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A natural problem is that of, given ann×n symmetric matrixD, finding an arrangement
of n points on the real line such that the so obtained distances agree as well as possible with
the byD specified distances. We refer to the variation in which the difference in distance
is measured in maximum norm as theMatrix-To-Line problem. TheMatrix-To-

Line problem has previously been shown to be NP-complete [12]. We show that it can be
approximated within2, but unless P=NP not within7/5− δ for anyδ > 0. We also show
a tight lower bound under a stronger assumption. We show that theMatrix-To-Line

problem cannot be approximated within2 − δ unless 3-colorable graphs can be colored
with �4/δ� colors in polynomial time. Currently, the best polynomial time algorithm colors
a 3-colorable graph with̃O(n3/14) colors [4].

We apply ourMatrix-To-Line algorithm to a problem in computational biology,
namely, the Radiation Hybrid (RH) problem. That is, the algorithmic part of a physical
mapping method called RH mapping. This gives us the first algorithm with a guaranteed
convergence for the general RH problem.
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1. INTRODUCTION

We study theMatrix-To-Line problem, that is, the problem of, given a set
of n points{pi}n

i=1 and ann × n distance matrixD, finding an arrangement
A : {pi}n

i=1 → R+ which minimizes

max
i,j∈[n]

|D[i, j]− |A(pi) −A(pj)|| (1)

over all such functions. The given distance matrix must be positive, symmetric,
and with an all zero diagonal, but we do not require that the distances must satisfy
the triangle inequality. TheMatrix-To-Line problem has previously been
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shown to be NP-complete [12]. We give an algorithm that approximates it within
a factor2. In contrast to this, we show that theMatrix-To-Line problem cannot
be approximated within a factor7/5− δ, for anyδ > 0, unless P=NP. This proof
is computer aided, since it involves solving a number of linear programs obtained
from a gadget construction. We also show that theMatrix-To-Line problem
cannot be approximated within2−δ in polynomial time, unless 3-colorable graphs
can be colored with�4/δ� colors in polynomial time. It is NP-hard to find a 4-
coloring of a 3-colorable graph [9]. The problem ofk-coloring a 3-colorable
graph is not known to be NP-hard fork ≥ 5. However, it is a very well studied
problem, and despite this there is currently no polynomial time algorithm that
colors a 3-colorable graph with less thanÕ(n3/14) colors [4].

Sufficient conditions and non-polynomial time algorithms for a more gen-
eral form of theMatrix-To-Line problem have been given earlier [5]. The
Matrix-To-Line problem is an example of a general type of problems, where
a distance matrixD for n points is given, and the points should be embedded in
some metric space. The goal is to embed the points so that the obtained distances
are as close as possible to the distances specified byD, with respect to some
norm. This general problem has been studied in [11], and variations of it have
been considered in [1, 7].

We apply ourMatrix-To-Line algorithm to a physical mapping problem.
Physical mapping is an important problem used in large-scale sequencing of
DNA as well as for locating genes. Using RH mapping (which is described in
Section 4) one can construct a physical map of, for instance, a human chromosome
with respect ton markers, which can be genes or arbitrary DNA sequences; that
is, one can find the order between these markers and the distance between them
on the chromosome by performing a series of experiments and then performing
an algorithmic analysis of the outcomes. However, experiments are costly and for
this reason one naturally strives to perform as few as possible.

By applying ourMatrix-To-Line algorithm, we obtain an algorithm with a
guaranteed convergence rate for the RH-problem. Most previous algorithms, see
for instance [3, 10, 14], are heuristics that do not guarantee convergence. In [2],
Ben-Dor and Chor showed that after approximatelyδ−2

min logn experiments, where
δmin is a lower bound on the minimum marker distance, the laboratory data is with
high probability, what they call, consistent. They also show that a number of
rather straightforward algorithms always find the correct marker order when given
consistent laboratory data; and so they obtain an algorithm that, given a prior lower
bound onδmin, with high probability finds the correct marker order. We show that
the distances between the markers computedby our algorithm converges to the true
distances as the number of experiments increases. We also show how this implies
that afterO(δ−2

min logn) experiments, our algorithm finds the correct marker order
as well. Furthermore, we show that the probability distribution on the output of
an RH-experiment, induced by the arrangement of the markers produced by our
algorithm, converges to the distribution induced by the true arrangement of the
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markers. We also show a lower bound on this convergence rate for any algorithm
for the RH-problem.

The remainder of this paper is organized as follows. In Section 2, the2-
approximation algorithm for theMatrix-To-Line problem is presented. In
Section 3 the lower bound7/5 on the approximability of theMatrix-To-Line

problem is proven. There, it is also shown thatMatrix-To-Line cannot be
approximated within2 − δ in polynomial time, unless 3-colorable graphs can be
colored with�4/δ� colors in polynomial time. In Section 4, a probabilistic model
of an RH experiment is given. In Section 5, we show how ourMatrix-To-Line

algorithm can be applied to yield an algorithm for the RH problem. Finally, in
Section 6 we show lower bounds on the performance of any algorithm for the RH
problem.

2. MATRIX-TO-LINE

In this section, we give an approximation algorithm for theMatrix-To-Line

problem.

Definition 2.1. For twon× n matricesD andD′, define

||D,D′||∞ = max
i,j∈[n]

|D[i, j]−D′[i, j]|. (2)

An arrangementA is a mapping from a set of points{pi}n
i=1 to R+. Each

arrangementA has an associated distance matrixDA defined byDA[i, j] =
|A(pi) − A(pj)|. To avoid multiple subscripts, we will abuse the notation above
and write||D,A||∞ for ||D,DA||∞ and||A,A′||∞ for ||DA, DA′ ||∞.

Definition 2.2. Given ann×ndistance matrixD, letA∗ be an optimal solu-
tion to theMatrix-To-Line instance given byD and letε∗ be the corresponding
optimal value, i.e,ε∗ = ||D,A∗||∞.

Throughout the derivation of the algorithm, we will assume that the leftmost
point in the optimal arrangement is known. If this is false, we can always try all
possible choices, without increasing the running time with more than a factorn.
For simplicity, we assume thatp1 is the leftmost point inA∗ and thatA∗(p1) = 0.

Definition 2.3. Let p1 be the leftmost point in an optimal arrangement.
Define the arrangementA1 by A1(pi) = 0 if i = 1, andA1(pi) = D[1, i]
otherwise.

Lemma 2.1. |A∗(pi) −A1(pi)| ≤ ε∗ for all pointspi.
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Proof. We know thatA1(p1) = A∗(p1) = 0, so for any pointpi

|A∗(pi) −A1(pi)| = |A∗(pi)−D[1, i]|
= ||A∗(pi)−A∗(p1)| −D[1, i]| ≤ ε∗

(3)

A corollary to Lemma 2.1 is thatA1 approximates the optimal arrangement
within a factor 3.

Corollary 2.1. ||A1, D||∞ ≤ 3ε∗.

Proof. For any pair of pointspi, pj

||A1(pi) −A1(pj)| −D[i, j]|
≤ ||A∗(pi) −A∗(pj)| −D[i, j]|+ 2ε∗ ≤ 3ε∗,

(4)

and thus||A1, D||∞ ≤ 3ε∗.

The key observation behind the 2-approximation algorithm is that if the ar-
rangementA1 can be modify in such a way that each pointpi, i > 1, is moved a
distanceε∗/2 to the side ofA1(pi) whereA∗(pi) is located, then the new arrange-
ment will have error≤ 2ε∗. Unfortunately, both the optimal arrangementA∗ and
the optimal valueε∗ are unknown. We will therefore associate a 0/1-variablexi

to each pointpi (i > 1). For anyε > 0, each assignment to these variables will
uniquely define an arrangement of the pointsp1, . . . , pn in the following way. If
xi = 1, the pointpi is locatedε/2 to the right ofA1(pi) and ifxi = 0, the point
pi will be locatedε/2 to the left ofA1(pi).

Definition 2.4. Let X = {x2, . . . , xn} be a set of 0/1-variables. For any
ε > 0 and any truth assignmentS : xi �→ {0, 1}, for the variables inX , the
arrangementAS

ε is defined by

AS
ε (pi) =

{
0 if i = 1,

A1(pi) − ε/2 + S(xi)ε otherwise.
(5)

With ε = ε∗ and the assignment corresponding to the optimal solution, this
arrangement will be the arrangement mentioned above.

Lemma 2.2. LetS∗ be the truth assignment defined by

S∗(xi) =

{
1 if A∗(pi) > A1(pi),
0 otherwise.

(6)
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Then||AS∗
ε∗ , D||∞ ≤ 2ε∗.

Proof. For any pair of pointspi, pj ,

|AS∗
ε∗ (pi)−AS∗

ε∗ (pj)| ≤ |AS∗
ε∗ (pi)−A∗(pi)|

+ |AS∗
ε∗ (pj) −A∗(pj)|+ |A∗(pi)−A∗(pj)|

≤ |A∗(pi) −A∗(pj)| + ε∗.

(7)

This implies that

||AS∗
ε∗ (pi) −AS∗

ε∗ (pj)| −D[i, j]|
≤ ||A∗(pi) −A∗(pj)| −D[i, j]| + ε∗ ≤ 2ε∗,

(8)

which means that||AS∗
ε∗ , D||∞ ≤ 2ε∗.

However, to obtain a 2-approximation algorithm, it is not necessary to find the
truth assignmentS∗. It is sufficient to find any assignmentS and parameterε > 0
for which ||AS

ε , D||∞ ≤ 2ε∗. For each pair of pointspi andpj , there are four
possible ways to assign values to the variablesxi andxj .

Definition 2.5. An assignmentS is ε-allowedfor the pair of variablesxi

andxj if ||AS
ε (pi) − AS

ε (pj)| −D[i, j]| ≤ 2ε. If an assignment is notε-allowed
for a pair of points, it is said to beε-forbidden for this pair.

Lemma 2.3. Let S be a truth assignment for the variablesx2, . . . , xn, such
thatS is ε-allowed for all pairsxi, xj . Then||AS

ε , D||∞ ≤ 2ε.

Proof. Follows immediately from Definition 2.5.

It is easy to construct a2-Sat-clause that forbids a certain assignment to a pair
xi, xj (see Table 1). If we create a2-Sat-formula forbidding allε-forbidden
assignments, any satisfying assignment to that formula will have the property we
are looking for.

Theorem 2.1. For each pairxi, xj , let ϕε
i,j be the conjunction of the at

most four clauses forbidding allε-forbidden assignments for the pair, and let
Φε =

∧
i�=j ϕ

ε
i,j . Every satisfying assignmentS to Φε satisfies||AS

ε , D||∞ ≤ 2ε.
FurthermoreS∗ is a satisfying assignment forΦε∗ .

Proof. Let S be any satisfying assignment forΦε. By construction,S is
ε-allowed for each pair of variablesxi, xj , so from Lemma 2.3 follows that
||AS

ε , D||∞ ≤ 2ε.
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TABLE 1.

Clauses forbiddingε-forbidden assignments

xi xj Clause

0 0 (xi ∨ xj)

1 0 (xi ∨ xj)

0 1 (xi ∨ xj)

1 1 (xi ∨ xj)

From Lemma 2.2 follows that||AS∗
ε∗ , D||∞ ≤ 2ε∗ soS∗ is ε∗-allowed for all

pairs of points and thus a satisfying assignment forΦε∗ .

To find anε ≤ ε∗ for whichΦε has a satisfying assignment, we will use some
properties of these formulae that is due to their construction.

Lemma 2.4. If c is a clause inΦε, thenc is a clause inΦε′ for all 0 ≤ ε′ ≤ ε.

Proof. Let ε = ε′ + δ, where0 ≤ δ ≤ ε, and assume thatc is a clause inΦε

forbidding an assignment to the pairxi, xj . LetS be an assignment that does not
satisfyc, i.e.,

||AS
ε (pi)−AS

ε (pj)| −D[i, j]| > 2ε. (9)

From Definition 2.4, using the triangle inequality and Eq. (9), follows that

||AS
ε′(pi) −AS

ε′(pj)| −D[i, j]|
= ||A1(pi) −A1(pj) + ε′(S(xi) − S(xj))| −D[i, j]|
= ||A1(pi) −A1(pj) + (ε− δ)(S(xi) − S(xj))| −D[i, j]|
≥ ||A1(pi) −A1(pj) + ε(S(xi) − S(xj))| −D[i, j]|
− δ|S(xi) − S(xj)|

= ||AS
ε (pi) −AS

ε (pj)| −D[i, j]| − δ|S(xi) − S(xj)|
> 2ε− δ|S(xi)− S(xj)|.

(10)

But |S(xi) − S(xj)| ≤ 1, so

||AS
ε′(pi) −AS

ε′(pj)| −D[i, j]| > 2ε′, (11)

which means that the assignment isε′-forbidden as well; soc is a clause inΦε′ .
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Definition 2.6. An ε′ ∈ R+ is abreakpointif Φε′ �= Φε for all ε < ε′.

From Lemma 2.4 follows that ifS is a satisfying assignment forΦε, thenS
also satisfiesΦε′ for all ε′ > ε. This means that, if there is only a small number of
breakpoints, we could use binary search over the breakpoints to find anε ≤ ε∗ for
which Φε has a satisfying assignment. (Note thatS∗ is a satisfying assignment
for the2-Sat-formula corresponding to the greatest breakpoint≤ ε∗.)

Theorem 2.2. There can be at most3
(
n
2

)
breakpoints.

Proof. From Lemma 2.4 and Definition 2.6 it follows that for each breakpoint
ε′ there exists a clausec such that: 1)c is a clause inΦε for all ε < ε′, and 2)
c is not a clause inΦε for all ε ≥ ε′. Each clause thus corresponds to at most
one breakpoint. Furthermore there are

(
n
2

)
pairs of variablesxi, xj and 4 possible

clauses for each such pair. However, ifS andS′ are two assignments such that
S(xi) = S(xj) �= S′(xi) = S′(xj), then

||AS
ε (pi) −AS

ε (pj)| −D[i, j]| = ||A1(pi) −A1(pj)| −D[i, j]|
= ||AS′

ε (pi) −AS′
ε (pj)| −D[i, j]|;

(12)

so the two clauses(xi∨xj) and(xi∨xj), forbidding assignments wherexi = xj ,
will correspond to the same breakpoint. This makes the total number of break-
points at most3

(
n
2

)
.

We are now ready to formulate the approximation algorithm forMatrix-To-

Line

Algorithm 2.1.

1. Construct the set of breakpoints.
2. Use binary search over the breakpoints to find the smallest breakpointε for
whichΦε has a satisfying assignmentS.
3. ReturnAS

ε .

Theorem 2.3. Algorithm 2.1 approximatesMatrix-To-Line within 2 in
timeO(n2 log(n)), if the leftmost point in an optimal arrangement is known.

Proof. The correctness of the algorithm follows from the derivations above.
What we need to show is the time bound. Given the leftmost point in the optimal
arrangement, we can compute theO(n2) breakpoints in timeO(n2) and sort them
in timeO(n2 log(n)). In each step of the binary search we construct and solve a2-

Sat-formula withO(n2) clauses.2-Sat can be solved in linear time, so the total
time for that part of the algorithm isO(n2 log(n)). Hence the total running time of
Algorithm 2.1 isO(n2 log(n)).
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If the leftmost point in an optimal arrangement is unknown, we can try all
possible choices to find the correct one.

Theorem 2.4. TheMatrix-To-Line problem can be approximated within
2 in timeO(n3 log(n)).

Proof. From Theorem 2.3 follows that, given that the leftmost point is known,
Algorithm 2.1 approximatesMatrix-To-Line within 2 in timeO(n2 log(n)).
There are at mostn choices for the leftmost point, so the time required for running

Algorithm 2.1 for each such choice isO(n3 log(n)).

Although the number of choices for the leftmost point isn in the worst case,
simple heuristics should limit the number of choices considerably in most cases.

3. LOWER BOUNDS

In this section, we first prove a lower bound of7/5 on the approximability
of Matrix-To-Line under the assumption P�= NP; thereafter, we show that
if Matrix-To-Line is approximable within2 − δ in polynomial time, then
every 3-colorable graph can be�4/δ�-colored in polynomial time. The problem
of k-coloring a 3-colorable graph is a well studied problem. The problem is
not known to be NP-hard. The best result so far is from [9] where they show
that it is NP-hard to find a 4-coloring of a 3-colorable graph. However, the
best approximation algorithm known for the corresponding optimization problem
Minimum Graph Coloring for 3-colorable graphs, has performance ratio
Õ(n3/14) [4] (i.e.,O(n3/14 logk(n)) for some constantk).

DecidingNot-All-Equal-3-SAT was shown to be NP-complete by Schae-
fer [13], and it is defined as follows.

Definition 3.1. Let X be a set of variables and letC be a collection of
clauses overX , such that each clausec ∈ C has three literals. Then(X,C)
belongs toNot-All-Equal-3-SAT if there is a truth assignment that for each
clausec ∈ C assigns at least one literal ofc the value true and at least one literal
of c the value false.

The lower bound of7/5 is obtained by the following reduction.

Reduction 3.1. Given anNot-All-Equal-3-SAT instance(X,C), we
define a correspondingMatrix-To-Line instance(P,D) in the following way.
For each variablex and its complement̄x, there are two points,px andpx̄, in P .
For each clausec, there are three pointsc1, c2, andc3, in P . In addition to these
points,P contains the pointb. The distance matrixD has the following entries.
For all points p ∈ P , D[b, p] = 0; for all variables x ∈ X , D[px, px̄] = 9;
furthermore, for all clauses(u ∨ v ∨ w) ∈ C,
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D[c1, pu] = 6 D[c1, pv] = 0 D[c1, pū] = 0 D[c1, pv̄] = 6
D[c2, pv] = 6 D[c2, pw] = 0 D[c2, pv̄] = 0 D[c2, pw̄] = 6
D[c3, pw] = 6 D[c3, pu] = 0 D[c3, pw̄] = 0 D[c3, pū] = 6
D[c1, c2] = 6 D[c1, c3] = 6 D[c2, c3] = 6.

All other distances are equal to 3.

The intuition behind the construction is that a literalx assigned with the value
true corresponds to a pointpx being to the right ofb, and a literal assigned with
the value false corresponds to a point being to the left ofb.

Lemma 3.1. If an instance(X,C) belongs toNot-All-Equal-3-SAT,
then the correspondingMatrix-To-Line instance(P,D) has optimal value 3.

Proof. SinceD[px, px̄] = 9 andD[b, px] = D[b, px̄] = 0 it is clear that any
arrangement of the points inP will have an error≥ 3. Hence, to prove the lemma
it suffices to construct an arrangement with error 3. If all points are located within
an interval of length 6, then the error for all pairs where the specified distance is 3
will be at most 3. Therefore we will arrange all points within an interval of length
6 centered around the pointb.

LetS be an assignment of the variables inX such that at least one literal in each
clause is true and at least one literal is false. Since(X,C) belongs toNot-All-

Equal-3-SAT we know that such an assignment exists. For each literalx that
is assigned with the value true we arrange the corresponding pointpx a distance 3
to the right ofb. For each literalx that is assigned with the value false we arrange
the corresponding pointpx a distance 3 to the left ofb. In this way, the error for
any pairpx, px̄ and any pairpx, b will be 3.

To complete the construction of the arrangement we show how to arrange the
points corresponding to the clauses, so that the error is at most 3. Letc =
(u∨ v ∨w) be an arbitrary clause inC. By construction, at least one of the points
corresponding to literals incwill be arranged to the right ofb, and at least one to the
left. Fig. 1 shows how to arrange the pointsc1, c2 andc3 in all the six possible cases.
It is easy to check that the error for any pair is at most 3. This completes the
proof.

Lemma 3.2. If an instance(X,C) does not belong toNot-All-Equal-3-

SAT, then the correspondingMatrix-To-Line instance(P,D) has optimal
value≥ 21/5.

Proof. If (X,C) does not belong toNot-All-Equal-3-SAT, then for any
assignmentS there is some clausec ∈ C such that all literals are true or all literals
are false. This implies that in any arrangement of the points inP , three points
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u is true andv, w are false.

� � �

pu

pv̄

pw̄

pv

pw

pū b

c1 c2 c3

v is true andu, w are false.

� � �

pv

pū

pw̄

pu

pw

pv̄ b

c2 c3 c1

w is true andu, v are false.

� � �

pw

pū

pv̄

pu

pv

pw̄ b

c3 c1 c2

u, v are true andw is false.

� � �

pu

pv

pw̄

pw

pū

pv̄ b

c2 c1 c3

u, w are true andv is false.

� � �

pu

pw

pv̄

pv

pū

pw̄ b

c1 c3 c2

v, w are true andu is false.

� � �

pv

pw

pū

pu

pv̄

pw̄ b

c3 c2 c1

FIG. 1. The arrangement of a clausec = (u ∨ v ∨ w).

corresponding to literals in some clausec = (u ∨ v ∨ w) will be on the same
side ofb. Hence, to prove the lemma, it suffices to show that the error for any
arrangement of the ten points:pu, pv, pw, pū, pv̄, pw̄, c1, c2, c3 andb, such that
pu, pv, pw are to the left ofb, has error≥ 21/5.

For a fixed permutation of the points, the problem of finding the optimal ar-
rangement can be formulated as a linear program. Letxi be the location of thei:th
point in the permutation and letD[i, j] be the specified distance between thei:th
and thej:th point in the permutation. Then the linear program can be formulated
in the following way.

minimize z

s.t.




xj ≥ xi ∀i < j

z ≥ D[i, j]− (xj − xi) ∀i < j

z ≥ (xj − xi) −D[i, j] ∀i < j

z ≥ 0, xi ≥ 0 ∀i

(13)
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� � � � � � � �

pu pv pw pū pv̄pw̄b

c3c2c1

FIG. 2. The arrangement of a clausec = (u∨ v ∨w), where the corresponding points are on the
same side ofb. In the arrangementpu = 0, pv = 1.2, pw = 1.8, pū = 5.4, pv̄ = 7.2, pw̄ = 6.6,
b = 3, c1 = 1.8, c2 = 3.6, c3 = 5.4.

By symmetry, we can fix the order of the three pointspu, pv andpw. Furthermore,
it is easy to see that any arrangement of the points such thatpx and px̄ are
on the same side ofb will have an error≥ 9/2. This means that there are
3! × 8 × 9 × 10 = 4320 permutations that have to be considered. We solved
the 4320 linear programs, using the publicly available packageLP_SOLVE by
Michael Berkelaar. The result shows that the smallest optimal value for these
linear programs is21/5. Fig. 2 shows one of the optimal solutions corresponding
to the optimal value21/5.

We have thus shown that if an arrangement of the points inP , for some clausec,
has all points corresponding to literals inc on the same side ofb, then the error is≥
21/5.

Theorem 3.1. It is NP-hard to approximateMatrix-To-Linewithin7/5−
δ, for anyδ > 0.

Proof. From Lemma 3.1 follows that if an instance(X,C) belongs to
Not-All-Equal-3-SAT, then the correspondingMatrix-To-Line instance
(P,D) has optimal value 3. Furthermore, from Lemma 3.2 follows that if
(X,C) does not belong toNot-All-Equal-3-SAT, then the optimal value
is ≥ 21/5. This means that if there exists a polynomial time approxima-
tion algorithm for Matrix-To-Line with performance ratio less than7/5,

then this algorithm will decideNot-All-Equal-3-SAT in polynomial time.

Now, we show that it is at least as hard to approximateMatrix-To-Line

within 2 − δ as it is to�4/δ�-color a 3-colorable graph. Consider the following
reduction.

Reduction 3.2. Given a 3-colorable graphG = (V,E) with n vertices, we
define the correspondingMatrix-To-Line instance(P,D), where each point
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pi ∈ P corresponds to a vertexvi ∈ V and

D[i, j] =

{
2 if (vi, vj) ∈ E,

1 otherwise.
(14)

The idea is to find an arrangement of the points inP , using a(2 − δ)-
approximation algorithm forMatrix-To-Line; and from this arrangement con-
struct a coloring ofG with �4/δ� colors. To do this, we will use an upper bound on
the error for an optimal arrangement of the points inP . Such a bound is possible
to obtain using the 3-coloring ofG, that exists by assumption.

Definition 3.2. Given a 3-coloring,c : V → {0, 1, 2}, of a graphG,
let Ac be the arrangement defined byAc(pi) = c(vi), for each pointpi in the
correspondingMatrix-To-Line instance.

Lemma 3.3. Let c be a 3-coloring of a graphG. Then||Ac, D||∞ ≤ 1

Proof. For any pair of pointspi, pj , the distanceD[i, j] is either 1 or 2. From
Definition 3.2 it follows immediately that0 ≤ |Ac(pi) − Ac(pj)| ≤ 2 for all
i, j. So, ifD[i, j] = 1, then||Ac(pi) − Ac(pj)| −D[i, j]| ≤ 1. By construction
D[i, j] = 2 if and only if there is an edge betweenvi andvj in G. But if (vi, vj) ∈
E, thenc(vi) �= c(vj), implying that1 ≤ |Ac(pi) − Ac(pj)| ≤ 2; and hence

||Ac(pi) −Ac(pj)| −D[i, j]| ≤ 1.

Let A be the arrangement produced by a(2 − δ)-approximation algorithm
for Matrix-To-Line. W.l.o.g. we assume thatp1 is the leftmost point in the
arrangementA and thatA(p1) = 0. From Lemma 3.3 follows that

||A,D||∞ ≤ 2− δ, (15)

which means that

A(pi) ≤ 4− δ ∀i, (16)

sinceD[1, i] ≤ 2 for all i. Eq. (16) implies that we can cover the interval
containing all points inA with �4/δ� disjoint sub-intervals of equal lengthd < δ.
These sub-intervals will induce a coloring of the vertices inG.

Definition 3.3. Let G = (V,E) be a 3-colorable graph, let(P,D) be the
correspondingMatrix-To-Line instance, and letA be the arrangement ofP
produced by a(2 − δ)-approximation algorithm forMatrix-To-Line. Define
cA : V → {1, . . . , �4/δ�} in the following way. For each pointpi ∈ P , let
cA(vi) = j, if and only ifA(pi) ∈ [(j − 1)d, jd), whered = (4− δ/2)/�4/δ�.
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Lemma 3.4. cA is a �4/δ�-coloring ofG.

Proof. We need to show thatcA(vi) �= cA(vj) whenever(vi, vj) ∈ E.
Assume that(vi, vj) ∈ E. This implies thatD[i, j] = 2. Now, ||A,D||∞ ≤ 2− δ

so in this case|A(pi)−A(pj)| ≥ δ > d, which means thatcA(vi) �= cA(vj).

We have thus proven the following theorem.

Theorem 3.2. If Matrix-To-Line is approximable within2 − δ in poly-
nomial time, then any 3-colorable graph can be colored with�4/δ�-colors in
polynomial time.

Proof. Let G be a three colorable graph. Given a(2 − δ) approximation of
Matrix-To-Line, we can constructcA in Definition 3.3 in polynomial time. By

Lemma 3.4,cA is a�4/δ�-coloring ofG.

4. THE RH MODEL

A marker is a gene or an arbitrary DNA sequence for which there is an “easy”
laboratory test for its presence in any fragment of DNA. Suppose that we want to
construct a physical map of a human chromosome with respect ton markers; that
is, we want to find the order in which the markers appear on the chromosome and
the distance between them.

Since there is no direct procedure giving the orientation of a pair of markers on
a fragment of DNA, an RH-experiment is performed. The chromosome is exposed
to gamma radiation which shatters it into fragments. A subset of the fragments
are incorporated into a hamster cell, which is grown to yield a hybrid cell line.
Each marker is then tested for presence in cells from this cell line.

The outcome of one experiment is represented by a vector in{0, 1}n where 1
corresponds to presence of the marker in the hybrid cell line; a number of exper-
iments are in the natural way represented by a 0/1-matrix. Such a 0/1-matrix is
the laboratory data which is the input to the algorithmic problem. That is, the RH
problem is that of, given a 0/1-matrix, finding the order of the markers and the
distance between them.

We use the following model of an RH experiment, which is basically the same
model as in [2, 10], but without the assumption that the markers are uniformly
distributed. A genome is modeled by the unit interval[0, 1]. A set ofn markers
is modeled by a functionA : [n] → [0, 1]; that is, each marker is a point in
[0, 1]. (The former is just a question of scaling. The latter is motivated by the
fact that compared to the genome the markers are very short.) Anexperiment
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for A : [n] → [0, 1] is the following probabilistic procedure in which a vector
v ∈ {0, 1}n is produced.

1. Breaks are distributed in the unit interval[0, 1] according to a Poisson process
with rateλ. This induces a division of[0, 1] into maximal subintervals without
breaks, denotedI1, . . . , Il. (This models how radiation breaks the genome.)

2. A setS is constructed by, for each subintervalIi, lettingIi belong to the set
S with probabilityp. (This models how some fragments are incorporated into the
hamster genome.) LetI = ∪Ii∈SIi.

3. For eachi ∈ [n], if A(i) ∈ I let v(i) = 1 with probability 1 − β and
otherwise letv(i) = 1 with probabilityα. (This models the negative and positive
errors that can occur when a hamster genome is tested for presence of a marker.)

In this way eachA : [n] → [0, 1] induces a probability distributionPA on{0, 1}n;
that is, for eachx ∈ {0, 1}n, PA(x) is the probability that an experiment forA
producesx.

Since everything to the left of the leftmost marker in a genome will be unknown
to us we will assume that this marker is located inx = 0.

Definition 4.1. A marker functionis a functionA : [n] → [0, 1] such that
A(m) = 0 for somem ∈ [n], and the leftmost marker has lower index than the
rightmost marker.

The last condition is present to assure that, for any probability distribution on
{0, 1}n, there is a unique corresponding marker function.

5. FINDING THE GENOME MAP

In this section, we give an algorithm for the RH problem using the algorithm
for Matrix-To-Line from Section 2.

Let A be the unknown marker function representing the genome we want to
study, and letD be the distance matrix defined byD[i, j] = |A(i) − A(j)|. We
show how to, givenm experiments forA, construct a marker function̂A such
that ||Â,D||∞ ≤ O(

√
log (n)/m), using the 2-approximation algorithm from

Section 2. In fact, any approximation algorithm with constant performance ratio
will give this bound, but the constant hidden in theO notation will be proportional
to 1 + τ , whereτ is the performance ratio of theMatrix-To-Line algorithm.

Definition 5.1. Two markersi andj areseparatedby an experiment if
v(i) �= v(j), wherev ∈ {0, 1}n is the outcome of the experiment.

In [2], an expression for the probability of two markers being separated was
derived for the case whenα = β. This derivation, which involves case analysis,
can easily be generalized to the case whereα �= β, and yields the following
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expression.

ϕi,j = 2pq(1− e−λD[i,j])(1 − (α + β))2 + g(α, β, p), (17)

whereq = 1− p and

g(α, β, p) = 2p(α− β)(α + β − 1) + 2α(1− α). (18)

Since0 ≤ D[i, j] ≤ 1 for all i, j, the separation probability satisfiesϕmin ≤
ϕi,j ≤ ϕmax for all i, j, where

ϕmin = g(α, β, p) (19)

and

ϕmax = 2pq(1− e−λ)(1− (α + β))2 + g(α, β, p). (20)

Solving forD[i, j] in (17) shows thatD[i, j] = δ(ϕi,j), where

δ(ϕ) = − 1
λ

ln
(
1− ϕ− g(α, β, p)

2pq(1− (α + β))2
)
. (21)

Let Xi,j ∈ {0, 1} denote the output for thei:th marker in experimentj. By
calculating the frequency of separation between the markersi andj,

νi,j =
1
m

m∑
k=1

|Xki −Xkj |, (22)

we get an estimate ofϕi,j by

ϕ̂i,j =




ϕmin if νi,j < ϕmin

νi,j if ϕmin ≤ νi,j ≤ ϕmax

ϕmax if νi,j > ϕmax

(23)

which we use in Eq. (21) to obtain an estimateD̂[i, j] = δ(ϕ̂i,j) of D[i, j]. The
idea is to apply the 2-approximation algorithm forMatrix-To-Line to the
estimated distanceŝD[i, j] in order to find a marker function̂A close to the true
marker functionA.

To show how closêA is toA, we will use a bound on||D, D̂||∞. The function
δ(ϕ) is differentiable with respect toϕ in [ϕmin, ϕmax]. Since

δ′(ϕ) =
1

2λpq(1− (α + β))2 − λ(ϕ− g(α, β, p))
, (24)
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it follows from the mean value theorem that for any pairi, j,

|D[i, j]− D̂[i, j]| ≤ |ϕi,j − ϕ̂i,j |
|2λpq(1− (α + β))2 − λ(ϕmax − g(α, β, p))|

=
|ϕi,j − ϕ̂i,j |

2λpq(1− (α + β))2
eλ.

(25)

If we apply Hoeffding’s inequality [8] for̂ϕi,j , we see that for each pairi andj

Pr[ |ϕi,j − ϕ̂i,j | ≥ τ ] ≤ 2e−2mτ2
. (26)

Hence, the probabilityσ that there is a pairi, j such that|ϕi,j − ϕ̂i,j | ≥ τ , is less
thann2e−2mτ2

. We thus conclude that, with error probabilityσ,

||D, D̂||∞ <

√
ln(n2/σ)

2pqλ
√

2m(1 − (α + β))2
eλ (27)

Lemma 5.1. If Â is the marker function obtained by applying the 2-approxi-
mation algorithm forMatrix-To-Line on the matrixD̂, then

||Â,D||∞ ≤ 3
√

ln(n2/σ)
2pqλ

√
2m(1− (α + β))2

eλ (28)

with probability1− σ.

Proof. Since the approximation algorithm has performance ratio 2 we know
that ||Â, D̂||∞ ≤ 2||D, D̂||∞. Together with the triangle inequality and Eq. (27)
this show that

||Â,D||∞ ≤ ||Â, D̂||∞ + ||D̂,D||∞ ≤ 3||D̂,D||∞

≤ 3
√

ln(n2/σ)
2pqλ

√
2m(1− (α + β))2

eλ.
(29)

Lemma 5.1 states that the distances between the markers in the arrangementÂ
are close to the distances in the true arrangement. This implies that the positions
of the markers are close as well. However, to show how close the arrangements
are, i.e., to give an upper bound on the distance between the arrangements, turns
out to be surprisingly technical. The next lemma gives such a bound for functions
satisfying certain technical conditions. We then show that this lemma is applicable
for marker functions.
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Lemma 5.2. Letf, g : [n] → [0, 1] be two functions such thatf(p) = g(q) =
0, f(q) ≤ f(r), andg(p) ≤ g(r), for somep, q, r ∈ [n]. If

max
i,j∈[n]

||f(i)− f(j)| − |g(i)− g(j)|| ≤ ε, (30)

then|f(i)− g(i)| ≤ 2ε, for all i.

Proof. If ∃m ∈ [n] such thatf(m) = g(m) = 0, then|f(i)− g(i)| ≤ ε for all
i ∈ [n]; and the lemma holds. By assumption, there exists integersp, q, r ∈ [n]
such thatf(p) = g(q) = 0, f(q) ≤ f(r), andg(p) ≤ g(r); and, by symmetry, we
can assume thatf(q) ≤ g(p). If

||f(i) − f(j)| − |g(i) − g(j)|| ≤ ε, (31)

for all i, j ∈ [n], we know that

|f(r) − (g(r) − g(p))| ≤ ε, (32)

|g(r) − (f(r) − f(q))| ≤ ε. (33)

Using the triangle inequality on the sum of these equations we observe that

g(p) + f(q) ≤ 2ε. (34)

Eq. (34) together with the inequalityf(q) ≤ g(p) show that

f(q) ≤ ε. (35)

Choose an arbitraryj ∈ [n], and assume thatf(j) ≤ f(q). If g(j) ≤ f(j), then
it follows from Eq. (35) that|f(j) − g(j)| ≤ ε. If g(j) > f(j), then

|f(j) − g(j)| ≤ |g(j)− g(q)| ≤ |f(j) − f(q)| + ε ≤ 2ε. (36)

Now, assume thatf(j) > f(q). If f(j) ≤ g(j), then

|f(j) − g(j)| ≤ |g(j)− g(q)| − |f(j) − f(q)| ≤ ε. (37)

If f(j) > g(j), then

|f(j) − g(j)| ≤ |f(j) − f(q)| + ε− |g(j) − g(q)| ≤ 2ε. (38)

We have thus shown that|f(i) − g(i)| ≤ 2ε for all i ∈ [n].
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Not every pair of functions will satisfy the conditions in Lemma 5.2. However,
if the lemma is not applicable tof andg, then it is applicable tof and the reversal
of g.

Definition 5.2. Let f : [n] → [0, 1] be a function and letr be the integer
satisfyingf(r) ≥ f(i) for all i. Define thereversalf̄ of f by f̄(i) = f(r)− f(i)
for all i.

Lemma 5.3. For any pair of functionsf, g : [n] → [0, 1] mapping some value
to 0, there existsp, q, r ∈ [n] such that either

f(p) = g(q) = 0, f(q) ≤ f(r), g(p) ≤ g(r), (39)

or

f(p) = ḡ(q) = 0, f(q) ≤ f(r), ḡ(p) ≤ ḡ(r). (40)

Proof. Let p andq be defined byf(p) = g(q) = 0 and letr be defined by
f(r) ≥ f(i) for all i. If g(p) ≤ g(r), then all conditions in (39) are satisfied.
Assume therefore thatg(p) > g(r). Lets be defined byg(s) ≥ g(i) for all i. From
Definition 5.2 follows that̄g(s) = 0 andḡ(p) < ḡ(r). Hence, sincef(r) ≥ f(i)
for all i, this implies thatf(p) = ḡ(s) = 0, f(s) ≤ f(r) andḡ(p) ≤ ḡ(r).

Theorem 5.1. If Â is the marker function obtained by applying the 2-approxi-
mation algorithm forMatrix-To-Line on the matrixD̂, estimated usingm
experiments for the marker functionA, then

max
i

{|Â(i) − Ã(i)|} ≤ 6
√

ln(n2/σ)
2pqλ

√
2m(1− (α + β))2

eλ, (41)

with probability1− σ, whereÃ is eitherA or Ā.

Proof. Lemma 5.1 states that

||Â,D||∞ ≤ 3
√

ln(n2/σ)
2pqλ

√
2m(1 − (α + β))2

eλ. (42)

From Lemma 5.2 and Lemma 5.3 then immediately follows that, for eitherÃ = A
or Ã = Ā,

|Â(i) − Ã(i)| ≤ 6
√

ln(n2/σ)
2pqλ

√
2m(1− (α + β))2

eλ, (43)
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for all i ∈ [n].

If there is a lower bound on the minimum distance between any pair of markers
Theorem 5.1 gives an upper bound on the number of experiments required to find
the true order of the markers.

Corollary 5.1. Let Dmin be the minimum distance between any pair of
markers in the marker functionA, i.e.,Dmin = mini,j{D[i, j]}. If Â is the marker
function obtained by applying the 2-approximation algorithm forMatrix-To-

Line on the matrixD̂, estimated using

m ≥ 18 ln(n2/σ)
p2q2λ2D2

min(1− (α + β))4
e2λ (44)

experiments forA, then the order of the markers in̂A will be the same as inA,
with probability1− σ.

Proof. From Theorem 5.1 follows that, if the number of experimentsm satisfy
Eq. (44), then either|Â(i) − A(i)| ≤ Dmin/2 or |Â(i) − Ā(i)| ≤ Dmin/2.
This means that the order of the markers inÂ is the same as the order of the
markers in eitherA or Ā. However, sinceÂ is a marker function we know
that the leftmost marker has lower index then the rightmost marker. Hence, the
order of the markers in̂A must be the same as the order of the markers inA.

Disregarding constants, the bound in Corollary 5.1 on the number of experi-
ments is the same as the bound by Ben-Dor and Chor [2] for their algorithms to
find the correct order of the markers.

Each marker functionA induces a probability distributionPA on the set{0, 1}n.
The L1-norm for these distributions can be used as a measure of the distance
between marker functions.

Definition 5.3. Let A andB be two marker functions. Define

L1(PA, PB) =
∑

x∈{0,1}n

|PA(x) − PB(x)|. (45)

This is thevariational distanceused for instance for Cavender-Farris trees
in [6]. Following [6], it is possible to show that this is a metric for the marker
functions. It is easy to check that it is symmetric, positive, and satisfies the
triangle inequality. What we need to show is thatL1(PA, PB) = 0 implies
A = B. However, this follows from the fact that the distances between two
markersi andj can be expressed as a function of the separation probability fori
andj.

Under this metric the constructed marker functionÂ converges to the true
marker functionA, as the number of experimentsm increases. We show that
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L1(PA, PÂ) ≤ O(n
√

log (n)/m). Furthermore, we show that if an algorithm
M given the output ofm experiments for any marker functionA, returns an
approximationÂ of A such thatL1(PA, PÂ) ≤ f(m), thenf(m) ≥ Ω(1/m).
Finally, we show how this bound gives a bound on the sum of the difference in the
positions of the markers inA andÂ.

Lemma 5.2 enables us to get an upper bound on theL1-norm of the difference
in probability distribution for two marker functions, for which the differences in
distance between markers are bounded.

Lemma 5.4. If A andB are two marker functions, then

L1(PA, PB) ≤ 2λ||A−B||1 ≤ 4λn||A,B||∞, (46)

where

||A−B||1 =
n∑

i=1

|A(i) −B(i)|. (47)

Proof. From the definition of an experiment it is clear thatPA = PĀ for every
marker functionA. Therefore, w.l.o.g. we assume that there existp, q, r ∈ [n]
such thatA(p) = B(q) = 0, A(q) ≤ A(r), andB(p) ≤ B(r).

Assume that one experiment is performedsimultaneously forA andB. If the set
of markers is partitioned differently forA andB, then the probability for a certain
outcome of the experiment may differ, but otherwise it will not. We call such a
break adangerous break. Each markeri induces a subinterval[A(i), B(i)] (or
[B(i), A(i)] if A(i) > B(i)) of [0, 1], within which each break is dangerous. The
length of the union of all these intervals will be at most||A−B||1 ≤ 2n||A,B||∞,
according to Lemma 5.2.

Since the breaks are distributed in the interval[0, 1] according to a Poisson
process with rateλ, the probability that at least one dangerous break occurs is at
most1−e−λ||A−B||1. LetF be the event that at least one dangerous break occurs.
ThenPrA[x|F̄ ] = PrB[x|F̄ ] for all x, since the probability of incorporation of
fragments in hamster cells and false answers in the test of occurrences of markers
are independent of the size of a fragment.

L1(PA, PB) =
∑

x∈{0,1}n

|PA(x) − PB(x)|

≤ Pr[F ]
∑

x∈{0,1}n

|PrA[x | F ] − PrB[x | F ]|

+ Pr[ F̄ ]
∑

x∈{0,1}n

|PrA[x | F̄ ]− PrB [x | F̄ ]|

≤ 2Pr[F ] ≤ 2(1− e−λ||A−B||1)
≤ 2λ||A−B||1 ≤ 4nλ||A,B||∞

(48)
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where we have used the inequality1− x ≤ e−x.

Combining Lemma 5.1 and Lemma 5.4, we obtain the following bound on the
difference in distribution between̂A andA.

Theorem 5.2. With probability1− σ,

L1(PA, PÂ) ≤ 3
√

2n
√

ln(n2/σ)
pq
√
m(1 − (α + β))2

eλ. (49)

Proof. Follows immediately from Lemma 5.1 and Lemma 5.4.

6. LOWER BOUNDS FOR RH ALGORITHMS

In this section, we show a lower bound on the convergencerate for any algorithm
for the RH problem.

Lemma 6.1. LetA1 andA2 be two marker functions and letM be any decision
procedure that given the output fromm experiments for eitherA1 or A2 decides
whether the experiments were performed forA1 or A2. If e1(M) is the probability
thatM is incorrect when the experiments are performed forA1 ande2(M) is the
probability thatM is incorrect when the experiments are performed forA2, then

e(M) ≥ 1−mε

2
, (50)

wheree(M) = max{e1(M), e2(M)} andε = L1(PA1 , PA2).

Proof. This is a reformulation of Lemma 1 in [6].

Lemma 6.1 implies that it is interesting to study pairs of marker functions and
their possibleL1 distances. We do this in Lemma 6.2 below.

Lemma 6.2. For each marker functionA and constantK such that

K ≤ pq

2
(1− α− β)2(1− e−λ), (51)

there is a marker functionA′ such thatL1(PA, PA′) = K.

Proof. Consider the two marker functionsW1 andW2 defined in the following
way.

W1(k) =

{
0 if k �= n,

1 otherwise.
W2(k) =

{
0 if k �= n− 1,

1 otherwise.
(52)
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LetE be the event thatxn−2 = 1 andxn−1 = 1 in the outputx of an experiment.
From the definition ofW1 andW2 follows that

PrW1 [E ] = p(1− β)2 + qα2, (53)

PrW2 [E ] = (p2(1− β)2 + q2α2 + 2pqα(1− β))(1 − e−λ)

+ (p(1− β)2 + qα2)e−λ.
(54)

Together with the triangle inequality, this shows that

L1(PW1 , PW2) =
∑

x∈{0,1}n

|PW1 (x) − PW2(x)|

≥
∑

x∈{0,1}n

xn−2=xn−1=1

|PW1 (x) − PW2(x)|

≥ |PrW1 [E ] − PrW2 [E ]|
= (p(1 − β)2 + qα2)(1− e−λ)

− (p2(1− β)2 + q2α2 + 2pqα(1− β))(1 − e−λ)

= (pq(1 − β)2 + pqα2 − 2pqα(1− β))(1 − e−λ)

= pq(1− α− β)2(1− e−λ).

(55)

Finally, the triangle inequality for theL1-norm together with Eq. (55) imply that

max{L1(PW1 , PA), L1(PW2 , PA)} ≥ pq

2
(1− α− β)2(1− e−λ). (56)

By continuity, we thus conclude that there exists a marker functionA′ such that
L1(PA, PA′) = K, for any

K ≤ pq

2
(1− α− β)2(1− e−λ). (57)

Theorem 6.1. Let A be any algorithm that for all marker functionsA,
given the output ofm experiments forA, returns an approximation̂A such that
L1(PA, PÂ) ≤ f(m) with probability1 − σ, for some constantσ < 1/2. Then
f(m) ≥ Ω(1/m).

Proof. Assume thatA is an algorithm that, given the output ofm ex-
periments for any marker functionA, returns an approximation̂A of A, such
that L1(PA, PÂ) ≤ f(m), with probability 1 − σ. We want to show that



FITTING POINTS ON THE REAL LINE 23

f(m) ≥ Ω(1/m). Assume for contradiction that this is not the case, i.e., as-
sume thatf(m) ≤ o(1/m).

Let A be an arbitrary marker function. Sincef(m) ≤ o(1/m), Lemma 6.2
implies that there exists a marker functionA′ such thatL1(PA, PA′) = 3f(m),
for large enoughm.

Consider the following decision procedureM ′. Givenm experiments for the
two marker functionsA or A′, it first runsA to obtain a marker function̂A;
Thereafter, it outputsA if L1(PA, PÂ) ≤ L1(PA′ , PÂ) andA′ otherwise. Note
that we do not have to consider the running time ofM ′. It is clear that with this
definition,e(M ′) ≤ σ. However, using Lemma 6.1, we see that

σ ≥ 1− 3mf(m)
2

, (58)

which contradicts the assumption thatf(m) ≤ o(1/m).

The lower bound onL1(PA, PÂ) together with Lemma 5.4 immediately gives
a lower bound on||A− Â||1.

Corollary 6.1. Let A be any algorithm that for all marker functionsA,
given the output ofm experiments forA, returns an approximation̂A such that
||A − Â||1 ≤ f(m) with probability1 − σ, for some constantσ < 1/2. Then
f(m) ≥ Ω(1/m).

Proof. Lemma 5.4 states thatL1(PA, PB) ≤ 2λ||A−B||1.
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