can be simultaneously satisfied.

The existence of the arbitrarily small constant ε is somewhat annoying. It is not
difficult to see that it cannot be the case that it is NP-hard to distinguish satisfiable
instances from instances where exactly a fraction d(P ) of the constraints can be
simultaneously satisfied, and thus some weakening is needed. The chosen weakening
turns out to be convenient but there are other alternatives and in particular one
could ask for ε to be a function of the size of the input and tend to 0 as this size
increases.

While the previous definition does not exactly correspond to a statement about
approximation ratio, the next definition is equivalent to saying that, again up to an
arbitrary ε > 0, the approximation ratio given by Theorem 4.1 is the best possible.

Definition A Max-CSP given by predicate P on k variables is approximation re-
sistant if for any ε > 0 it is NP-hard to distinguish instances where a fraction (1− ε)
of the constraints can be simultaneously satisfied from those where only a fraction
d(P ) + ε of the constraints can be simultaneously satisfied.
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Next we have a class of problems that are of intermediate complexity. It is
possible to find an assignment of non-trivial quality for almost satisfiable instances
but when the quality of the optimal solution is below a certain threshold this is no
longer possible.

Definition A Max-CSP given by predicate P on k variables is somewhat approx-
imation resistant if it is not approximation resistant and there is some δ > 0 such
that for any ε > 0 it is NP-hard to distinguish instances where a fraction d(P ) + δ
of the constraints can be simultaneously satisfied from those where only a fraction
d(P ) + ε of the constraints can be simultaneously satisfied.

Finally we have the class of problems where we can, as soon as the optimum is
significantly better than the random assignment, find an assignment that also does
significantly better than the random assignment.

Definition A Max-CSP given by predicate P on k variables is always approximable
if for each δ > 0 there is an εδ > 0 and an efficient algorithm that given an instance
where a fraction d(P )+ δ of the constraints can be simultaneously satisfied finds an
assignment that satisfies at least a fraction d(P ) + εδ of the constraints.

We proceed to give some positive results in next section.

5 Constraints on two variables

The main technique used for deriving efficient approximation algorithms Max-
CSPs is through semi-definite programming which was introduced in this context
by Goemans and Williamson [9] as a tool to attack several problems. As the basic
algorithm is very beautiful and quite easy to state, especially in the case of Max-Cut,
we describe their approach for this problem here.

Let us formalize Max-Cut as a quadratic program

max
x∈{−1,1}n

∑
(i,j)∈E

1− xixj

2
. (5.1)

This sum measures exactly the size of the maximal cut as each term is one if the
edge is cut and zero otherwise. Let us relax (5.1) by introducing variables yij for
the products xixj giving the program

max
y

∑
(i,j)∈E

1− yij

2
.

Allowing the variables yij to be completely independent would, of course, make the
problem uninteresting and the key is to require that the numbers yij form a positive
symmetric semidefinite matrix with ones on the diagonal. Let us write this as follows

max
y�0,yii=1

∑
(i,j)∈E

1− yij

2
. (5.2)

Note that this is a relaxation of the original problems as if yij = xixj then indeed
this matrix fulfills the conditions.
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The magic now comes from the fact that the optimization problem (5.2) can, by
a result by Alizadeh [1], be solved to any desired accuracy in polynomial time. For
simplicity of discussion we ignore that we can only find an almost optimal solution
and assume that we find the true optimum. This slight inaccuracy does not affect
our results as we state them.

Let us phrase the problem (5.2) slightly differently. Remember that an n × n
matrix Y is symmetric positive semidefinite iff there is another n×n matrix V such
that

Y = V TV.

This implies that there are vectors (in fact the columns of V ) such that

yij = (vi, vj)

and the requirement that yii = 1 is equivalent to vi being a unit vector. Thus (5.2)
is equivalent to

max
(‖vi‖=1)n

i=1

∑
(i,j)∈E

1− (vi, vj)
2

. (5.3)

In this formulation it is obvious that that (5.3) is a strict generalization of (5.1)
as we can interpret the xi as vectors forced to lie in a single dimension.

While it is easy to interpret a one-dimensional solution as a high dimensional
solution the challenging and interesting part is to take a high dimensional solution
and produce a good one-dimensional solution. The inspired solution by Goemans
and Williamson is to pick a random vector r ∈ Rn and set

xi = sign((r, vi)), (5.4)

where, in the probability 0 event that (r, vi) = 0, we set xi = 1.
Let us analyze this rounding from the approximation ratio perspective. Assume

that the angle between vi and vj is θij. The contribution to the objective function
is then

1− cos θij

2
while the probability that the edge is cut, i.e. that sign((r, vi)) �= sign((r, vj)) is
exactly θij

π . Define the real number αGW by

αGW = min
0≤θ≤π

θ
π

1−cos θ
2

.

The numeric value of αGW is approximately .878. We get the following chain of
inequalities

E


 ∑

(i,j)∈E

1− xixj

2


 =

∑
(i,j)∈E

θij

π
≥ αGW

∑
(i,j)∈E

1− cos θij

2
≥ αGW ·OPT.

The last inequality follows as the maximum of the relaxed problem is at least the
true maximum. We conclude that the given algorithm is an αGW -approximation
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algorithm. It is randomized but it can be derandomized [20] with an arbitrarily
small loss in the quality of the obtained solution.

Let us turn to Max-2-Sat. Remember that we are using −1 to denote true and
hence a clause xi ∨ xj is equivalent to the quadratic expression

3− xi − xj − xixj

4
. (5.5)

Negations are handled in the natural way and a clause x̄i ∨ xj corresponds to

3 + xi − xj + xixj

4
, (5.6)

with similar formulas for the other types of clauses.
The expressions (5.5) and (5.6) look essentially different from the corresponding

terms for Max-Cut in that they contain linear terms and to remedy this we introduce
an extra variable x0 which always will be true. With this trick (5.5) turns into

3 + x0xi + x0xj − xixj

4
, (5.7)

and we can relax this to

3 + (v0, vi) + (v0, vj)− (vi, vj)
4

, (5.8)

with unit length vectors vi. This suggests the following approximation algorithm for
Max-2-Sat.

Make an objective function by summing all quadratic expressions corresponding
to clauses and solve the resulting semi-definite program. To retrieve Boolean values
pick a random vector r and set xi to true if sign((vi, r)) = sign((v0, r)).

It turns out that this algorithm gives an approximation ratio of αGW for Max-
2-Sat, i.e. the same constant as obtained for Max-Cut. To see this note that (5.8)
can be written as

1 + (v0, vi)
4

+
1 + (v0, vj)

4
+
1− (vi, vj)

4
, (5.9)

and the old argument can be applied to each term separately. That we have denom-
inator 4 instead of 2 and that we might have plus signs instead of minus signs does
not affect that analysis.

The fact that signs do not matter implies that the algorithm approximating
Max-Cut can, essentially without change, be applied to Max-E2-Lin giving the same
constant αGW also for this problem.

Let us make a couple of observations about the algorithm for Max-2-Sat. It is
clearly needed to have a non-symmetrical relation between “true” and “false” for
Max-2-Sat while there is complete symmetry between the two sides in Max-Cut.
Thus there is some need for v0 or some other mechanism for breaking the symmetry
between “true” and “false”.

Secondly it turns out that the direction of v0 is very special and this can be
used to obtain better approximation ratios [8, 19]. Using a search over a large set
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of rounding procedures Lewin et al [19] obtain and algorithm whose approximation
ratio probably5 is approximately .940.

Although it does not follow from the given analysis one can modify the rounding
to show that any Boolean 2-CSP is always approximable according to our definition.
Furthermore, it turns out that this result generalizes to any constant size domain
[13] and thus in our terminology any Max-CSP where each constraint depends on
two variables is always approximable.

6 Some approximation resistant predicates

Let us start by stating one result. We then discuss some consequences and only
later, very briefly, discuss some of the ideas behind the proof.

Theorem 6.1 [12] For any ε > 0 it is NP-hard to approximate Max-E3-Lin within
a factor 1

2 + ε. Said equivalently Max-E3-Lin is approximation resistant.

Stated in other terms, for any ε > 0 it is NP-hard, given a system of linear
equations modulo 2, to determine whether there is a solution that satisfies a fraction
1− ε of the equations or if no assignment satisfies more than a fraction 1

2 + ε of the
equations.

Note that we cannot strengthen Theorem 6.1 to prove Max-Lin approximation
resistant on satisfiable instances as Gaussian elimination gives an efficient procedure
to determine whether all equations are simultaneously satisfiable. It is possible to
prove a variants Theorem 6.1 with a sub-constant value for ε. Results along those
lines have been obtain by Khot and Ponnuswami [18].

One can also note that, if variables are allowed to take values in [m], Theorem 6.1
can be extended [12] to give inapproximability 1

m+ε of Max-E3-Lin-m and the result
even extends to equations over non-Abelian groups [7].

Let us postpone the discussion of the proof of Theorem 6.1 and first use it to
obtain results for some other Max-CSPs of interest.

Theorem 6.2 [12] For any ε > 0 it is NP-hard to approximate Max-E3-Sat within
a factor 7

8 + ε. Said equivalently, Max-E3-Sat is approximation resistant.

Proof We give a reduction from Max-E3-Lin. We are given a system of equations
modulo 2 with three variables in each equation and we want to produce an instance
of Max-E3-Sat. Since we are using {−1, 1}, addition modulo 2 is conveniently rep-
resented as multiplication and a linear equation containing three variables can be
written as

xixjxk = b (6.1)

for some indices i, j, and k and b ∈ {−1, 1}. Assume for the time being that b = 1

5This value has only been determined numerically and has not been proved analytically.



Approximability of Max-CSPs 11

and consider the following clauses

(xi ∨ xj ∨ x̄k)
(xi ∨ x̄j ∨ xk)
(x̄i ∨ xj ∨ xk)
(x̄i ∨ x̄j ∨ x̄k).

Then if (6.1) is satisfied so are all four clauses while if (6.1) is not satisfied then
exactly three clauses are true. If b = −1 then we use the four clauses

(xi ∨ xj ∨ xk)
(xi ∨ x̄j ∨ x̄k)
(x̄i ∨ xj ∨ x̄k)
(x̄i ∨ x̄j ∨ xk)

with the same property. Thus if we start with a system of m equations we get 4m
clauses and an assignment that satisfies v of the equations satisfies exactly 3m+ v
clauses. It is now easy to check that the existence of an algorithm which gives a
7
8 + ε approximation for Max-E3-Sat with ε > 0 implies a 1

2 + ε′ approximation for
Max-E3-Lin with ε′ > 0 . Theorem 6.2 follows from Theorem 6.1. �

For Max-E3-Sat we could “hope” for approximation resistance on satisfiable
instances and this is true.

Theorem 6.3 [12] Max-E3-Sat is approximation resistant on satisfiable instances.

There does not seem to be any fast way of deriving Theorem 6.3 from Theo-
rem 6.1 and major parts of the proof have to be modified in a substantial way.

We will only briefly touch upon the ideas of these theorems but before we do
even this we need to discuss proof systems in general.

7 Proof systems

The complexity class NP can be seen as a proof system. We have a prover P
and a verifier V . P finds the witness of membership and sends it to V who then
efficiently can check the proof. As an example, to prove that a formula ϕ is satisfiable
P would supply the satisfying assignment which V then would verify by evaluating
the formula.

In this standard situation V reads the entire proof, but we want to model a
situation where V does spot checks and only reads a small fraction of the proof. We
count the number of bits V reads from the proof and to make this easy to formalize
we envision the proof in the shape of an oracle. Let Σ∗ be the set of all finite binary
strings.

Definition An oracle is a function Σ∗ → {0, 1}.

Written proofs are identical with proofs using oracles where reading the i’th bit
of the written proof corresponds to evaluating the oracle function on the binary
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representation of i. The entire concept of oracle Turing machines is just to be
able to formally count the numbers of bits accessed by V when checking the proof.
The reader unfamiliar with oracle Turing machine might be more comfortable by
disregarding the notion and simply count the number of bits read by V in a less
formal way.

A typical verifier V π(x, r) is a probabilistic Turing machine where π is the oracle,
x the input and r the (internal) random coins of V . We say that the verifier accepts
if it outputs 1 (written as V π(x, r) = 1) and otherwise it rejects. As is standard in
complexity theory we identify a decision problems with a language which is simply
the set of inputs with the answer “yes”. We can thus speak of the “language of
satisfiable formulas” and use membership as the primitive notion.

Definition Let c and s be real numbers such that 1 ≥ c > s ≥ 0. A probabilistic
polynomial time Turing machine V is a verifier in a Probabilistically Checkable Proof
(PCP) with soundness s and completeness c for a language L iff

• For x ∈ L there exists an oracle π such that Prr[V π(x, r) = 1] ≥ c.

• For x �∈ L, for all π Prr[V π(x, r) = 1] ≤ s.

An important property turns out to be whether the identity of later bits read
by V depends on the values obtained for earlier bits read. If they do, V is called
“adaptive”, with the opposite being called “non-adaptive”.

In the current paper we always have perfect completeness in that a correct proof
of a correct statement is always accepted and hence c is always equal to one in the
above definition. Using smaller values of c might seem counterintuitive but this is
used in the proof of Theorem 6.1.

We are interested in a number of properties of the verifier and one property that
is crucial to us is that V does not use too much randomness.

Definition The verifier V uses logarithmic randomness if there is an absolute con-
stant c such that on each input x and proof π, the length of the random string r
used by V π is bounded by c log |x|.

Using logarithmic randomness makes the total number of possible sets of coin
flips for V polynomial in |x| and hence all such sets can be enumerated in polynomial
time.

We also care about the number of bits V reads from the proof.

Definition The verifier V reads c bits in a PCP if, for each outcome of its random
coins and each proof π, V π asks at most c questions to the oracle.

To get a feeling for why we discuss PCPs let us envision a proof of Theorem 6.3.
An NP-hardness proof is essentially always a reduction. To prove that it is NP-hard
to distinguish objects of class X from objects of class Y one describes a polynomial
time algorithm that takes a Boolean formula ϕ as input and produces an output
which is of class X if ϕ is satisfiable while it is of class Y if ϕ is not satisfiable.
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In particular to prove Theorem 6.3 we would expect to have a polynomial time
reduction which on input ϕ and a number ε > 0, produces another formula ψ in
3-CNF with the following properties.

• If ϕ is satisfiable so is ψ.

• If ϕ is not satisfiable then any assignment satisfies only a fraction 7
8 + ε of the

clauses of ψ.

Clearly this would prove Theorem 6.3 as an algorithm A distinguishing satisfiable
formulas from formulas where only a fraction (78 + ε) of the clauses can be simulta-
neously satisfied could be used to determine satisfiability. Given ϕ one could simply
compute ψ and then run the algorithm A on input ψ.

Let us see that what we have at our hands is in fact a PCP. The written proof
would now not be a satisfying assignment for ϕ but a satisfying assignment of ψ.
This would be checked by a verifier V that given ϕ first constructs ψ, picks a random
clause of ψ, reads the values of the three variables in the proof and accepts if the
clause is satisfied. Let us check the properties of this verifier.

If ϕ is satisfiable then so is ψ and the prover can specify the oracle accordingly
and hence V would accept with probability 1 giving perfect completeness c = 1.

If ϕ is not satisfiable then no assignment satisfies more than a fraction 7
8 + ε of

the clauses of ψ and hence independently of the proof, the verifier would accept with
probability at most 7

8 + ε.
Note that the only randomness used by V is to pick a random clause of ψ and

since ψ is of polynomial size this can be done with a logarithmic number of random
coins. Finally also note that V only reads three bits of the proof.

Our type of reduction is more or less equivalent to the existence of a PCP which
is limited to reading three bits. Let us sketch the reverse reduction in the case when
the verifier is non-adaptive. The correspondence also exists in the adaptive case but
is less tight.

Suppose there is a PCP to determine if ϕ is satisfiable, which reads 3 bits of the
proof, has completeness one, soundness s, and where the verifier uses a logarithmic
number of random bits and is non-adaptive.

Consider the “proof optimization problem” where we put ourselves in the shoes
of a prover that wants to find the proof that maximizes the probability that the
verifier accepts. Having not determined the proof yet we use a Boolean variable xi

to be determined as the value of the i’th bit of the proof. For each set of coinflips,
r, of V it reads three bits ir1, i

r
2 and ir3 and accepts given a condition Cr(xir1

, xir2
, xir3

)
on these bits. Any condition on three bits can be written as a formula that is a
3-CNF and hence let us assume that Cr is of this form. Then the probability that
V accepts is essentially given by the number of clauses satisfied in the formula

ψ = ∧rCr(xir1
, xir2

, xir3
).

We encourage the reader to work out the details of this reduction. Note that it is
important that the resulting formula is of polynomial size and for this it is crucial
that we only have a polynomial number of different r’s. This is equivalent to saying
that we only have a logarithmic number of random coins.
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The existence of a PCP with even the gross behavior of what we need, i.e.
reading a constant number of bits, completeness one and soundness s, a constant
strictly smaller than 1 and using logarithmic randomness is already mind-boggling.
It is remarkable that it is possible to efficiently verify an arbitrary NP-statement of
arbitrary size reading only a constant number of bits of the proof. The existence of
such a PCP was established in a sequence of papers and the final construction was
given by Arora et el [2].

Theorem 7.1 [2] There is a universal integer c such that any language in NP has a
PCP with soundness 1/2 and completeness 1 where V uses logarithmic randomness
and reads at most c bits of the proof.

Remark This theorem is often called the “PCP-theorem” or referred to as “ALMSS”
after the initials of the authors.

Remark Although the number of bits read is independent of which language in
NP we are considering, this is not true for the amount of randomness. The number
of random bits is d log n for any language L, but the constant d depends on L.

To establish Theorem 6.1 and Theorem 6.3 one needs to find PCPs with very
good constants. As the construction builds on a number of results it is not possible
to present them here and we refer the interested reader to [12]. Let us give some
results for other Max-CSPs.

8 Constraints on three Boolean variables

Zwick has determined good bounds for the approximation constants for all pred-
icates on three variables [25]. We here focus on the classification into our four groups
which gives us fewer details to consider.

To discuss the results it is convenient to write the predicate as a multilinear
polynomial. We already used this representation when we discussed 2-CSPs but let
us now do it more formally.

Theorem 8.1 Any predicate P on k variables x1, x2 . . . xk, can in a unique way be
written as real sum

P (x) =
∑

S⊆[k]

cP
S

∏
i∈S

xi.

There are a number ways to prove this theorem and readers familiar with the discrete
Fourier transform might realize that the coefficients cP

S are exactly the Fourier coef-
ficients. Let us give an example. If P accepts the strings (−1,−1,−1), (−1,−1, 1),
(−1, 1,−1) (1,−1,−1) and (1,−1, 1) then

P (x) =
1
8
(5− x1 − 3x2 − x3 − x1x2 + x1x3 − x2x3 + x1x2x3) (8.1)

For predicates on three variables the question whether c{1,2,3} equals 0 is of crucial
importance.
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Theorem 8.2 A predicate P on three variables is always approximable iff cP
{1,2,3} =

0.

Sketch of proof. If the coefficient is 0 then P can be written as a real weighted
sum of predicates each depending on two variables. Such sums can be efficiently
approximated as discussed in Section 5.

The proof of the reverse direction uses essentially the same reduction as used in
our sketch of proof of Theorem 6.2 from Theorem 6.1. The fact that cP

{1,2,3} �= 0 is
equivalent to P not accepting the same number of strings of even parity and odd
parity. Assume that P accepts a strings of even parity and b strings of odd parity
where a > b. In our example (8.1) above a = 3 and b = 2.

Now given an equation

xixjxk = 1 (8.2)

we write down the four constraints

P (xi, xj , xk)
P (xi, x̄j , x̄k)
P (x̄i, xj , x̄k)
P (x̄i, x̄j , xk).

An assignment that satisfies (8.2) satisfies a of these constraints while an assignment
that does not satisfy (8.2) satisfies b constraints. Equations of the form xixjxk = −1
are handled by adding one negation. We produce an instance with 4m constraints
where an assignment that satisfies v of the linear equations satisfies bm+ v(a− b)m
of the P -constraints. As d(P ) = (a + b)/8 a small calculation is sufficient to prove
that P is at least somewhat approximation resistant. We leave the details with the
reader.

Next we look at approximation resistance.

Theorem 8.3 A predicate P on three Boolean inputs is approximation resistant iff
it is implied by parity or or the negation of parity.

Sketch of proof. Looking more closely at the previous proof, and working out the
numbers, if a = 4 then the given reduction establishes approximation resistance.

The proof that no other predicates are approximation resistant goes by giving
an efficient approximation algorithm for each of the other predicates. We refer to
[25] for the details.

As stated in the introductory sections we allow negation for free. Another degree
of freedom is the order of the inputs to P and hence any two predicates that can
be transformed into each other by negations of inputs together with a permutation
of the inputs are, in our eyes, equivalent. Viewed this way, for d = 4, 5, 6, 7 there
is only one predicate accepting d inputs proved to be approximation resistant by
Theorem 8.3. For each of these predicates we can ask what happens on satisfiable
instances.

As stated several times, parity itself is not approximation resistant on satisfiable
instances while Theorem 6.3 states that the predicate we get that accepts 7 inputs
does indeed have the property. This result can be extended to the predicate that
accepts 6 inputs.
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Theorem 8.4 Let P be a predicate on three Boolean inputs implied by parity which
accepts 6 or 7 inputs. Then P is approximation resistant on satisfiable instances.

The only remaining question for predicates on three Boolean inputs with regards
to our classification is whether a predicate P that is implied by parity and which
accepts 5 inputs is approximation resistant on satisfiable instances. Such a predicate
P have several equivalent formulations but one convenient way is to define it to
accept the input unless exactly one of the three input bits is true. To determine
whether this predicate is approximation resistant on satisfiable instances is still an
open question. We known that it is approximation resistant and there is no obvious
way to make use of the fact that an instance is satisfiable and not only almost
satisfiable. In particular it is NP-complete to determine whether an instance is
satisfiable or not.

9 Max-CSP on Boolean variables of higher width

The approximation resistance of predicates on more than three variables have
been studied but results are far less complete.

Some of the results extend without problems and in particular we have the
following.

Theorem 9.1 [12] For any k ≥ 3, parity on k variables as well as any predicate
implied by parity on k variables is approximation resistant.

From this theorem it possible to conclude that always approximable predicates
are very few.

Theorem 9.2 A predicate P is always approximable iff cP
S = 0 for any S of size at

least 3.

The proof of this is a very slight generalization of the proof of Theorem 8.2. If
indeed all the coefficients are 0 then we again can write P as a weighted sum of
2-CSPs.

If we have some S of size k ≥ 3 with cP
S �= 0 we can use this as a basis of a

reduction in a similar way as was sketched in the proof of Theorem 8.2. We leave
the details to the interested reader.

Theorem 9.2 leads to a full characterization of the always approximable pred-
icates. The only predicate that depends on four variables that has this property
is

P (x) =
2 + x1x3 + x1x4 + x2x3 − x2x4

4
while there is no predicate that depends on at least 5 variables and that is always
approximable.

Hast [11] classified many predicates on four variables as to whether they were ap-
proximation resistant, ignoring whether approximation resistance held for satisfiable
instances.

When we identify predicates that can be made equal by permuting and negating
inputs and ignore the constant predicates there are are 400 different predicates on
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four Boolean variables. Of these 79 were determined to be approximation resis-
tant, 275 were found not to be approximation resistant while Hast was not able to
determine the status of the remaining 46 predicates.

It is interesting to look at the division into groups depending on the number of
accepting 4-tuples.

Accepted inputs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Non-resistant 1 4 6 19 27 50 50 52 27 26 9 3 1 0 0
Resistant 0 0 0 0 0 0 0 16 6 22 11 15 4 4 1
Unknown status 0 0 0 0 0 0 6 6 23 2 7 1 1 0 0

From this table it seems evident that the more inputs a predicate accepts the
more likely it is to be resistant. This is partly true but not fully true as the following
theorem indicates.

Theorem 9.3 [11] There are predicates on four variables P and Q such that P
implies Q, P is approximation resistant while Q is not approximation resistant.

Setting
P = ((x1 ∨ (x2 = x3)) ∧ (x̄1 ∨ (x2 = x4)))

and
Q = ((x2 = x3) ∨ (x2 = x4))

gives an example. Approximation resistance of P was proved in [10] while an ap-
proximation for Q was given in [25]. The fact that Q only depends on three variables
might be taken as a drawback of this example but this can be remedied. In fact,
if we make Q accept also the string (1, 1,−1 − 1) then it remains only somewhat
approximation resistant.

The intuition that predicates that accept few inputs are easy to approximate
while predicates that accept most inputs are hard to approximate, can, however be
given some formal support.

Theorem 9.4 [11] Any predicate on k variables accepting as most 2�k/2�+1 inputs
is not approximation resistant.

There are, however, some predicates that accept rather few inputs but are still
approximation resistant. A prime example was given by Samarodnitsky and Trevisan
[22].

Theorem 9.5 [22] Assume l1 + l2 + l1l2 = k then there is a predicate PST on k
variables which accepts 2l1+l2 inputs which is approximation resistant.

The predicate is the conjunction of l1l2 linear constraints. It is possible to prove
[11] that any predicate implied by PST is also approximation resistant. This can be
used to prove the following:

Theorem 9.6 [11]Assume l1 + l2 + l1l2 = k then any predicate on k variables that
accepts at least 2k + 1− 2l1l2 inputs is approximation resistant.
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H̊astad and Khot [15] extended, at the cost of slightly worse bounds, the work
of Samorodnitsky and Trevisan to achieve approximation resistance on satisfiable
instances.

Theorem 9.7 [15] Assume 2l1 + 2l2 + l1l2 = k then there is a predicate PHK on k
variables which accepts 22l1+2l2 inputs which is approximation resistant on satisfiable
instances.

10 Exact constants and the unique games conjecture

Many basic questions with regards to approximability of NP-hard questions re-
main. Due to lack of space let us not introduce more problems but instead mention
some recent developments.

The approximation constant αGW obtained for Max-Cut has not been improved
since the original Goemans-Williamson paper over a decade ago. There is now
evidence that it might be the correct constant for Max-Cut. To be more precise
Khot [16] formalized in 2002 a conjecture about a game characterization of NP
known as the “Unique Games Conjecture”, (UGC) . This has turned out to be a
strong conjecture with many important consequences, one [17] being that the Max-
Cut constant αGW is indeed correct.

Of the problems we discussed also the approximability of Max-2-Sat can more
or less be resolved using UGC. Austrin [3] proved that, again assuming UGC, the
numerically found approximation ratio for the algorithm by Lewin et al [19] (around
.940) is an upper bound for the approximation ratio of any efficient approximation
algorithm. Thus in the likely case that [19] did find the correct approximation ratio
for their algorithm the rather natural question of the best approximation constant
for Max-2-Sat might be determined and the true answer is the optimal value of an
ugly but well defined optimization problem and happens to be around .940.

Samorodnitsky and Trevisan [23] proved that if d is the smallest number such
that k ≤ 2d−1 then, based on the UGC, there is an approximation resistant predicate
on k inputs that accepts 2d inputs and thus Theorem 9.4 might be quite close to the
truth. H̊astad [14] used this result to show that, again based on UGC, for large k,
a random predicate P of width k is with high probability approximation resistant.

The truth of the UGC is uncertain and there seems to be no compelling evidence
either to believe it or doubt it. As the number of interesting consequences of UGC
increases, the urgency of proving or disproving it is mounting and UGC is now one
of the main open problems of the area of PCPs and approximability of NP-hard
optimization problems.

11 Conclusions and open problem

We have discussed the classification of Max-CSPs mainly in the Boolean case.
Our knowledge of Max-CSPs over larger domains is far less complete6 and a lot of
work remains to be done. There are results also for larger size domain, in particular
Theorem 6.1, Theorem 9.5 and Theorem 9.7 do extend [12, 6, 15] but as we do not
have space to discuss these problems here we refer to those papers for a discussion.

6Indeed, even classical NP-hardness is just resolved for size three domains [4].
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Approximation resistance on satisfiable instances is maybe the ultimate hard-
ness condition for a CSP. Even though there is some assignment that satisfies all
the constraints, efficient computation cannot do essentially better than picking an
assignment at random. We do believe that already approximation resistance is a cen-
tral property of a CSP a and much better evidence of hardness than the standard
NP-completeness that is abundant and hence not very informative.

A few open questions have been mentioned in the text. In the best of all worlds
one would have a complete characterization of which predicates fall into which cat-
egory. Currently there is such a characterization only for the miniature class of
always approximable predicates. The optimist could hope for a full characterization
of all our classes. Of course once we have such a characterization there are many
more detailed questions to study.
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