
Linearity Testing in Characteristic Two�

M. Bellare y D. Coppersmith z J. H�astad x M. Kiwi { M. Sudan k

Abstract

Let Dist(f; g) = Pru [f(u)6=g(u)] denote the relative distance between functions f; g map-
ping from a group G to a group H , and let Dist(f) denote the minimum, over all linear
functions (homomorphisms) g, of Dist(f; g). Given a function f : G ! H we let Err(f) =
Pru;v [f(u)+f(v) 6=f(u+v)] denote the rejection probability of the BLR (Blum-Luby-Rubinfeld)
linearity test. Linearity testing is the study of the relationship between Err(f) and Dist(f), and
in particular the study of lower bounds on Err(f) in terms of Dist(f).

The case we are interested in is when the underlying groups are G=GF(2)n and H=GF(2).
In this case the collection of linear functions describe a Hadamard code of block length 2n and
for an arbitrary function f mapping GF(2)n to GF(2) the distance Dist(f) measures its distance
to a Hadamard code (normalized so as to be a real number between 0 and 1). The quantity
Err(f) is a parameter that is \easy to measure" and linearity testing studies the relationship of
this parameter to the distance of f .

The code and corresponding test are used in the construction of eÆcient probabilistically
checkable proofs and thence in the derivation of hardness of approximation results. In this
context, improved analyses translate into better non-approximability results. However, while
several analyses of the relation of Err(f) to Dist(f) are known, none is tight.

We present a description of the relationship between Err(f) and Dist(f) which is nearly
complete in all its aspects, and entirely complete (i.e. tight) in some. In particular we present
functions L;U : [0; 1]! [0; 1] such that for all x 2 [0; 1] we have L(x) � Err(f) � U(x) whenever
Dist(f) = x, with the upper bound being tight on the whole range, and the lower bound tight
on a large part of the range and close on the rest.

Part of our strengthening is obtained by showing a new connection between the linearity
testing problem and Fourier analysis, a connection which may be of independent interest. Our
results are used by Bellare, Goldreich and Sudan to present the best known hardness results for
Max-3SAT and other MaxSNP problems [7].

Index Terms | Probabilistically checkable proofs, approximation, program testing, Hadamard

codes, error detection, linearity testing, MaxSNP.

� A preliminary version of this paper appeared in Proceedings of the 36th Symposium on Foundations of Computer

Science, IEEE, 1995.
y Department of Computer Science & Engineering, Mail Code 0114, University of California at San Diego, 9500

Gilman Drive, La Jolla, California 92093. mihir@cs.ucsd.edu.
z Research Division, IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA.

copper@watson.ibm.com.
x Department of Computer Science, Royal Institute of Technology, 10044 Stockholm, Sweden.

johanh@nada.kth.se. Part of this work was done while the author was visiting MIT.
{ Depto. de Ingenier��a Matem�atica, Fac. de Cs. F��sicas y Matem�aticas, U. de Chile. mkiwi@dim.uchile.cl. This

work was done while the author was at the Dept. of Applied Mathematics, Massachusetts Institute of Technology.

Supported by AT&T Bell Laboratories PhD Scholarship, NSF Grant CCR{9503322, FONDECYT grant No. 1960849,

and Fundaci�on Andes.
k Research Division, IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA.

madhu@watson.ibm.com.

1

Warning: Essentially this paper has been published in IEEE Transaction on Infor-

mation theory and is hence subject to copyright restrictions. It is for personal use

only.

1 Introduction

One of the contributions of computational complexity theory has been to re-examine the classical

notion of what constitutes a proof of a mathematical statement. The complexity class NP intro-

duced the notion of an eÆciently veri�able proof. It asks that the proof, which is a sequence of

written symbols, not only be veri�able, but be veri�able quickly, namely in polynomial time. Over

the last decade or so, researchers have furthered this avenue in many ways. One of the many notions

that has been developed, and explored, allows the veri�er (of the claimed proof) to be probabilistic

in its actions. The new veri�er is also allowed to err in its judgment, as long as it doesn't do so

too often| proofs of false statements can be accepted with small probability. (This probability is

measured over coin tosses made by the veri�er and not over any distribution over theorems/proofs.)

As a tradeo�, the notion restricts the access of the veri�er into the proof, allowing a veri�er to

only query or probe the proof in a small number of bits and studies the behavior of the number

of bits that are needed to be probed in any proof system as a function of the error probability.

Such a proof system, i.e., the veri�er and its associated format for valid proofs, is referred to as a

probabilistically checkable proof system | PCP, for short. Along with the development of this no-

tion, the research has also yielded a series of technical developments, which have constructed PCP

veri�ers which examine only a constant number of bits, C, of a purported proof and reject proofs

of incorrect statements with probability 1
2 . This constant is a universal constant, and independent

of the length of the theorem or the proof. The new proof systems, do require valid proofs to be

longer than traditional (deterministic) proof systems would allow for. However the size of the new

proofs are only polynomially larger than the size of the traditional proofs.

Apart from the inherent interest in the construction and performance of PCP systems, a major

motivating factor for the study of PCP systems is their use in the derivation of non-approximability

results for combinatorial optimization problems. The theory of NP-completeness has been employed

as an important tool in the analysis of the complexity of �nding optimal solutions to discrete (or

combinatorial) optimization problems. For many optimization problems, the NP-complete or NP-

hard ones, this theory can be used to show that no polynomial time solution solves this problem

exactly, unless NP = P. However the possibility that solutions to these problems which approximate

the optimum to within a relative error of � for every � > 0 may be found in polynomial time,

remained open. A new connection uses the PCP constructions mentioned above to show that

for many interesting problems, even such approximate solutions can not be found in polynomial

time unless NP = P. This connection further serves to motivate the study of PCP systems and in

particular, their eÆciency (for instance, the parameter C above) since improved eÆciency translates

into stronger non-approximability results.

The prime motivation for the problem to be studied in this paper is these PCP constructions

and the ensuing hardness of approximation results. However, a full explanation of the details of

these results is beyond the scope of this paper | in fact, we will not even attempt to formalize the

de�nitions above. The interested reader is directed towards any of a number of surveys which have

appeared on this topic.1 Fortunately, the problem to be studied in this paper can be formulated

cleanly without reference to the above mentioned results and furthermore have an interesting im-

plication in a coding theoretic setting. We �rst describe this setting and then procedd to formally

de�ne the problem of interest.

Central to many of the construction of eÆcient PCPs has been the construction and analysis

1 It isn't possible to provide an exhaustive list of the dozen or so surveys available but if you are on the web check

out http://www-cse.ucsd.edu/users/mihir/pcp.html.

of error-correcting codes and probabilistic \error-detection" algorithms for these error-correcting

codes. These algorithms function as follows: Given a word w which is supposed to be a codeword

of some error-correcting code, the algorithm probabilistically chooses a small (sometimes constant)

number of bits of the word w to examine, computes a (simple) boolean function of these bits and out-

puts a verdict ACCEPT/REJECT. The guarantee obtainable from such algorithms is weaker than

the guarantee expected >from classical error-detection algorithms. In particular, the guarantees

behave as follows: Given a valid codeword, the algorithm must output ACCEPT with probability

1. On the other hand if the input is far from any valid codeword (i.e., the distance is more than

some speci�ed constant fraction of the minimum distance of the code), then the algorithm must

output REJECT with some positive probability, bounded away from 0. Most of the codes used

in these constructions are well-known ones, with Hadamard Codes and variants of Reed-Solomon

being the most commonly used ones. Much of the technical development in this area is directed

towards the construction and analysis of the probabilistic error-correcting algorithms. This area of

study, collectively referred to as testing in the PCP literature is the origin of the problem considered

in this paper.

It is a feature of the area that while tests are easy to specify, they are notoriously hard to

analyze, especially to analyze well. Yet, good analyses are, for several reasons, worth striving

for. There is, �rst, the inherent mathematical interest of getting the best possible analysis and

understanding of a well-de�ned combinatorial problem. But, there is a more pragmatic reason:

better analyses typically translate into improved (increased) factors shown non-approximable in

hardness of approximation results.

The speci�c problem considered here is called the linearity testing problem. We wish to look at

a particular test, called the BLR test, with was the �rst ever proposed. Our focus is the case of most

importance in applications, when the underlying function maps between groups of characteristic

two. Several analyses have appeared, yet none is tight. Each improved analysis implies improved

factors shown non-approximable in hardness of approximation results.

Let us begin by describing the linearity testing problem and past work more precisely.

1.1 The Problem

The linearity testing problem is a problem related to homomorphisms between groups. Let G;H

be �nite groups. A function g : G! H is said to be linear if g(u) + g(v) = g(u+v) for all u; v 2 G.

(That is, g is a group homomorphism.) We will use the notation u
R
 G to represent a random

variable u chosen uniformly at random from the (�nite) group G. Here are some basic de�nitions:

Lin(G;H) | Set of all linear functions of G to H

Dist(f; g)
def
= Pr

u
R
 G

[f(u) 6=g(u)] | (relative) distance between f; g : G! H

Dist(f)
def
= minf Dist(f; g) : g 2 Lin(G;H) g | Distance of f to its closest linear function.

The BLR Test. Blum, Luby and Rubinfeld [9] suggest a probabilistic method to \test" if a

function f is really a linear function. This test, henceforth referred to as the BLR test, is the

following [9]| Given a function f : G ! H, pick u; v 2 G at random and reject if f(u) + f(v) 6=
f(u+v). Let

Err(f)
def
= Pr

u;v
R
 G

[f(u) + f(v)6=f(u+v)]

denote the probability that the BLR test rejects f . The issue in linearity testing is to study how

Err(f) behaves as a function of x = Dist(f). In particular, one would like to derive good lower

bounds on Err(f) as a function of x.

Rej(�). A convenient way to capture the above issues is via the rejection probability function

RejG;H : [0; 1] ! [0; 1] of the test. It associates to any number x the minimum value of Err(f),

taken over all functions f of distance x from the space of linear functions. Thus,

RejG;H(x)
def
= minf Err(f) : f : G! H s.t. Dist(f) = x g :

The graph of RejG;H |namely RejG;H(x) plotted as a function of x| is called the linearity

testing curve.2 This curve depends only on the groups G;H.

By de�nition it follows that RejG;H(x) > 0 if x > 0. However it is not easy to see if any other

quantitative statements can be made about RejG;H(x) > 0 for larger values of x. The most general

problem in linearity testing is to determine the function RejG;H(�) for given G;H. Much of the

work that has been done provides information about various aspects of this function.

The knee of the curve. At �rst glance, it may be tempting to believe that RejG;H(�) will be
a monotone non-decreasing function. One of the most surprising features of RejG;H is that this

is not necessarily true. It turns out (and we will see such an example presently) that there exist

groups G;H such that RejG;H(
1
4) �

3
8 , but RejG;H(

2
3) =

2
9 . The threshold of x = 1

4 turns out to

be signi�cant in this example and an important parameter that emerges in the study of linearity

testing is how low RejG;H(x) can be for x � 1
4 . In this paper we call this parameter, identi�ed

in [2, 6, 7, 8], the knee of the curve. Formally:

KneeG;H
def
= minfRej(x) : x � 1

4 g :

1.2 Error detection in Hadamard codes

In this paper we look at the performance of the BLR test when the underlying groups are G =

GF(2)n and H = GF(2) for some positive integer n. For notational simplicity we now drop the

groups G;H from the subscripts, writing Rej(x) and Knee| it is to be understood that we mean

G = GF(2)n and H = GF(2).

This special case is of interest because of the following reason: In this case the family of functions

Lin(GF(2)n;GF(2)) actually de�nes a Hadamard code of block length 2n. Notice that every linear

function l is speci�ed by a vector � from GF(2)n such that l(x) = h�; xi (where h�; xi =
Pn

i=1 �ixi
denotes the inner product of vectors �; x). Thus we can associate with each of the 2n linear functions

l, a codeword which is the 2n bit sequence (l(x) : x 2 GF(2)n). Any two distinct codewords di�er

in exactly 2n�1 positions, making this a (2n; 2n; 2n�1)-code. For further details see MacWilliams

and Sloane [18, pages 48{49].

For an arbitrary function f , the parameter Dist(f) simply measures its distance to the above

mentioned Hadamard code, normalized by 2n. Estimating Dist(f) is thus related to the classical

task of error-detection. The parameter Err(f) on the other hand simply de�nes a quantity that can

be estimated to fairly good accuracy by a probabilistic algorithm, which probes f in a few places

(or reads a few bits of the purported codeword). The algorithm repeats the following step several

times: It picks random x; y 2 GF(2)n and tests to see if f(x) + f(y) = f(x+y). At the end it

reports the average number of times this test fails. It can be veri�ed easily that this provides an

2 Actually the function RejG;H(x) is only de�ned for �nitely many values, namely the integral multiples of 1
jGj

,

and unde�ned for in�nitely many values. Thus the linearity testing curve is not really a curve in the real plane, but

simply describes a function of �nitely many points.

estimate on Err(f), and the accuracy of this estimate improves with the number of iterations. The

advantage of this algorithm is that it probes f in very few places in order to compute its output

(in particular the number of probes can be independent of n). The aim of Linearity Testing is to

turn this estimate on Err(f) into an estimate on Dist(f). This would thus yield an algorithm which

probes f in few places and yet yields some reasonable estimates on Dist(f), and in particular solves

the earlier mentioned probabilistic error-detection task. This is the ingredient which makes this

test useful in the applications to PCPs and motivates our study.

1.3 Previous work

The �rst investigation of the shape of the linearity testing curve, by Blum, Luby and Rubinfeld [9],

was in the general context where G;H are arbitrary �nite groups. Their analysis showed that

RejG;H(x) �
2
9 x [9]. (They indicate that this is an improvement of their original analysis obtained

jointly with Coppersmith.) Interest in the tightness of the analysis begins with Bellare, Goldwasser,

Lund and Russell [6] in the context of improving the performance of PCP systems. They showed

that RejG;H(x) � 3x� 6x2. It turns out that, with very little e�ort, the result of [9] can be used

to show that RejG;H(x) �
2
9 for x � 1

3 . This claim appears in Bellare and Sudan [8], without

proof. A proof is included in the appendix of this paper, for the sake of completeness. Of the three

bounds above, the last two bounds supercede the �rst, so that the following theorem captures the

state of knowledge.

Theorem 1.1 [6, 9, 10] Let G;H be arbitrary �nite groups. Then:

(1) RejG;H(x) � 3x� 6x2.

(2) KneeG;H �
2
9 .

As indicated above, an improved lower bound for the knee would lead to better PCP systems. But

in this general setting, we can do no better. The following example of Coppersmith [10] shows that

the above value is in fact tight in the case of general groups. Let m be divisible by three. Let f

be a function from Zn
m to Zm such that f(u) = 3k, if u1 2 f3k � 1; 3k; 3k + 1g. Then, Dist(f) = 2

3 .

Furthermore, f(u) + f(v) 6= f(u+v) only if u1 = v1 = 1 (mod 3), or u1 = v1 = �1 (mod 3), i.e.

Err(f) = 2
9 .

This leads into our research. We note that the problem to which linearity testing is applied in

the proof system constructions of [2, 6, 7, 8] is that of testing Hadamard codes (in the �rst three

works) and the long code (in the last work). But this corresponds to the above problem in the

special case where G = GF(2)n and H = GF(2). (G is regarded as an additive group in the obvious

way. Namely, the elements are viewed as n-bit strings or vectors over GF(2), and operations are

component-wise over GF(2).) For this case, the example of Coppersmith does not apply, and we

can hope for better results.

1.4 New results and techniques

As pointed out earlier we focus on the case where the domain and range are of characteristic two

and in particular G = GF(2)n and H = GF(2). We provide two new analyses of Rej(x) in this

case.

Fourier analysis. We establish a new connection between linearity testing and Fourier analy-

sis. We provide an interpretation of Dist(f) and Err(f) in terms of the Fourier coeÆcients of an

appropriate transformation of f . We use this to cast the linearity testing problem in the language

of Fourier series. This enables us to use Fourier analysis to study the BLR test. The outcome is

the following:

Theorem 1.2 For every real number x � 1
2 , Rej(x) � x.

Apart from lending a new perspective to the linearity testing problem, the result exhibits a feature

which distinguishes it from all previous results. Namely, it shows that Rej(x) ! 1
2 as x ! 1

2 .
3

(According to the previous analysis, namely Theorem 1.1, Rej(x) may have been bounded above

by 2
9 for all x � �, where � is the larger root of the equation 3z � 6z2 = 2

9 .) Furthermore we can

show that the analysis is tight (to within o(1) factors) at x = 1
2 � o(1).

This result can also be combined with Part (1) of Theorem 1.1 to show thatKnee � 1
3 . However

this is not tight. So we focus next on �nding the right value of the knee.

Combinatorial analysis. The analysis to �nd the knee is based on combinatorial techniques.

It leads us to an isoperimetric problem about a 3-regular hypergraph on the vertices of the n-

dimensional hypercube. We state and prove a Summation Lemma which provides a tight isoperi-

metric inequality for this problem. We then use it to provide the following exact value of the knee

of Rej(x).

Theorem 1.3 Knee = 45
128 .

Tightness of the analysis. We provide examples to indicate that, besides the knee value, the

lower bounds on Rej(x) as indicated by our and previous results are tight for a number of points.

In particular, the curve is tight for x � 5
16 , and the bound at x = 1

2 � o(1) is matched up to within

o(1) factors (i.e., there exist functions fn : GF(2)
n ! GF(2) such that as n goes to 1, Err(fn) and

Dist(fn) go to 1
2).

Other results. The isoperimetric inequality underlying Theorem 1.3 turns out to reveal other

facts about Rej(x) as well. In particular it helps establish a tight upper bound on Err(f) as a

function of Dist(f). This result is presented in Section 3.

Also, while the main focus of this paper has been the BLR test, we also present in Section 5

a more general result about testing for total degree one in characteristic two. The purpose is to

further illustrate the strength and elegance of the Fourier analysis technique, as well as its more

general applicability to the problem of analyzing program testers.

Graph. A �gure, reomoved in this version due to printing problems, summarizes the results of this

work. The points f (Dist(f);Err(f)) : f g lie in the white region of the �rst graph. The dark shaded

region represents the forbidden area before our work, and the light shaded region represents what

we add to the forbidden area. Note we both extend the lower bound and provide upper bounds.

The dots are actual computer constructed examples; they indicate that perhaps the lower bound

may be improved, but not by much.4 In particular, the knee value is tight. Furthermore the upper

bound is tight.

The second graph indicates lower bounds on Rej(x). The line 2
9 x represents the result of [9].

The parabola is the curve 3x� 6x2 representing the result of [6]. The curve 2
3 x when x � 1

3 and 2
9

when x > 1
3 represents the result of [8]. Our additions are the 45 degree line of x and the horizontal

line at 45
128 for the new knee value.

3 Note that Dist(f) � 1
2
for all f : G ! H because we are working over GF(2), so only the portion x 2 [0; 1

2
] of

the curve is interesting.
4 More precisely, we have a randomized procedure that with high probability can construct, for each plotted point,

a function f such that (Dist(f); Err(f)) is arbitrarily close to the point in question.

1.5 Application to MaxSNP hardness

As mentioned earlier, the construction of PCP systems have led to new results showing the non-

approximability of many combinatorial optimization problems. This surprising connection, initiated

by Feige, Goldwasser, Lov�asz, Safra and Szegedy [11], showed how to turn the results on construc-

tions of eÆcient PCP systems into results which showed that for certain combinatorial optimization

problems �nding an � approximate solution is also an NP-hard task. A subsequent result, due to

Arora, Lund, Motwani, Sudan and Szegedy [2] managed to use a similar idea to show that an

analogous result holds for a large collection of problems called MaxSNP hard problems. The result

says that for every MaxSNP hard problem, there is a constant � > 0, such that the task of �nding

solutions which approximate the optimum to within a relative error of � for this problem, is also

NP-hard. Subsequently, initiated by the work of Bellare, Goldwasser, Lund and Russell [6], a series

of works have improved the above results by constructing more eÆcient PCP systems and thereby

showing stronger hardness of approximation results for MaxSNP hard problems.

Usage of the linearity test in the construction of eÆcient PCPs, and thence in the derivation of

hardness of approximability results for MaxSNP problems, begins in [2] and continues in [6, 8, 7].

In the �rst three cases, it is used to test the Hadamard code; in the last case, to test a di�erent

code called the long code. In all cases the underlying problem is the one we have considered above,

namely linearity testing with G = GF(2)n and H = GF(2).

The MaxSNP hardness result of [6] used only two things: The lower bound Rej(x) � 3x� 6x2

of Theorem 1.1, and the best available lower bound k on the knee. They were able to express the

non-approximability factor for Max-3SAT as an increasing function g1(k) depending solely on k.

The lower bound on the knee that they used was Knee � 1
6 derived from Part (1) of Theorem 1.1

and [9]. Their �nal result was that approximating Max-3SAT within 113
112 � 1:009 is NP-hard.

Improved proof systems were built by [8]. Again, their non-approximability factor had the form

g2(k) for some function g2 depending only on the best available lower bound k on the knee. They

usedKnee � 2
9 to show that approximating Max-3SAT within 74

73 � 1:014 is NP-hard. Theorem 1.3

would yield direct improvements to the results of [6, 8] with no change in the underlying proof

systems or construction. However, better proof systems are now known, namely the long code based

ones of [7]. The analysis in the latter uses both our results (namely Theorem 1.3 and Theorem 1.2).

They show that approximating Max-3SAT within 1:038 is NP-hard. They also exploit our analyses

to derive strong non-approximability results for other MaxSNP problems (like Max-2SAT and

Max-Cut) and for Vertex Cover.

Thus, the applications of [6, 8] motivated our consideration of the linearity testing problem. In

the process we proved more than these works needed. But, interestingly, later [7] found our results

useful in the same context.

1.6 Relationship to other work

As mentioned earlier, there are a variety of problems which are studied under the label of testing.

In particular, a variety of tasks address the issue of testing variants of Reed-Solomon codes. These

tests, referred to in the literature as low-degree tests are used in a variety of ways in proof systems.

We brie
y explain, �rst, what are the other problems and results in low degree testing and why

they di�er from ours; second how the usage of these in proof systems is di�erent from the usage of

linearity tests.

Low degree testing. We are given a function f : F n ! F , where F is a �eld, and we are

given a positive integer d. In the low individual degree testing problem we are asked to determine

whether f is close to some polynomial p of degree d in each of its n variables. When specialized to

the case of d = 1, this task is referred to as multi-linearity testing. In the low total degree testing

problem we are asked to determine whether f is close to some polynomial p of total degree d in its

n variables.5 Multi-linearity tests were studied by [4, 11]. Low individual degree tests were studied

by [3, 5, 12, 19]. Total degree tests were studied by [2, 13, 14, 20].

What we are looking at, namely linearity testing over GF(2), is a variant of the total degree

testing problem in which the degree is d = 1, F is set to GF(2), and the constant term of the

polynomial p is forced to 0. Even though a signi�cant amount of work has been put into the

analysis of the low degree tests by the above mentioned works, the analysis does not appear to be

tight for any case. In particular one cannot use those results to derive the results we obtain here.

In fact the tightness of the result obtained here raises the hope that similar techniques can be used

to improve the analysis in the above testers.

The role of testing in PCP systems. An important tool in the construction of proof systems

is a tool referred to as recursion [3]. Roughly, the tool provides an analog of the process of

construction of concatenated error-correcting codes, to the realm of PCPs. A PCP proof system

constructed by recursion consists of several levels of di�erent atomic PCPs. The PCP at each level

of recursion typically uses some form of low-degree testing, the kind di�ering from level to level.

The use of multi-linearity testing was initiated by Babai, Fortnow and Lund [4]. For eÆciency

reasons, researchers beginning with Babai, Fortnow, Levin and Szegedy [5] then turned to low

individual degree testing. This testing is used in the \higher" levels of the recursion. Linearity

testing showed up for the �rst time in the lowest level of the recursion, in the checking of the

Hadamard code in [2]. The proof systems of [7] use all these di�erent testers, but, as we explained,

the �nal non-approximability factors obtained can be expressed only in terms of the shape of the

linearity testing curve.

Recent work. Kiwi [16] provides improved analysis for the linearity testing problem over all

�nite �elds. He obtains this result by providing another new interpretation of the linearity testing

problem, this time by relating it to a weight enumeration problem of a linear code studied as a

function of the minimum distance of its dual code.

H�astad [15] has shown a tester for a di�erent code, namely the \long code" of [7], and an

analysis for the test is again based on a Fourier Transform based approach. The analysis once

again provides signi�cant improvements to non-approximability results for the clique problem.

1.7 Discussion

The main argument behind the analysis of the BLR test given in [9] is the following: given f taking

values from one �nite group G into another �nite group, start by de�ning a function gf whose

value at u is Pluralityf f(u+v)� f(v) : v 2 G g.6 Then, show that if Err(f) is suÆciently small,

three things happen. First, an overwhelming majority of the values ff(u+v)�f(v) : v 2 Gg agree

with gf (u), second, gf is linear, and last, gf is close to f . This argument is called the plurality

argument. The assumption that the rejection probability of the test is small seems to be an essential

component of this argument.

The arguments used in most of the previous works on low-degree testing are based on the

plurality argument. So far, these type of arguments have been unable to show a non-trivial relation

5 To illustrate the di�erence between individual and total degree, note that f(x1; : : : ; xn) = x1x2 is multi-linear

but not linear.
6 The plurality of a multiset is the most commonly occurring element in the multiset (ties are broken arbitrarily).

between the probability that a given function fails a test, and its distance from a family of low-

degree polynomials, when the probability that the test fails is high (i.e., larger than 1
2). Our discrete

Fourier analysis approach does not exhibit the properties discussed above, and this may be one of

the reasons for its success.

Our approach was somewhat inspired by the coding theoretic statement of the linearity testing

problem; however the �nal analysis does not bring this out clearly. Kiwi's [16] approach brings the

connection out much more explicitly and suggests that further exploration of the relationship to

coding theory may prove fruitful.

2 Fourier Analysis of the Linearity Test

In this section we prove Theorem 1.2 and discuss how tight it is.

Conventions. In the rest of this work, unless explicitly said otherwise, F denotes GF(2). Further-

more, whenever we write Lin it is to be understood that we are referring to Lin(F n; F). Throughout

this section, if an element b of F appears as an exponent, e.g. (�1)b, it is to be understood as a

real number. Thus (�1)b takes the value 1 or �1 depending on whether b is 0 or 1 respectively.

The main result of this section is based on an application of discrete Fourier analysis techniques

to the study of the BLR test. More precisely, we view a function f : F n ! F as a real valued

function, and de�ne a function h which is a simple transformation of f . We prove that if the

distance from f to its nearest linear function is large, then the Fourier coeÆcients of h cannot be

very large. Furthermore, we show that the smaller the Fourier coeÆcients of h are, the higher the

probability that f will fail the BLR test.

In the rest of this section, we �rst review the basic tools of discrete Fourier analysis that we

use, and then give a precise formulation of the argument discussed above.

Discrete Fourier Transform. We consider the family of all real-valued functions on F n as a

2n-dimensional real vector space. For functions �; �: F n ! R, let h�; �i = 1
jF jn �

P
u2Fn �(u)�(u)

denote the inner product of the functions � and �. The family of functions f � : � 2 F n g,

where �(u) = (�1)��u, � � u =
Pn

i=1 �iui, form an orthonormal basis for this linear space (i.e.,

h �; �i = 1 and h �; �i = 0 if � 6= �). Thus every function � can be uniquely expressed as linear

combination of the �'s, namely, � =
P

�2Fn
b�� �. The coeÆcient b�� is referred to as the �-th

Fourier coeÆcient of �. By the orthonormality of the basis f � : � 2 F n g it follows that:

b�� = h�; �i: (1)

Also the orthonormality of the basis yields the following identity known as Parseval's equality:

h�; �i =
X
�2Fn

(b��)2: (2)

The convolution of two functions � and �, denoted � � �, is a function mapping F n to the reals

and de�ned as follows: (� � �)(x) = 1
jF jn �

P
u+v=x �(u)�(v). Note that the convolution operator is

associative. Lastly we need the following identity, called the convolution identity, which shows the

relationship between the Fourier coeÆcients of two functions � and � and the Fourier coeÆcients

of their convolution:

8� 2 F n; d(� � �)� = b��b��: (3)

Lower Bound. To lower bound Err(f) we use discrete Fourier analysis techniques. We start by

establishing a relation between the Fourier coeÆcients of a transformation of the function f , and

Dist(f), i.e., the distance from f to the linear function closest to f . The transformation is given by

the function h: F n ! R, de�ned as h(u) = 1 if f(u) = 0 and h(u) = �1 otherwise. Over GF(2), h

can be expressed as h(�) = (�1)f(�) and this is a crucial element of the following two lemmas. The

�rst lemma shows that if Dist(f) is large, the Fourier coeÆcients of h are small.

Lemma 2.1 Suppose f : F n ! F and � 2 F n. Let h(u) = 1 if f(u) = 0 and �1 otherwise. Thenbh� � 1� 2Dist(f).

Proof: Let l�(u) = � � u =
Pn

i=1 �iui. Clearly, l� 2 Lin and � = (�1)l� .

bh� = h(�1)f ; �i (Using (1))

= h(�1)f ; (�1)l�i

= 1
jF jn �

P
u2Fn (�1)

f(u)+l�(u)

= Pru [f(u)=l�(u)]� Pru [f(u)6=l�(u)]

= 1� 2Dist(f; l�)

� 1� 2Dist(f) :

Our next lemma connects the other parameter, Err(f), to the value of a convolution of h. This

lemma uses the identity h(�) = (�1)f(�) and hence the fact that we are working over GF(2). (In

what follows, we use a bold-faced 0, to denote the vector of all 0's to enable distinguishing it from

the scalar 0.)

Lemma 2.2 Suppose f : F n ! F and � 2 F n. Let h(u) = 1 if f(u) = 0 and �1 otherwise. Then

Err(f) = 1
2 (1� (h � h � h)(0)) :

Proof: Notice that over GF(2), f(u) + f(v) + f(u+v) is always 0 or 1. Furthermore, the BLR

test accepts on random choice u; v if f(u) + f(v) + f(u+v) = 0. Alternatively, we can consider

the expression h(u)h(v)h(u+v) = (�1)f(u)+f(v)+f(u+v) and observe that the test accepts if this

expression is 1 and rejects if this expression is �1. Thus the expression 1
2 (1 � h(u)h(v)h(u+v)) is

an indicator for the rejection event in the BLR test, i.e., 1
2 (1 � h(u)h(v)h(u+v)) is 1 if the BLR

test rejects and 0 otherwise. Thus we have

Err(f) =
1

jF j2n

X
u;v2Fn

1
2 (1� h(u)h(v)h(u+v)) = 1

2

0@1� 1

jF j2n

X
u;v2Fn

h(u)h(v)h(u+v)

1A :
From the de�nition of convolution it follows that (h � h � h)(0) = 1

jF j2n
P

u;v2Fn h(u)h(v)h(u+v).

Thus we derive

Err(f) = 1
2 (1� (h � h � h)(0)) :

The proof of Theorem 1.2 now follows easily using Properties (1), (2), and (3).

Proof of Theorem 1.2: From Lemma 2.2 it suÆces to analyze (h � h � h)(0).

(h � h � h)(0) =
P

�2Fn
d(h � h � h)� �(0) (Using �'s as a basis)

=
P

�2Fn
d(h � h � h)� (Since �(0) = 1, for every �.)

=
P

�2Fn(
bh�)3 (Using (3))

�
�
max�2Fn bh���P�2Fn(

bh�)2�
=

�
max�2Fn bh�� (Using (2) and hh; hi = 1.)

� 1� 2Dist(f) (Using Lemma 2.1):

Now using Lemma 2.2, we have

Err(f) = 1
2 (1� (h � h � h)(0)) � 1

2 (1� (1� 2Dist(f))) = Dist(f):

The next lemma complements Theorem 1.2. This lemma is a slightly more re�ned version of the

bound Rej(x) � 3x� 6x2 derived in [6]. To state it we �rst de�ne the slack between functions f

and l by

sl(f; l)
def
= Pr

u;v
R
 Fn

[f(u)6=l(u); f(v)6=l(v); f(u+v)6=l(u+v)] :

Lemma 2.3 For all f : F n ! F and all l 2 Lin,

Err(f) = 3Dist(f; l)� 6Dist(f; l)2 + 4 sl(f; l) :

Proof: Since f takes values in F = GF(2), f(u) + f(v)6=f(u+v) if and only if f di�ers from l in

exactly one of the points fu; v; u+vg or in all of the points fu; v; u+vg. Thus Err(f) =

3Pru;v [f(u) 6=l(u); f(v)=l(v); f(u+v)=l(u+v)] + Pru;v [f(u)6=l(u); f(v)6=l(v); f(u+v)6=l(u+v)] :

Furthermore, observe that

Pru;v [f(u)6=l(u); f(v)=l(v); f(u+v)=l(u+v)]

= Pru;v [f(u) 6=l(u); f(v)=l(v)]� Pru;v [f(u)6=l(u); f(v)=l(v); f(u+v)6=l(u+v)]

= Pru;v [f(u) 6=l(u); f(v)=l(v)]� Pru;v [f(u)6=l(u); f(u+v)6=l(u+v)]

+ Pru;v [f(u) 6=l(u); f(v)6=l(v); f(u+v)6=l(u+v)] :

Hence,

Err(f) = 3Pru;v [f(u)6=l(u); f(v)=l(v)] � 3Pru;v [f(u)6=l(u); f(u+v)6=l(u+v)]

+ 4Pru;v [f(u) 6=l(u); f(v)6=l(v); f(u+v)6=l(u+v)] :

By de�nition, the last term on the RHS above is 4 sl(f; l). Moreover, the events

f (u; v) : f(u)=l(u) g, f (u; v) : f(v)=l(v) g, f (u; v) : f(u+v)=l(u+v) g are pairwise independent.

Hence, Pru;v [f(u)6=l(u); f(u+v)6=l(u+v)] = (1 � Dist(f; l))2 and Pru;v [f(u)6=l(u); f(v)=l(v)] =

Dist(f; l) (1�Dist(f; l)). Performing a simple algebraic manipulation, suÆces to conclude the proof

of the lemma.

Tightness Discussion. We now discuss how tight the results of this section are. Throughout the

rest of this discussion let x 2 [0; 1] be such that x jF jn is an integer.

Case 1: x > 1
2 .

Then there is no function f : F n ! F such that Dist(f) = x (since the expected distance from a

randomly chosen linear function to f is at most 1
2 (1 +

1
jF jn)).

Case 2: x = 1
2 .

Randomly choose f so f(u) = Xu, where Xu is a random variable distributed according to a

Bernoulli distribution with parameter p 2 [12 ; 1].
7 A Cherno� bound (see [1, Appendix A]) shows

that with overwhelming probability 0 � x � Dist(f) = o(1). Moreover, Chebyschev's inequality

(see [1, Ch. 4]) implies that with high probability jErr(f) �
�
3 p(1� p)2 + p3

�
j = o(1). Thus, if

p = 1
2 , Theorem 1.2 is almost tight in the sense that Rej(x) is almost x.

Case 3: x � 5
16 .

We will show that in this case the bound Rej(x) � 3x � 6x2 is tight. Indeed, for u in F n let

buck
def
= u1 � � � uk. If S = f u 2 F n : buc4 2 f1000; 0100; 0010; 0001; 1111g g, then for any function f

which equals 1 in x jF jn elements of S, and 0 otherwise, it holds that Dist(f) = Dist(f; 0) = x and

sl(f; 0) = 0. Hence, Lemma 2.3 implies that Err(f) = 3x� 6x2.

The removed �gure gives evidence showing that Theorem 1.2 is close to being optimal for x in

the interval [516 ;
1
2]. But, as the next two sections show, there is room for improvements.

3 The Summation Lemma

This section is devoted to proving a combinatorial result of independent interest, but necessary

in the tighter analysis of the linearity test that we give in Section 4. We also apply this result to

obtain a tight upper bound on the probability that the BLR test fails.

First, recall that the lexicographic order in F n is the total order relation � such that u � v if

and only if
P

i ui2
�i �

P
i vi2

�i (arithmetic over the reals).

Loosely stated, we show that given three subsets A;B;C of F n, the number of triplets (u; v; w)

in A�B � C such that u+v+w = 0, is maximized when A;B;C are the lexicographically smallest

jAj; jBj; jCj elements of F n respectively.

The following lemma, independently proved by D. J. Kleitman [17], gives a precise statement

of the above discussed fact.

For convenience we introduce the following notation: for every nonnegative integer n and

A;B;C � F n let

�n(A;B;C) = f (u; v; w) 2 A�B�C : u+v+w = 0 g ;

and let

'n(A;B;C) = 1
jF j2n

jf (u; v; w) 2 A�B�C : u+v+w = 0 gj :

Also, for S � F n we let S� denote the collection of the lexicographically smallest jSj elements of

F n.

7 A Bernoulli distribution with parameter p corresponds to the distribution of a f0; 1g-random variable with

expectation p.

Lemma 3.1 (Summation Lemma) For every A;B;C � F n,

'n(A;B;C) � 'n(A
�; B�; C�) :

Proof: We proceed by induction. The case n = 1 can be easily veri�ed. For the inductive step,

we �rst de�ne, for every i 2 f1; : : : ; ng, a transformation that sends S � F n to S(i) � F n. This

transformation consists in lexicographically ordering the elements of S whose i-th component is

0 and 1 respectively. The transformation does not change the number of elements of S with i-th

component 0 and 1 respectively. Consider i 2 f1; : : : ; ng and b 2 F . Let fi;b be the function that

embeds F n�1 onto fu 2 F n : ui = bg in the natural way, i.e. for u = (uj)j 6=i 2 F
n�1, (fi;b(u))j = uj

if j 6= i, and b otherwise. For S � F n, let S
(i)
b be the natural projection into F n�1 of the elements

of S whose i-th coordinate is b, i.e. S
(i)
b = f (uj)j 6=i 2 F

n�1 : fi;b(u) 2 S g. Furthermore, let

S(i) = fi;0
�
(S

(i)
0)�

�[
fi;1

�
(S

(i)
1)�

�
:

Observe that jSj = jS
(i)
0 j + jS

(i)
1 j. Moreover, lexicographically ordering a set does not change its

cardinality, thus j(S
(i)
0)�j = jS

(i)
0 j and j(S

(i)
1)�j = jS

(i)
1 j. Since fi;0 and fi;1 are injective and their

ranges are disjoint it follows that jS(i)j = jSj .8

Note that addition (in F n) of two lexicographically small elements of F n yields a lexicographically

small element of F n. Thus, it is reasonable to expect that for every A;B;C � F n and i 2 f1; : : : ; ng,

'n(A;B;C) � 'n(A
(i); B(i); C(i)). We will now prove this latter inequality. Indeed, note that

'n(A;B;C) = 'n�1(A
(i)
0 ; B

(i)
0 ; C

(i)
0) + 'n�1(A

(i)
1 ; B

(i)
1 ; C

(i)
0)

+ 'n�1(A
(i)
1 ; B

(i)
0 ; C

(i)
1) + 'n�1(A

(i)
0 ; B

(i)
1 ; C

(i)
1) :

Applying the inductive hypothesis to each term on the RHS above shows that

'n(A;B;C) � 'n�1((A
(i)
0)�; (B

(i)
0)�; (C

(i)
0)�) + 'n�1((A

(i)
1)�; (B

(i)
1)�; (C

(i)
0)�)

+ 'n�1((A
(i)
1)�; (B

(i)
0)�; (C

(i)
1)�) + 'n�1((A

(i)
0)�; (B

(i)
1)�; (C

(i)
1)�) :

In the previous inequality, the RHS is 'n(A
(i); B(i); C(i)). Hence, 'n(A;B;C) � 'n(A

(i); B(i); C(i))

as claimed. We will now show that we can assume that for all i 2 f1; : : : ; ng, A(i) = A, B(i) = B, and

C(i) = C. Indeed, if this was not the case, we can repeat the above argument by considering A(i),

B(i), C(i) instead of A, B, C. To prove that this iterative process is guaranteed to eventually stop

let u 2 F n also represent the integer with binary expansion u . Note that if A(i) 6= A, or B(i) 6= B,

or C(i) 6= C, then
P

u2S u >
P

u2S(i) u for some S 2 fA;B;Cg. Hence the aforementioned iterative

process stops in at most
P

S2fA;B;Cg

P
u2S u steps.

One would like to conclude the proof of the lemma by claiming that, if for all i, A(i) = A, B(i) = B,

and C(i) = C, then A;B;C are equal to A�; B�; C� respectively. We will show that the latter claim

is `almost' true, in the sense that if e denotes (1; 0; : : : ; 0) 2 F n, e0 denotes (0; 1; : : : ; 1) 2 F n, and

V = f (u1; : : : ; un) 2 F
n : u1 = 0 g then the following holds:

If for every i 2 f1; : : : ; ng; S = S(i); then S = S� or S = (V n feg) [fe0g :
8 The following example might help in clarifying the notation so far introduced: if n = 3 and S =

f010; 011; 100; 101; 111g, then S
(2)
0 = f10; 11g, S

(2)
1 = f00; 01; 11g, (S

(2)
0)� = f00; 01g, (S

(2)
1)� = f00; 01; 10g, and

S(2) = f000; 001; 010; 011; 110g.

We prove the above fact by contradiction. Assume that S 6= S� and S 6= (V n feg) [fe0g. Since

S = S(1), then either (1; 0; : : : ; 0; 1) 2 F n is in S or (0; 1; : : : ; 1; 0) 2 F n is not in S. Suppose

that (1; 0; : : : ; 0; 1) 2 F n is in S. Since S = S(1) and S 6= S�, we know that e 62 S. Thus,

(1; 0; : : : ; 0) 2 F n�1 is in S
(n)
1 and (0; 1; : : : ; 1) 2 F n�1 is not in S

(n)
1 . Hence, (S

(n)
1)� 6= S

(n)
1 .

It follows that S 6= S(n), a contradiction. Suppose now that (0; 1; : : : ; 1; 0) 2 F n is not in S.

Since S = S(1) and S 6= S�, we know that e0 2 S. Thus, (1; 0; : : : ; 0) 2 F n�1 is in S
(n)
0 and

(0; 1; : : : ; 1) 2 F n�1 is not in S
(n)
0 . Hence, (S

(n)
0)� 6= S

(n)
0 . It follows that S 6= S(n), again a

contradiction.9

Thus far we have shown that in order to upper bound 'n(A;B;C) we can restrict our attention to

the sets A;B;C that are either in lexicographically smallest order or take the form (V nfeg)[fe0g.
To conclude the lemma we need to consider three cases. These cases depend on how many of the

sets A;B;C are in lexicographically smallest order.

Case 1: exactly two of the sets A;B;C are in lexicographically smallest order.

Without loss of generality assume A = A�, B = B�, and C = (V n feg) [fe0g. Then

'n(A;B;C) = 'n(A;B; V) + 'n(A;B; fe
0g)� 'n(A;B; feg) :

Note that 'n(A;B; feg) = maxf0; jA \ V j+ jB \ V j � jV jg+maxf0; jA n V j+ jB n V j � jV jg and

'n(A;B; fe
0g) = minfjAnV j; jB\V jg+minfjA\V j; jBnV jg. Hence, 'n(A;B; feg) � 'n(A;B; fe

0g).
Thus, 'n(A;B;C) � 'n(A;B; V). To conclude, observe that C� = V and recall that A = A� and

B = B�.

Case 2: exactly one of the sets A;B;C is in lexicographically smallest order.

Without loss of generality, we assume that A = A� and B = C = (V n feg) [fe0g. If A = F n

or A = ;, then it is obvious that 'n(A;B;C) = 'n(A
�; B�; C�) and we are done. Thus, we also

assume that A 6= F n and A 6= ;. Then,

'n(A;B;C) = 'n(A; V; V)� 'n(A; V; feg) � 'n(A; feg; V)

+ 'n(A; V; fe
0g) + 'n(A; fe

0g; V) + 'n(A; feg; feg)

� 'n(A; feg; fe
0g)� 'n(A; fe

0g; feg) + 'n(A; fe
0g; fe0g) :

Note that 'n(A; V; feg) = 'n(A; feg; V) = jA\V j, 'n(A; V; fe
0g) = 'n(A; fe

0g; V) = jAnV j. Since

A = A� and A 6= F n, then 'n(A; fe
0g; feg) = 'n(A; fe

0g; feg) = 0. Since A = A� and A 6= ;, then
'n(A; fe

0g; fe0g) = 'n(A; feg; feg) = 1. Thus, 'n(A;B;C) = 'n(A; V; V)�2 jA\V j+2 jAnV j+2.

Since A = A� and A 6= F n, then jA n V j < jV j, and if jA n V j 6= 0, then jA \ V j = jV j. Since

A = A� and A 6= ;, then jA\ V j > 0, and if jA n V j = 0, then jA\ V j = jAj. Hence, 'n(A;B;C) �
'n(A; V; V). To conclude, observe that B� = C� = V and recall that A = A�.

Case 3: none of the sets A;B;C is in lexicographically smallest order.

In this case A = B = C = (V n feg) [fe0g. Thus,

'n(A;B;C) = 'n(V; V; V)�maxf0; jA \ V j+ jB \ V j � jV jg

�maxf0; jA \ V j+ jC \ V j � jV jg �maxf0; jB \ V j+ jC \ V j � jV jg :

9 Observe that we only required that S(1) = S(n) = S.

Hence, 'n(A;B;C) � 'n(V; V; V). To conclude, observe that A� = B� = C� = V .

By de�nition, a subspace V of F n is such that if u; v 2 V , then u+v 2 V . This motivates using

1
jSj2
j�n(S; S; S)j ;

as a measure of how close the set S � F n is to being a subspace. The larger this quantity is, the

closer the set S is o� being a subspace. From this point of view, the Summation Lemma implies that

the collection of the lexicographically smallest m elements of F n is the subset of F n (of cardinality

m) that more closely resembles a subspace.

Lemma 3.2 Suppose f : F n ! F . Let x = Dist(f). Let k be the unique integer such that

2�k � x < 2�k+1, and let Æ = 2�k. Then

Err(f) � 3x� 6x2 + 4 Æ2 + 12 (x� Æ)2 :

Proof: Let l be the closest linear function to f , and let S = f u : f(u) 6= l(u) g. Note that

sl(f; l) = 'n(S; S; S), thus by Lemma 2.3 we have that

Err(f) = 3 Æ � 6 Æ2 + 4'n(S; S; S) :

By the Summation Lemma, 'n(S; S; S) � 'n(S
�; S�; S�). The lemma will follow once we show that

'n(S
�; S�; S�) = Æ2 + 3 (x � Æ)2. Indeed, let V be the lexicographically smallest Æ jF jn elements

of F n. Note that V is a subspace, V � S�, and jS�j = jSj = x jF jn. Since 'n(S
� n V; V; V),

'n(V; S
� n V; V), 'n(V; V; S

� n V), and 'n(S
� n V; S� n V; S� n V) are all equal to 0 we get that

'n(S
�; S�; S�) = 'n(S

� n V; S� n V; V) + 'n(S
� n V; V; S� n V)

+ 'n(V; S
� n V; S� n V) + 'n(V; V; V) :

Note that 'n(V; V; V) = Æ2. Moreover, 'n(S
� n V; S� n V; V), 'n(S

� n V; V; S� n V), and 'n(V; S
� n

V; S� n V) are all equal to (x� Æ)2. Thus, 'n(S
�; S�; S�) = Æ2 + 3 (x� Æ)2 as we claimed.

We will now prove that the bound of Lemma 3.2 cannot be improved. Indeed, let x 2 [0; 12] be such

that x jF jn is an integer. Let S be the lexicographically smallest x jF jn elements of F n. Consider

the function f : F n ! F which evaluates to 1 on every element of S and to 0 otherwise, i.e. f

is the characteristic function of S. We will prove that the closest linear function to f is the zero

function, hence Dist(f) = x. But, �rst note that since S = S�, then 'n(S; S; S) = 'n(S
�; S�; S�).

Hence, from the proof of Lemma 3.2, it follows that Err(f) meets the upper bound of the statement

of Lemma 3.2. To prove that the closest linear function to f is the zero function we argue by

contradiction. We consider the following two cases:

Case 1: x 2 [0; 14].

Here, the zero function is at distance x from f . If some other linear function was at distance less

than x from f , then such linear function would be at distance less than 2x � 1
2 from the zero

function. A contradiction, since two distinct linear functions are at distance 1
2 .

Case 2: x 2 (14 ;
1
2].

Let V be the largest subspace of F n contained in S, and let V 0 be the smallest subspace of F n that

contains S. Recall that the cardinality of a subspace of F n is a power of two. Thus, since S is the

set of the lexicographically smallest xjF jn elements of F n, then jV j = 1
4 jF j

n and jV 0j = 1
2 jF j

n. For

the sake of contradiction, assume l: F n ! F is a nonzero linear function whose distance to f is

less than x. Note that a linear function which is nonzero over a subspace of F n must evaluate to

1 in exactly half the elements of that subspace. In particular, l evaluates to 1 on half the elements

of F n.

Case 2:1: l evaluates to 0 over V .

Recall that f evaluates to 0 outside of S and to 1 over S. Moreover, l evaluates to 1 in exactly half

the elements of F n. Thus, l disagrees with f in every element of V and in at least 1
2 jF j

n � jS n V j
of the elements not in V . Hence, the distance between f and l is at least 1

4 + (12 � (x� 1
4)) � x, a

contradiction.

Case 2:2: l does not evaluate to 0 over V .

Then, l evaluates to 1 in exactly half the elements of V and half the elements of V 0. Thus, l

disagrees with f in half the elements of V and in at least jS n V j � 1
2(jV

0j � jV j) of the elements

of S n V . Moreover, l evaluates to 1 on half the elements of F n and on half the elements of

V 0. Hence, since f evaluates to 0 on the elements of F n n V 0, it follows that l disagrees with

f in 1
2 jF

nj � 1
2 jV

0j of the elements of F n n V 0. Thus, the distance between f and l is at least
1
2 jV j + (jS n V j � 1

2(jV
0j � jV j)) + (12 jF

nj � 1
2 jV

0j) = 1
8 + ((x � 1

4) �
1
8) + (12 �

1
4) = x, again a

contradiction.

4 Combinatorial analysis of the linearity test

We now prove Theorem 1.3, i.e. that Knee = 45
128 . To prove that Knee � 45

128 we associate to a

function f : F n ! F a function gf : F
n ! F , whose value at u is Pluralityf f(u+v)� f(v) : v 2

F n g. Then, if Err(f) is suÆciently small three things occur: (i) An overwhelming majority of the

values f f(u + v) � f(v) : v 2 F n g agree with gf (u), (ii) gf is linear, (iii) gf is close to f . This

argument was �rst used in [9] while studying linearity testing over �nite groups. We will show how

this argument can be tightened in the case of linearity testing over GF(2).

More precisely, the proof of Theorem 1.3 is a consequence of the following three lemmas:

Lemma 4.1 For all f : F n ! F , then Err(f) � 1
2 Dist(f; gf).

Lemma 4.2 For all f : F n ! F , if gf is linear, then Err(f) � 2Dist(f; gf) � [1� Dist(f; gf)].

Lemma 4.3 For all f : F n ! F , if Err(f) < 45
128 , then gf is linear.

We �rst show that Theorem 1.3 follows from the above stated results. Assume Knee < 45
128 , then,

there is a function f : F n ! F , such that Err(f) < 45
128 and x = Dist(f) � 1

4 . By Lemma 2.3,

Err(f) � 3x � 6x2, thence we need only consider the case in which x is at least 5
16 . Moreover,

by Lemma 4.3, gf is a linear function. Thus, Dist(f; gf) � x � 5
16 , which together with Lem-

mas 4.1 and 4.2 imply that Err(f) � minx2[5=16;1]max
n
1
2x; 2(1 � x)x

o
= 3

8 , a contradiction. Hence,

Knee � 45
128 . In our tightness discussion part of Section 2 we showed that there exists a function

f : F n ! F such that Dist(f) = 5
16 and Err(f) = 45

128 . Hence, Knee =
45
128 as we wanted to prove.

The rest of this section is dedicated to proving Lemmas 4.1 through 4.3.

The proofs of Lemmas 4.1 and 4.2 are based on an observation which is implicit in [14]. This

observation crucially depends on the fact that f takes values over F = GF(2). It says that for

every u 2 F n,

Prv [f(u+v)�f(v)=gf (u)] �
1
2 :

Hence, if f(u)6=gf (u), then f(u) 6= f(u+v)� f(v) at least half of the time, which implies

Pru;v [f(u)+f(v)6=f(u+v) j f(u)6=gf (u)] �
1
2 : (4)

Proof of Lemma 4.1: Simple conditioning says that Err(f) is at least

Pru;v [f(u)+f(v)6=f(u+v) j f(u)6=gf (u)] � Dist(f; gf) :

But by (4) we know this is at least 1
2 Dist(f; gf).

Proof of Lemma 4.2: Assume gf is linear. As observed in the proof of Lemma 2.3

Err(f) = 3Pru;v [f(u)6=gf (u); f(v)=gf (v); f(u+v)=gf (u+v)]

+ Pru;v [f(u)6=gf (u); f(v)6=gf (v); f(u+v)6=gf (u+v)] :

Since gf is linear, Pru;v [f(u)6=gf (u); f(v)=gf (v); f(u+v)=gf (u+v)] =

Pru;v [f(u)6=gf (u); f(u)+f(v)6=f(u+v)]� Pru;v [f(u)6=gf (u); f(v)6=gf (v); f(u+v)6=gf (u+v)] :

Hence,

Err(f) = 3Pru;v [f(u)+f(v)6=f(u+v) j f(u)6=gf (u)] � Dist(f; gf)

� 2Pru;v [f(u)6=gf (u); f(v)6=gf (v); f(u+v)6=gf (u+v)] :

In this last expression, the �rst term can be lower bounded, as in the proof of Lemma 4.1, by
3
2 Dist(f; gf). The second term is 2 sl(f; gf). Thus, we have Err(f) � 3

2 Dist(f; gf) � 2 sl(f; gf).

Finally, applying Lemma 2.3, we get that Err(f) � 3Dist(f; gf) � 3Dist(f; gf)
2 � 1

2 Err(f). The

lemma follows.

Proof of Lemma 4.3: By contradiction. Assume gf is not linear. Then there are x; y such

that gf (x) + gf (y) 6= gf (x+y). Note that by construction gf (0) = 0, thus x and y are distinct

and nonzero. Hence, x; y; x+y are distinct. Since gf (x) + gf (y) 6= gf (x+y) it cannot be that

gf (x); gf (y); gf (x+y) are all zero. Without loss of generality, we assume that gf (x+y) = 1. We now

show that we can also assume that gf (x) = gf (y) = 1. Indeed, if f satis�es the latter assumption

we are done. Otherwise, since gf (x) + gf (y) 6= gf (x+y) = 1, we have that gf (x) = gf (y) = 0.

Let l: F n ! F be a linear function such that l(x) = l(y) = 1 (such function exists since x; y are

distinct and nonzero). Set f 0 = f + l and observe that Err(f 0) = Err(f) and gf 0 = gf + l. Hence,

Err(f 0) < 45
128 , gf 0(x) + gf 0(y) 6= gf 0(x+y), and gf 0(x) = gf 0(y) = gf 0(x+y) = 1. So, we can continue

arguing about f 0 instead of f .

Set S = f0; x; y; x+yg. We will begin by investigating nonlinearity on cosets of S. For every s 2 F n,

de�ne fs to be the function from S to F , such that fs(u) = f(s+u). For every s; t 2 F n, let

ps;t = Pr
u;v

R
 S

[fs(u)+ft(v)6=fs+t(u+v)] :

By interchanging the orders of expectations we see that

Err(f) = E
s;t

R
 Fn

[ps;t] : (5)

Now ps;t depends only on the values of f on the cosets s+S, t+S, and s+ t+S. We classify these

cosets according to the pattern of values of f on the coset. De�ne the trace of f at w as

trf (w) = [f(w); f(w+x); f(w+y); f(w+x+y)] :

We partition the elements w of F n according to the values that the trace of f at w takes,

H0 = f w : trf (w) equals [0; 0; 0; 0] or [1; 1; 1; 1] g

Hx = f w : trf (w) equals [0; 0; 1; 1] or [1; 1; 0; 0] g

Hy = f w : trf (w) equals [0; 1; 0; 1] or [1; 0; 1; 0] g

Hx+y = f w : trf (w) equals [0; 1; 1; 0] or [1; 0; 0; 1] g

Hodd = f w : trf (w) has an odd number of 1's g ;

and de�ne their relative measures h0 = jH0j=jF j
n, hx = jHxj=jF j

n, hy = jHyj=jF j
n, hx+y =

jHx+yj=jF j
n, and hodd = jHoddj=jF j

n. Notice that if s 2 Hz then the whole coset s+S is in Hz, for

any of the �ve sets Hz.

By symmetry we may assume that hx � hy � hx+y.

The condition gf (x+y) = 1 implies

Pr
u
R
 Fn

[f(u+x+y) = f(u)] � 1
2 ;

whence

h0 + hx+y +
1
2hodd � 1

2 ; (6)

since for each coset w+S in Hodd, half the elements w+u satisfy f(w+u) = f(w+u+x+y), while all

elements w of H0 and Hx+y satisfy f(w) = f(w+x+y).

So no single set among the four H0, Hx, Hy, or Hx+y is too large; each of h0, hx, hy, hx+y is

bounded by 1
2 . If f were strictly linear, one of these four sets would cover all of F n. As it is, the

interaction of several substantial sets among H0, Hx, Hy, Hx+y, or the presence of a large Hodd,

will force a large nonlinearity on f , and will give the desired lower bound on Err(f).

To quantify this interaction between sets, we partition F n�F n into six sets as follows:

A = Set of all (s; t) such that fs; t; s+ tg are all in the same set, either H0 or Hx or Hy

or Hx+y

B = Set of all (s; t) such that two of fs; t; s+ tg are in the same set H0 or Hx or Hy or

Hx+y, and the other one is in Hodd

C = Set of all (s; t) such that at least two of fs; t; s+ tg are in Hodd

D = Set of all (s; t) such that fs; t; s + tg � H0 [Hx [Hy [Hx+y with exactly two

elements from the same set H0, Hx, Hy or Hx+y

E = Set of all (s; t) such that one of fs; t; s+tg is inHodd, the other two are from di�erent

sets in H0, Hx, Hy and Hx+y

F = Set of all (s; t) such that fs; t; s+ tg are from di�erent sets H0, Hx, Hy, Hx+y

The following tables illustrate the above de�ned partition.

(s,t) H0 Hx Hy Hx+y Hodd (s,t) H0 Hx Hy Hx+y Hodd

H0 A D D D B H0 D D F F E

Hx D D F F E Hx D A D D B

Hy D F D F E Hy F D D F E

Hx+y D F F D E Hx+y F D F D E

Hodd B E E E C Hodd E B E E C

s+ t 2 H0 s+ t 2 Hx

(s,t) H0 Hx Hy Hx+y Hodd (s,t) H0 Hx Hy Hx+y Hodd

H0 D F D F E H0 D F F D E

Hx F D D F E Hx F D F D E

Hy D D A D B Hy F F D D E

Hx+y F F D D E Hx+y D D D A B

Hodd E E B E C Hodd E E E B C

s+ t 2 Hy s+ t 2 Hx+y

(s,t) H0 Hx Hy Hx+y Hodd

H0 B E E E C

Hx E B E E C

Hy E E B E C

Hx+y E E E B C

Hodd C C C C C

s+ t 2 Hodd

We now proceed to show a lower bound for Err(f) which depends on the relative size of the sets

A;B; C;D; E , and F . Indeed, observe that if (s; t) is in B, then ps;t is at least
1
4 . (We calculate an

example: suppose s and s + t are both in Hx, with trf (s) = [0; 0; 1; 1] and trf (s + t) = [1; 1; 0; 0],

while t is in Hodd, with trf (t) = [1; 1; 0; 1]. If f were linear on the cosets s+ S; t+S; s+ t+ S, and

trf (s), trf (s + t) were as given, then trf (t) would necessarily be [1; 1; 0; 0], and t would be in Hx.

The value trf (t) di�ers from [1; 1; 0; 0] in the last position, corresponding to x+ y. Thus whenever

v = x+ y we will have f(s+u) + f(t+v) 6= f(s+t+u+v). This happens for 1
4 of the random choices

of (u; v).) With similar arguments one can show that if (s; t) is in C, then ps;t is at least
3
8 . And,

if (s; t) is in D, E , or F , then ps;t is
1
2 . Hence, if for a set T � F n�F n we let �(T) = jT j=jF j2n,

then (5) yields

Err(f) � 1
4 �(B) +

3
8 �(C) +

1
2 [�(D) + �(E) + �(F)] :

Recalling that �(C) = 1� (�(A) + �(B) + �(D) + �(E) + �(F)), allows us to conclude that

Err(f) � 3
8 �

1
8 (3�(A) + �(B)) + 1

8 [�(D) + �(E) + �(F)] : (7)

We now derive from (7) another lower bound for Err(f) which will depend solely on

h0; hx; hy ; hx+y; hodd, and �(F).

We �rst need the following identities relating the measure of the sets A, B, C, D, E , and F , to h0,
hx, hy, hx+y, and hodd. Consider the probability that randomly chosen s and t are in the same set

H0, Hx, Hy, or Hx+y, plus the corresponding probabilities for (s; s + t) and (t; s + t); expressing

this sum of probabilities in two ways yields

3�(A) + �(B) + �(D) = 3
�
h20 + h2x + h2y + h2x+y

�
: (8)

Consider the probability that s and t are in two di�erent sets H0, Hx, Hy, or Hx+y, plus the

corresponding probabilities for (s; s + t) and (t; s + t); expressing this sum of probabilities in two

ways yields:

2�(D) + �(E) + 3�(F) = 3
�
(1� hodd)

2 �
�
h20 + h2x + h2y + h2x+y

��
: (9)

Adding �1
8 of (8) and 1

8 of (9) to (7), gives

Err(f) � 3
8 +

3
8(1� hodd)

2 � 3
4

�
h20 + h2x + h2y + h2x+y

�
� 1

4�(F) : (10)

We now proceed to upper bound �(F). We divide the analysis into two cases.

Case 1: hx + hy � h0 � hx+y >
1
4 .

By case assumption and since hx+y � hy we have that hx � hx + hy � h0 � hx+y > 1
4 . So,

hx; hy; hx+y 2 (
1
4 ;

1
2]. As in Section 3, for A;B;C � F n we let

'n(A;B;C) = 1
jF j2n jf (u; v; w) 2 A�B�C : u+v+w = 0 gj :

Observe now, that for each element (u; v) of F , fu; v; u+vg either contains an element from H0 or

contains one element from each of the sets Hx, Hy, and Hx+y.

The contribution to F of the elements (u; v), where fu; v; u+vg contain elements from each of

the sets Hx, Hy, and Hx+y, is upper bounded by 6'n(Hx;Hy;Hx+y). The Summation Lemma

implies that 'n(Hx;Hy;Hx+y) � 'n(H
�
x;H

�
y ;H

�
x+y). Note that hx; hy; hx+y completely characterize

H�x;H
�
y ;H

�
x+y. Thus since hx; hy; hx+y 2 (14 ;

1
2] we have that

'n(H
�
x;H

�
y ;H

�
x+y) = 1

4 �
1
2(hx + hy + hx+y) + hxhy + hxhx+y + hyhx+y

= 1
4 �

1
2 [(h0 + hodd) + (hx + hy + hx+y)](hx + hy + hx+y)

+ hxhy + hxhx+y + hyhx+y

= 1
4 �

1
2 (h0 + hodd)(hx + hy + hx+y)�

1
2 (h

2
x + h2y + h2x+y) :

Hence, 6'n(Hx;Hy;Hx+y) �
3
2 � 3 (h0 + hodd)(hx + hy + hx+y)� 3 (h2x + h2y + h2x+y).

Furthermore, the contribution to F of the elements (u; v), where fu; v; u+vg contains an element

of H0 is upper bounded by

3'n(H0;Hx;Hy [Hx+y) + 3'n(H0;Hy;Hx [Hx+y) + 3'n(H0;Hx+y;Hx [Hy) ;

which is at most 3h0 (hx+hy+hx+y). Putting it all together, we have

�(F) � 3
2 � 3hodd(hx + hy + hx+y)� 3(h2x + h2y + h2x+y) ;

which jointly with (10) implies that

Err(f) � 3
8 +

3
8(1� hodd)

2 � 3
4

�
h20 + h2x + h2y + h2x+y

�
�3

8 +
3
4hodd(hx + hy + hx+y) +

3
4(h

2
x + h2y + h2x+y)

= 3
8 �

3
8h

2
odd �

3
4h0hodd �

3
4h

2
0

� 3
8 �

3
8(hodd + 4h0)

2 :

We conclude the analysis of this case by noting that

1
4 � 1� 3(hx + hy � h0 � hx+y)

� 1� hx � hy � hx+y + 3h0

= hodd + 4h0 ;

where the �rst inequality follows by case assumption, and the second one because hx � hy � hx+y,

so that

Err(f) � 3
8 �

3
8

�
1
4

�2
= 45

128 :

Case 2: hx + hy � h0 � hx+y �
1
4 .

To each element (u; v) in F , associate the unique tuple (u0; v0) 2 fu; v; u+vg�fu; v; u+vg, such that

(u0; v0) 2 H0 �Hx+y [Hx �Hy. This scheme associates to each element of H0 �Hx+y [Hx �Hy

at most 6 elements of F . Thus, �(F) � 6 (h0hx+y + hxhy). Which jointly with (10) implies

Err(f) � 3
8 +

3
8(1� hodd)

2 � 3
4

�
h20 + h2x + h2y + h2x+y

�
� 3

2 (h0hx+y + hxhy)

= 3
8 +

3
8 [(h0 + hx+y) + (hx + hy)]

2 � 3
4 [(h0 + hx+y)

2 + (hx + hy)
2]

= 3
8 �

3
8 (hx + hy � h0 � hx+y)

2 :

The analysis of this case concludes by observing that

1
4 � hx + hy � h0 � hx+y

= 1� hodd � 2(h0 + hx+y)

� 0 ;

where the �rst inequality is by case assumption, and the latter one follows from (6), so that again

Err(f) � 3
8 �

3
8

�
1
4

�2
= 45

128 :

5 Total degree one testing in characteristic two

Although the main purpose of our work is to give a near optimal analysis of the BLR test, we now

describe and analyze a way of testing for total degree one over GF(2). Our purpose is to further

illustrate the strength and elegance of the Fourier analysis technique, as well as its more general

applicability to the problem of analyzing program testers.

As usual, let F = GF(2). Note that a total degree one polynomial p is either a linear function or a

linear function plus a constant. Thus, since F is of characteristic two, p(u)+p(v)+p(w) = p(u+v+w)

for all u; v; w 2 F n. The latter is satis�ed only if p is of total degree one. In analogy to the case of

linearity testing, de�ne

Deg1 | Set of all polynomials of total degree one from F n to F

Dist1(f)
def
= minf Dist(f; p) : p 2 Deg1 g | Distance of f to its closest polynomial of total

degree one.

Again, assume we are given oracle access to a function f mapping F n to F . We want to test that f

is close to a polynomial of total degree 1 from F n to F , and make as few oracle queries as possible.

The Total Degree 1 Test. The test is the following | Pick u; v; w 2 F n at random, query the

oracle to obtain f(u); f(v); f(w); f(u+v+w), and reject if f(u) + f(v) + f(w) 6= f(u+v+w). Let

Err1(f)
def
= Pr

u;v;w
R
 Fn

[f(u) + f(v) + f(w) 6= f(u+v+w)] ;

be the probability that the test rejects f . Also let

Rej1(x)
def
= minf Err1(f) : f : F

n ! F s.t. Dist1(f) = x g :

In order to understand how good this test is we need to lower bound Err1(f) in terms of x = Dist1(f).

The techniques discussed in this work gives us tools for achieving this goal. In fact, applying

these techniques we will show that if h(�) = (�1)f(�) (f viewed as a real valued function), then

jh�j � 1 � 2x, for all � in F n. Indeed, note that all functions in Deg1 are of the form l�(�) + �,

where � is in F and l� denotes the function that sends u to h�; ui =
Pn

i=1 �iui (arithmetic over

F). Then, as in Lemma 2.1, we have that bh� = 1 � 2Dist(f; l�) � 1 � 2x. Moreover, since

Dist(f; l�) +Dist(f; l�+1) = 1, we also have that bh� = 2Dist(f; l� +1)� 1 � 2x� 1, which proves

the claim.

Arguing as in the proofs of Lemma 2.2 and Theorem 1.2 yields

Err1(f) =
1
2 (1� (h � h � h � h)(0)) = 1

2

�
1�

P
�2Fn (

bh�)4� :
Hence, the previously derived bound on the absolute value of the Fourier coeÆcients of h and

Parseval's equality imply that

Err1(f) �
1
2

1� (1� 2x)2

X
�2Fn

(bh�)2
!
= 2x (1� x) :

Finally, note that since f takes values over GF(2), then f(u)+f(v)+f(w)6=f(u+v+w) if and only

if f di�ers from every p 2 Deg1 in exactly one of the points fu; v; w; u+v+wg, or in exactly three of

the points fu; v; w; u+v+wg. This observation leads to a generalization of Lemma 2.3 that allows

to show that Err1(f) � 8x (1� x) (12 � x).

We have shown the following:

Lemma 5.1 Rej1(x) � max
n
8x (1 � x) (12 � x) ; 2x (1 � x)

o
.

Acknowledgments

J. H. thanks Mike Sipser for making his visit to MIT possible. M. K. thanks Dan Kleitman, Carsten

Lund, Mike Sipser, and Dan Spielman for several interesting and helpful discussions. We thank

Sanjeev Arora and Ronitt Rubinfeld for comments on an earlier draft. Part of this work was done

while M.B. was at the IBM T. J. Watson Research Center.

References

[1] N. Alon and J. H. Spencer. The probabilistic method. John Wiley & Sons, Inc., 1992.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof veri�cation and

intractability of approximation problems. Proceedings of the 33rd Symposium on Foundations

of Computer Science, IEEE, 1992.

[3] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP.

Proceedings of the 33rd Symposium on Foundations of Computer Science, IEEE, 1992.

[4] L. Babai, L. Fortnow and C. Lund. Non-deterministic exponential time has two-prover

interactive protocols. Computational Complexity, Vol. 1, 3{40, 1991.

[5] L. Babai, L. Fortnow, L. Levin and M. Szegedy. Checking computations in polyloga-

rithmic time. Proceedings of the 23rd Annual Symposium on Theory of Computing, ACM,

1991.

[6] M. Bellare, S. Goldwasser, C. Lund and A. Russell. EÆcient probabilistically check-

able proofs and applications to approximation. Proceedings of the 25th Annual Symposium

on Theory of Computing, ACM, 1993.

[7] M. Bellare, O. Goldreich and M. Sudan. Free bits and non-approximability. Proceed-

ings of the 36th Symposium on Foundations of Computer Science, IEEE, 1995.

[8] M. Bellare and M. Sudan. Improved non-approximability results. Proceedings of the

26th Annual Symposium on Theory of Computing, ACM, 1994.

[9] M. Blum, M. Luby and R. Rubinfeld. Self-testing/correcting with applications to nu-

merical problems. Journal of Computer and System Sciences Vol. 47, 549{595, 1993.

[10] D. Coppersmith. Notes, summer 1990.

[11] U. Feige, S. Goldwasser, L. Lov�asz, S. Safra and M. Szegedy. Approximating clique

is almost NP-complete. Proceedings of the 32nd Symposium on Foundations of Computer

Science, IEEE, 1991.

[12] K. Friedl, Zs. H�ats�agi and A. Shen. Low-degree testing. Proceedings of the 5th Annual

Symposium on Discrete Algorithms, ACM-SIAM, 1994.

[13] K. Friedl and M. Sudan. Some Improvements to Total Degree Tests. Proceedings of the

Third Israel Symposium on Theory and Computing Systems, IEEE, 1995.

[14] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan and A. Wigderson. Self-

testing/correcting for polynomials and for approximate functions. Proceedings of the 23rd

Annual Symposium on Theory of Computing, ACM, 1991.

[15] J. H�astad. Testing of the long code and hardness for clique. To appear in Proceedings of

the 28th Annual Symposium on Theory of Computing, ACM, 1996.

[16] M. Kiwi. Probabilistically checkable proofs and the testing of Hadamard-like codes. PhD

thesis, Massachusetts Institute of Technology, Cambridge, January 1996.

[17] D. J. Kleitman. Private communication, October 1995.

[18] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-

Holland, 1977.

[19] A. Polishchuk and D. Spielman. Nearly Linear Size Holographic Proofs. Proceedings of

the 26th Annual Symposium on Theory of Computing, ACM, 1994.

[20] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials and their applica-

tions to program testing. IBM Technical Report RC 19156, 1993. To appear in SIAM Journal

on Computing.

A BLR test analysis implied by previous work

Consider the function f that takes values from the �nite group G into another �nite group H.

As suggested by [9] we de�ne the function gf that at u 2 G equals the most commonly occurring

value in the multiset f f(u+v) � f(v) : v 2 G g (ties broken arbitrarily). In [9] it is shown that if

Err(f) < 2
9 , then gf is linear, and for all v 2 G, Pr

u
R
 G

[gf (v)=f(u+v)� f(u)] >
2
3 . Thus,

Err(f) � Dist(f; gf) � Pr
u;v

R
 G

[f(v)6=f(u+v)� f(u) j gf (v)6=f(v)] �
2
3 Dist(f; gf) :

In other words, as observed in [8], if Err(f) < 2
9 , then Dist(f) � 3

2 Err(f).

