
Bounded Independence versus Symmetric Tests∗

Ravi Boppana† Johan H̊astad‡ Chin Ho Lee§ Emanuele Viola§

April 4, 2019

Abstract

For a test T ⊆ {0, 1}n define k∗(T ) to be the maximum k such that there exists a
k-wise uniform distribution over {0, 1}n whose support is a subset of T .

For Ht = {x ∈ {0, 1}n : |
∑

i xi − n/2| ≤ t} we prove k∗(Ht) = Θ(t2/n + 1).
For Sm,c = {x ∈ {0, 1}n :

∑
i xi ≡ c (mod m)} we prove that k∗(Sm,c) = Θ(n/m2).

For some k = O(n/m) we also show that any k-wise uniform distribution puts proba-
bility mass at most 1/m+ 1/100 over Sm,c. Finally, for any fixed odd m we show that
there is an integer k = (1−Ω(1))n such that any k-wise uniform distribution lands in
T with probability exponentially close to |Sm,c|/2n; and this result is false for any even
m.
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1 Introduction and our results

A distribution on {0, 1}n is k-wise uniform, aka k-wise independent, if any k bits are uniform
in {0, 1}k. The study of k-wise uniformity has been central to theoretical computer science
since at least the seminal work [CW79] by Carter and Wegman. A specific direction has
been to show that k-wise uniformity “looks random” to several classes of tests. These
classes include combinatorial rectangles [EGL+92, CRS00] (for an exposition see e.g. Lecture
1 in [Vio17]), bounded-depth circuits, aka AC0, [Baz09, Raz09, Bra10, Tal17, HS16] (see
e.g. Lectures 2-3 in [Vio17]), and halfspaces [RS10, DGJ+10, GOWZ10, DKN10]. More
recently a series of works consider smoothed versions of the first two classes, where the input
is perturbed with noise, and gives improved bounds [AW89, GMR+12, HLV18, LV17a]. These
results have in turn found many applications. For example, the recent exciting constructions
of 2-source extractors for polylogarithmic min-entropy [CZ16, BDT16] rely on the results
that k-wise uniformity looks random to AC0 [Bra10] and the majority function [DGJ+10].

In this work we extend this direction by giving new bounds for two classes of tests, both
symmetric. First we consider the class of mod m tests.

Definition 1. For an input length n, and integers m and c, we define the set Sm,c := {x ∈
{0, 1}n :

∑
i xi ≡ c (mod m)}.

These tests have been extensively studied at least since circuit complexity theory “hit
the wall” of circuits with mod m gates for composite m in the 80’s. However, the effect of
k-wise uniformity on mod m tests does not seem to have been known before this paper. We
study for what values of k there exist a k-wise uniform distribution over {0, 1}n supported on
Sm,c. Note that such k-wise uniform distributions are obviously not pseudorandom against
mod m tests. Our first main result gives tight bounds on the maximum value of such a k,
establishing k is about n/m2.

Theorem 2. For all integers m ≥ 2 and c, there exists an integer k ≥ n/(32m2)− 1 and a
k-wise uniform distribution on {0, 1}n that is supported on Sm,c.

Theorem 3. For all integers m ≥ 2, c, and k ≥ 140n/m2+4, no k-wise uniform distribution
on {0, 1}n can be supported on Sm,c.

Theorem 2 is trivial for m = 2, as the uniform distribution over S2,0 is (n − 1)-wise
uniform. But already for m = 3 the result is not trivial.

Theorem 3 is equivalent to saying that when k ≥ 140n/m2 + 4 then every k-wise uniform
distribution must land in Sm,c with non-zero probability.

For motivation, recall from above the line of works [Baz09, Raz09, Bra10, Tal17, HS16]
showing that k-wise uniform distributions fool AC0 circuits. Specifically, these works show
k = poly log n suffices to fool AC0 circuits on n bits of size poly(n) and depth O(1). It
is natural to ask whether the same distribution also fools AC0 circuits with mod m gates,
a “frontier” class for which we have exponential lower bounds [Raz87, Smo87] (when m
is prime) but not good pseudorandom generators. A positive answer might have looked
plausible, given that for example the parity function is hard even with mod 3 gates [Smo87].
But in fact Theorem 2 gives a strong negative answer, showing that k = Ω(n) is necessary
even for a single mod 3 gate.
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Theorem 2 proves a conjecture in [LV17b] where this question is also raised. Their
motivation was a study of the “mod 3” rank of k-wise uniform distributions, started in
[MZ09], which is the dimension of the space spanned by the support of the distribution over
F3. The work of Lee and Viola [LV17b, Claim 1.10] shows that achieving 100 log n-wise
uniformity with dimension ≤ n0.49 would have applications to pseudorandomness. It also
exhibits a distribution with dimension n0.72 and pairwise uniformity. Theorem 2 yields a new
piece of information in this study: there exist distributions with dimension n− 1 and Ω(n)-
wise uniformity. However, we are still far from achieving the parameters required in [LV17b,
Claim 1.10].

We then prove another theorem which is in the same spirit of Theorem 3 but gives
different information.

Theorem 4. Let m and c be two integers.

(a) For k ≥ 2n/m+2, no k-wise uniform distribution on {0, 1}n can be supported on Sm,c.

(b) If m is odd, then there is a γ > 0 depending only on m such that for any (1− γ)n-wise
uniform distribution D on {0, 1}n, we have |Pr[D ∈ Sm,c]− |Sm,c|/2n| ≤ 2−γn.

(c) There exists a universal constant C such that for every ε > 0, n ≥ Cm2 logm, and any
C(n/m)(1/ε)2-wise uniform distribution D on {0, 1}n, Pr[D ∈ Sm,c] ≤ |Sm,c|/2n + ε.

First, Theorem 4 (a) shows that the largest possible value of k in Theorem 2 is k ≤
2(n + 1)/m + 2. Compared to Theorem 3, this result is asymptotically inferior, but gives
better constants and has a simpler proof. Theorem 4 (b) shows that when m is odd, if k is
larger than (1 − γ)n for a positive constant γ depending only on m then k-wise uniformity
fools Sm,c with exponentially small error. The proof of Theorem 4 (b) however does not carry
to the setting of k < n/2, for any m. So we establish Theorem 4 (c), which gives a worse
error bound but allows for k to become smaller for larger m, specifically, k = O(n/m) for
constant error. The error bound in Theorem 4 (c) and the density of Sm,c are such that it only
provides a meaningful upper bound on the probability that the k-wise uniform distribution
lands in Sm,c, but not a lower bound. In fact, we conjecture that no lower bound is possible
in the sense that there is a constant C > 0 such that for every m there is a Cn-wise uniform
distribution supported on the complement of Sm,c.

We note that Theorem 4 (b) is false when m is even because the uniform distribution on
S2,0 has uniformity k = n − 1 but puts about 2/m mass on Sm,0, a set which as we shall
see later (cf. Remark 1) has density about 1/m. The latter density bound, in combination
with Theorem 4 (b) and Theorem 4 (c) implies that for some k = min{O(n/m), (1−Ω(1))n},
every k-wise uniform distribution puts probability mass at most 1/m + 1/100 over Sm,c for
odd m and any integer c.

A remaining open problem is to understand for what values of k does k-wise uniformity
ensure closeness to uniform modulo m. Note that to get close to uniform, or even to put
probability mass on all possible moduli, one would want ε in Theorem 4 (c) to be roughly
1/m. However, this gives k ≥ n in the theorem, which is trivial.

We then consider another class of tests which can be written as the intersection of two
halfspaces.

Definition 5. For an input length n, and an integer t, we define the set Ht := {x ∈ {0, 1}n :
|
∑

i xi − n/2| ≤ t}.
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Again, we ask for what values of k there exists a k-wise uniform distribution over {0, 1}n
supported on Ht. We obtain tight bounds for k up to a constant factor, showing that the
maximum value of such a k is Θ(t2/n+ 1).

Theorem 6. For every integer t, there exists an integer k ≥ t2/(50n) and a k-wise uniform
distribution over {0, 1}n that is supported on Ht.

Theorem 7. For all integers t and k ≥ 36t2/n + 3, no k-wise uniform distribution over
{0, 1}n can be supported on Ht.

In fact, as we will see in the proof, the distribution in Theorem 6 is actually supported
on Ht ∩ Sm,0.

One motivation for these results is to understand for which tests the smoothed version
of the test obtained by perturbing coordinates with random noise is fooled by k-wise unifor-
mity. As mentioned earlier, this understanding underlies recent, state-of-the-art pseudoran-
dom generators [AW89, GMR+12, HLV18, LV17a]. See also [LV17b]. Using Theorem 6 we
prove that Ω(log n)-wise uniformity is necessary to fool read-once DNF on n bits, even with
constant noise. Note that O(log n)-uniformity is sufficient, even without noise [EGL+92].

Theorem 8. There exists a read-once DNF d : {0, 1}n → {0, 1}, a constant α, and an
α log n-wise uniform distribution D such that |Pr[d(U) = 1] − Pr[d(D + Nα) = 1]| ≥ Ω(1),
where U is uniform over {0, 1}n, Nα is the distribution over {0, 1}n whose bits are indepen-
dent and are set to uniform with probability α and 0 otherwise, and ‘+’ is bit-wise XOR.

Proof. Let d be the Tribes DNF with width w = log n − log lnn + on(1), see e.g. [O’D14].
We have |Pr[d(U) = 1] − 1/2| = o(1). Partition the n bits into n/w blocks of size w.
The distribution D has i.i.d. blocks. The projection of each block is an αw-wise uniform
distribution with Hamming weight ≤ 2w/3. The probability that d(D +Nα) = 1 is at most
the probability that there exists a block where the noise vector Nα has Hamming weight
≥ w/3. This probability is at most

(n/w)2w(α/2)w/3 ≤ 1/3,

for a sufficiently small α.

1.1 Techniques

We give two related approaches to proving Theorem 2. At a high level, both approaches
are similar to the work of Alon, Goldreich, and Mansour [AGM03], which shows that one
can apply a small perturbation to the probability masses of every almost k-wise uniform
distribution on {0, 1}n to make it k-wise uniform, showing that every ε-almost k-wise uniform
distribution on {0, 1}n is nO(k)ε-close to a k-wise uniform distribution, in statistical distance.
However, in their setting there is no constraint on the support. This makes our proof
significantly more technical.

Our first approach uses the following equivalent definition for a distribution on {0, 1}n
to be k-wise uniform: the distribution is unbiased under any parity test on at most k bits.
To construct our distribution, we first start with the uniform distribution over the set Sm,c,
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and show that the bias under each of these parity tests is small enough, so that they can
be made zero by a small perturbation of the probability masses of the distribution. Our
goal is then to show that the change in the probability on each weight is no more than the
probability we start with, so that it remains non-negative after the perturbation. In the
conference version of this paper [BHLV16], we use this approach to prove a slightly weaker
version of Theorem 2. We refer the interested readers to [BHLV16] for details.

We now give an overview of the second approach, which is developed in this paper. Instead
of looking at the biases of parity tests, we consider another equivalent characterization of
k-wise uniform distributions that are symmetric. To simplify the calculations, we will switch
to {−1, 1} and consider distributions supported on S ′m,c := {y ∈ {−1, 1}n :

∑
i yi ≡ c

(mod m)}. One can then translate results for {−1, 1}n back to {0, 1}n. (See Fact 12.) A
symmetric distribution is k-wise uniform on {−1, 1}n if and only if the first k moments of
the sum of its n bits match the corresponding moments of the uniform bits. Similar to the
first approach, we start with the uniform distribution on S ′m,c, and show that the first k
moments of the sum of the bits are close to the ones of the uniform bits. Then, we perturb
the probabilities on k + 1 of the sums

∑
i yi of the distribution to match these moments

exactly. Once again, our goal is to show that the amount of correction is small enough so
that the adjusted probabilities remain non-negative. Note that in this approach we work
with distributions over the integers instead of {0, 1}n.

While the two approaches seem similar to each other, the latter allows us to perform
a more refined analysis on the tests we consider in this paper, and obtain the tight lower
bounds for both modular and threshold tests.

Organization. We begin with Theorem 4 in Section 2 because it is simpler. We use the
second approach to prove the tight lower bounds for Sm,c (Theorem 2) and Ht (Theorem 6) in
Sections 3 and 4, respectively. The proof of Theorem 2 involves a somewhat technical lemma
which we defer to Section 5. Finally, we prove our tight upper bounds for Sm,c (Theorem 3)
and Ht (Theorem 7) in Sections 6 and 7, respectively.

2 Proof of Theorem 4

In this section we prove Theorem 4. We start with the following theorem which will give
Theorem 4 (a) as a corollary.

Theorem 9. Let I ⊆ {0, 1, . . . , n} be a subset of size |I| ≤ n/2. There does not exist a 2|I|-
wise uniform distribution on {0, 1}n that is supported on S := {x ∈ {0, 1}n :

∑
i xi ∈ I}.

Proof. Suppose there exists such a distribution D. Define the n-variate nonzero real poly-
nomial p by

p(x) :=
∏
i∈I

(
−i+

n∑
j=1

xj

)
.

Note that p(x) = 0 when x ∈ S. And so E[p2(D)] = 0 in particular. However, since p2 has
degree at most 2|I|, we have E[p2(D)] = E[p2(U)] > 0, where U is the uniform distribution
over {0, 1}n, a contradiction.
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Proof of Theorem 4 (a). When I corresponds to the mod m test Sm,c, |I| ≤ n/m+ 1.

We now move to Theorem 4 (b). First we prove a lemma giving a useful estimate of∑
x∈Sm,c

(−1)
∑k

i=1 xi .

Similar bounds have been established elsewhere, cf. e.g. Theorem 2.9 in [VW08], but we do
not know of a reference with an explicit dependence on m, which will be used in the next
section. Theorem 4 (b) follows from bounding above the tail of the Fourier coefficients of the
indicator function of Sm,c.

Lemma 10. For any 1 ≤ k ≤ n− 1 and any 0 ≤ c ≤ m− 1, we have∣∣∣ ∑
x∈Sm,c

(−1)
∑k

i=1 xi

∣∣∣ ≤ 2n
(

cos
π

2m

)n
,

while for k = 0, we have ∣∣∣|Sm,c| − 2n/m
∣∣∣ ≤ 2n

(
cos

π

2m

)n
.

For odd m the first bound also holds for k = n.

Proof. Consider an expansion of

p(y) = (1− y)k(1 + y)n−k

into 2n terms indexed by x ∈ {0, 1}n where xi = 0 indicates that we take the term 1 from the

ith factor. It is easy to see that the coefficient of yd is
∑
|x|=d(−1)

∑k
i=1 xi , where |x| denotes

the number of occurrences of 1 in x. Denote ζ := e2πi/m as an mth root of unity. Recall the
identity

1

m

m−1∑
j=0

ζj(d−c) =

{
1 if d ≡ c (mod m)

0 otherwise.

Thus the sum we want to bound is equal to

1

m

m−1∑
j=0

ζ−jcp(ζj).

Note that p(ζ0) = p(1) = 0 for k 6= 0 while for k = 0, p(ζ0) = 2n. For the other terms we
have the following bound.

Claim 11. For 1 ≤ j ≤ m− 1, |p(ζj)| ≤ 2n
(
cos π

2m

)k (
cos π

m

)n−k
.

Proof. As |1 + eiθ| = 2|cos(θ/2)| and |1− eiθ| = 2|sin(θ/2)| we have

|p(ζj)| = |1− ζj|k|1 + ζj|n−k

= 2n
∣∣∣sin jπ

m

∣∣∣k∣∣∣cos
jπ

m

∣∣∣n−k
≤ 2n

(
cos

π

2m

)k (
cos

π

m

)n−k
,
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where the last inequality holds for odd m because (1) sin jπ
m

is largest when j = m−1
2

or

j = m+1
2

, (2) sin(π
2
− x) = cos x, and (3) cos jπ

m
is largest when j = 1 or j = m− 1. For even

m the term with j = m/2 is 0, as in this case we are assuming that k < n, and the bounds
for odd m are valid for the other terms.

Therefore, for k 6= 0 we have∣∣∣∣∣∣
∑
x∈Sm,c

(−1)
∑k

i=1 xi

∣∣∣∣∣∣ =
m− 1

m
· 2n

(
cos

π

2m

)k (
cos

π

m

)n−k
≤ 2n

(
cos

π

2m

)k (
cos

π

m

)n−k
,

and we complete the proof using the fact that cos(π/m) ≤ cos(π/2m). For k = 0 we also
need to include the term p(1) = 2n which divided by m gives the term 2n/m.

Remark 1. Clearly the lemma for k = 0 simply is the well-known fact that the cardinality
of Sm,c is very close to 2n/m. Equivalently, if x is uniform in {0, 1}n then the probability
that

∑
i xi ≡ c (mod m) is very close to 1/m.

Proof of Theorem 4 (b). We use Fourier analysis (see e.g. [O’D14] for an introduction). Let
f : {0, 1}n → {0, 1} be the characteristic function of Sm,c. We write f in its Fourier expansion

f(x) =
∑

β∈{0,1}n f̂β(−1)
∑n

i=1 βixi . We first bound above the nonzero Fourier coefficients of

f . Since f is symmetric, by Lemma 10, we have for any β with |β| = k > 0,

|f̂β| =
∣∣∣2−n ∑

x∈Sm,c

(−1)
∑k

i=1 xi

∣∣∣ ≤ (cos
π

2m

)n
≤ 2−αn,

where α = − log2 cos(π/2m) = Θ(1/m2) depends only on m. If D is k-wise uniform, we have
Ex∼D[(−1)

∑
βixi ] = 0 whenever 0 < |β| ≤ d. Therefore,

|E[f(D)]−E[f(U)]| ≤
∑
|β|>k

|f̂β|·
∣∣∣Ex∼D[(−1)

∑
βixi
]∣∣∣ ≤ ∑

|β|>k

|f̂β| ≤ 2−αn
n∑

t=k+1

(
n

t

)
= 2−αn

n−k−1∑
t=0

(
n

t

)
.

For k ≥ (1 − δ)n, we have an upper bound of 2n(H(δ)−α). Pick δ small enough so that
H(δ) ≤ α/2. The result follows by setting γ := min{α/2, δ}.

Note that the above proof fails when m is even as we cannot handle the term with |β| = n.
Finally, we prove Theorem 4 (c). We use approximation theory.

Proof of Theorem 4 (c). We will show that Pr[D ∈ Sm,c] ≤ ε. Let f : {0, 1}n → {0, 1} be
the characteristic function of Sm,c. The proof amounts to exhibiting a real polynomial p in
n variables of degree d = C(n/m)(1/ε)2 such that f(x) ≤ p(x) for every x ∈ {0, 1}n, and
E[p(U)] ≤ ε for U uniform over {0, 1}n. To see that this suffices, note that E[p(U)] = E[p(D)]
for any distribution D that is d-wise uniform. Using this and the fact that f is non-negative,
we can write

0 ≤ E[f(D)] ≤ E[p(D)] = E[p(U)] ≤ ε.

Hence, E[f(D)] ≤ ε. This is the method of sandwiching polynomials from [Baz09].
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Let us write f = g(
∑

i xi/n), for g : {0, 1/n, . . . , 1} → {0, 1}. We exhibit a univariate
polynomial q of degree d such that g(x) ≤ q(x) for every x, and the expectation of q under
the binomial distribution is at most ε. The polynomial p is then q(

∑
i xi/n).

Consider the continuous, piecewise linear function s : [−1, 1] → [0, 1] defined as follows.
The function is always 0, except at intervals of radius a/n around the inputs x where g
equals 1, i.e., inputs x such that nx is congruent to c modulo m. In those intervals we define
the following tent function: it is a piecewise linear function that goes up and down like a
‘∧’, starting from 0 at x− a/n, and reaching the value of 1 linearly at x, then going back to
0 at x+ a/n. We set a = εm/10.

By Jackson’s theorem (see e.g., [Car, Theorem 7.4] or [Che66, Chapter 6]), for d =
O(nε−1a−1) = O(nε−2m−1), there exists a univariate polynomial q′ of degree d that approx-
imates s with pointwise error ε/10. Our polynomial q is defined as q := q′ + ε/10.

It is clear that g(x) ≤ q(x) for every x ∈ {0, 1/n, . . . , 1}. It remains to estimate E[q(U)].
As q′ is a good approximation of s we have E[q(U)] ≤ 2ε/10 + E[s(U)]. We noted in

Remark 1 that the remainder modulo m of
∑
Ui is δ-close to uniform over {0, 1, . . . ,m− 1}

for δ = cos(π/2m)n = e−Ω(n/m2). Now the function s, as a function of
∑
xi, is a periodic

function with period m. So we have

E[s(U)] =
a∑

x=0

Pr
[∑

i

Ui ≡ x (mod m)
]
· s(x/n)

≤ (1/m+ δ)
a∑

x=0

x

a

≤ (1/m+ δ) · a
≤ (1/m+ δ) · εm/10.

It follows that if n is at least a large constant times m2 logm, we have E[s(U)] ≤ 2ε/10 and
we conclude that E[q(U)] ≤ 4ε/10.

3 Tight lower bound on k-wise uniformity vs. mod m

In this section we prove Theorem 2. Throughout the rest of this paper, we will interpret 00

as 1. For convenience, from now on we will consider the space {−1, 1}n instead of {0, 1}n. In
particular, we will consider strings x ∈ {−1, 1}n that satisfy

∑
i xi ≡ c (mod m). One can

translate results stated for {0, 1}n to results for {−1, 1}n and vice versa using the following
fact. Recall that Sm,c = {x ∈ {0, 1}n :

∑
i xi ≡ c (mod m)} and S ′m,c = {y ∈ {−1, 1}n :∑

i yi ≡ c (mod m)}.

Fact 12. Let x ∈ {0, 1}n and let y ∈ {−1, 1}n be the string obtained by replacing each xi by
yi = 1− 2xi. Then x is in Sm,c if and only if y is in S ′2m,n−2c.

Let n be a positive integer. Let X1, X2, . . . , Xn be independent random variables chosen
uniformly from {−1, 1}. Let B be the sum of all the Xj. The distribution of B is a shifted
binomial distribution. Note that B has the same parity as n.
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Theorem 13. Let m and n be positive integers and c be an integer. Suppose that m is odd
or n and c have the same parity. Let k be a positive integer such that k ≤ n

8m2 . Then there
is a probability distribution on the c mod m integers that matches the first k moments of B.
Furthermore, the support of the probability distribution is a subset of the support of B.

Theorem 2 follows from applying Fact 12 to Theorem 13.
Our goal is to come up with a distribution supported on c mod m so that its first k

moments match the moments of B. We first start with a measure q on the c mod m integers.
Here q may not be a probability measure — its values may not sum to 1. However, we will
show that we can turn q into a probability measure p by a small adjustment ∆ on k + 1
appropriately chosen positive values of q(x).

3.1 Defining Cm,c(x)

Let m be a positive integer (the modulus). Let c be an integer (the residue). We will
assume that either m is odd or n and c have the same parity. We will use Iverson bracket
notation: JtrueK = 1 and JfalseK = 0. Define the comb function Cm,c on the integers by
Cm,c(x) = mJx ≡ c (mod m)K if m is odd and Cm,c(x) = m

2
Jx ≡ c (mod m)K if m is even.

3.2 Defining q(x)

Define the function q on the integers by q(x) = Cm,c(x) Pr[B = x].1 Note that q is nonnega-
tive. Also if q(x) 6= 0, then x is c (mod m) and in the support of B.

Lemma 14. If f is a function on the integers, then∑
x

q(x)f(x) = E[Cm,c(B)f(B)].

Proof. By the definition of expected value, we have∑
x

q(x)f(x) =
∑
x

Pr[B = x]Cm,c(x)f(x) = E[Cm,c(B)f(B)].

3.3 Defining Lagrange polynomials

Let k be a positive integer. Let a0, a1, . . . , ak be k + 1 distinct integers that are c mod m,
n mod 2, and as close to 0 as possible. Because they are as close to 0 as possible, we have
|aj| ≤ (k+ 1)m ≤ 2km. In our application, 2km will be at most n. So each aj will be in the
support of B.

Given an integer v such that 0 ≤ v ≤ k, define the Lagrange polynomial Lv as follows:

Lv(x) =
∏

0≤j≤k
j 6=v

(x− aj).

Note that Lv(aw) = 0 if and only if v 6= w. It’s well known that L0, L1, . . . , Lk form a basis
(the Lagrange basis) of the vector space of polynomials of degree at most k.

1Alternatively, we could have defined q to be the probability distribution of B conditioned on B ≡ c
(mod m). While that definition would work, it would make our argument slightly more complicated.
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3.4 Defining ∆(x)

Define the function ∆ on the integers as follows. If x equals av (for some v), then

∆(av) =
E[Cm,c(B)Lv(B)]− E[Lv(B)]

Lv(av)
.

If x 6= aw for every w, then ∆(x) = 0.2

Lemma 15. If f is a polynomial of degree at most k, then∑
x

∆(x)f(x) = E[Cm,c(B)f(B)]− E[f(B)].

Proof. We will first prove the claim when f is a Lagrange polynomial Lv. If ∆(x) 6= 0, then
x is of the form aw for some w. But if Lv(aw) 6= 0, then v = w. So the sum has at most
one nonzero term, corresponding to x = av. And the equation is true in this case by the
definition of ∆.

We have proved the claim for Lagrange polynomials. But every polynomial of degree at
most k is a linear combination of the Lagrange polynomials. This completes the proof.

3.5 Defining p(x)

Define the function p on the integers by p(x) = q(x)−∆(x). Note that if p(x) 6= 0, then x
is c mod m and (assuming 2km ≤ n) in the support of B.

Lemma 16. If f is a polynomial of degree at most k, then∑
x

p(x)f(x) = E[f(B)].

Proof. By Lemmas 14 and 15, we have∑
x

p(x)f(x) =
∑
x

q(x)f(x)−
∑
x

∆(x)f(x)

= E[Cm,c(B)f(B)]−
(
E[Cm,c(B)f(B)]− E[f(B)]

)
= E[f(B)].

To show that p is nonnegative, we will show that |∆(x)| ≤ 1
2
q(x). First we bound above

|∆(x)|. Then we bound below q(x).

Recall that ∆(x) = E[Cm,c(B)Lv(B)]−E[Lv(B)]

Lv(av)
if x equals av for some v (and 0 otherwise).

Lemmas 19 and 21 below give upper and lower bounds on the numerator and denominator,
respectively.

2Why this definition of ∆? We want ∆ to be nonzero only at the k + 1 values a0, a1, . . . , ak. We also
want Lemma 15 to hold. Those two constraints force the given definition of ∆.
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3.6 Bounding numerator of ∆

We start this subsection by stating a useful lemma.

Lemma 17. Let r be an integer such that 0 ≤ r ≤ n
8
. If 0 < θ ≤ π

2
, then

∣∣E[BreiθB]
∣∣ ≤ 2

(8r

θ

)r
e−θ

2n/4.

Informally, this lemma says that the rth moment of B, after being twisted in the complex
plane, is exponentially small. We defer its proof to Section 5.

Our next lemma says that B is exponentially close to being uniformly distributed mod m
even when weighted by moments.

Lemma 18. Let r be an integer such that 0 ≤ r ≤ n
8
. Let m be an integer such that

1 ≤ m ≤
√
n. Suppose that m is odd or n and c have the same parity. Then∣∣E[BrCm,c(B)]− E[Br]

∣∣ ≤ 8(3rm)re−2n/m2

.

Proof. Let m′ be m if m is odd and m/2 if m is even. Let α be π/m′. For now, we will
assume that n and c have the same parity. At the end, we will show how to adjust the proof
when n and c have the opposite parity.

Because B and n have the same parity, B − c is even. So we have the key identity

m′−1∑
j=1

eijα(B−c) = Cm,c(B)− 1.

Hence, by the triangle inequality, we have

∣∣E[BrCm,c(B)]− E[Br]
∣∣ =

∣∣∣E[Br

m′−1∑
j=1

eijα(B−c)
]∣∣∣

=
∣∣∣m′−1∑
j=1

e−ijαc E[BreijαB]
∣∣∣

≤
m′−1∑
j=1

∣∣E[BreijαB]
∣∣ .

The sum is symmetric: the terms corresponding to j = ` and j = m′ − ` are equal. So we
can double its first half:

∣∣E[BrCm,c(B)]− E[Br]
∣∣ ≤ 2

bm′/2c∑
j=1

∣∣E[BreijαB]
∣∣ .

10



Therefore, by Lemma 17, we have

∣∣E[BrCm,c(B)]− E[Br]
∣∣ ≤ 4

bm′/2c∑
j=1

( 8r

jα

)r
e−j

2α2n/4

≤ 4
(8r

α

)r bm′/2c∑
j=1

e−j
2α2n/4

≤ 4
(8rm

π

)r bm′/2c∑
j=1

e−j
2π2n/(4m2)

≤ 4(3rm)r
bm′/2c∑
j=1

e−2j2n/m2

≤ 4(3rm)r
bm′/2c∑
j=1

e−2jn/m2

.

The sum is a geometric series whose common ratio is less than 1
2
, so we can bound it by

twice its first term: ∣∣E[BrCm,c(B)]− E[Br]
∣∣ ≤ 8(3rm)re−2n/m2

.

The proof above assumed that n and c have the same parity. When n and c have the
opposite parity, we can adjust the proof as follows. From the parity hypothesis in the
theorem, we know that m is odd. In particular, m′ = m. Because B and n have the same
parity, B − c is odd. So we have the identity

m′−1∑
j=1

(−1)jeijα(B−c) = Cm,c(B)− 1.

It’s the same identity as before except for the factor of (−1)j. We can now continue with
the remainder of the proof. The factor of (−1)j goes away as soon as we apply the triangle
inequality. Hence we obtain the same bound.

Our final lemma of this subsection says that B is exponentially close to being uniformly
distributed mod m even when weighted by Lagrange polynomials. It provides the upper
bound on the numerator of ∆ that we were seeking.

Lemma 19. Let m be an integer such that 1 ≤ m ≤
√
n. Suppose that m is odd or n and c

have the same parity. Suppose that k ≤ n
8
. If v is an integer such that 0 ≤ v ≤ k, then∣∣E[Lv(B)Cm,c(B)]− E[Lv(B)]

∣∣ ≤ 8(5km)ke−2n/m2

.

Proof. Given a subset A of {1, 2, . . . , n}, define the monomial XA to be the product of the
Xj for which j is in A. By expanding the product, we have

Lv(B) =
∏
j 6=v

(B − aj) =
∑
A

(−1)|A|aABk−|A|,

11



where A ranges over every subset of {0, 1, . . . , k}−{v}. Therefore, by the triangle inequality,
Lemma 18, and the binomial theorem, we have

|E[Lv(B)Cm,c(B)]− E[Lv(B)]| =
∣∣∣E[[Cm,c(B)− 1]Lv(B)

]∣∣∣
=
∣∣∣E[[Cm,c(B)− 1]

∑
A

(−1)|A|aABk−|A|
]∣∣∣

=
∣∣∣∑
A

(−1)|A|aA E
[
[Cm,c(B)− 1]Bk−|A|

]∣∣∣
≤
∑
A

∣∣∣aA E[[Cm,c(B)− 1]Bk−|A|
]∣∣∣

≤
∑
A

(2km)|A|
∣∣∣E[[Cm,c(B)− 1]Bk−|A|

]∣∣∣
≤
∑
A

(2km)|A| · 8(3(k − |A|)m)k−|A|e−2n/m2

= 8e−2n/m2
∑
A

(2km)|A|(3(k − |A|)m)k−|A|

≤ 8e−2n/m2
∑
A

(2km)|A|(3km)k−|A|

= 8e−2n/m2

(5km)k.

3.7 Bounding denominator of ∆

Our lower bound on |Lv(av)| follows from the following claim.

Claim 20. Let a0 < · · · < ak be k + 1 points such that for every j ∈ {1, . . . , k} we have
aj − aj−1 ≥ d. Then for any integer t such that 0 ≤ t ≤ k,∏

j 6=t

|at − aj| ≥
(kd

2e

)k
.

Proof. First observe that we have |at − aj| ≥ d|t− j|. So we have∏
j 6=t

|at − aj| ≥
∏
j 6=t

d|t− j| = dkt!(k − t)!.

Note that t!(k − t)! ≥ k!/2k since
(
k
t

)
≤ 2k. Using Stirling’s formula x! ≥ (x/e)x for positive

integer x, we have∏
j 6=t

|at − aj| ≥ dkt!(k − t)! ≥ dk
k!

2k
≥ dk

( k
2e

)k
=
(kd

2e

)k
.

Lemma 21. If v is an integer such that 0 ≤ v ≤ k, then

|Lv(av)| ≥
(km

6

)k
.

Proof. Without loss of generality, assume that the aj are in sorted order. Then this lemma
follows from Claim 20 with d replaced by m.

12



3.8 Conclude upper bound on ∆

Lemma 22. Let m be an integer such that 1 ≤ m ≤
√
n. Suppose that m is odd or n and c

have the same parity. Suppose that k ≤ n
8
. If x is an integer, then

|∆(x)| ≤ 8(30)ke−2n/m2

.

Proof. If x is different from av for every v, then ∆(x) = 0. So we may assume that x = av
for some v. By Lemmas 19 and 21, we have

|∆(x)| = |E[Cm,c(B)Lv(B)]− E[Lv(B)]|
|Lv(av)|

≤ 8(5km)ke−2n/m2

(km/6)k

= 8(30)ke−2n/m2

.

3.9 Bounding below q(x)

Lemma 23. If a is an integer such that |a| ≤ n and a ≡ n (mod 2), then

Pr[B = a] ≥ 2−a
2/n 1

2
√
n
.

Proof. The event B = a is equivalent to n+a
2

of the Xj being 1 and the other n−a
2

being −1.
Hence

Pr[B = a] =
1

2n

(
n

(n+ a)/2

)
.

Using a precise form of Stirling’s formula due to Robbins [Rob55], we can bound the binomial
coefficient by (

n

(n+ a)/2

)
≥ 2H( 1

2
+ a

2n
)n2
√

2π

e2
√
n
,

where H is the binary entropy function H(x) = −x log2 x− (1−x) log2(1−x). By using the
Taylor series of H at 1

2
, we obtain the inequality H(1+ε

2
) ≥ 1− ε2. Plugging that inequality

into our bound on the binomial coefficient gives the desired result.

3.10 Conclude |∆(x)| ≤ q(x)

Lemma 24. Let m and n be positive integers and c be an integer. Suppose that m is odd
or n and c have the same parity. Let k be a positive integer such that k ≤ n

8m2 . If x is an
integer, then |∆(x)| ≤ 1

2
q(x).

Proof. If x is different from av for every v, then ∆(x) = 0. So we may assume that x = av
for some v. By Lemma 22, we have

|∆(x)| ≤ 8(30)ke−2n/m2 ≤ 1

4
e8ke−2n/m2 ≤ 1

4
en/m

2

e−2n/m2

=
1

4
e−n/m

2

.
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By the definition of q and Lemma 23, we have

q(x) = Cm,c(x) Pr[B = x] ≥ m

2
Pr[B = x] ≥ 2−x

2/n m

4
√
n
.

We know that
|x| = |av| ≤ 2km ≤ n

4m
.

So
q(x) ≥ 2−n/(16m2) m

4
√
n
≥ e−n/(16m2) m

4
√
n
.

Applying the inequality x ≤ ex/e (to x = 4n/m2), we have

4n

m2
≤ e4n/(em2) ≤ e3n/(2m2).

Thus
m

4
√
n

=
1

2

( 4n

m2

)−1/2

≥ 1

2
e−3n/(4m2).

Hence

q(x) ≥ 1

2
e−3n/(4m2)e−n/(16m2) ≥ 1

2
e−n/m

2

.

Comparing our bounds for ∆ and q, we see that |∆(x)| ≤ 1
2
q(x).

3.11 Conclude lower bound

Proof of Theorem 13. Recall the function p from Lemma 16 is defined as p(x) = q(x)−∆(x).
We will show that p is the desired probability distribution. From the definition of p and
Lemma 24, we get p(x) ≥ 1

2
q(x); in particular, p is nonnegative. Applying Lemma 16 to

the constant function 1 (the zeroth moment), we see that the sum of the p(x) is 1. In other
words, p is indeed a probability distribution. Applying Lemma 16 to the other monomials
(namely x, x2, . . . , xk), we see that p matches the first k moments of B. This completes the
proof.

4 Tight lower bound on k-wise uniformity vs. threshold

In this section we prove Theorem 6. Like the last section, we will work with {−1, 1}n and
translate the results back to {0, 1}n using the following fact.

Fact 25. Let x ∈ {0, 1}n and y ∈ {−1, 1}n be the string obtained by replacing each xi by
yi = 1− 2xi. Then |

∑
i xi − n/2| ≤ t if and only if |

∑
i yi| ≤ 2t.

Let n be a positive integer. Let X1, X2, . . . , Xn be independent random variables chosen
uniformly from {−1, 1}. Let B be the sum of all the Xj. The distribution of B is a shifted
binomial distribution. Note that B has the same parity as n.

Theorem 26. Let n and t be positive integers such that t ≤ n. Let k be a positive integer
such that k ≤ t2

200n
. Then there is a probability distribution on the integers with absolute

value at most t that matches the first k moments of B. Furthermore, the support of the
probability distribution is a subset of the support of B.

Theorem 6 follows from applying Fact 25 to Theorem 26.
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4.1 Defining T (x)

Let m be an odd integer between n
3t

and n
t
. In Theorem 13, we constructed a probability

distribution (call it p′) on the 0 mod m integers that matches the first t2

8n
moments of B.

Furthermore, the support of p′ is a subset of the support of B. Looking at the proof, we see
that p′(x) ≥ 1

2
Cm,0(x) Pr[B = x] for all x. Let C ′(x) be p′(x)/Pr[B = x] if Pr[B = x] > 0

and Cm,0(x) otherwise. We have p′(x) = C ′(x) Pr[B = x] for all x. Because p′ matches the
first few moments of B, we have E[C ′(B)f(B)] = E[f(B)] for every polynomial f of degree
at most t2

8n
. Also, C ′(x) ≥ 1

2
Cm,0(x) for all x.

Given an integer x, let T (x) be J |x| ≤ t KC ′(x).

4.2 Defining q(x)

Given an integer x, define q(x) to be T (x) Pr[B = x]. Note that q is nonnegative. Also if
q(x) 6= 0, then |x| ≤ t and x is in the support of B.

Lemma 27. If f is a function on the integers, then∑
x

q(x)f(x) = E[T (B)f(B)].

Proof. By the definition of expected value, we have∑
x

q(x)f(x) =
∑
x

Pr[B = x]T (x)f(x) = E[T (B)f(B)].

4.3 Defining Lagrange polynomials

Let a0, a1, . . . , ak be k + 1 distinct integers that are 0 mod m, n mod 2, and as close to 0
as possible. Because they are as close to 0 as possible, we have |aj| ≤ (k + 1)m ≤ 2km.

Because k ≤ t2

200n
and m ≤ n

t
, we have 2km ≤ t ≤ n. So |aj| ≤ t and aj is in the support

of B.
Given an integer v such that 0 ≤ v ≤ k, define the Lagrange polynomial Lv as follows:

Lv(x) =
∏

0≤j≤k
j 6=v

(x− aj).

Note that Lv(aw) = 0 if and only if v 6= w. It’s well known that L0, L1, . . . , Lk form a basis
(the Lagrange basis) of the vector space of polynomials of degree at most k.

4.4 Defining ∆(x)

Define the function ∆ on the integers as follows. If x equals av (for some v), then

∆(av) =
E[T (B)Lv(B)]− E[Lv(B)]

Lv(av)
.

For x 6= aw for any w, then ∆(x) = 0.

15



Lemma 28. If f is a polynomial of degree at most k, then∑
x

∆(x)f(x) = E[T (B)f(B)]− E[f(B)].

Proof. We will first prove the claim when f is a Lagrange polynomial Lv. If ∆(x) 6= 0, then
x is of the form aw for some w. But if Lv(aw) 6= 0, then v = w. So the sum has at most
one nonzero term, corresponding to x = av. And the equation is true in this case by the
definition of ∆.

We have proved the claim for Lagrange polynomials. But every polynomial of degree at
most k is a linear combination of the Lagrange polynomials. This completes the proof.

4.5 Defining p(x)

Define the function p on the integers by p(x) = q(x) − ∆(x). Note that if p(x) 6= 0, then
|x| ≤ t and x is in the support of B.

Lemma 29. If f is a polynomial of degree at most k, then∑
x

p(x)f(x) = E[f(B)].

Proof. By Lemmas 27 and 28, we have∑
x

p(x)f(x) =
∑
x

q(x)f(x)−
∑
x

∆(x)f(x)

= E[T (B)f(B)]−
(
E[T (B)f(B)]− E[f(B)]

)
= E[f(B)].

We will show that |∆(x)| ≤ 1
2
q(x). First we bound above |∆(x)|. Then we bound below

q(x). Recall that ∆(x) = E[Lv(B)T (B)]−E[Lv(B)]
Lv(av)

if x equals av for some v and 0 otherwise.
Lemmas 33 and 34 below give upper and lower bounds on the numerator and denominator,
respectively.

4.6 Bounding numerator of ∆

We start this subsection by bounding the central moments of a binomial distribution. The
following fact is a special case of Khintchine’s inequality [Khi23, Haa81]. For completeness,
we provide a short, self-contained proof. Recall that we interpret 00 as 1.

Fact 30. Let d be a nonnegative integer. Then the (2d)th moment E[B2d] is at most (2d)!
2dd!

nd.

Proof. The odd moments of each Xj are all 0. The even moments of Xj are all 1. Let g1,
g2, . . . , gn be independent standard Gaussians (with mean zero and unit variance). The
odd moments of gj are all 0. If c is a nonnegative integer, then the (2c)th moment of gj is

known to be (2c)!
2cc!

, the product of the positive odd integers less than 2c. In particular, the
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even moments of gj are all at least 1. So the moments of Xj are at most the corresponding
moments of gj.

Let G be the sum of the gj. When we expand B2d and G2d, each gives a sum of n2d terms.
By the previous paragraph, the expectation of each term of B2d is at most the expectation
of the corresponding term of G2d. Hence the (2d)th moment of B is at most the (2d)th
moment of G. But G is a Gaussian with mean zero and variance n. In particular, G/

√
n is

a standard Gaussian. So we have

E[B2d] ≤ E[G2d] = nd E[(G/
√
n )

2d
] =

(2d)!

2dd!
nd.

Corollary 31. If d is a nonnegative integer, then E[B2d] is at most
√

2 (2dn/e)d.

Proof. Fact 30 says that

E[B2d] ≤ (2d)!

2dd!
nd.

Using the form of Stirling’s formula due to Robbins [Rob55], we can bound the factorials by

(2d)!

2dd!
<
√

2
(2d

e

)d
.

Lemma 32. Let n and t be positive integers such that t ≤ n and t2 ≥ 200n. Let r be an
integer such that 0 ≤ r ≤ t2

9n
. Then∣∣E[BrT (B)]− E[Br]

∣∣ ≤ 2tre−t
2/(6n).

Proof. Let s be a nonnegative integer such that r+ s is an even number between t2

9n
and t2

8n
.

(Because t2 ≥ 200n, there is such an s.) We have

J |B| > t K ≤ t−s|B|s.3

Hence, by the moment-matching property of C ′, the definition of T , the triangle inequality,
and Corollary 31, we have∣∣E[Br]− E[BrT (B)]

∣∣ =
∣∣E[BrC ′(B)]− E[BrT (B)]

∣∣
=
∣∣E[BrC ′(B)J|B| > tK

]∣∣
≤ E

[
|B|rC ′(B)J|B| > tK

]
≤ t−s E

[
|B|r+sC ′(B)

]
= t−s E

[
Br+sC ′(B)

]
= t−s E

[
Br+s

]
≤ 2t−s

((r + s)n

e

)(r+s)/2

= 2tr
((r + s)n

et2

)(r+s)/2

≤ 2tr
( 1

8e

)t2/(18n)

≤ 2tre−t
2/(6n).

3Bounding a hard threshold by a smooth function is a standard idea in concentration inequalities, used
for example in the proofs of Markov’s inequality and Chebyshev’s inequality.
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Lemma 33. Let n and t be positive integers such that t ≤ n. Let k be a positive integer
such that k ≤ t2

200n
. If v is an integer such that 0 ≤ v ≤ k, then∣∣E[Lv(B)T (B)]− E[Lv(B)]

∣∣ ≤ 2(2t)ke−t
2/(6n).

Proof. Recall that for a subset A of {1, 2, . . . , n}, we define XA to be the product of the Xj

for which j is in A.
By expanding the product, we have

Lv(B) =
∏
j 6=v

(B − aj) =
∑
A

(−1)|A|aABk−|A|,

where A ranges over every subset of {0, 1, . . . , k}−{v}. Therefore, by the triangle inequality,
Lemma 32, and the binomial theorem, we have

|E[Lv(B)T (B)]− E[Lv(B)]| =
∣∣∣E[[T (B)− 1]Lv(B)

]∣∣∣
=
∣∣∣E[[T (B)− 1]

∑
A

(−1)|A|aABk−|A|
]∣∣∣

=
∣∣∣∑
A

(−1)|A|aA E
[
[T (B)− 1]Bk−|A|

]∣∣∣
≤
∑
A

∣∣∣aA E[[T (B)− 1]Bk−|A|
]∣∣∣

≤
∑
A

t|A|
∣∣∣E[[T (B)− 1]Bk−|A|

]∣∣∣
≤
∑
A

t|A| · 2tk−|A|e−t2/(6n)

= 2e−t
2/(6n)

∑
A

tk

= 2e−t
2/(6n)(2t)k.

4.7 Bounding denominator of ∆

Lemma 34. If v is an integer such that 0 ≤ v ≤ k, then

|Lv(av)| ≥
(kn

9t

)k
.

Proof. Without loss of generality, assume that the aj are in sorted order. Then this lemma
follows from Claim 20 (with d replaced by 2m) and the bound m ≥ n

3t
.

4.8 Conclude upper bound on ∆

Lemma 35. Let n and t be positive integers such that t ≤ n. Let k be a positive integer
such that k ≤ t2

200n
. If x is an integer, then

|∆(x)| ≤ 1

50
e−t

2/(12n).
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Proof. If x is different from av for every v, then ∆(x) = 0. So we may assume that x = av
for some v. By Lemmas 33 and 34, we have

|∆(x)| = |E[T (B)Lv(B)]− E[Lv(B)]|
|Lv(av)|

≤ 2(2t)ke−t
2/(6n)

(kn/(9t))k

= 2
(18t2

kn

)k
e−t

2/(6n)

≤ 1

50

(1800t2

kn

)k
e−t

2/(6n).

The expression (1800t2

kn
)k is an increasing function of k on the interval (0, 1800t2

en
]. Because

k ≤ t2

200n
, we have (1800t2

kn

)k
≤ (1800 · 200)t

2/(200n) ≤ et
2/(12n).

Plugging this bound into our previous inequality for |∆(x)| completes the proof.

4.9 Conclude |∆(x)| ≤ q(x)

Lemma 36. Let n and t be positive integers such that t ≤ n. Let k be a positive integer
such that k ≤ t2

200n
. If x is an integer, then |∆(x)| ≤ 1

2
q(x).

Proof. If x is different from av for every v, then ∆(x) = 0. So we may assume that x = av for
some v. By Lemma 35, we have |∆(x)| ≤ 1

50
e−t

2/(12n). By the definition of q and Lemma 23,
we have

q(x) = C ′(x) Pr[B = x] ≥ 1

2
Cm,0(x) Pr[B = x] ≥ n

6t
Pr[B = x] ≥ 2−x

2/n

√
n

12t
.

We know that

|x| = |av| ≤ 2km ≤ 2 · t2

200n
· n
t

=
t

100
.

So

q(x) ≥ 2−t
2/(10000n)

√
n

12t
≥ e−t

2/(10000n)

√
n

12t
.

Applying the inequality x ≤ ex/e (to x = t2

4n
), we have

t2

4n
≤ et

2/(4en) ≤ et
2/(10n).

Thus √
n

12t
=

1

24

( t2
4n

)−1/2

≥ 1

24
e−t

2/(20n).

Hence

q(x) ≥ 1

24
e−t

2/(20n)e−t
2/(10000n) ≥ 1

24
e−t

2/(12n).

Comparing our bounds for ∆ and q, we see that |∆(x)| ≤ 1
2
q(x).
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4.10 Conclude lower bound

Proof of Theorem 26. Recall the function p from Lemma 29 is defined as p(x) = q(x)−∆(x).
We will show that p is the desired probability distribution. From the definition of p and
Lemma 36, we get p(x) ≥ 1

2
q(x); in particular, p is nonnegative. Applying Lemma 29 to

the constant function 1 (the zeroth moment), we see that the sum of the p(x) is 1. In other
words, p is indeed a probability distribution. Applying Lemma 29 to the other monomials
(namely x, x2, . . . , xk), we see that p matches the first k moments of B. This completes the
proof.

5 Twisted moments: proof of Lemma 17

In this section, we will restate and then prove the following lemma that was used in subsec-
tion 3.6. Recall that X1, X2, . . . , Xn are independent random variables chosen uniformly
from {−1, 1}, and B is the sum of all the Xj. Also, we interpret 00 as 1.

Lemma 17. Let r be an integer such that 0 ≤ r ≤ n
8
. If 0 < θ ≤ π

2
, then

∣∣E[BreiθB]
∣∣ ≤ 2

(8r

θ

)r
e−θ

2n/4.

Informally, this lemma says that the rth moment of B, after being twisted in the complex
plane, is exponentially small. Showing that this “twisted moment” is exponentially small is
delicate. We have to somehow argue that lots of cancellation is taking place in the complex
plane. Our approach will be to bound the delicate twisted moment by an expected value for
which no cancellation is needed. That’s exactly what Lemma 40(b) below does.

Recall that for a subset A of {1, 2, . . . , n}, we define the monomial XA to be the product
of the Xj for which j is in A.

We will need the hyperbolic functions. Recall that cosh z is (ez + e−z)/2, sinh z is (ez −
e−z)/2, tanh z is sinh z/ cosh z, coth z is cosh z/ sinh z, and sech z is 1/ cosh z. Also, we have
the identities cosh(iθ) = cos(θ) and sinh(iθ) = i sin(θ).

Our first lemma will express an exponential moment in terms of hyperbolic functions.

Lemma 37. If A is a subset of {1, 2, . . . , n} and z is a complex number, then

E[XAezB] = (sinh z)|A|(cosh z)n−|A|.

Proof. Independence of the Xj makes the proof routine. Because B is the sum of the Xj,

20



we have

E[XAezB] = E
[∏
j∈A

Xj

n∏
j=1

ezXj

]
= E

[∏
j∈A

Xje
zXj

∏
j /∈A

ezXj

]
=
∏
j∈A

E[Xje
zXj ]

∏
j /∈A

E[ezXj ]

=
∏
j∈A

sinh z
∏
j /∈A

cosh z

= (sinh z)|A|(cosh z)n−|A|.

Our next lemma shows how to express a monomial twisted in the complex plane as a real
quantity. This lemma will play a key role in bounding twisted moments.

Lemma 38. Let A be a subset of {1, 2, . . . , n}. Let θ be a real number such that 0 ≤ θ < π
4
.

Then |E[XAeiθB]| = (cos 2θ)n/2 E[XAeλB], where λ is 1
2

ln 1+tan θ
1−tan θ

.

Proof. The idea is that both expected values can be expressed in terms of hyperbolic func-
tions using Lemma 37. So all we have to do is connect the hyperbolic function of an imaginary
number with the hyperbolic function of a real number.

Because 0 ≤ θ < π
4
, we have 0 ≤ tan θ < 1, so λ is well defined. Also cos 2θ > 0. From

our choice of λ, we have

tanhλ =
e2λ − 1

e2λ + 1
=

(1 + tan θ)− (1− tan θ)

(1 + tan θ) + (1− tan θ)
= tan θ.

It follows that

coshλ =
1√

1− tanh2 λ
=

1√
1− tan2 θ

=
cos θ√

cos2 θ − sin2 θ
=

cos θ√
cos 2θ

.

Hence

sinhλ = tanhλ coshλ = tan θ
cos θ√
cos 2θ

=
sin θ√
cos 2θ

.

Therefore, applying Lemma 37 twice, we have

|E[XAeiθB]| = |sinh iθ||A||cosh iθ|n−|A|

= (sin θ)|A|(cos θ)n−|A|

= (cos 2θ)n/2(sinhλ)|A|(coshλ)n−|A|

= (cos 2θ)n/2 E[XAeλB].

Let r be a nonnegative integer. Let f be a function from {1, 2, . . . , r} to {1, 2, . . . , n}.
Define odd(f), the odd image of f , to be the set of j in {1, 2, . . . , n} such that |f−1(j)| is
odd. Note that |odd(f)| ≤ r and |odd(f)| ≤ n.

Our next simple lemma expresses Br as a sum of monomials.
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Lemma 39. If r is a nonnegative integer, then Br =
∑

f X
odd(f), where the sum is over

every function f from {1, . . . , r} to {1, . . . , n}.

Proof. The idea is to expand Br and exploit the constraint that each Xj is ±1. We have

Br =
∑
f

Xf(1) · · ·Xf(r)

=
∑
f

n∏
j=1

X
|f−1(j)|
j

=
∑
f

n∏
j=1

X
|f−1(j)| mod 2
j

=
∑
f

∏
j∈odd(f)

Xj

=
∑
f

Xodd(f).

As mentioned at the start of this subsection, our next key lemma will bound a delicate
twisted moment by a simpler real quantity. Part (a) is not surprising; part (b) is subtler.
Which bound is more useful depends on the angle θ. For θ small (near zero), part (b) is
better, whereas for θ large (θ ≥ π

4
), part (b) can’t even be applied.

Lemma 40. Let r be a nonnegative integer. Let θ be a real number such that 0 ≤ θ ≤ π
2
.

(a) If r ≤ n, then |E[BreiθB]| ≤ nr(cos θ)n−r.

(b) If θ < π
4
, then |E[BreiθB]| ≤ (cos 2θ)n/2 E[BreλB], where λ is 1

2
ln 1+tan θ

1−tan θ
.

Proof. By Lemma 39 and the triangle inequality, we have

|E[BreiθB]| =
∣∣∣E[∑

f

Xodd(f)eiθB
]∣∣∣ =

∣∣∣∑
f

E[Xodd(f)eiθB]
∣∣∣ ≤∑

f

|E[Xodd(f)eiθB]|.

We will use this inequality in both parts.

(a) By Lemma 37, we have

|E[BreiθB]| ≤
∑
f

|E[Xodd(f)eiθB]|

=
∑
f

(sin θ)|odd(f)|(cos θ)n−|odd(f)|

= (cos θ)n−r
∑
f

(sin θ)|odd(f)|(cos θ)r−|odd(f)|

≤ (cos θ)n−r
∑
f

1

= nr(cos θ)n−r.
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(b) By Lemmas 38 and 39, we have

|E[BreiθB]| ≤
∑
f

|E[Xodd(f)eiθB]|

=
∑
f

(cos 2θ)n/2 E[Xodd(f)eλB]

= (cos 2θ)n/2
∑
f

E[Xodd(f)eλB]

= (cos 2θ)n/2 E[BreλB].

To apply Lemma 40(b), we need an upper bound on E[BreλB]. Fortunately, we can
obtain such a bound using straightforward analysis, as the next lemma shows.

Lemma 41. If r ≥ 0 and λ > 0, then

E[|B|reλB] ≤ 2
(4r

λ

)r(
cosh

11

10
λ
)n
.

Proof. First we will bound |B|r by an exponential. Let a be 10r
eλ

. Let’s temporarily assume
that r 6= 0. Applying the inequality x ≤ ex/e (to x = |B|/a), we have |B| ≤ ae|B|/(ea).
Raising both sides to the rth power gives |B|r ≤ arer|B|/(ea). Plugging in the definition of a,
we have |B|r ≤ are|λB|/10. This inequality is true for r = 0 too.

Now we are ready to prove the desired inequality. By Lemma 37 (with A = ∅), we have

E[|B|reλB] ≤ E[|B|re|λB|]
≤ ar E[e|λB|/10e|λB|]

= ar E[e11|λB|/10]

≤ ar E[e11λB/10 + e−11λB/10]

= 2ar
(

cosh
11

10
λ
)n

= 2
(10r

eλ

)r(
cosh

11

10
λ
)n

≤ 2
(4r

λ

)r(
cosh

11

10
λ
)n
.

Soon we will need three standard inequalities on hyperbolic functions and trigonometric
functions. We state them below without proof.

Fact 42. If λ ≥ 0, then tanhλ ≤ λ.

Fact 43. If 0 ≤ θ < π
2
, then tan θ ≥ θ.

Fact 44. If 0 ≤ θ ≤ π
2
, then cos θ ≤ e−θ

2/2.

We will also need two nonstandard inequalities on hyperbolic cosine and (ordinary) cosine.
We state and prove them below.
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Lemma 45. If λ ≥ 0 and c ≥ 1, then cosh cλ ≤ (coshλ)c
2
.

Proof. We will first prove that tanh cx ≤ c tanhx for every x ≥ 0. The derivative of tanh
is sech2. Because cosh is increasing on [0,∞), it follows that sech2 ct ≤ sech2 t for every
t ≥ 0. Integrating both sides (from 0 to x) gives 1

c
tanh cx ≤ tanhx. Multiplying by c gives

tanh cx ≤ c tanhx.
Next we will prove the cosh inequality. The derivative of ln cosh is tanh. By the previous

paragraph, we have tanh cx ≤ c tanhx for every x ≥ 0. Integrating both sides (from 0 to
λ) gives 1

c
ln cosh cλ ≤ c ln coshλ. Multiplying by c and exponentiating gives the desired

inequality.

Lemma 46. If θ is a real number such that cos2 θ ≥
√

5−1
2

, then cos 2θ ≥ cos6 θ.

Proof. From the hypothesis, we have

cos2 θ + cos4 θ = cos2 θ(1 + cos2 θ) ≥
√

5− 1

2
·
√

5 + 1

2
= 1.

Therefore, we have

cos6 θ = 1− (1− cos2 θ)(1 + cos2 θ + cos4 θ)

= 1− sin2 θ(1 + cos2 θ + cos4 θ)

≤ 1− 2 sin2 θ

= cos 2θ.

5.1 Conclude proof of twisted moments lemma

Finally we have all the ingredients needed to prove our upper bound on twisted moments.
We will restate the bound again and then prove it.

Lemma 17. Let r be an integer such that 0 ≤ r ≤ n
8
. If 0 < θ ≤ π

2
, then

∣∣E[BreiθB]
∣∣ ≤ 2

(8r

θ

)r
e−θ

2n/4.

Proof. We will actually prove the stronger bound

|E[BreiθB]| ≤ 2(8r cot θ)r(cos θ)n/2.

The lemma will then follow from Facts 43 and 44.
We will consider two cases: θ large (namely cos2 θ ≤ e−1/e) and θ small (cos2 θ ≥√

5−1
2

). Because
√

5−1
2

< e−1/e, these two cases cover all possible θ. For large θ we will
use Lemma 40(a), whereas for small θ we will use Lemma 40(b).

Case 1: θ large (cos2 θ ≤ e−1/e). Applying the inequality xx ≥ e−1/e for x ≥ 0 (to
x = 8r/n), we have

cos2 θ ≤ e−1/e ≤
(8r

n

)8r/n

.
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Hence, by Lemma 40(a), we have

|E[BreiθB]| ≤ nr(cos θ)n−r

≤ nr(cos θ)3n/4+r

= nr(cos2 θ)n/8(cos θ)n/2+r

≤ nr
(8r

n

)r
(cos θ)n/2+r

= (8r cos θ)r(cos θ)n/2

≤ (8r cot θ)r(cos θ)n/2

≤ 2(8r cot θ)r(cos θ)n/2.

Case 2: θ small (cos2 θ ≥
√

5−1
2

). In particular, θ < π
4
. Let λ be 1

2
ln 1+tan θ

1−tan θ
. In the proof

of Lemma 38, we showed that tanhλ is tan θ and coshλ is cos θ/
√

cos 2θ. By Fact 42, we
have λ ≥ tanhλ = tan θ. Hence, by Lemmas 40(b), 41, 45, and 46, we have∣∣E[BreiθB]

∣∣ ≤ (cos 2θ)n/2 E[BreλB] (Lemma 40(b))

≤ (cos 2θ)n/2 E[|B|reλB]

≤ 2(cos 2θ)n/2
(4r

λ

)r(
cosh

11

10
λ
)n

(Lemma 41)

≤ 2(cos 2θ)n/2(4r cot θ)r
(

cosh
11

10
λ
)n

≤ 2(cos 2θ)n/2(4r cot θ)r(coshλ)121n/100 (Lemma 45)

≤ 2(cos 2θ)n/2(4r cot θ)r(coshλ)5n/4

= 2(4r cot θ)r(cos 2θ)n/2
( cos θ√

cos 2θ

)5n/4

= 2(4r cot θ)r
(cos θ)5n/4

(cos 2θ)n/8

≤ 2(4r cot θ)r
(cos θ)5n/4

(cos θ)3n/4
(Lemma 46)

= 2(4r cot θ)r(cos θ)n/2

≤ 2(8r cot θ)r(cos θ)n/2.

6 Tight upper bound on k-wise uniformity vs. mod m

In this section we prove Theorem 3. It follows from Theorem 47 below by translating the
statement for {−1, 1}n back to {0, 1}n using Fact 12. Recall that S ′m,c = {y ∈ {−1, 1}n :∑

i yi ≡ c (mod m)}.

Theorem 47. Let m be a positive integer and let c be an integer. Let k be an integer
greater than or equal to 4. Suppose there is a k-wise uniform distribution on {−1, 1}n that
is supported on S ′m,c. Then k ≤ 140n

m2 .
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We can restate the theorem using moments as follows. Let B be the sum of n independent
random bits chosen uniformly from {−1, 1}. Let Y be a random variable that is always
c mod m. Suppose the first k moments of Y match those of B. Then k ≤ 140n

m2 .
The high-level idea of the proof is as follows. We compare |E[e2πiY/m]| and |E[e2πiB/m]|.

The former is 1 because Y is always c mod m. We show that the latter is less than e−Ω(n/m2).
We then take the Taylor approximations of the exponentials. The error is given by the
kth term. Because the first k terms are equal by the moment-matching property of Y , the
difference of the two expectations can be bounded in terms of the kth moment of B, which
gives us an upper bound on k.

Proof of Theorem 47. If m < 4, then k ≤ n ≤ 16n
m2 . So we may assume that m ≥ 4. Let

α = 2π/m. Because m ≥ 4, we have 0 < α ≤ π/2. For now, we will assume that k is even.
At the end, we will handle the odd case.

Because Y is always c mod m, we have∣∣E[eiαY ]
∣∣ =

∣∣eiαc∣∣ = 1.

By Lemma 37 (with A = ∅) and Fact 44, we have∣∣E[eiαB]
∣∣ = |cosα|n ≤ e−α

2n/2.

The error in the Taylor approximation of an exponential has the following standard bound
(see for example Feller [Fel71, Section XV.4]): for every real θ we have∣∣∣eiθ − k−1∑

j=0

(iθ)j

j!

∣∣∣ ≤ θk

k!
.

Hence by the triangle inequality we have∣∣∣E[eiαY ]−
k−1∑
j=0

(iα)j

j!
E[Y j]

∣∣∣ ≤ E
[∣∣eiαY − k−1∑

j=0

(iαY )j

j!

∣∣] ≤ αk

k!
E[Y k].

Similarly we have ∣∣∣E[eiαB]−
k−1∑
j=0

(iα)j

j!
E[Bj]

∣∣∣ ≤ αk

k!
E[Bk].

Because the first k moments of Y match those of B, we get a ton of cancellation:∣∣E[eiαY ]− E[eiαB]
∣∣ ≤ αk

k!
E[Y k] +

αk

k!
E[Bk] = 2

αk

k!
E[Bk].

In particular, we have

1 =
∣∣E[eiαY ]

∣∣ ≤ ∣∣E[eiαB]
∣∣+ 2

αk

k!
E[Bk] ≤ e−α

2n/2 + 2
αk

k!
E[Bk].

Hence, using the moment bound of Fact 30, we have

1 ≤ e−α
2n/2 + 2

αk

2k/2(k/2)!
nk/2 ≤ e−α

2n/2 +
2

(k/2)!

(α2n

2

)k/2
.
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Let f be the function defined by f(x) = e−x + 2
(k/2)!

xk/2. Then the inequality above

simplifies to f(α2n/2) ≥ 1. Note that f(0) = 1. Also f is convex on the interval [0,∞).
We claim that f(k

√
2/8) < 1. To prove it, we will show that the first term of f is less

than 1
2

and the second term is at most 1
2
. Because k ≥ 4, the first term indeed satisfies

e−k
√

2/8 ≤ e−
√

2/2 <
1

2
.

The second term is 2
(k/2)!

(k
√

2/8)k/2. If k = 4, then this term is exactly 1
2
. Otherwise k ≥ 6,

and so by Stirling’s formula we have

2

(k/2)!

(k√2

8

)k/2
≤ 2

(k/2)k/2e−k/2
√
πk

(k√2

8

)k/2
=

2√
πk

(e√2

4

)k/2
<

2√
πk

<
1

2
.

In either case, the second term is at most 1
2
. Hence f(k

√
2/8) < 1.

To summarize, f is convex on [0,∞), f(0) = 1, and f(k
√

2/8) < 1. It follows that f
is less than 1 on the interval (0, k

√
2/8]. Because f(α2n/2) ≥ 1, we have α2n/2 > k

√
2/8.

Solving for k gives

k < 2
√

2α2n = 2
√

2
(2π

m

)2

n <
112n

m2
.

So far, we assumed that k is even. Now suppose that k is odd. We can apply the proof
above to k − 1, which gives the bound k − 1 < 112n

m2 . Because k ≥ 5, we have

k ≤ 5

4
(k − 1) <

5

4
· 112n

m2
=

140n

m2
.

7 Tight upper bound on k-wise uniformity vs. thresh-

old

In this section we prove Theorem 7, which follows from Theorem 49 below by translating
the statement for {−1, 1}n to {0, 1}n using Fact 25.

We will show that for any k ≥ 3, any k-wise uniform distribution over {−1, 1}n must put
nonzero probability masses on strings x whose sums

∑n
i=1 xi are −Ω(

√
nk) and Ω(

√
nk) away

from 0. This result shows that the lower bound we obtain in Theorem 6 is tight. We note
that this is not true for k = 2, as when n is odd, there exists a pairwise uniform distribution
supported on the all −1 vector and vectors with (n+ 1)/2 ones.

Let X1, X2, . . . , Xn be independent random variables chosen uniformly from {−1, 1}.
Let B be the sum of all the Xj. The distribution of B is a shifted binomial distribution.

First we give a lower bound on the dth moment of B. Recall that we interpret 00 as 1.

Claim 48. Let d be a nonnegative even integer such that d ≤ 2n. Then E[Bd] ≥ (nd
e2

)
d/2

.

Proof. Let d = 2r. Consider expanding B2r, which gives us a sum of n2r terms. If for
some index i, the variable Xi appears an odd number of times in a term, then this term
has expectation zero. So the terms with nonzero expectation are the ones in which each Xi

appears an even number of times. In particular, each such term has expectation 1. It suffices
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to consider the terms in which either each Xi appears exactly twice or does not appear at
all. There are

(
n
r

)
ways of choosing the indices that appear twice in a term, and each term

appears (2r)!/2r number of times in the n2r terms. Hence we have

E[B2r] ≥
(
n

r

)
(2r)!

2r
.

Using the inequality
(
n
r

)
≥ (n/r)r and a crude form of Stirling’s formula, n! ≥ (n/e)n, we

have (
n

r

)
(2r)!

2r
≥
(n
r

)r(2r

e

)2r 1

2r
=
(2nr

e2

)r
,

proving the claim.

Theorem 49. Let t+ and t− be two positive integers. Let Y be a random variable that is
supported on {−1, 1}n so that

∑
i Yi ≥ −t− and

∑
i Yi ≤ t+. Let k be a positive integer such

that k ≤ n. Suppose that both the (2k)th and (2k + 1)th moments of Y and B are equal.
Then min{t−, t+} ≥

√
nk/3.

Remark 2. The conclusion is false when Y matches only the first two moments of B.
When n is odd, there exists a pairwise uniform distribution using Hadamard matrices that is
supported on the all −1 vector and vectors with (n+1)/2 ones. Namely, with probability 1

n+1

choose the all −1 vector and with the remaining probability n
n+1

choose a vector with (n+1)/2
ones uniformly at random.

Proof. Let p+ and p− denote Pr[Y ≥ 0] and Pr[Y < 0] respectively. Note that E[Y 2k+1] =
E[B2k+1] = 0. Thus,

p+ E[|Y |2k+1 | Y ≥ 0]− p− E[|Y |2k+1 | Y < 0] = E[Y 2k+1] = 0

p+ E[|Y |2k+1 | Y ≥ 0] + p− E[|Y |2k+1 | Y < 0] = E[|Y |2k+1] ≥ E[Y 2k]
2k+1
2k ,

where the last inequality follows from Jensen’s inequality. Summing the two relations, we
have 2p+ E[|Y |2k+1 | Y ≥ 0] ≥ E[Y 2k]

2k+1
2k . Because the (2k)th moment of Y is equal to the

(2k)th moment of B, together with Claim 48, we have E[Y 2k]
2k+1
2k = E[B2k]

2k+1
2k ≥ (2nk

e2
)
2k+1

2 .

Hence, there must be a point y in the support of Y such that y2k+1 ≥ (nk/9)
2k+1

2 , and
so y ≥

√
nk/3. By symmetry, there is another point y′ in the support of Y such that

y′ ≤ −
√
nk/3.
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