
An improved bound on the fraction of correctable deletions∗

Boris Bukh† Venkatesan Guruswami‡ Johan Håstad§

July 2016

Abstract
We consider codes over fixed alphabets against worst-case symbol deletions. For any fixed k > 2,

we construct a family of codes over alphabet of size k with positive rate, which allow efficient recovery
from a worst-case deletion fraction approaching 1− 2

k+
√

k
. In particular, for binary codes, we are able

to recover a fraction of deletions approaching 1/(
√

2+ 1) =
√

2− 1 ≈ 0.414. Previously, even non-
constructively, the largest deletion fraction known to be correctable with positive rate was 1−Θ(1/

√
k),

and around 0.17 for the binary case.
Our result pins down the largest fraction of correctable deletions for k-ary codes as 1−Θ(1/k), since

1− 1/k is an upper bound even for the simpler model of erasures where the locations of the missing
symbols are known.

Closing the gap between (
√

2−1) and 1/2 for the limit of worst-case deletions correctable by binary
codes remains a tantalizing open question.

1 Introduction

This work concerns error-correcting codes capable of correcting worst-case deletions. Specifically, consider
a fixed alphabet [k] def

= {1,2, . . . ,k}, and suppose we transmit a sequence of n symbols from [k] over a channel
that can adversarially delete an arbitrary fraction p of symbols, resulting in a subsequence of length (1− p)n
being received at the other end. The locations of the deleted symbols are unknown to the receiver. The goal
is to design a code C ⊆ [k]n such that every c ∈C can be uniquely recovered from any of its subsequences
caused by up to pn deletions. Equivalently, for c 6= c̃ ∈C, the length of the longest common subsequence of
c, c̃, which we denote by LCS(c, c̃), must be less than (1− p)n.

In this work, we are interested in the question of correcting as large a fraction p of deletions as possible
with codes of positive rate (bounded away from 0 for n→ ∞). That is, we would like |C| > exp(Ωk(n)) so
that the code incurs only a constant factor redundancy (this factor could depend on k, which we think of as
fixed).
∗A preliminary conference version of this paper [?], with a weaker bound of 1−2/(k+1) on fraction of correctable deletions,

was presented at the 2016 ACM-SIAM Symposium on Discrete Algorithms (SODA) in January 2016.
†Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA. Email:

bbukh@math.cmu.edu. Supported in part by U.S. taxpayers through NSF grant DMS-1201380, and by Alfred P. Sloan
Foundation through Sloan Research Fellowship.

‡Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213. Email: guruswami@cmu.edu. Supported
in part by NSF grants CCF-1422045 and CCF-0963975.

§School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden. Email:
johanh@kth.se. Supported in part by Swedish Research Council. Work done while visiting the Simons Institute in Berkeley.

Denote by p∗(k) the limit superior of all p ∈ [0,1] such that there is a positive rate code family over
alphabet [k] that can correct a fraction p of deletions. The value of p∗(k) is not known for any value of
k > 2. Clearly, p∗(k) 6 1− 1/k — indeed, one can delete all but n/k occurrences of the most frequent
symbol in a word to leave one of k possible subsequences, and therefore only trivial codes with k codewords
can correct a fraction 1−1/k of deletions. This trivial limit remains the best known upper bound on p∗(k).
We note that this upper bound holds even for the simpler model of erasures where the locations of the
missing symbols are known at the receiver (this follows from the so-called Plotkin bound in coding theory).

Whether the trivial upper bound p∗(k) 6 1− 1/k can be improved, or whether there are in fact codes
capable of correcting deletion fractions approaching 1− 1/k is an outstanding open question concerning
deletion codes and the combinatorics of longest common subsequences. Perhaps the most notable of these
is the k = 2 (binary) case. The current best lower bound on p∗(2) is around 0.17. This bound comes from
the random code, in view of the fact that the expected LCS of two random words in {0,1}n is at most
0.8263n [?]. As the LCS of two random words in {0,1}n is at least 0.788n, one cannot prove any lower
bound on p∗(2) better than 0.22 using the random code. Kiwi, Loebl, and Matoušek [?] showed that, as
k → ∞, we have E[LCS(c, c̃)] ∼ 2√

k
n for two random words c, c̃ ∈ [k]n. This was used in [?] to deduce

p∗(k)> 1−O(1/
√

k).
The above discussion only dealt with the existence of deletion codes. Turning to explicit and efficiently

decodable constructions, Schulman and Zuckerman [?] constructed constant-rate binary codes which are
efficiently decodable from a small constant fraction of worst-case deletions. This was improved in [?]; in
the new codes, the rate approaches 1. Specifically, it was shown that one can correct a fraction ζ > 0 of
deletions with rate about 1−O(

√
ζ). In terms of correcting a larger fraction of deletions, codes that are

efficiently decodable from a fraction 1− γ of errors over a poly(1/γ) sized alphabet were also given in [?].
Our focus in this work is exclusively on the worst-case model of deletions. For random deletions, it

is known that reliable communication at positive rate is possible for deletion fractions approaching 1 even
in the binary case. We refer the reader interested in coding against random deletions to the survey by
Mitzenmacher [?].

1.1 Our results

Here we state our results informally, omitting the precise computational efficiency guarantees, and omitting
the important technical properties of the constructed codes related to the “span” of common subsequences
(see Section 2 for the definition). The precise statements are in Subsection 4.2 and in Section 5.

Our first result is a construction of codes which are combinatorially capable of correcting a larger fraction
of deletions than was previously known to be possible.

Theorem 1 (Informal). For all integers k > 2, p∗(k)> 1− 2
k+
√

k
. Furthermore, for any desired ε > 0, there

is an efficiently constructible family of k-ary codes of rate r(k,ε)> 0 such that the LCS of any two distinct
codewords is less than fraction 2

k+
√

k
+ ε of the code length. In particular, there are explicit binary codes

that can correct a fraction (
√

2−1− ε)> 0.414− ε of deletions, for any fixed ε > 0.

Note that, together with the trivial upper bound p∗(k)6 1−1/k, the result pins down the asymptotics of
1− p∗(k) to Θ(1/k) as k→ ∞. Interestingly, our result shows that deletions are easier to correct than errors
(for worst-case models), as one cannot correct a fraction 1/4 of worst-case errors with positive rate for the
binary alphabet.

2

In our second result we construct codes with the above guarantee together with an efficient algorithm to
recover from deletions:

Theorem 2 (Informal). For any integer k > 2 and any ε > 0, there is an efficiently constructible family of
k-ary codes of rate r(k,ε)> 0 that can be decoded in polynomial (in fact near-linear) time from a fraction
1− 2

k+
√

k
− ε of deletions.

1.2 Our techniques

All our results are based on code concatenations, which use an outer code over a large alphabet with desirable
properties, and then further encode the codeword symbols by a judicious inner code. The inner code comes
in two variants, one clean and simpler form and then a dirty more complicated form giving a slightly more
involved and better bounds. For simplicity let us here describe the clean construction which when analyzed
gives the slightly worse bound 1− 2

k+1 as compared to 1− 2
k+
√

k
. This construction and its analysis first

appeared in the preliminary conference version [?] of this paper.
The innermost code consists of words of the form (1A2A . . .kA)L/A for integers A,L with A dividing

L, where αA stands for the word α repeated A times. Informally, we think of these words as oscillating
with amplitude A (this can be made precise via Fourier transform for example, but we won’t need it in
our analysis). The crucial property, that was observed in [?], is that two such words have a long common
subsequence only if their amplitudes are close. This property was also exploited in [?] to show a certain
weak limitation of deletion codes, namely that in any set of t > k+2 words in [k]n, some two of them have
an LCS at least n

k + c(k, t)n1−1/(t−k−2).
The effective use of these codes as inner codes in a concatenation scheme relies on a property stronger

than absence of long common subsequences between codewords. Informally, the property amounts to ab-
sence of long common subsequences between subwords of codewords. For the precise notion, consult the
definition of a span in the next section and the statement of Theorem 5 in the following section. Using this,
we are able to show that if the outer code has a small LCS value, then the LCS of the concatenated code
approaches a fraction 2

k+1 of the block length.
For the outer code, the simplest choice is the random code. This gives the existential result (Theorem 15).

Using the explicit construction of codes to correct a large fraction of deletions over fixed alphabets from [?]
gives us a polynomial (in fact near-linear) time deterministic construction (Theorem 17). While the outer
code from [?] is also efficiently decodable from deletions, it is not clear how to exploit this to decode the
concatenated code efficiently.

To obtain codes that are also efficiently decodable, we employ another level of concatenation, using
Reed–Solomon codes at the outermost level, and the above explicit concatenated code itself as the inner
code. The combinatorial LCS property of these codes is established similarly, and is in fact easier, as we
may assume (by indexing each position) that all symbols in an outer codeword are distinct, and therefore the
corresponding inner codewords are distinct. To decode the resulting concatenated code, we try to decode
the inner code (by brute-force) for many different contiguous subwords of the received subsequence. A
small fraction of these are guaranteed to succeed in producing the correct Reed–Solomon symbol. The
decoding is then completed via list decoding of Reed–Solomon codes. The approach here is inspired by the
algorithm for list decoding binary codes from a deletion fraction approaching 1/2 in [?]. Our goal here is
to recover the correct message uniquely, but by virtue of the combinatorial guarantee, there can be at most
one codeword with the received word as a subsequence, so we can go over the (short) list and identify the
correct codeword. Note that list decoding is used as an intermediate algorithmic primitive even though our

3

goal is unique decoding; this is similar to [?] that gave an algorithm to decode certain low-rate concatenated
codes up to half the Gilbert–Varshamov bound via a list decoding approach.

2 Preliminaries

A word is a sequence of symbols from a finite alphabet. For the problems of this paper, only the size of the
alphabet and the length of the word are important. So, we will often use [k] for a canonical k-letter alphabet,
and consider the words whose symbols are indexed by [n]. In this case, the set of words of length n over
alphabet [k] will be denoted [k]n. We denote the length of word w by lenw. We treat symbols in a word as
distinguishable. So, if x denotes the second 1 in the word 21011 and we delete the subword 10, the variable
x now refers to the first 1 in the word 211.

Below we define some terminology about subsequences that we will use throughout the paper:

• A subsequence in a word w is any word obtained from w by deleting one or more symbols. In contrast,
a subword is a subsequence made of several consecutive symbols of w.

• The span of a subsequence w′ in a word w is the length of the smallest subword containing the
subsequence. We denote it by spanw w′, or simply by spanw′ when no ambiguity can arise.

• A common subsequence between words w1 and w2 is a pair (w′1,w
′
2) of subsequences w′1 in w1 and

w′2 in w2 that are equal as words, i.e., lenw′1 = lenw′2 and the i’th symbols of w′1 and w′2 are equal for
each i, 1 6 i 6 lenw′1.

• For words w1,w2, we denote by LCS(w1,w2) the length of the longest common subsequence of w1
and w2, i.e., the largest j for which there is a common subsequence between w1 and w2 of length j.

A code C of block length n over the alphabet [k] is simply a subset of [k]n. We will also refer to such
codes as k-ary codes, with binary codes referring to the k = 2 case. The rate of C equals log |C|

n logk .

For a code C ⊆ [k]n, its LCS value is defined as

LCS(C)
def
= max

c1 6=c2∈C
LCS(c1,c2) .

Note that a code C⊆ [k]n is capable of recovering from t worst-case deletions if and only if LCS(C)< n− t.
We define the span of a common subsequence (w′1,w

′
2) of words w1 and w2 as

span(w′1,w
′
2)

def
= spanw1

w′1 + spanw2
w′2.

The span will play an important role in our analysis of LCS(C) of the codes C we construct, by virtue of the
following fact (note that the span of any common subsequence of two words of length n each is certainly at
most 2n):

Fact 3. If span(w′1,w
′
2)> b · lenw′1 for every common subsequence of w1,w2 ∈ [k]n, then LCS(w1,w2)6 2n

b .

Our result will be based on a construction for which we can take b ≈ k+
√

k for long enough common
subsequences of any distinct pair of codewords.

4

Concatenated codes. Our results heavily use the simple but useful idea of code concatenation. Given
an outer code Cout ⊆ [Q]n, and an injective map τ : [Q]→ [q]m defining the encoding function of an in-
ner code Cin, the concatenated code Cconcat ⊆ [q]nm is obtained by composing these codes as follows. If
(c1,c2, . . . ,cn) ∈ [Q]n is a codeword of Cout, the corresponding codeword in Cconcat is (τ(c1), . . . ,τ(cn)) ∈
[q]nm. The words τ(ci) ∈Cin will be referred to as the inner blocks of the concatenated codeword, with the
i’th block corresponding to the i’th outer codeword symbol.

3 Alphabet reduction for deletion codes

Fix k to be the alphabet size of the desired deletion code. We shall show how to turn words over K-letter
alphabet, for K� k, without a large common subsequence into words over k-letter alphabet without a large
common subsequence. More specifically, for any ε > 0 and large enough integer K = K(ε), we give a
method to transform a deletion code C1 ⊆ [K]n with LCS(C1)� εn into a deletion code C2 ⊆ [k]N with
LCS(C2) 6

(2
k+
√

k
+ ε
)
N. The transformation lets us transform a crude dependence between the alphabet

size of the code C1 and its LCS value (i.e., between K and ε), into a quantitatively strong one, namely
LCS(C2)≈ 2

k+
√

k
N. The code C2 will in fact be obtained by concatenating C1 with an inner k-ary code with

K codewords, and therefore has the same cardinality as C1. The block length N of C2 will be much larger
than n, but the ratio N/n will be bounded by a function of k,K, and ε . The rate of C2 will thus be smaller
than the rate of C1 only by a constant factor.

Specifically, we prove the following.

Theorem 4. Let C1 ⊆ [K]n be a code with LCS(C1)6 γn, and let k > 2 be an integer. Then there exists an
integer T = T (K,γ,k) satisfying T 6 O((2k/γ)2K+2), and an injective map τ : [K]→ [k]T such that the code
C2 ⊆ [k]N for N = nT obtained by replacing each symbol in codewords of C1 by its image under τ has the
following property: if s is a common subsequence between two distinct codewords c, c̃ ∈C2, then

spans > (k+
√

k) lens−5γkN . (1)

In particular, since spans 6 2N, we have LCS(C2)6
(

2+5γk
k+
√

k

)
N <

(
2

k+
√

k
+5γ

)
N.

Thus, one can construct codes over a size k alphabet with LCS value approaching 2
k+
√

k
by starting with

an outer code with LCS value γ→ 0 over any fixed size alphabet, and concatenating it with a constant-sized
map τ . The span property will be useful in concatenated schemes to get longer, efficiently decodable codes.

The key to the above construction is the inner map, which comes in two variants, one “clean” and one
“dirty” form. The former is simpler to describe and we choose to do this first.

3.1 The clean construction

The aim of the clean construction is to prove the following:

Theorem 5. Let C1 ⊆ [K]n be a code with LCS(C1)6 γn, and let k > 2 be an integer. Then there exists an
integer T = T (K,γ,k) satisfying T 6 16 · (4k/γ)K , and an injective map τ : [K]→ [k]T such that the code
C2 ⊆ [k]N for N = nT obtained by replacing each symbol in codewords of C1 by its image under τ has the
following property: if s is a common subsequence between two distinct codewords c, c̃ ∈C2, then

spans > (k+1) lens−4γkN .

5

In particular, since spans 6 2N, we have LCS(C2)6
(

2+4γk
k+1

)
N <

(2
k+1 +4γ

)
N.

We start by describing the way to encode symbols from the alphabet [K] as words over [k] that underlies
Theorem 5. Let L be constant to be chosen later. For an integer A dividing L, define the length-kL word of
“amplitude A” to be

fA
def
= (1A2A . . .kA)L/A. (2)

where αA stands for the word α repeated A times. The crucial property of these words is that fA and fB have
no long common subsequence if B/A is large (or small); for the proof see one of [?, ?]. In the present work,
we will need a more general “asymmetric” version of this observation — we will need to analyze common
subsequences in subwords of fA and fB (which may be of different lengths). Specifically, for A� B, we
would like to show that any common subsequence between fA and fB has large span. This is easiest to see
when A = 1. In that case, because of the form of fB a span-efficient subsequence must be made of long
runs of the same symbol, but each time we match a letter that is same as the preceding we have to skip k
symbols in fA. This leads to an overall span of ≈ (k+ 1) times the length of the subsequence, as to create
each common symbol in the subsequence, we consume symbols at a rate of 1 from fB and at a rate of k
from fA. The case of general A follows from the case A = 1 by “inflating” each symbol A times. The formal
argument is the content of Lemma 6 below.

Let R > k be an integer to be chosen later, such that RK−1 divides L. For a word w over alphabet [K]
denote by ŵ the word obtained from w via the substitution

l ∈ [K] 7→ fRl−1 ∈ {1,2, . . . ,k}kL (3)

to each symbol of w. Note that len ŵ = kL lenw. If a symbol x ∈ ŵ is obtained by expanding symbol y ∈ w,
then we say that y is a parent of x.

3.1.1 Analysis of clean construction

We now proceed to analyze the LCS of the sequences created by the clean construction. First, in Lemma 6,
we analyze the LCS of the sequences fA and fB for different amplitudes, which are used to encode two
different symbols from the outer alphabet [K]. Then, in Lemma 7 we analyze common subsequences of two
sequences of the concatenated code that are created by always matching symbols that have different parent
symbols in [K]. Finally, in Lemma 8 we analyze the length of arbitrary common subsequences by taking
into account any common parent symbols that may be matched up; it is here that we use the property that
the outer code C1 has small LCS(C1).

Lemma 6. For a natural number P, let f ∞
A be the (infinite) word

(1A2A . . .kA)∗.

Let A,B, where kA 6 B be natural numbers, and suppose s = (w′1,w
′
2) is a common subsequence between

f ∞
A and f ∞

B . Then

spans >
(

k+1− kA
B

)
lens−2(A+B).

Proof. The words f ∞
A and f ∞

B are concatenations of chunks, which are subwords of the form lA and lB

respectively. A chunk in f ∞
A is spanned by subsequence w′1 if the span of w′1 contains at least one symbol

6

of the chunk. Similarly, we define chunks spanned by w′2 in f ∞
B . We will estimate how many chunks are

spanned by w′1 and by w′2.
As a word, a common subsequence is of the form kp1

1 kp2
2 · · ·k

pt
t where kl 6= kl+1 and the exponents

are positive. The subsequence kpl
l spans at least k

⌈
pl−A

A

⌉
+ 1 chunks in f ∞

A . Similarly, kpl
l spans at least

k
⌈

pl−B
B

⌉
+1 chunks in f ∞

B . Therefore the total number of symbols in chunks spanned by kpl
l in both f ∞

A and
in f ∞

B is at least

φ(pl)
def
= A

(
k
⌈

pl−A
A

⌉
+1
)
+B

(
k
⌈

pl−B
B

⌉
+1
)
.

We then estimate φ(pl) according to whether pl 6 B:

φ(pl)>

k(pl−A)+B if pl 6 B,

k(pl−A)+ k(pl−B)+B if pl > B.

In the former case when B > pl ,

φ(pl)> kpl +

(
1− kA

B

)
B > kpl +

(
1− kA

B

)
pl ,

while when pl > B,

φ(pl)> (k+1)pl +(k−1)(pl−B)− kA > (k+1)pl−
kA
B

pl .

Thus in both cases we have

φ(pl)>

(
k+1− kA

B

)
pl.

Note that the chunks spanned by kpl
l are distinct from chunks spanned by kpl′

l′ for l 6= l′. So, the total
number of symbols in all chunks spanned by subsequence s in both f ∞

A and f ∞
B is at least

t

∑
l=1

φ(pl)>

(
k+1− kA

B

)
lens.

The total span of s might be smaller since the first and the last chunks in each of f ∞
A and f ∞

B might not be
fully spanned. Subtracting 2(A+B) to account for that gives the stated result.

Let (w′1,w
′
2) be a common subsequence between ŵ1 and ŵ2. We say that the i’th symbol in (w′1,w

′
2)

is well-matched if the parents of w′1[i] and of w′2[i] are the same letter of [K]. A common subsequence is
badly-matched if none of its symbols are well-matched; see Figure 1 below for an example.

1 1 1 1 2 2 2 2

1
1 2 1 2 1 2 1 2

3
1 2 1 2 1 2 1 2

3
1 1 2 2 1 1 2 2

2
1 1 1 1 2 2 2 2

1

1 1 2 2 1 1 2 2

2
1 1 2 2 1 1 2 2

2
1 1 1 1 2 2 2 2

1
1 2 1 2 1 2 1 2

3
1 1 1 1 2 2 2 2

1
Figure 1: A badly-matched common subsequence between ŵ1 and ŵ2 for w1 = 13321 and w2 = 22131

7

Lemma 7. Suppose w1,w2 are words over alphabet [K] and s = (w′1,w
′
2) is a badly-matched common

subsequence between ŵ1 and ŵ2 as defined in (3). Then

spans >
(

k+1− k
R
− 8RK−1

L

)
lens−16RK−1.

Proof. We subdivide the common subsequence s into subsequences s1, . . . ,sr such that, for each i = 1, . . . ,r
and each j = 1,2, the symbols matched by si in w′j belong to the expansion of the same symbol in w j. We
choose the subdivision to be a coarsest one with this property (see Figure 2 below for an example). That
implies that pairs of symbols of w1 and w2 matched by si and by si+1 are different. In particular, expansions
of at least r−4 symbols of w1 and w2 are fully contained in the spans of w′1 and w′2. Here, the term −4 in
r−4 accounts for the leftmost and rightmost symbols of w1 and w2 matched by s, which might be contained
in the span only partially. Therefore, we have

Lk(r−4)6 spans.

Since (w′1,w
′
2) is badly-matched, by the preceding lemma applied to each si we then have

spans >
(

k+1− k
R

)
lens−4rRK−1 >

(
k+1− k

R

)
lens−4RK−1

(spans
Lk

+4
)
.

The lemma then follows from the collecting together the two terms involving spans, and then dividing by
1+4RK−1/Lk.

1 1 1 1 2 2 2 2

1
1 2 1 2 1 2 1 2

3
1 2 1 2 1 2 1 2

3
1 1 2 2 1 1 2 2

2
1 1 1 1 2 2 2 2

1

1 1 2 2 1 1 2 2

2
1 1 2 2 1 1 2 2

2
1 1 1 1 2 2 2 2

1
1 2 1 2 1 2 1 2

3
1 1 1 1 2 2 2 2

1
Figure 2: Partition of the common subsequence from Figure 1 into subsequence as in the proof of Lemma 7

The next step is to drop the assumption in Lemma 7 that the common subsequence is badly-matched.
By doing so we incur an error term involving LCS(w1,w2).

Lemma 8. Suppose w1,w2 are words over alphabet [K] and s = (w′1,w
′
2) is a common subsequence between

ŵ1 and ŵ2. Then

spans >
(

k+1− k
R
− 8RK−1

L

)
lens−2Lk(k+1) ·LCS(w1,w2)−16RK−1.

Proof. Without loss, the subsequence s is locally optimal, i.e., every alteration of s that increases lens also
increases spans. Indeed, if s is not locally optimal, then the validity of the lemma for the altered sequence
implies its validity for the original s.

Define an auxiliary bipartite graph G whose two parts are the symbols in w1 and the symbols in w2. For
each well-matched symbol in s we join the parent symbols in w1 and w2 by an edge.

We may assume that each vertex in G has degree at most 2. Indeed, suppose a symbol x ∈ w1 is adjacent
to three symbols y1,y2,y3 ∈ w2 with y2 being in between y1 and y3. Then we alter s by first removing all
matches between x and y1,y2,y3, and then completely matching x with y2. The alteration does not increase

8

spans, and the result is a common subsequence that is at least as long as s, and whose auxiliary graph has
fewer edges. We can then repeat this process until no vertex has degree exceeding 2.

Consider a maximum-sized matching in G. On one hand, it has at most LCS(w1,w2) edges. On the
other hand, since the maximum degree of G is at most 2, the maximum-sized matching has at least |E(G)|/2
edges. Hence, |E(G)|6 2LCS(w1,w2).

Remove from s all well-matched symbols to obtain a common subsequence s′. The new subsequence
satisfies

lens′ > lens−Lk · |E(G)|> lens−2Lk ·LCS(w1,w2).

It is also clear that s′ is a badly-matched common subsequence. From the previous lemma

spans′ >
(

k+1− k
R
− 8RK−1

L

)
lens′−16RK−1

>

(
k+1− k

R
− 8RK−1

L

)
lens−2Lk(k+1) ·LCS(w1,w2)−16RK−1.

Since spans > spans′, the lemma follows.

We are now ready to prove Theorem 5 by picking parameters suitably.

Proof of Theorem 5. Recall that we are starting with a code C1 ⊆ [K]n with LCS(C1)6 γn. Given ε > 0 and
an integer k > 2, pick parameters

R =

⌈
2k
γ

⌉
and L = 16RK−1

⌈
1
γ

⌉
in the construction (2) and (3). Define T = kL and τ : [K]→ [k]T as τ(l) = fRl−1 , and let C2 ⊆ [k]N , where
N = nkL, be the code obtained as in the statement of Theorem 5. Note that T 6 16 · (4k/γ)K by our choice
of parameters.

By Lemma 8, we can conclude that any common subsequence s of two distinct codewords of C2 satisfies

spans > (k+1− γ) lens−2(k+1)γN− γN .

Since lens 6 N and k > 2, the right hand side is at least (k+1) lens−4kγN, as desired.

Remark 1 (Bottleneck for analysis). We now explain why the analysis in Theorem 5 is limited to proving
correctability of a 1/3 fraction of deletions for binary codes (a similar argument holds for larger alphabet size
k). This is related to the informal argument for why the span for the sequences fRl−1 is approximately 3 times
the subsequence length. Imagine subwords of length 3 of w1,w2 ∈ [K]n of the form abc and de f respectively,
where d > a,b and c > e, f . Then the word fRd−1 can be matched fully with fRa−1 fRb−1 (because the latter
words oscillate at a higher frequency that fRd−1), and similarly fRc−1 can be matched fully with fRe−1 fR f−1 .
Thus we can find a common subsequence of length 4L between the encoded bit words fRa−1 fRb−1 fRc−1 ∈ [2]6L

and fRd−1 fRe−1 fR f−1 ∈ [2]6L, even if abc and de f share no common subsequence.

3.2 Dirty construction

We now turn to the more complicated “dirty” construction in which small runs of dirt are interspersed in the
long runs of a single symbol from the clean construction.

9

3.2.1 Dirty construction, binary case

To convey the intuition for the dirty construction let us look more closely at what happened in the binary
case. We were looking for subsequences of

f ∞
A = (1A2A)∗

and
f ∞
B = (1B2B)∗,

where both A and B are large numbers but B is much larger than A. We are interested in subsequences with
small span. Looking more closely at the proof of Lemma 6 we see that such subsequences are obtained by
taking every symbol of f ∞

B and discarding essentially half the symbols of f ∞
A as to not interrupt the very

long runs in f ∞
B . Now suppose we introduce some “dirt” in f ∞

B by introducing, in the very long stretches of
1’s, some infrequent 2’s, say a 2 every 10’th symbol (and similarly some infrequent 1’s in the long stretches
of 2’s). Then, during construction of the LCS, when running into such a sporadic 2 we can either try to
include it or discard it. As A is a large number it is easy to see that while we are matching a 1-segment of
f ∞
A we cannot profit by matching the sporadic 2’s. It is also not difficult to see that while passing through a
2-segment of f ∞

A it is not profitable to match more than one sporadic 2 as matching two consecutive sporadic
2’s forces us to drop the ten 1’s in between the two matched 2’s in f ∞

B . The net effect is that introducing
some dirt hardly enables us to expand the LCS but does increase the span. We need to introduce dirt in all
codewords and it should not look too similar in any two codewords. The way to achieve this is by introducing
such dirty runs of different but short lengths in all codewords. Let us turn to a more formal description.

For the sake of readability below we assume that some real numbers defined are integers. Rounding
these numbers to the closest integer only introduces lower-order errors. It is also not difficult to see that we
can pick parameters such that all numbers are indeed integers.

Let c be a parameter satisfying 0 6 c <
√

2−1. The reason for the upper limit on c will be clarified in
Remark 2 after the analysis. We define “M dirty ones at amplitude a” to be the word

[1 : a]M def
= (1a2ca)M/(1+c)a.

(We suppress the constant c from notation.) We define word [2 : a]M analogously and we allow M = ∞ with
the natural interpretation. Recall that in our clean solution, i was coded by

fRi−1 = (1Ri−1
2Ri−1

)L/Ri−1
.

In the dirty construction we replace this by

gi = ([1 : RK−i]R
K+1+i

[2 : RK−i]R
K+1+i

)L/RK+1+i
, (4)

where R is an integer that can be written on the form (1+ c)t for an integer t, and

L = R2K+1 . (5)

Note that while the amplitude of the main symbols in the word gi increases with i, the amplitude of the
dirt decreases with i. This is the reason why the length L is larger than it was in the clean construction —
we need the frequencies of the dirt to be well separated.

We now turn to the formal analysis. The structure of the analysis will be similar to that of the clean
construction. Lemma 9 is the analog of Lemma 6 from the clean construction, and its proof uses Lemma 9
below.

10

Lemma 9. Let w1 be the word [1 : a]∞ (or [2 : a]∞), and let s be a subsequence of w2 = ([1 : A]B[2 : A]B),
then

spanw1
s+2B > (3+ c) lens− 4aB

A
.

Proof. We treat the case w1 = [1 : a]∞, the case w1 = [2 : a]∞ being similar. Note that w2 is a concatenation
of B/(1+c)A copies of each of 1A,1cA,2A, and 2cA. We shall refer to a subword of w2 of the form 1A or 1cA

as 1-run. Similarly, 2A and 2cA will be called 2-runs.
Let si be the part of s that falls inside the i’th 1-run. Similarly, let ti be the part of s that falls inside the

i’th 2-run. If the lenght of si is more than a then we must discard some 2’s in w1 and in particular the span
of si in w1 satisfies

spanw1
si > (1+ c)a · (lensi/a−1).

Similarly
spanw1

ti > (1+ c)a · (len ti/ca−1).

By summing these inequalities, it follows that if S and T are the total number of 1’s and 2’s respectively in
s, then the span of s in w1 is at least

(1+ c)S+(1+ c)T/c− 4aB
A

,

where the last term arises because we lose (1+ c)a in each summand, and the number of summands is
bounded by the number of 1- and 2-runs, which is 4B/(1+ c)A.

As the length of s is S+T it is sufficient to establish that

(1+ c)S+(1+ c)T/c+2B > (3+ c)(S+T). (6)

We know that both S and T are in the range [0,B]. Since 0 6 c <
√

2−1 we have (1+ c)/c > (3+ c) and
thus it is sufficient to establish (6) for T = 0, but in this case it follows from S 6 B.

We call a word of the form [j : RK−i]R
K+1+i

a segment of gi. The above lemma is the main ingredient in
establishing the following lemma.

Lemma 10. Let s be a subsequence of gi and g j for i < j, then, provided R > 10,(
1+

2
R

)
spangi

s+ spang j
s > (3+ c) lens− 10L

R
.

Proof. We have that gi consists of L/RK+1+i subwords, each of the form

[1 : RK−i]R
K+1+i

[2 : RK−i]R
K+1+i

.

Now partition s into subwords s(k) according to how it intersects these subwords of gi. The number of such
words is at most 2+(spangi

s)/(2RK+1+i). We want to apply Lemma 9 and we need to address the fact that
each s(k) might intersect more than one segment of g j (recall that a segment of g j is a subword of the form
[1 : RK− j]R

K+1+ j
or [2 : RK− j]R

K+1+ j
). As g j only has 2L/RK+1+ j different segments, by refining the partition

slightly we can obtain subwords s(k) for k = 1, . . . , p with p 6 2+(spangi
s)/(2RK+1+i)+2L/RK+1+ j, where

11

each s(k) satisfies the hypothesis of Lemma 9 with a = RK− j, A = RK−i and B = RK+i+1. We therefore obtain
the inequality

spang j
s(k)+2RK+i+1 > (3+ c) lens(k)−4Ri− jRK+i+1. (7)

We have a total of p inequalities and as spang j
s > ∑k spang j

s(k) and lens = ∑k lens(k), summing (7) for the
p values of k gives

spang j
s+2pRK+i+1 > (3+ c) lens−4pRi− jRK+i+1.

Now as p 6 2+ spangi
s/(2RK+1+i)+2L/RK+1+ j we can conclude that

spang j
s+(1+2Ri− j)spangi

s > (3+ c) lens− (4RK+i+1 +4LRi− j +8Ri− jRK+i+1 +8R2(i− j)L)

and using R > 10, RK+i+1 6 L
R , and i < j, the lemma follows.

Let us slightly abuse notation and in this section let ŵ be the word obtained from a word w via the
substitution

l ∈ [K] 7→ gl ∈ {1,2}2L (8)

to each symbol of w as opposed to (3). As Lemma 10 tells us that subsequences of codings of unequal
symbols have a large span, we have the following analog of Lemma 7.

Lemma 11. Suppose w1,w2 are words over alphabet [K] and s = (w′1,w
′
2) is a badly-matched common

subsequence between ŵ1 and ŵ2 as defined in (8). Then

spans >
(

3+ c− 28
R

)
lens− 40L

R
.

Proof. We use the same subdivision as in the proof Lemma 7. We have

2L(r−4)6 spans.

Since (w′1,w
′
2) is badly-matched, by the preceding lemma we then have(

1+
2
R

)
spans > (3+ c) lens− 10rL

R
> (3+ c) lens− 10L

R

(spans
2L

+4
)
.

The lemma then follows from the collecting together the two terms involving spans, and then dividing by
1+ 7

R .

The transition to allow some well-matched symbols is done as in the clean construction and we get the
lemma below. The proof is analogous to that of Lemma 8 and in particular we remove the well matched
symbols which is shortening s by at most 4L ·LCS(w1,w2) and the rest of the proof is essentially identical.

Lemma 12. Suppose w1,w2 are words over alphabet [K] and s=(w′1,w
′
2) is a common subsequence between

ŵ1 and ŵ2. Then

spans >
(

3+ c− 28
R

)
lens−16L ·LCS(w1,w2)−

40L
R

.

We are now ready to prove the alphabet reduction claim (Theorem 4) via concatenation with the dirty
construction at the inner level.

12

Proof of Theorem 4 (for binary case). All that remains to be done is to pick parameters suitably. We set R
to the smallest number greater than 56

γ
such that it can be written on the form (1+ c)t for and integer t

and c ∈
[√

2−1− γ

4 ,
√

2−1
[

and we use this value of c. It is not difficult to see that this is possible with

R ∈ O(1
γ
). Define T = 2L (recall that L = R2K+1) and τ : [K]→ [2]T as τ(l) = gl (as defined in (8)), and let

C2 ⊆ [2]N , where N = 2nL, be the code obtained as in the statement of Theorem 4.
By Lemma 12, we can conclude that any common subsequence s of two distinct codewords of C2 satisfies

spans > (2+
√

2− γ) lens−8γN− γN .

Since lens 6 N, the right hand side is at least (2+
√

2) lens−10γN, as claimed in (1).

Remark 2. For the level of dirt discussed here, i.e., c <
√

2−1, the analysis is optimal for the same reason
as the analysis of clean construction was optimal. Indeed, in the clean construction the efficient LCS of
length t spans 2t symbols in the high frequency word and t symbols in the low frequency word. Introducing
dirt increases the second number to t(1+ c) for a total span of (3+ c)t. If the value of c is larger, then the
efficient LCS is obtained by using all symbols, including the dirt, in the low frequency (high amplitude)
word. In the high frequency word it spans around

1
2
((1+ c)+(1+ c)/c)t

symbols (half of the time we are taking the most common symbol, moving at speed (1+c) and half the time
the other symbol moving at speed (1+c)/c). Thus in this case the total span is ≈ t +(1+c)(1+1/c)t/2 =
(2+(c+1/c)/2)t and the threshold of (

√
2−1) for c was chosen to maximize min(3+c,(2+(c+1/c)/2)).

3.2.2 Dirty construction, general case

Let us give the highlights of the general construction for alphabet size k. In this case we define “M dirty
ones at frequency a” to be the word

(1a2ca3ca . . .kca)M/(1+(k−1)c)a,

where we assume that c is positive number bounded from above by (
√

k−1)/(k−1). We denote this word
by [1 : a]M, with constants k and c being omitted from notation. Analogously we define dirty versions of the
other k−1 symbols.

The extension of Lemma 9 is as follows.

Lemma 13. For j ∈ [k], let w1 be a word of the form [j : a]∞, w2 = ([1 : A]B[2 : A]B . . . [k : A]B), and let s be
a subsequence of w2. Then

spanw1
s+ kB >

(
k+1+(k−1)c

)
lens− k2aB

A
.

The proof of this lemma is almost a verbatim repetition of the proof of Lemma 9 with some obvious
modifications. If we let S be the number of occurrences of j’s in s and T the total number of other symbols
we get a lower bound for the span of the form

(
1+(k−1)c

)
S+
(
1+(k−1)c

)
T/c− k2aB

A
.

13

By the upper bound on c we have (
1+(k−1)c

)
/c > k+1+(k−1)c,

and we can again focus on T = 0 where again S 6 B establishes the lemma. The lemma establishes that the
span of subsequences of coding of unequal symbols is large, and adopting the rest of the proof to establish
Theorem 4 for general k is straightforward and we omit the details.

4 Existence and construction of good deletion codes

In this section, we will plug in good “outer” deletion codes over large alphabets into Theorem 4 to derive
codes over alphabet [k] that correct a fraction ≈ 1− 2

k+
√

k
of deletions.

4.1 Existential claims

We start with “outer” codes over large alphabets guaranteed to exist by the probabilistic method. We use h(·)
to denote the binary entropy function. A similar statement to the random coding argument below appears in
[?], but we include the short proof for completeness.

Lemma 14. Suppose γ,r > 0 and integer K > 2 satisfy

2r logK +2h(γ)− γ logK < 0.

Then, for all large n, there exists a code with Krn codewords in [K]n such that LCS(w,w′)6 γn for all distinct
w,w′ in the code.

Proof. Let w1, . . . ,wKrn be a sequence of words sampled from [K]n independently at random without re-
placement. For any i < j the joint distribution of (wi,w j) is same as of two words independently sampled
from [K]n conditioned on them being distinct. Hence, by the union bound we have

Pr[LCS(wi,w j)> γn]6
(

n
γn

)2

K−γn.

By the second application of the union bound we thus have

Pr[∃i, j, LCS(wi,w j)> γn]6 K2rn
(

n
γn

)2

K−γn = 2n(2r logK+2h(γ)−γ logK)+o(n) < 1,

for sufficiently large n. As this probability is less than 1, there is a choice of w1, . . . ,wKrn such that pairwise
LCS is at most γn.

Using the above existential bound in Theorem 4, we now deduce the following.

Theorem 15 (Existence of deletion codes). Fix an integer k > 2. Then for every real number ε > 0, there
is r̃ = (ε/k)O(ε−3) such that for infinitely many N there is a code C ⊆ [k]N of rate at least r̃ and LCS(C) <(

2
k+
√

k
+ ε

)
N.

14

Proof. We first apply Lemma 14 with γ = ε/4 and r = γ/6 = ε/24 to get a code C1 ⊆ [K]n for K 6 O(1/ε3)
with LCS(C1) 6 εn/4 and |C1| > Krn. Now applying Theorem 4 to C1 yields a code C2 ⊆ [k]N with
LCS(C2)6

(
2

k+
√

k
+ ε

)
N. The rate of C2 is at least r/T > (ε/k)O(ε−3) since T 6 (k/ε)O(K).

Remark 3. The exponent O(1/ε3) in the rate can be improved to O(1/εa) for any a > 2. We made the
concrete choice a = 3 for notational convenience.

4.2 Efficient deterministic construction

Theorem 15 already shows the existence of positive rate codes over the alphabet [k] which are capable of
correcting a deletion fraction approaching 1− 2

k+
√

k
, giving our main combinatorial result. We now turn to

explicit constructions of such codes. Given Theorem 4, all that we need is an explicit code family capable
of correcting a deletion fraction approaching 1 over constant-sized alphabets, which is guaranteed by the
following theorem.

Lemma 16 ([?], Thm 3.4). For every γ > 0 there exists an integer K 6 O(1/γ5) such that for infinitely many
block lengths n, one can construct a code C ⊆ [K]n of rate Ω(γ3) and LCS(C)6 γn in time n(logn)poly(1/γ).
Further, the code C can be efficiently encoded and decoded from a fraction (1− γ) of deletions in n ·
(logn)poly(1/γ) time.

Remark 4. The linear dependence on n in the decoding time can be deduced using fast (n ·poly(logn) time)
unique decoding algorithms for Reed–Solomon codes. The bounds stated in [?] are nO(1)(logn)poly(1/γ) time.

Using the efficiently constructible codes of Lemma 16 in place of random codes as outer codes, we can
get the constructive analog of Theorem 15 with a similar proof. We also record the statement concerning
the span of common subsequences of distinct codewords of our code (which is guaranteed by Theorem 4),
as we will make use of this in the next section on efficiently decodable deletion codes.

Theorem 17 (Constructive deletion codes). Fix an integer k > 2. Then for every real number ε > 0, there is
r̃ =(ε/k)O(ε−3) such that for infinitely many N, we can construct a code C⊆ [k]N in time O(N(logN)poly(1/ε))
such that

(i) C has rate at least r̃ and

(ii) LCS(C) <
(

2
k+
√

k
+ ε

)
N; in fact if s is a common subsequence of two distinct codewords c, c̃ ∈ C,

then spans > (k+
√

k) lens− εkN.

5 Deletion codes with efficient decoding algorithms

We have already shown how to efficiently construct codes over alphabet [k] that are combinatorially capable
of correcting a deletion fraction approaching 1− 2

k+
√

k
. However, it is not so clear how to efficiently recover

the codes in Theorem 17 from deletions. To this end, we now give an alternate explicit construction by con-
catenating codes with large distance for the Hamming metric with good k-ary deletion codes as constructed
in the previous section. As a side benefit, the (asymptotic) construction time will be improved as we will
need the codes from Theorem 17 for exponentially smaller block lengths.

15

5.1 Concatenating Hamming metric codes with deletion codes

We state our concatenation result abstractly below, and then instantiate with appropriate codes later for
explicit constructions. Recall that the relative distance (in Hamming metric) of a code C of block length
n equals the minimum value of ∆(c, c̃)/n over all distinct codewords c, c̃ ∈ C, where ∆(x,y) denotes the
Hamming distance between two words of the same length.

Lemma 18. Let η ,θ ∈ (0,1]. Let Cout⊆ [Q]n be a code of relative distance at least 1−η . Let Cin⊆ [k]m be a
code with nQ codewords, one for each (i,α)∈ [n]× [Q], such that for any two distinct codewords c1,c2 ∈Cin
and a common subsequence s of c1,c2, we have spans > D · lens−θkm, for some D > 2.

Consider the code Cconcat ⊆ [k]N for N = nm obtained as follows1: There will be a codeword of Cconcat
for each codeword c of Cout, obtained by replacing its i’th symbol ci by the codeword of Cin corresponding
to (i,ci). Then we have

LCS(Cconcat)6

(
2
D
+2θ +η

)
N .

Proof. This proof is similar to, but simpler than the proofs of Lemmas 7 and 8. It is simpler because in the
present situation a codeword of Cin occurs at most once inside a codeword of Cconcat.

Let c, c̃ be two distinct codewords of Cconcat and let σ be a common subsequence of c, c̃. Recall that
each codeword of Cconcat can be viewed as a sequence of n (inner) blocks belonging to [k]m, with the i’th
block encoding (as per Cin) the i’th symbol of the outer codeword. Let us break σ into parts based on which
of the n blocks in c, c̃ its common symbols come from in some canonical (say greedy) way of forming the
subsequence σ from (c, c̃). Let σi, j denote the portion of σ formed by using symbols from the i’th block
of c and the j’th block of c̃. Let E be the set of pairs (i, j) for which σi, j is not the empty word. If we
were to draw words c and c̃ as horizontal lines parallel to each other with the n blocks marked as vertically
aligned points on the lines, and draw the pairs in E as edges between corresponding points, then they would
be non-crossing. Therefore, |E| 6 2n. Also, by the construction, the only portions σi, j that are formed out
of the same codeword of Cin are those with i = j and ci = c̃i. Thus there are at most ηn such portions, by
the assumptions on the relative distance of Cout. Combining all this, we have

spanσ > ∑
(i, j)∈E

spanσi, j

>

(
∑

(i, j)∈E

(
D lenσi, j−θkm

))
−D(ηn)m

> D lenσ −2θknm−Dηnm .

Since spanσ 6 2N, we have lenσ <
(2

D + 2θk
D +η

)
N, as desired.

Remark 5. Note that in Theorem 4, we made a stronger assumption on the outer code, namely that it has
small LCS. In Lemma 18 above, we only require that the outer code has large minimum distance under the
Hamming metric. However, we require an inner code of size nQ in Lemma 18, so we cannot use a highly
inefficient inner code as we could afford in Theorem 4. Recall that in Theorems 4 and 5 we only needed an
inner code of size equal to the outer code’s alphabet, which can be taken to be a fixed constant independent
of the code length.

1Note that this is a concatenation of a “position-indexed version” of Cout with Cin.

16

The construction. We now instantiate the construction of Lemma 18 by concatenating Reed–Solomon
codes with the codes from Theorem 17. Fix the desired alphabet size k > 2 and γ > 0.

Let Fq be a large finite field, an integer `= d γq
2 e. Let Cout be the Reed–Solomon encoding code of block

length n = q that maps degree < ` polynomials f ∈ Fq[X] to their evaluations at all points in Fq. Note that
its relative distance is (q− `+1)/q > 1− γ/2.

Let Cin be a k-ary code with at least q2 codewords constructed in Theorem 17 for ε = γ/4. By the
promised rate of that construction, the block length of Cin can be taken to be m 6 (k/γ)O(γ−3) · logq. Our
final construction will apply Lemma 18 to Cout and Cin with parameters η = γ/2, θ = γ/4, and D = k+

√
k

to get a code Cconcat ⊆ [k]N for N = qm with LCS(Cconcat)6
(

2
k+
√

k
+ γ

)
N.

Let us now estimate the construction time. As a function of N, m 6 Ok,γ(logN), and therefore the con-
struction time for Cin becomes Ok,γ(logN(log logN)poly(1/ε)). Together with the q(logq)2 time to construct
a representation of Fq and the Reed–Solomon code, we get an overall construction time of O(N log2 N) for
large enough N. We record this in the following statement.

Theorem 19 (Reed–Solomon + inner deletion codes with better construction time). Fix an integer k > 2.
Then for every real number γ > 0, there is r(k,γ) = (γ/k)O(γ−3) such that for infinitely many and sufficiently
large N, we can construct a code C ⊆ [k]N in time O(N log2 N) such that

(i) C has rate at least r(k,γ), and

(ii) LCS(C)<
(

2
k+
√

k
+ γ

)
N.

5.2 Deletion correction algorithm

We now describe an efficient decoding procedure for the codes from Theorem 19. The procedure will
succeed as long as the fraction of deletions is only slightly smaller than 1− 2

k+
√

k
. We describe the basic idea

before giving the formal statement and proof. If we are given a subsequence s of length
(2

k+
√

k
+δ
)
N of some

codeword, then by a simple counting argument, there must be at least δq/2 inner blocks (corresponding to
the inner encodings of the q indexed Reed–Solomon symbols) in which s contains at least

(2
k+
√

k
+ δ

2

)
m

symbols from the corresponding inner codeword. So we can decode the corresponding Reed–Solomon
symbol (by brute-force) if we knew the boundaries of this block. Since we do not know this, the idea is
to try decoding all contiguous chunks of size

(2
k+
√

k
+ δ

4

)
m in s with sufficient granularity (for example,

subsequences beginning at locations which are multiples of δm/4).
This might result in the decoding of several spurious symbols, but there will be enough correct symbols

to list decode the Reed–Solomon code and produce a short list that includes the correct message. By the
combinatorial guarantee on the LCS value of the concatenated code from Theorem 19, only the correct
message will have an encoding containing s as a subsequence. Therefore, we can prune the list and identify
the correct message by re-encoding each candidate message and checking which one has s as a subsequence.
The list decoding step is similar to the one used in [?] for list decoding binary codes from a fraction of
deletions approaching 1/2. Since we have the combinatorial guarantee that the code can correct a deletion
fraction ≈ 1− 2

k+
√

k
, a list decoding algorithm up to this radius is also automatically a unique decoding

algorithm.

17

Theorem 20 (Explicit and efficiently decodable deletion codes). The concatenated code C ⊆ [k]N con-
structed in Theorem 19 can be efficiently decoded from a fraction

(
1− 2

k+
√

k
−O(γ1/3)

)
of worst-case dele-

tions in N3(logN)O(1) time, for large enough N.

Proof. With hindsight, let δ = 3γ1/3. Suppose we are given a subsequence s of an unknown codeword
c ∈C (encoding the unknown polynomial f of degree < `), where lens >

(2
k+
√

k
+δ
)
N. We claim that the

following decoding algorithm recovers c.

1. T ← /0.

2. [Inner decodings] For each integer j, 0 6 j 6 lens
(δm)/4 , do the following:

(a) Let σ j be the contiguous subsequence of s of length
(2

k+
√

k
+ δ

4

)
m starting at position jb δm

4 c+1.

(b) By a brute-force search over Fq×Fq, find the unique pair (α,β), if any, such that its encoding
under Cin has σ j as a subsequence, and add (α,β) to T . (This pair, if it exists, is unique since
LCS(Cin)<

(2
k+
√

k
+ γ

4

)
m, and δ > γ .)

3. [Reed–Solomon list recovery] Find the list, call it L , of all polynomials p ∈ Fq[X] of degree < `
such that ∣∣∣{(α, p(α)) | α ∈ Fq}∩T

∣∣∣> δq
2

. (9)

4. [Pruning] Find the unique polynomial f ∈L , if any, such that its encoding under C contains s as a
subsequence, and output f .

CORRECTNESS. Break the codeword c ∈ [k]nm of the concatenated code C into n (inner) blocks, with the
i’th block bi ∈ [k]m corresponding to the inner encoding of the i’th symbol (αi, f (αi)) of the outer Reed–
Solomon codeword. For some fixed canonical way of forming s out of c, denote by si the portion of s
consisting of the symbols in the i’th block bi. Call an index i ∈ [n] good if lensi >

(
2

k+
√

k
+ δ

2

)
m. By a

simple counting argument, there are at least δn/2 values of i ∈ [n] that are good.
For each good index i ∈ [n], one of the inner decodings in Step 2 will attempt to decode a subsequence

of si, and therefore will find the pair (αi, f (αi)). Since there are at least δq
2 good indices, the condition (9) is

met for the correct f . Using Sudan’s list decoding algorithm for Reed–Solomon codes [?], one can find the
list of all degree 6 ` polynomials p ∈ Fq[X] such that (α, p(α)) ∈T for more than

√
2`|T | field elements

α ∈ Fq. Further, this list will have at most
√

2|T |/` polynomials.

Since |T | 6 4q/δ , if we pick δ so that δq
2 >

√
8`q/δ , the decoding will succeed. Recalling that

`= d γq
2 e, this condition is met for our choice of δ .

RUNTIME. The number of inner decodings performed is O(q/δ) = O(N), and each inner decoding takes
q2(logq)O(1) 6 N2(logN)O(1)) time. The set T has size at most O(q/δ) 6 O(N) for N large enough. The
Reed–Solomon list decoding algorithm on |T |many points can be performed in O(N2) field operations, see
for instance [?]. So the overall running time of the decoder is at most N3 ·poly(logN).

Remark 6. The cubic runtime in the above construction arose because of the brute-force implementation of
the inner decodings. One can recursively use the above concatenated codes themselves as the inner codes, in
place of the codes from Theorem 17. Each of the inner decodings can now be performed in poly(logq) time,
for a total time of N ·poly(logN) for Step 2. By using near-linear time implementations of Reed–Solomon

18

list decoding [?], one can also perform Step 3 in q · poly(logq) time. Thus one can improve the decoding
complexity to N ·poly(logN).

6 Concluding remarks

The obvious question left open by this work is to determine the exact value of p∗(k), the (supremum of the)
largest fraction of deletions one can correct over alphabet size k with positive rate. Even in the binary case
we do not dare to have a strong opinion whether the value is 1

2 ,
√

2−1 or some intermediate value, but let
us close with a few comments.

When comparing the encodings of two different symbols in our inner code, one codeword looks locally
like 1A2cA (or the other way around) where the other codeword has long stretches (of length � A) of the
same symbol (which are equally often 1’s and 2’s). It is tempting to introduce one more level of granularity,
let us call it “micro particles” in these long stretches, in the form of sequences of the form jB for j ∈ {1,2}
and B smaller than A. We were unable to use this to improve the bounds of the contruction. It seems like only
the shortest period in each of the two codewords matter but we do not have a formal statement to support
this feeling.

There are two reasons for subsequences having big spans in our construction. The first reason is that
the frequencies are different (this is the main mechanism in the clean construction and hence in [?]) and the
second is the impurities in the form of dirt. The span is large because we discard half of the high frequency
word and all of the dirt. If the span is to approach 4 times the length of the subsequences, we need the
fraction of dirt to approach half the length of the word but this seems hard to combine with the intuition of
being “dirt,” which should be in minority. We suspect that some new mechanism is needed to prove that
p∗(2) = 1

2 if this is indeed the true answer.

19

	Introduction
	Our results
	Our techniques

	Preliminaries
	Alphabet reduction for deletion codes
	The clean construction
	Analysis of clean construction

	Dirty construction
	Dirty construction, binary case
	Dirty construction, general case

	Existence and construction of good deletion codes
	Existential claims
	Efficient deterministic construction

	Deletion codes with efficient decoding algorithms
	Concatenating Hamming metric codes with deletion codes
	Deletion correction algorithm

	Concluding remarks

