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Abstract

We investigate the computational complexity of languages which have interactive proof systems
of bounded message complexity. In particular, denoting the length of the input by n, we show that

� If L has an interactive proof in which the total communication is bounded by c(n) bits then
L can be recognized by a probabilistic machine in time exponential in O(c(n) + log(n)).

� If L has a public-coin interactive proof in which the prover sends c(n) bits then L can be
recognized by a probabilistic machine in time exponential in O(c(n) � log(c(n)) + log(n)).

� If L has an interactive proof in which the prover sends c(n) bits then L can be recognized by
a probabilistic machine with an NP-oracle in time exponential in O(c(n) � log(c(n))+ log(n)).

�Work done while being on a sabbatical leave at LCS, MIT.
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1 Introduction

Proof systems are de�ned in terms of their ver-
i�cation procedures. The notion of a veri�ca-
tion procedure assumes the notion of compu-
tation and furthermore the notion of e�cient
computation. This implicit assumption is made
explicit in the de�nition of NP , in which ef-
�cient computation is associated with (deter-
ministic) polynomial-time algorithms. In light
of the growing acceptability of randomized and
distributed computations, it is only natural to
associate the notion of e�cient computation
with probabilistic and interactive polynomial-
time computations. This leads to the notion of
an interactive proof system (cf., [8]) in which the
veri�cation procedure is interactive and random-
ized, rather than being non-interactive and de-
terministic. Intuitively, one may think of this
interaction as consisting of \tricky" questions
asked by the veri�er, to which the prover has
to reply \convincingly". The last sentence, as
well as the de�nition, makes explicit reference
to a prover, whereas a prover is only implicit in
the traditional de�nitions of proof systems (e.g.,
NP-proofs).

The actual de�nition of interactive proof sys-

tems suggests probabilistic interpretations to the
traditional notions of completeness and sound-

ness associated with any proof system. Specif-
ically, statistical soundness requires that there
exists no strategy which makes the veri�er ac-
cept false statements with probability greater
than, say, 1=3. A further relaxation of this
soundness condition is the notion of computa-

tional soundness: Here it is only required that
there exists no e�cient strategy which makes
the veri�er accept false statements with prob-
ability greater than 1=3. The di�erence between
statistical soundness and computational sound-
ness translates to a di�erence between interac-
tive proof systems as de�ned by Goldwasser, Mi-
cali and Racko� [8], and computationally-sound
proof systems (aka argument systems) as de�ned
by Brassard, Chaum and Cr�epeau [5].

A signi�cant di�erent between interactive
proof systems and computationally-sound proof

systems has been observed in the domain of
zero-knowledge. Whereas only languages in a
class conjectured not to contain NP have per-

fect zero-knowledge interactive proofs [6]; assum-
ing that factoring is hard, all languages in NP
have perfect zero-knowledge computationally-
sound proofs [5].1 We note that the negation of
the conjecture mentioned above yields the col-
lapse of the polynomial-time hierarchy [4].
Our aim in this note is to point out another

signi�cant di�erent between interactive proof
systems and computationally-sound proof sys-
tems. Speci�cally, we refer to the \expressive
power" of the two types of proof systems when
bounding their message complexity. We will con-
front known positive results regarding the ex-
pressive power of computationally-sound proof
systems of bounded message complexity with
new negative results regarding the expressive
power of interactive proof systems of the same
message complexity.

Computationally-sound proofs of bounded

message complexity: In 1992, Kilian demon-
strated that computationally-sound proof sys-
tems may be able to recognize any language in
NP while using only polylogarithmic message
complexity [10]. Speci�cally, assuming the ex-
istence of hashing functions for which collisions
cannot be found by subexponential-size circuits,
Kilian showed that any language in NP has a
computationally-sound proof systems in which
both the bi-directional message complexity and
the randomness complexity are polylogarithmic.
Furthermore, this proof system is in the public-
coins (aka Arthur-Merlin) model of Babai [1].

Interactive proofs of bounded message

complexity: Our �rst observation indicates
that Kilian's result (as stated above) is
unlikely for interactive proof (rather than

1 Perfect zero-knowledge is a strict variant of zero-
knowledge. The negative part of the above (statement in
text) does not refer to the more relaxed and widely ac-
cepted notion of zero-knowledge (aka computational zero-
knowledge). In fact, assuming the existence of commit-
ment schemes, all languages in NP do have (computa-
tional) zero-knowledge interactive proofs [7].
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computationally-sound) systems. It shows that
if we bound the message and randomness com-
plexity as in Kilian's result (i.e., to be poly-
logarithmic), then interactive proofs may exist
only for languages in the class Quasi-Polynomial
Time (i.e., Dtime(2poly log(�)). We note that
Quasi-Polynomial Time is widely believed not to
contain NP.

Theorem 1 (interactive proofs with bounded
message and randomness complexities): Let c(�)
be an integer function and L � f0; 1g�. Sup-

pose that L has an interactive proof system in

which both the randomness and communication

complexities are bounded by c(�). Then L 2
Dtime(2O(c(�)) � poly(�)).

Theorem 1 is the starting point of our investi-
gation. Its proof is facilitated by the fact that
the hypothesis contains a bound on the random-
ness complexity of the veri�er. However, what
we consider fundamental in Kilian's result is the
low message complexity. Thus, we wish to waive
the extra hypothesis. In fact, waiving the bound
on the randomness complexity, we obtain a very
similar result

Theorem 2 (interactive proofs with bounded
message complexity): Let c(�) be an integer func-

tion and L � f0; 1g�. Suppose that L has an
interactive proof system in which the commu-

nication complexity is bounded by c(�). Then

L2BPtime(2O(c(�)) � poly(�)).

Theorem 2 refers to interactive proof system
in which the bi-directional communication com-
plexity is bounded. However, it seems that
the more fundamental parameter is the uni-
directional communication complexity in the
prover-to-veri�er direction. In fact, waiving
also the bound on the veri�er's message length,
we obtain a similar result for the special case
of public-coin (Arthur-Merlin) interactive proof
systems.2 Namely,

2 Recall that Kilian's proof system is of the public-coin
type.

Theorem 3 (public-coin interac-
tive proofs with bounded prover-messages): Let

c(�) be an integer function and L�f0; 1g�. Sup-
pose that L has a public-coin interactive proof

system in which the total number of bits sent

by the prover is bounded by c(�). Then L 2
BPtime(2O(c(�) log c(�)) � poly(�)).

Theorem 3 may not hold for general interactive
proofs, and if it does this may be hard to es-
tablish. The reason being that supposedly hard
languages such as Quadratic Non-Residousity
and Graph Non-Isomorphism have interactive
proof systems in which the prover sends a sin-
gle bit [8, 7]. Thus, we are currently content
with a weaker result.

Theorem 4 (interactive proofs with bounded
prover-messages): Let c(�) be an integer function

and L � f0; 1g�. Suppose that L has an inter-

active proof system in which the total number of

bits sent by the prover is bounded by c(�). Then

L2BPtime(2O(c(�) log c(�)) � poly(�))NP .

2 Formal Treatment

We assume that the reader is familiar with the
basic de�nitions of interactive proofs as intro-
duced by Goldwasser, Micali and Racko� [8] and
Babai [1]. Here we merely recall them, while fo-
cusing on some parameters. In particular, we use
the (more liberal) two-sided error versions { this
only makes our results stronger.

2.1 Interactive Proof Systems and Pa-

rameters

De�nition 1 (interactive proof systems):

� An interactive proof system for a language L
is a pair (P; V ) of interactive machines, so

that V is probabilistic polynomial-time, sat-

isfying

{ Completeness: For every x 2 L, the

veri�er V accepts with probability at
least 2

3 , after interacting with P on

common input x.

2



{ Soundness: For every x 62 L and every

potential prover P �, the veri�er V ac-

cepts with probability at most 1
3 , after

interacting with P � on common input

x.

An interactive proof system is said to be an

Arthur-Merlin game if the veri�er's message

in each round consists of all coins it has

tossed in this round.

� Let m and r be integer func-

tions. The complexity class IP(m(�); r(�))
(resp., AM(m(�); r(�)) consists of languages
having an interactive proof system (resp., an
Arthur-Merlin proof system) in which, on

common input x, the interaction consists of

at most r(jxj) communication rounds during

which the total number of bits sent from the
prover to the veri�er is bounded by m(jxj).

2.2 Our Results

For an integer function t, we let BPtime(t(�))
(resp., BPtime(t(�))NP ) denote the class of lan-
guages recognizable by probabilistic t(�)-time
machines (resp., oracle machines with access to
an oracle set inNP) with error at most 1=3. Our
main result is

Proposition 5 (interactive proofs
with bounded message and round complexity):

AM(m(�); r(�)) � BPtime(2O(m(�)+r(�) log r(�)) � poly(�))(1)

IP(m(�); r(�)) � BPtime(2O(m(�)+r(�) log r(�)) � poly(�))NP(2)

Theorem 3 follows from Part (1) of Proposi-
tion 5, whereas Theorem 4 follows from Part (2).
Theorems 1 and 2 will be proven directly before
proving Proposition 5. The main ingredient in
all our proofs are procedures for evaluating or
approximating the value of the game tree of a

proof system. This tree is de�ned next.

2.3 The Game Tree of a Proof System

Fixing a veri�er V we consider its interactions
with a generic prover on any �xed common in-
put, denoted x. The veri�er's random choices

can be thought of as corresponding to the con-
tents of its random-tape, called the random-pad.
We assume without loss of generality that V
sends the �rst message and that the prover sends
the last one. In each round, V 's message is cho-
sen depending on the history of the interaction so
far and according to some probability distribu-
tion induced by V 's local random-tape. The his-
tory so far corresponds to a �xed subset of pos-
sible random-pads and the possible messages to
be sent correspond to a partition of this subset.
Thus, each possible message is sent with proba-
bility proportional to its part in this subset. The
above description corresponds to general interac-
tive proofs. In case of Arthur-Merlin games the
situation is simpler: V merely tosses a predeter-
mined (by history) number of coins and sends
the outcome to the prover.3 As to the prover's
messages, they are chosen arbitrarily (but are of
length at most poly(jxj)). The interaction goes
on, for at most poly(jxj) rounds at which point
the veri�er stops outputting either accept or re-
ject. The messages exchanged till that point are
called a transcript of the interaction between the
prover and V .

To simplify the exposition, we augment the
transcript of the interaction by V 's random-pad.
This way, V 's accept/reject decision is deter-
mined by the augmented transcript (and the in-
put x). This convention is not needed for Arthur-
Merlin games.

The interaction between the prover and V on
common input x may be viewed as a game in
which the prover's objective is to maximize the
probability that V accepts, and V 's strategy is
�xed but mixed (i.e., probabilistic). It is useful
to consider the corresponding game tree.

3 That is, we assume that, for every partial history of
the interaction, the number of coins tossed by the ver-
i�er is predetermined (by the history of interaction so
far). This assumption is more relaxed from what is typi-
cally assumed in the literature (i.e., typically it is assumed
that the number of coin tosses may only depend on the
round number or even is �xed for the entire interactive
proof). Our results can be easily extended to the gen-
eral case where the veri�er may determine the number of
coins tossed at each round depending on the outcome of
previous coins tossed at this round.
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De�nition 2 (the game tree and its value): Let
V and x be �xed.

� The tree Tx: The nodes in the tree, denoted
Tx, correspond to possible pre�xes of the in-

teraction of V with an arbitrary prover. The

root represents the empty interaction and is

de�ned to be at level 0. For every i = 0; 1:::
the edges going out from each 2ith level node

correspond to the messages V may send

given the history so far. (We know that
V selects one of these edges/messages ac-
cording to some predetermined by the node
probability distribution.) The edges going

out from each (2i + 1)st level node corre-
spond to the messages a prover may send

given the history so far. (The prover may
select an edge/message so to maximize the
accepting probability of V .) Nodes which

correspond to an execution on which V stops

have as children one or more leaves, each

corresponding to a possible V 's random-pad

which is consistent with the interaction rep-

resented in the father. Thus, leaves corre-

spond to augmented transcripts as de�ned

above.

� The value of Tx: The value of the tree is de-

�ned bottom-up as follows. The value of a

leaf is either 0 or 1 depending on whether V
accepts in the augmented transcript repre-

sented by it or not. The value of an internal

node at level 2i is de�ned as the weighted

average of the values of its children, where

the weights correspond to the probabilities of

the various veri�er messages. (This de�ni-
tion holds also for the fathers of leaves, when
viewing V 's random-pad as an auxiliary, �c-
titious message sent by V .) The value of an

internal node at level 2i� 1 is de�ned as the

maximum of the values of its children. This

corresponds to the prover's strategy of trying

to maximize V 's accepting probability. The
value of the tree is de�ned as the value of its

root.

To decide if x is in the language accepted by V ,
it su�ces to approximate the value of the tree Tx

de�ned above. The reason being that the value
of Tx is a tight upper bound on the probabil-
ity that V accepts x when interacting with any
prover strategy. (The bound is achievable by an
optimal prover which indeed selects each mes-
sage as to maximize V 's acceptance probability.)
Thus, the value of Tx is at least 2=3 if x is in
the language and at most 1=3 otherwise. Thus,
it su�ces to approximate the value of Tx within
an additive term of 0:16 < 1

6 . Below we present
various procedures for obtaining such approxi-
mations. The more restrictions we have on the
proof system, the simpler the procedure is.

Comment: It is easy to see that the optimal
prover can be implemented in exp(poly(jxj))-
time, since within this time one may construct
the tree Tx as well as compute the value of all
its nodes. In fact, it is a well-known folklore
that the optimal prover can be implemented in
polynomial-space.

2.4 Proof of Theorem 1

We start with the simplest case, where we have

a bound c
def
= c(jxj) on both the randomness and

message complexity of the interactive proof on
input x. In this case the number of nodes in
Tx is at most 22c+1 (since the product of fan-
out along any path from the root to a leaf is
bounded by 2c � 2c, where the �rst factor is due
to the actual transcript and the second to the
number of possible random-pads augmenting any
of these). Thus, we can construct Tx in time
22c+1 � poly(jxj) and compute the value of each
of its nodes (within the same time). The theorem
follows.

2.5 Proof of Theorem 2

Here we only have a bound c
def
= c(jxj) on the

message complexity of the interactive proof on
input x. In this case the number of internal
nodes in Tx is at most 2

c+1 (since the product of
fan-out along any path from the root to a father
of a leaf is bounded by 2c.) However, Tx itself
may have exponentially many leaves (i.e., each
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last-level internal node may have exp poly(jxj)
many leaves corresponding to possible random-
pads consistent with the transcript represented
by this node). Our aim is to approximate the
value of Tx in time poly(2cjxj), so we cannot af-
ford to construct Tx. Instead, we take a sample

of m
def
= �(2cc) random-pads, denoted R, and

evaluate the residual tree TR
x which results from

Tx by omitting all nodes which are not consis-
tent with some random-pad in R. (The weights
in the tree TR

x are those induced by the various
subsets of R which are consistent with the tran-
script represented by each node.) We will show
that, with very high probability, the value of TR

x

approximates the value of Tx. We note that the
value of TR

x can be computed in time propor-
tional to its size (as done in previous subsection
for Tx itself), and that the size of TR

x is bounded
by 2c � jRj = 2O(c). Thus, the theorem follows
from the following lemma.

Lemma 6 Let V; x, m, Tx and TR
x be as above.

Suppose that r1; :::; rm are uniformly and inde-

pendently chosen random-pads for V (x) and let

R denote the multi-set fr1; :::; rmg. Then, with

probability at least 0:99, the value of TR
x is within

0:1 of the value of Tx.

Proof: It is useful to consider a \veri�er"4,
denoted V R, which selects its random-pad uni-
formly in R and otherwise acts as V does.
Clearly, the value of TR

x represents a tight up-
per bound on the accepting probability of V R

interacting with any prover strategy on common
input x. (We stress that such a prover has no
access to R.)
Fixing any prover strategy, denoted P , we con-

sider the di�erence between the accepting prob-
abilities of V R and V when each interacts with
P on common input x. Denote this di�erence
by �P (R). Using Cherno� Bound (see Ap-
pendix A), with probability at most 2�
(m) over
the choices of R, we have j�P (R)j > 0:1. Specif-
ically, we consider random variables �1; :::�m, so
that �i = 1 if the ith random-pad in R (i.e.,

4 Such a \veri�er" is not an interactive machine (as in
De�nition 1) but rather one having access to an oracle R.

ri) makes V R accept x when interacting with
P . Since each ri is uniformly selected among all
possible random-pads of V , the expected value
of each �i equals the probability that V accepts
x when interacting with P . Since the ri's are
chosen independently, the �i's are independent
random variables. Finally observe that the prob-
ability that V R accepts x when interacting with
P is a random variable which equals the aver-
age of the random variables �1; :::; �m. Thus, ap-
plying Cherno� Bound indeed yields that with
probability at most 2�2�0:12�m over the choices of
R, we have j�P (R)j > 0:1.

Noting that provers are functions from histo-
ries to next-messages, we conclude that there are
at most (2c)2

c

= 2c2
c

possible provers (as both
histories and next messages are of length at most
c � 1 bits). Thus, using the Union Bound and
the de�nition ofm, with probability at most 0:01
over the choices of R, we have j�P (R)j > 0:1 for
all possible P 's. The lemma follows.

2.6 Proof of Proposition 5

Here we only have a bound on the uni-directional
communication from the prover to the veri�er.

Speci�cally, let m
def
= m(jxj) be a bound on the

total number of bits sent by the prover to V , on

input x, and r
def
= r(jxj) be a bound on the num-

ber of rounds in their interaction (on x). Our
goal is to approximate the value of Tx within
complexity related to m (and r). Thus, the ap-
proach of the previous subsection which used the
assumption that Tx has relatively few internal
nodes will not do. Instead, we are going to con-
struct a \representative subtree" of Tx as follows.

Motivation: The basic idea is that we do not
need to consider all possible messages that V
may send at a particular point in the interac-
tion. Considering a random sample of these mes-
sages should su�ce, since with very high proba-
bility the average accepting-probability over this
sample provides a good approximation to the
(weighted) average over all possible messages.
The latter assertion holds, provided we select
the sample at random according to the weights

5



assigned to the possible messages. Note that
the argument holds with respect to V 's messages
which are selected by V at random, but cannot
be applied to the prover's responses which are
selected to maximize V 's accepting probability.

Back to the actual proof: For each even-
level node in Tx, we select a random sample of
�(m4) children (representing possible V mes-
sages on the partial transcript associated with
this node). The sample is selected according
to the weights mentioned in De�nition 2 (i.e.,
the probabilities of the various V 's messages).
Each sample point is selected independently of
the others, and so the sample may contain sev-
eral occurrences of the same node. At this point
we ignore the question of how one may select
such a sample. This is indeed easy if the inter-
active proof is of an Arthur-Merlin type, but in
general this may be a hard task (and an NP-
oracle will be used to carry it out).

These samples (each per even-level node) de-
�nes an approximation tree, denoted Ax, in
which each odd-level node has the same chil-
dren as in Tx, whereas each even-level node has
poly(m) children. The value of the approxima-
tion tree is de�ned recursively as in De�nition 2:
Speci�cally, the leaves of Ax have the same value
as in Tx, the value of odd-level nodes is the maxi-
mum of the value of their children, and the value
of even-level nodes is the (unweighted) average of
the values of their children. We stress that al-
though the averages taken in the even-level nodes
of Tx may be weighted, the averages taken in Ax

are not. However these weights have their ef-
fect in the randomized construction of Ax (as
described above).

Lemma 7 (the value of Ax): With probability

at least 0:99, the value of the approximation tree

Ax is within 0:1 away from the value of the cor-

responding game tree Tx.

Proof: Let s = �(m4) be the size of the sample
used for each even-level node. We consider r +
2 hybrid trees, denoted H0; :::;Hr+1, so that Hi

consists of the �rst 2i+1 levels of Ax and the rest

of the levels taken from Tx. That is, each 2ith

level node of Hi is the root of the Tx-subtree
rooted at the corresponding node in Tx. Note
that H0 � Tx and Hr+1 � Ax. The value of
Hi is de�ned in the natural manner; that is, the
values of nodes at level below 2i are de�ned as in
Tx (the corresponding edges going out of these
even-level nodes have weights as in Tx), and the
value of nodes in levels 2i�1 and less are de�ned
as in Ax. We will show that for every i = 0; :::; r,
with probability at least 1 � 0:01

r+1 , the values of

Hi and Hi+1 are within
0:1
r+1 of one another.

Let us �x i and consider any 2ith level node in
Hi, denoted f . Denote the children of this node
(in Hi) by c1; :::; ct, and the weights associated
with the edges leading to them by w1; :::; wm.
Denote the value of cj in Hi by vali(j). Then,
by de�nition of values in Hi, the value of f in Hi

is
Pt

j=1wj �vali(j) (as in Tx). We may viewHi+1

as generated fromHi by taking a sample of s chil-
dren of each 2ith level node inHi. The children of
the node corresponding to f in Hi+1 are selected
among the nodes corresponding to the cj 's ac-
cording to the weights wj's. We represent these
s choices by the random variables 
1; :::; 
s dis-
tributed in f1; :::; tg. Note that Prob(
k = j) =
wj, for every j = 1; :::; t and k = 1; :::; s. As a
function of each 
k, we consider the random vari-

able �k
def
= vali(
k). The expected value of each

�k equals
Pt

j=1wj � vali(j). Thus, the value of
the node corresponding to f in Hi+1 is a random
variable which is the sum of s = �(m4) indepen-
dent random variables (i.e., the �k's). Applying
Cherno� bound, we observe that with probabil-
ity at least 1 � 2 exp(� 2s

(100(r+1))2 ) > 1 � 2�m2

the value of this node is within 0:1
r+1 of its ex-

pected value (i.e.,
Pt

j=1wj � vali(j)). Since

the number of 2ith level node in Hi is at most
2m � si = O(2m �m4r) < 0:01

r+1 � 2
m2

, we conclude

that with probability at least 1� 0:01
r+1 , the values

of all corresponding 2ith level nodes of Hi and
Hi+1 are within 0:1

r+1 of one another. In such a
case, the values of the (roots of the) trees Hi and
Hi+1 are within

0:1
r+1 of one another. The lemma

follows.
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Size of Ax: The total size of the approximation
tree is

2m � poly(m)r = poly(2m �mr) = poly(2m � rr)

where the last equality is proven as follows: In
case 2m � mr, we have 2m �mr � 22m = poly(2m �
rr). Otherwise, we have 2m < mr and so m < r2

and 2m �mr < 2m � (r2)r = poly(2m � rr).

Evaluating Ax in case of an Arthur-Merlin

veri�er: In this case it is easy to select uni-
formly a sample of children of any even-level
node in Tx (as this amount to selecting a sample
of the veri�er next messages which are uniformly
distributed in the set of strings of a predeter-
mined length). Thus, we can construct Ax (top-
down) probabilistically in time poly(2m � rr) and
compute its value (bottom-up) within this time
bound. Using Lemma 7, Part (1) of Proposi-
tion 5 follows.

Evaluating Ax in the general case: In this
case we use the uniform generation procedure
of Bellare and Petrank [3] (see Appendix B).
Loosely speaking, this procedure allows to uni-
formly select an NP-witness for a given input in
an NP-language. The procedure runs in prob-
abilistic polynomial-time using an NP-oracle.
Here we use this procedure to uniformly select
a random-pad (for V ) consistent with a given
partial transcript. (Note that the set of possible
pairs (x; t), where t is a partial transcripts for V
on input x, is an NP-language with the random-
pads acting as NP-witnesses.) Thus, given any
even-level node in Tx (partial transcript), we can
uniformly select a consistent random-pad yield-
ing a veri�er next-message according to the right
distribution. Thus, we can construct Ax (top-
down) probabilistically in time poly(2m �rr) with
access to an NP-oracle. Once we have con-
structed Ax, we compute its value (bottom-up)
as before. Using Lemma 7, Part (2) of Proposi-
tion 5 follows.

3 Conclusions and Open Prob-

lems

Our conclusion is that computationally-sound
proof systems of low message complexity seem
to be much more powerful than interactive proof
systems of the same message complexity bound.
We wonder whether the results of Theorems 3
and 4 can be improved. In particular,

Open Problem 1 (relatively minor): Can the

running-time bounds of the decision procedures

in Theorems 3 and 4 be improved?

In particular, time bounds exponential in c(�)
(rather than in c(�) log c(�))) seem a natural
goal. Note that there is little hope to go be-
low 2c(�)=O(1) time { this would imply algorithms
for any NP-complete problem operating in time
which is subexponential in the length of the NP-
witness (as each problem in NP has a trivial in-
teractive proof in which the prover sends an NP-
witness to the veri�er). Also note that for in-
teractive proofs with O(c(�)= log c(�)) rounds, we
do have poly(2c(�))-time decision procedures (see
Proposition 5).

Open Problem 2 : Can the probabilistic NP-

oracle machine of Theorem 4 be replaced by a

weaker process?

There seems to be little hope to replace the
probabilistic NP-oracle machine by an ordinary
probabilistic machine (of similar time-bounds),
since languages for which the hypothesis holds
with c � 1 include Quadratic Non-Residousity
(widely believed not to be in BPP ) and
Graph Non-Isomorphism (not known to be in
NP). But, how about placing such a lan-
guage in a generalization of constant-rounds
interactive proofs in which the veri�er is al-
lowed to run for 2O(c(�) log c(�)) � poly(�)) time.
Speci�cally, for c(n) = O(log n= log logn) and
using the notations of x 2.2, is IP(c(�); c(�))
contained in IP(poly(�); O(1))? That is, we
ask if any language having an interactive proof
system in which the prover sends a total of
O(logn= log log n) bits (but may have as many

7



rounds) has also a constant-round interactive
proof system. On a slightly di�erent note, how
about

Open Problem 3 : Can one provide evidence

that NP is not contained in IP(c(�); c(�)) for
small c? How about constant c > 1?

Clearly, such indication will have to assume
that NP is not in BPP . But all we know
under that assumption is that NP is not
contained in IP(log; 1). (as IP(c(�); 1) �
BPtime(2c(�)poly(�))). In the same vain, how
about

Open Problem 4 : Can one provide evidence

that coNP is not contained in IP(c(�); c(�)) for
small, non-constant, function c? How about con-

stant c(n) = log log n?

It is widely believed that coNP is not con-
tained in IP(poly; O(1)) (or else, for example,
the polynomial-time hierarchy collapses [4]).
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Appendix A: Cherno� Bound

Cherno� Bound: Let �1; :::; �m be indepen-
dent random variables, each ranging in [0; 1] and
having expected value �. Then,

Prob

 ������� 1

m

mX
i=1

�i

����� > �

!
� 2 exp

�
�2�2m

�
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Appendix B: The Uniform Gen-

eration Procedure

The approximation algorithm presented in x2.6
uses a uniform generation procedure for selecting
a NP-witness. Such a procedure originating in
[11, 12, 9] has appeared in [3].

De�nition 3

(uniform generation of NP-witnesses): Let R be

an NP-witness relation associated with the NP-

language LR
def
= fx : 9y s.t (x; y) 2 Rg. Let

Rx
def
= fy : (x; y)2Rg denote the set of witness

for membership of x in the language. A uniform

generation procedure for R is a probabilistic ma-

chine which given x 2 LR, with probability at

least 1�2�jxj, outputs some witness for x (i.e., a
string y in Rx). Furthermore, all possible strings

in Rx are output with the same probability. That

is, for every y1; y2 2 Rx, the probability that the

procedure (on input x) outputs y1 equals the prob-
ability that it outputs y1.

Clearly we cannot expect such a procedure to be
weaker than NP itself. Thus, without loss of
generality, we may assume that when not out-
putting an NP-witness it outputs a special sym-
bol (e.g., ?). Also note that the de�nition is
robust with respect to the choice of the lower
bound on the probability that the procedure out-
puts a witness. Clearly, any procedure in which
this lower bound is at least 1=poly(jxj) can be
converted to a procedure as above.

Theorem 8 (following [9, 3]): Let R and LR

be as above. Then there exists a probabilis-

tic polynomial-time oracle machine which when

given oracle to NP (i.e., to an NP-complete lan-
guage), constitutes a uniform generation proce-

dure for R.

For sake of self-containment we present a sketch
of the proof of this theorem. The proof is slightly
di�erent from what appears in any of the previ-
ous works. We start with a high level descrip-
tion of the execution of the procedure on input
x 2 LR. We assume, without loss of generality
that Rx � f0; 1gn, where n = poly(jxj), and that
n is polynomial-time computable from x.

1. The procedure �nds an i such that jRxj <

2i+1. In addition, in case i > `
def
= dlog2 ne,

the procedure also obtains (see details be-
low) a hash function h : f0; 1gn 7! f0; 1gi�`

so that for every � 2 f0; 1gi�`, we have

jRx;h;�j < 2n, where Rx;h;�
def
= fy 2 Rx :

h(y)=�g. Furthermore, with probability at
least 0:9, we have jRx;h;�j � n=2, for every
� 2 f0; 1gi�`.

2. In case i � `, the procedure obtains Rx and
stops uniformly outputting a member of Rx.

3. Otherwise, using i and h found in Step 1, the
procedure uniformly selects � 2 f0; 1gi�`,
and obtains Rx;h;�. The procedure halts
outputting each e 2 Rx;h;� with probabil-
ity 1=2n, and outputting ? otherwise (i.e.,

with probability 1�
jRx;h;�j

2n ). (In particular,
in case Rx;h;� = ;, the procedure always
outputs ?.)

It can be easily veri�ed that the above yields a
uniform generation procedure for R. The ques-
tion is how to implement all of the above steps.
To simplify the exposition, we assume n = jxj
(rather than n = poly(jxj)), and that n = 2`.

Checking if jRxj < 2n: This is done using the
NP-oracle by querying about membership of x
in the language

S1
def
= fx0 : 9y1 < y2 < � � � < y2jx0j s.t. (x

0; y1); :::; (x
0; y2jx0j)2

Finding \good" i and h, in case jRxj � 2n:
Recall n = jxj. For each i, we use a family of
n-wise hashing functions mapping n-bit strings
into (i � `)-bit strings (e.g., use polynomials of
degree n � 1 over GF(2n)). For i = log2 jRxj
and h uniformly selected in this family, we have
(using the nth moment method)

Probh(9� s.t. jRx;h;�j < n=2 or jRx;h;�j > 2n) < 0:1

We may verify that jRx;h;�j � 2n for all �'s, by
checking with the NP-oracle that (x; h) in not in
the language

S2
def
= f(x0; h0) : 9� 9y1 < y2 < � � � < y2jx0j+1 s.t. (x

0; yj) 2 R

9



Thus, trying i = `; :::; n�1, we select for each i a
random h and test the above condition. In case
we get to i = n, we set h to return the (n�`)-bit
pre�x of the argument. Thus, we surely return a
pair (i; h) for which the condition holds and with
probability at least 0:9 this pair will also satisfy
jRx;h;�j � n=2 for all �'s.

Obtaining Rx or Rx;h;� in case they are

small: For sake of simplicity, we consider here
only the case jRxj � 2n. Firstly, we use the NP-
oracle to determine the size of Rx by testing the
membership of each (x; 1); :::; (x; 12n) in the set

S3
def
= f(x0; 1k) : 9y1 < y2 < � � � < yk s.t. (x

0; y1); :::; (x
0; yk)2Rg

Once the cardinality of Rx, denoted s, is deter-
mined (and assuming s 6= 0), we �nd the jth bit
of the ith element by testing the membership of
(x; 1s; 1i; 1j) in the set

S4
def
= f(x; 1s

0

; 1i
0

; 1j
0

) : 9y1 < y2 < � � � < ys0 s.t. (x; y1); :::; (x; ys0)2R and the (j0)th bit of yi0 is zerog
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