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A natural problem is that of, given anx n symmetric matrixD, finding an arrangement
of n points on the real line such that the so obtained distances agree as well as possible with
the by D specified distances. We refer to the variation in which the difference in distance
is measured in maximum norm as tMeATRIX-TO-LINE problem. TheMATRIX-To-

LINE problem has previously been shown to be NP-complete [12]. We show that it can be
approximated withir2, but unless NP not within7/5 — § for anyé > 0. We also show

a tight lower bound under a stronger assumption. We show thatltkerix-To-LINE
problem cannot be approximated witiin— ¢ unless 3-colorable graphs can be colored
with [4/4] colors in polynomial time. Currently, the best polynomial time algorithm colors

a 3-colorable graph wit) (n3/14) colors [4].

We apply ourMaTrix-To-LINE algorithm to a problem in computational biology,
namely, the Radiation Hybrid (RH) problem. That is, the algorithmic part of a physical
mapping method called RH mapping. This gives us the first algorithm with a guaranteed
convergence for the general RH problem.
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1. INTRODUCTION

We study theM aTrIx-To-LINE problem, that is, the problem of, given a set
of n points{p;}"_, and ann x n distance matrixD, finding an arrangement
A {p;}*, — RT which minimizes

Jnax, |Dli, j] = [A(pi) — A(p))l @
over all such functions. The given distance matrix must be positive, symmetric,
and with an all zero diagonal, but we do not require that the distances must satisfy
the triangle inequality. Thé&laTrix-To-LINE problem has previously been
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shown to be NP-complete [12]. We give an algorithm that approximates it within
afactor2. In contrast to this, we show that théaTr1x-T0-LINE problem cannot

be approximated within a fact@y5 — §, for anyd > 0, unless P-NP. This proof

is computer aided, since it involves solving a number of linear programs obtained
from a gadget construction. We also show thatXheTrix-To-LINE problem
cannot be approximated withir- ¢ in polynomial time, unless 3-colorable graphs
can be colored witj4 /4] colors in polynomial time. It is NP-hard to find a 4-
coloring of a 3-colorable graph [9]. The problem ffcoloring a 3-colorable
graph is not known to be NP-hard fér> 5. However, it is a very well studied
problem, and despite this there is currently no polynomial time algorithm that
colors a 3-colorable graph with less th@n3/14) colors [4].

Sufficient conditions and non-polynomial time algorithms for a more gen-
eral form of theMATrIX-TO-LINE problem have been given earlier [5]. The
MaATrIix-To-LINE problem is an example of a general type of problems, where
a distance matrixD for n points is given, and the points should be embedded in
some metric space. The goal is to embed the points so that the obtained distances
are as close as possible to the distances specifieR,byith respect to some
norm. This general problem has been studied in [11], and variations of it have
been considered in [1, 7].

We apply ourMATRIx-T0o-LINE algorithm to a physical mapping problem.
Physical mapping is an important problem used in large-scale sequencing of
DNA as well as for locating genes. Using RH mapping (which is described in
Section 4) one can construct a physical map of, forinstance, a human chromosome
with respect to» markers, which can be genes or arbitrary DNA sequences; that
is, one can find the order between these markers and the distance between them
on the chromosome by performing a series of experiments and then performing
an algorithmic analysis of the outcomes. However, experiments are costly and for
this reason one naturally strives to perform as few as possible.

By applying ourM ATrIX-T'0-LINE algorithm, we obtain an algorithm with a
guaranteed convergence rate for the RH-problem. Most previous algorithms, see
for instance [3, 10, 14], are heuristics that do not guarantee convergence. In [2],
Ben-Dor and Chor showed that after approxima/ﬁgﬁ{1 log n experiments, where
Omin IS @ lower bound on the minimum marker distance, the laboratory data is with
high probability, what they call, consistent. They also show that a number of
rather straightforward algorithms always find the correct marker order when given
consistent laboratory data; and so they obtain an algorithm that, given a prior lower
bound om,,,;,,, with high probability finds the correct marker order. We show that
the distances between the markers computed by our algorithm convergesto the true
distances as the number of experiments increases. We also show how this implies
that afterO(5,,2 log n) experiments, our algorithm finds the correct marker order
as well. Furthermore, we show that the probability distribution on the output of
an RH-experiment, induced by the arrangement of the markers produced by our
algorithm, converges to the distribution induced by the true arrangement of the
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markers. We also show a lower bound on this convergence rate for any algorithm
for the RH-problem.

The remainder of this paper is organized as follows. In Section 22the
approximation algorithm for th&IaTrix-To-LINE problem is presented. In
Section 3 the lower bound/5 on the approximability of th&IATrRIX-T0-LINE
problem is proven. There, it is also shown thdiaTRIX-T0-LINE cannot be
approximated withir2 — § in polynomial time, unless 3-colorable graphs can be
colored with[4/4] colors in polynomial time. In Section 4, a probabilistic model
of an RH experimentis given. In Section 5, we show howMIWNTRIX-TO-LINE
algorithm can be applied to yield an algorithm for the RH problem. Finally, in
Section 6 we show lower bounds on the performance of any algorithm for the RH
problem.

2. MATRIX-TO-LINE

In this section, we give an approximation algorithm for MeTrix-To-LINE
problem.

DEeFINITION 2.1.  For twon x n matricesD andD’, define

ID.D|lsc = ma Dl j] = D'f. ]| @

An arrangement is a mapping from a set of poin{g;}_, to R™. Each
arrangementd has an associated distance matidy defined byD i, j] =
|A(p;) — A(p;)|. To avoid multiple subscripts, we will abuse the notation above
and write|| D, Al|« for || D, D al|oc and|| A4, A’||o for [|Da, D ar||oo-

DEFINITION 2.2. Givenamn x n distance matrixD, let A* be an optimal solu-
tion to theMATRIX-T0-LINE instance given by and lete* be the corresponding
optimal value, i.e¢* = ||D, A*||oo-

Throughout the derivation of the algorithm, we will assume that the leftmost
point in the optimal arrangement is known. If this is false, we can always try all
possible choices, without increasing the running time with more than a factor
For simplicity, we assume that is the leftmost pointim* and thatd*(p;) = 0.

DEFINITION 2.3. Let p; be the leftmost point in an optimal arrangement.
Define the arrangememt! by Al(p;) = 0 if i = 1, and A'(p;) = DI[1,1]
otherwise.

LeEMMA 2.1. |A*(p;) — At(p;)| < €* for all pointsp;.
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Proof. We know thatd!(p;) = A*(p1) = 0, so for any poinp;

| A*(pi) — A (pi)| = | A*(pi) — D[1,4]]

— ||A*(ps) — A*(p1)| — D[L, ] < ¢* @)

A corollary to Lemma 2.1 is thatl! approximates the optimal arrangement
within a factor 3.

COROLLARY 2.1. [|Al, D||o < 3€*.

Proof. For any pair of pointg;, p;

1A (pi) — A (p;)| — DI, 4] @
< ||A*(p:) — A*(p;)| — D[i, j]| + 2€" < 3¢€”,

and thug|A', D|| < 3¢*. 1

The key observation behind the 2-approximation algorithm is that if the ar-
rangementd! can be modify in such a way that each pgipti > 1, is moved a
distance:* /2 to the side ofd! (p;) whereA*(p;) is located, then the new arrange-
ment will have erroK 2¢*. Unfortunately, both the optimal arrangemetitand
the optimal value* are unknown. We will therefore associate a 0/1-variable
to each poinp; (i > 1). For anye > 0, each assignment to these variables will
uniquely define an arrangement of the poipts. . . , p,, in the following way. If
x; = 1, the pointp; is locatede/2 to the right ofA!(p;) and if z; = 0, the point
p; will be locatede/2 to the left of A (p;).

DEFINITION 2.4. LetX = {z2,...,2,} be a set of O/1-variables. For any
e > 0 and any truth assignmest : z; — {0, 1}, for the variables inX, the
arrangementl® is defined by

sy 0 if i =1,
AZ(pi) = {Al(pi) —€/2+ S(z;)e otherwise. ©

With ¢ = ¢* and the assignment corresponding to the optimal solution, this
arrangement will be the arrangement mentioned above.

LEMMA 2.2. LetS* be the truth assignment defined by

0 otherwise.
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Then||AS, D||s < 2¢*.

Proof. For any pair of pointg;, p;,

A2 (pi) — A2 ()] < |AZ (91) — A" (p3)]
+ 1A% () = A% (0))| + 14" (p)) = A ()l (D)
<A™ (pi) — A%(py)| + €.

This implies that

1A% (pi) — AZ (p;)| — D, ] ®)
< ||A*(pi) — A*(p;)| — D[, j]| + €* < 2¢*,

which means that AS", D||o < 2¢*. |

However, to obtain a 2-approximation algorithm, it is not necessary to find the
truth assignmeng*. Itis sufficient to find any assignme&tand parameter > 0
for which || A%, D||» < 2¢*. For each pair of points; andp;, there are four
possible ways to assign values to the variableandz;.

DEFINITION 2.5. An assignmens is e-allowedfor the pair of variables:;
andz; if ||AS(p;) — AS(p;)| — DJi, j]| < 2e. If an assignment is netallowed
for a pair of points, it is said to beforbidden for this pair.

LEMMA 2.3. LetS be a truth assignment for the variables, . . ., x,,, such
thatS is e-allowed for all pairsz;, ;. Then||AS, D||., < 2e.

Proof. Follows immediately from Definition 2.5]

Itis easy to construct2-SAT-clause that forbids a certain assignment to a pair
x;, ¢; (see Table 1). If we create &xSar-formula forbidding alle-forbidden
assignments, any satisfying assignment to that formula will have the property we
are looking for.

THEOREM 2.1. For each pairz;, x;, let ¢f ; be the conjunction of the at
most four clauses forbidding a#-forbidden assignments for the pair, and let
P = A\, ¢; ;- Every satisfying assignmeStto ®. satisfie§| A%, D||o < 2e.
FurthermoreS* is a satisfying assignment fdr...

Proof. Let S be any satisfying assignment fér.. By construction,S is
e-allowed for each pair of variables;, x;, so from Lemma 2.3 follows that
[|[AS, D||so < 2e.



6 HASTAD, IVANSSON, AND LAGERGREN

TABLE 1.

Clauses forbidding-forbidden assignments

T; x; Clause
0 0 (Iz ij)
1 0 (Iz ij)
0 1 (Iz ij)
1 1 (l‘z \/CE]')

From Lemma 2.2 follows thatAS., D||,, < 2¢* s0S* is e*-allowed for all
pairs of points and thus a satisfying assignmentifor. |

To find ane < ¢* for which ®. has a satisfying assignment, we will use some
properties of these formulae that is due to their construction.

LEMMA 2.4. If cis aclause in®,, thencis a clause ind, forall 0 < € <.

Proof. Lete = ¢ + d, where0 < § < ¢, and assume thatis a clause inb,
forbidding an assignment to the pair, ;. LetS be an assignment that does not
satisfyc, i.e.,

142 (pi) — AZ (p3)] = Dli, ]| > 2e. )

From Definition 2.4, using the triangle inequality and Eq. (9), follows that

142 (pi) — A2 (p;)| — DIi, 5]l
= [|A'(pi) — A'(pj) + € (S(w:) = S(x5))| — D[, 1]
= [|AY(pi) — AX(p)) + (e = 0)(S(x:) — S(x5))| — D[, ]
> ||AY(pi) — Al (py) + e(S(zi) — S(x5))| — D, 4] (10)
= 0|S(xi) — S(a;)]
= [|A2 (ps) — A2 (pj)| — D, j]| = 8|S (w:) — S(x;)]
> 2€ — 0S(;) — S(z;)].

But|S(z;) — S(z;)| < 1,s0
142 (i) — AZ (p))| — Dli, j]| > 2¢/, (11)

which means that the assignmend’igorbidden as well; se is a clause ifb... |
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DEFINITION 2.6. An ¢’ € R* is abreakpointf ®. # &, forall e < €.

From Lemma 2.4 follows that i§ is a satisfying assignment fdr., thenS
also satisfie®,. for all ¢ > e. This means that, if there is only a small number of
breakpoints, we could use binary search over the breakpoints to finet ar for
which ®. has a satisfying assignment. (Note ti¥4tis a satisfying assignment
for the 2-SaT-formula corresponding to the greatest breakpsgirt.)

THEOREM 2.2. There can be at mos(’;) breakpoints.

Proof. From Lemma 2.4 and Definition 2.6 it follows that for each breakpoint
¢’ there exists a clausesuch that: 1) is a clause inb. for all ¢ < ¢/, and 2)
c is not a clause irp, for all ¢ > ¢. Each clause thus corresponds to at most
one breakpoint. Furthermore there @@ pairs of variables;, z; and 4 possible
clauses for each such pair. HoweverSiandS’ are two assignments such that
S(l‘z) = S(JZJ) 7é S/(JZZ) = Sl(.lij), then

|AZ (pi) — AZ (p;)| — DIi, j| = ||A"(pi) — A*(p;)| — DIi. 41|
= [|AS (p:) — A% (p;)| - DIi, j]I;

so the two clauses:; V ;) and(Z; V), forbidding assignments wheze = z;,
will correspond to the same breakpoint. This makes the total number of break-
points at moss(3). 1

12)

We are now ready to formulate the approximation algorithniMioyrrIx-To0-
LINE

ALGORITHM 2.1.
1. Construct the set of breakpoints.
2. Use binary search over the breakpoints to find the smallest breakpoint
which ®. has a satisfying assignmesit
3. ReturnA?.

THEOREM 2.3. Algorithm 2.1 approximateSIATRIX-To-LINE within 2 in
time O(n? log(n)), if the leftmost point in an optimal arrangement is known.

Proof. The correctness of the algorithm follows from the derivations above.
What we need to show is the time bound. Given the leftmost point in the optimal
arrangement, we can compute thé:?) breakpoints in timé(n?) and sort them
intimeO(n?log(n)). In each step of the binary search we construct and sdlve a
Sar-formula withO(n?) clauses2-Sat can be solved in linear time, so the total
time for that part of the algorithm i9(n? log(n)). Hence the total running time of

Algorithm 2.1 isO(n? log(n)). 1
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If the leftmost point in an optimal arrangement is unknown, we can try all
possible choices to find the correct one.

THEOREM 2.4. TheMATRIX-T0-LINE problem can be approximated within
2 intimeO(n®log(n)).

Proof. From Theorem 2.3 follows that, given that the leftmost point is known,
Algorithm 2.1 approximatedlATriX-To-LINE within 2 in time O(n? log(n)).
There are at most choices for the leftmost point, so the time required for running

Algorithm 2.1 for each such choice @&(n> log(n)). |

Although the number of choices for the leftmost pointign the worst case,
simple heuristics should limit the number of choices considerably in most cases.

3. LOWER BOUNDS

In this section, we first prove a lower bound of5 on the approximability
of MATRIX-To-LINE under the assumption £ NP; thereafter, we show that
if MATRIX-TO-LINE is approximable withir2 — ¢ in polynomial time, then
every 3-colorable graph can lh¢/4]-colored in polynomial time. The problem
of k-coloring a 3-colorable graph is a well studied problem. The problem is
not known to be NP-hard. The best result so far is from [9] where they show
that it is NP-hard to find a 4-coloring of a 3-colorable graph. However, the
best approximation algorithm known for the corresponding optimization problem
MinimuM GRAPH COLORING for 3-colorable graphs, has performance ratio
O(n3/14) [4] (i.e., O(n3/1*10g" (n)) for some constarit).
DecidingNoT-ALL-EQuUAL-3-SAT was shown to be NP-complete by Schae-
fer [13], and it is defined as follows.

DeriniTION 3.1.  Let X be a set of variables and |ét be a collection of
clauses ovetX, such that each clausec C has three literals. ThefX, C)
belongs taNoT-ALL-EQUAL-3-SAT if there is a truth assignment that for each
clausec € C assigns at least one literal othe value true and at least one literal
of ¢ the value false.

The lower bound of /5 is obtained by the following reduction.

ReEDUCTION 3.1. Given anNOT-ALL-EQUAL-3-SAT instance(X, C), we
define a correspondinylATRIX-TO-LINE instance( P, D) in the following way.
For each variabler and its complement, there are two pointsy,, andpz, in P.
For each clause, there are three points;, c2, andcs, in P. In addition to these
points, P contains the poinb. The distance matriX> has the following entries.
For all pointsp € P, D[b,p] = 0; for all variablesxz € X, Dip,,pz] = 9;
furthermore, for all clausegu vV v vV w) € C,
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Dlci,pu) =6 Dlci,po] =0 Dleci,pa] =0 Dlci,ps] =6
D[C27pv] =06 D[C27Pw] =0 D[C2»pv] =0 D[C2apw} =6
D[C?npw} =06 D[C37Pu} =0 D[c?npw] =0 D[C?npu] =6
D[C],CQ} =6 D[Cl,C;),} =6 D[CQ,C?,] = 6.

All other distances are equal to 3.

The intuition behind the construction is that a literahssigned with the value
true corresponds to a poipt being to the right ob, and a literal assigned with
the value false corresponds to a point being to the lefit of

LemmMmaA 3.1. If an instance(X, C) belongs toNOT-ALL-EQUAL-3-SAT,
then the correspondinilaTrIX-T0o-LINE instance( P, D) has optimal value 3.

Proof. SinceD[p,,pz] = 9 andD[b, p,| = Db, pz] = 0 it is clear that any
arrangement of the points iA will have an erroe> 3. Hence, to prove the lemma
it suffices to construct an arrangement with error 3. If all points are located within
an interval of length 6, then the error for all pairs where the specified distance is 3
will be at most 3. Therefore we will arrange all points within an interval of length
6 centered around the poibt

LetS be an assignment of the variables{rsuch that at least one literal in each
clause is true and at least one literal is false. S{@€eC') belongs taNOT-ALL-
EqQuaLr-3-SAT we know that such an assignment exists. For each litetht
is assigned with the value true we arrange the correspondingoindistance 3
to the right ofb. For each literak that is assigned with the value false we arrange
the corresponding point, a distance 3 to the left @f In this way, the error for
any pairp., pz and any paip,., b will be 3.

To complete the construction of the arrangement we show how to arrange the
points corresponding to the clauses, so that the error is at most 3.c ket
(u Vv Vw) be an arbitrary clause ifi. By construction, at least one of the points
correspondingto literals inwill be arranged to the right @ and at least one to the
left. Fig. 1 shows howto arrange the pointsce andes in all the six possible cases.
It is easy to check that the error for any pair is at most 3. This completes the
proof. |

LEmMmA 3.2. Ifaninstancg X, C') does not belong ttNoT-ALL-EQUAL-3-
SAT, then the correspondinylaTrix-To-LINE instance(P, D) has optimal
value> 21/5.

Proof. If (X, C) does not belong t&loT-ALL-EQUAL-3-SAT, then for any
assignmens there is some claugec C such that all literals are true or all literals
are false. This implies that in any arrangement of the pointB,ithree points
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2 Pu Pu Pv
Pw DPv DPw DPa
Pa b Pw Py b Pw
1 Ca c3 ca s a
u is true andv, w are false. v is true andu, w are false.
Pu Pw Pw Pu
Py Pa Pa Pv
Pw b Pz Pz b Pw
C'3 Cvl C2 C'Q Cvl C3
w is true andu, v are false. u,v are true andy is false.
Pv Pu Pu Pu
Pu Pw Py Pw
Pw b Pz Pw b Pa
1 cs ca c3 Ca c1
u, w are true and is false. v, w are true and. is false.

FIG. 1. The arrangement of a clause= (u Vv V w).

corresponding to literals in some clause= (u V v V w) will be on the same
side ofb. Hence, to prove the lemma, it suffices to show that the error for any
arrangement of the ten points;,, p., Pw, Pa, Ps» Pa, C1, C2, c3 andb, such that

Dus Pus Pw @re to the left ob, has erroe> 21/5.

For a fixed permutation of the points, the problem of finding the optimal ar-
rangement can be formulated as a linear programz | bé the location of théth
point in the permutation and Ié2[i, j] be the specified distance between ttile
and thej:th point in the permutation. Then the linear program can be formulated
in the following way.

minimize =z
T > x Vi < j
o )2z Dl - @ - Vi< (13)

2> (2 — ;) = Dlirj] Vi<
2>0, 2; >0 Vi
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DPu DPv Pw b DPa Pw  Po

-»
3
3

C1 C2 C3

FIG.2. The arrangement of a clause= (u V v V w), where the corresponding points are on the
same side 0b. In the arrangement, = 0, py, = 1.2, pyy = 1.8, pg = 5.4, ps = 7.2, pp = 6.6,
b=3,¢c1 =1.8,¢c0 = 3.6,c3 = 5.4.

By symmetry, we can fix the order of the three popmtsp,, andp.,. Furthermore,
it is easy to see that any arrangement of the points suchpthaind p; are
on the same side df will have an error> 9/2. This means that there are
3! x 8 x 9 x 10 = 4320 permutations that have to be considered. We solved
the 4320 linear programs, using the publicly available packa®eSOLVE by
Michael Berkelaar. The result shows that the smallest optimal value for these
linear programs i&1/5. Fig. 2 shows one of the optimal solutions corresponding
to the optimal valug1/5.

We have thus shown that if an arrangement of the poinf flor some clause,
has all points corresponding to literalsdon the same side &f then the error i

21/5. 1

TaEOREM 3.1. Itis NP-hard to approximat®[ATrix-To-LINEwithin7/5—
é, for anyd > 0.

Proof. From Lemma 3.1 follows that if an instande{, C) belongs to
NoT-ALL-EQUAL-3-SAT, then the corresponding ATR1x-To-LINE instance
(P,D) has optimal value 3. Furthermore, from Lemma 3.2 follows that if
(X, C) does not belong tiNoT-ALL-EQUAL-3-SAT, then the optimal value
is > 21/5. This means that if there exists a polynomial time approxima-
tion algorithm for MaTRrIX-TO-LINE with performance ratio less tharys,

then this algorithm will decid&oT-ALL-EQUAL-3-SAT in polynomial time. ||
Now, we show that it is at least as hard to approxinldterrix-ToO-LINE

within 2 — § as it is to[4/d]-color a 3-colorable graph. Consider the following
reduction.

REDUCTION 3.2. Given a 3-colorable graple = (V, E') with n vertices, we
define the correspondinglaTriX-To-LINE instance(P, D), where each point
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p; € P corresponds to a vertex € V and

. 2 if (v,v5) € E,
Dli, j] = Y 14
7] {1 otherwise. (14)

The idea is to find an arrangement of the pointsAn using a(2 — §)-
approximation algorithm foM ATr1x-T0-LINE; and from this arrangement con-
struct a coloring o5 with [4/4§] colors. To do this, we will use an upper bound on
the error for an optimal arrangement of the point®inSuch a bound is possible
to obtain using the 3-coloring @, that exists by assumption.

DerINITION 3.2. Given a 3-coloringe : V. — {0,1,2}, of a graphG,
let A, be the arrangement defined By.(p;) = ¢(v;), for each point; in the
correspondind/ATRIX-T0-LINE instance.

LEMMA 3.3. Letc be a 3-coloring of a grapldz. Then||A., D||oc <1

Proof. For any pair of pointg;, p;, the distanceD[s, j] is either 1 or 2. From
Definition 3.2 it follows immediately thab < [A.(p;) — A.(p;)| < 2 for all
i,j. So,ifD[i, j] = 1, then||A.(pi;) — Ac(pj)| — Di, jl| < 1. By construction
Dli, j] = 2ifand only if there is an edge betweepandv; in G. Butif (v;,v;) €
E, thenc(v;) # c(v;), implying thatl < |A.(p;) — Ac(p;)| < 2; and hence
[1Ac(pi) = Aclpy)| = D[i, jll < 1. 1

Let A be the arrangement produced bya— ¢§)-approximation algorithm

for MATRIX-TO-LINE. W.l.0.g. we assume thay is the leftmost point in the
arrangementl and that4(p;) = 0. From Lemma 3.3 follows that

[[A, D||os <29, (15)

which means that

since D[1,4] < 2 for all i. Eq. (16) implies that we can cover the interval
containing all points iM with [4/4] disjoint sub-intervals of equal length< 4.
These sub-intervals will induce a coloring of the vertice&in

DErFINITION 3.3. LetG = (V, E) be a 3-colorable graph, I¢P, D) be the
correspondingIATRIX-T'0-LINE instance, and lefl be the arrangement a@?
produced by g2 — §)-approximation algorithm foMATRIX-TO-LINE. Define
ca 'V — {1,...,]4/5]} in the following way. For each point; € P, let
ca(v;) =g, ifandonly if A(p;) € [(j — 1)d, jd), whered = (4 — §/2)/[4/9].
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LEMMA 3.4. caisaf4/d]-coloring ofG.

Proof. We need to show thats(v;) # ca(v;) whenever(v;,v;) € E.
Assume thatv;,v;) € E. Thisimplies thatD[i, j] = 2. Now, ||A4, D||oc <2—6
so in this caséA(p;) — A(p;)| > 6 > d, which means that (v;) # ca(v;). |

We have thus proven the following theorem.

THEOREM 3.2. If MATRIX-TO-LINE is approximable withir2 — ¢ in poly-
nomial time, then any 3-colorable graph can be colored wWitli§]-colors in
polynomial time.

Proof. Let G be a three colorable graph. Giver{la— ) approximation of
MaTrIX-To-LINE, we can construety in Definition 3.3 in polynomial time. By

Lemma3.4¢4 is a[4/d]-coloring of G. |

4. THE RH MODEL

A marker is a gene or an arbitrary DNA sequence for which there is an “easy”
laboratory test for its presence in any fragment of DNA. Suppose that we want to
construct a physical map of a human chromosome with respeatriarkers; that
is, we want to find the order in which the markers appear on the chromosome and
the distance between them.

Since there is no direct procedure giving the orientation of a pair of markers on
afragment of DNA, an RH-experimentis performed. The chromosome is exposed
to gamma radiation which shatters it into fragments. A subset of the fragments
are incorporated into a hamster cell, which is grown to yield a hybrid cell line.
Each marker is then tested for presence in cells from this cell line.

The outcome of one experiment is represented by a vectfr,in}” where 1
corresponds to presence of the marker in the hybrid cell line; a number of exper-
iments are in the natural way represented by a 0/1-matrix. Such a 0/1-matrix is
the laboratory data which is the input to the algorithmic problem. Thatis, the RH
problem is that of, given a 0/1-matrix, finding the order of the markers and the
distance between them.

We use the following model of an RH experiment, which is basically the same
model as in [2, 10], but without the assumption that the markers are uniformly
distributed. A genome is modeled by the unit interjéall]. A set ofn markers
is modeled by a functio® : [n] — [0,1]; that is, each marker is a point in
[0,1]. (The former is just a question of scaling. The latter is motivated by the
fact that compared to the genome the markers are very short.gxperiment
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for A : [n] — [0,1] is the following probabilistic procedure in which a vector
v € {0,1}™ is produced.

1. Breaks are distributed in the unitinter{@l1] according to a Poisson process
with rate \. This induces a division df), 1] into maximal subintervals without
breaks, denotefl, .. ., I;. (This models how radiation breaks the genome.)

2. A setS'is constructed by, for each subintendalletting I; belong to the set
S with probabilityp. (This models how some fragments are incorporated into the
hamster genome.) Lét= U;,cs1;.

3. For eachi € [n], if A(#) € I letwv(:) = 1 with probability1 — 8 and
otherwise let(i) = 1 with probability«. (This models the negative and positive
errors that can occur when a hamster genome is tested for presence of a marker.)

In this way each : [n] — [0, 1] induces a probability distributioR4 on{0, 1}";
that is, for eache € {0,1}", P4(z) is the probability that an experiment far
produces.

Since everything to the left of the leftmost marker in a genome will be unknown
to us we will assume that this marker is located: i 0.

DEeFINITION 4.1. A marker functioris a functionA : [n] — [0, 1] such that
A(m) = 0 for somem € [n], and the leftmost marker has lower index than the
rightmost marker.

The last condition is present to assure that, for any probability distribution on
{0,1}™, there is a unique corresponding marker function.

5. FINDING THE GENOME MAP

In this section, we give an algorithm for the RH problem using the algorithm
for MATRIX-TO-LINE from Section 2.

Let A be the unknown marker function representing the genome we want to
study, and letD be the distance matrix defined Bi, j] = |A(i) — A(y)]. We
show how to, givenn experiments ford, construct a marker functiod such
that || A, D||.. < O(y/log (n)/m), using the 2-approximation algorithm from
Section 2. In fact, any approximation algorithm with constant performance ratio
will give this bound, but the constant hidden in theotation will be proportional
to 1 + 7, wherer is the performance ratio of tie ATrRIX-T0-LINE algorithm.

DEerFINITION 5.1.  Two markers; andj areseparatedby an experiment if
v(i) # v(j), wherev € {0, 1}" is the outcome of the experiment.

In [2], an expression for the probability of two markers being separated was
derived for the case whem = 3. This derivation, which involves case analysis,
can easily be generalized to the case wheret 3, and yields the following
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expression.
vig = 2pa(l— e AP (1 — (a + 8))* + g(e, B,p), (17)
whereg = 1 — p and
g9(@, 8,p) = 2p(a = B)(a+ = 1) + 2a(l — ). (18)

Since0 < DJi, j] < 1 for all 7,7, the separation probability satisfigs,, <
©i; < ¢Pmax for all 4, j, where

$Pmin = g(a7ﬂ7p) (19)
and

Pmax = 2pg(1 — e (1 = (a + #)* + g(a, B,p)- (20)
Solving for D[, j] in (17) shows thaD[i, j] = §(¢;,;), where

_ ¢ —g(a, B,p)
o) = —x (1= 2pg(1 — (o + 5))2)' )

Let X; ; € {0,1} denote the output for théth marker in experimenj. By
calculating the frequency of separation between the mailard,

1 m
Vij = Z | Xki — Xijl, (22)

we get an estimate af; ; by

®min |f Vi,j < ®min
@i,j =\ Vi,j if @min < Vi g < Pmax (23)
Pmax |f Vi,j > Pmax

which we use in Eq. (21) to obtain an estim&é, j] = §(p; ;) of D[i, j]. The
idea is to apply the 2-approximation algorithm fdfATRIX-TO-LINE to the
estimated distanceB[i, j] in order to find a marker functiod close to the true
marker functionA.

To show how closed is to A, we will use a bound of{ D, D||.. The function
0(y) is differentiable with respect tg in [©min, Ymax]. Since

1
22pq(1 — (a+ B))? = M — g(a, B, p))’

&'(p) = (24)
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it follows from the mean value theorem that for any pai,

A (i = Pij
Dl[i,j] — Dli
1P 31 = Pl 1l < 53 A = 0 T8 = Mo — 9@ B.p))]
_ lpii — Pigl e

2pq(1— (o +5)2

(25)

If we apply Hoeffding's inequality [8] forp; ;, we see that for each paiand;
Pr{[iiy — il > 7] < 267277 (26)

Hence, the probability that there is a pait, j such thaty; ; — ¢; ;| > 7, is less
thann2e—2m7". We thus conclude that, with error probability

IH(TLQ/O') e)\ (27)

1D, Dlloo < 2pg\2m(1 — (o + 3))2

LeEmMA 5.1. If A is the marker function obtained by applying the 2-approxi-
mation algorithm forM ATRIX-T0-LINE on the matrixD, then

P 3y/In(n?/0) N
14 Dllee < 5 Vam( = (@ + B @9

with probabilityl — o.

Proof. Since the approximation algorithm has performance ratio 2 we know
that||4, D||« < 2||D, D||~. Together with the triangle inequality and Eq. (27)
this show that

14, Dl

IN

3v/In(n?/o) oA (29)
T 2pW2m(l - (a+ §)?

Lemma 5.1 states that the distances between the markers in the arrangement
are close to the distances in the true arrangement. This implies that the positions
of the markers are close as well. However, to show how close the arrangements
are, i.e., to give an upper bound on the distance between the arrangements, turns
out to be surprisingly technical. The next lemma gives such a bound for functions
satisfying certain technical conditions. We then show that this lemma is applicable
for marker functions.
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LEMMA 5.2. Letf,g: [n] — [0,1] be two functions such thdtp) = g(q) =
0, f(a) < f(r), andg(p) < g(r), for somep, ¢, 7 € [n]. If

maX]l\f(i)—f(j)\ =g =9Il < (30)

,jEn

then|f (i) — g(i)| < 2e, for all 7.

Proof. If 3m € [n] such thatf (m) = g(m) = 0, then|f (i) — g(¢)| < eforall
i € [n]; and the lemma holds. By assumption, there exists integets: € [n]
such thatf (p) = g(q) = 0, f(q) < f(r), andg(p) < g(r); and, by symmetry, we
can assume that(q) < g(p). If

£ @) = FO = 9(0) =gl <&, (31

forall 7,5 € [n], we know that

|f(r) = (g(r) — g(p))] < ¢, (32)
lg(r) = (f(r) = f(9))| < e (33)

Using the triangle inequality on the sum of these equations we observe that

g(p) + f(q) < 2e. (34)

Eq. (34) together with the inequalifi(q) < g(p) show that

flg) <e (35)

Choose an arbitrary € [n], and assume that(j) < f(q). If g(5) < f(j), then
it follows from Eq. (35) thatf(j) — g(4)| < e. If g(4) > f(5), then

1£G) =9 < 19G) —9(D] < |F() — fg)| + e < 2e. (36)

Now, assume that(j) > f(q). If f(j) < g(j), then

1£(3) =9I < 1g() — 9@ —[f(4) — fl@] <e (37)
If £(4) > g(j), then
If() =9 <1fG) — fl@)| +e—1g(i) —g(q)| < 2e. (38)

We have thus shown thaf(i) — g(i)| < 2eforall i € [n]. |
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Not every pair of functions will satisfy the conditions in Lemma 5.2. However,
if the lemma is not applicable tbandg, then it is applicable t¢g and the reversal
of g.

DEFINITION 5.2. Let f : [n] — [0,1] be a function and let be the integer
satisfyingf(r) > f(i) for all i. Define thereversalf of f by f(i) = f(r) — f(¢)
for all 4.

LEmMA 5.3. Forany pair of functions, g : [n] — [0, 1] mapping some value
to 0, there existp, ¢, r € [n] such that either

flp)=9(q) =0, f(q) < f(r), g(p)<glr), (39)
or

flp)=9(q) =0, f(g) < f(r), g(lp)<g(r). (40)

Proof. Letp andq be defined byf(p) = ¢g(¢) = 0 and letr be defined by
f(r) > f@@) foralli. If g(p) < g(r), then all conditions in (39) are satisfied.
Assume thereforethatp) > g(r). Lets be definedby(s) > ¢(¢) foralli. From
Definition 5.2 follows thag(s) = 0 andg(p) < g(r). Hence, sincef () > f(i)

for all ¢, this implies thatf (p) = g(s) =0, f(s) < f(r) andg(p) < g(r). 1
TuEOREM 5.1. If Aisthe marker function obtained by applying the 2-approxi-

mation algorithm forMATRIX-To-LINE on the matrixD, estimated usingn
experiments for the marker functioh then

o NI I
el A —AOD = g A — @ ap

with probability1l — o, whereA is either A or A.

Proof. Lemma 5.1 states that

- 3y/In(n2/0) A\
A Plloe = o Vam( — (a1 @)

From Lemma 5.2 and Lemma 5.3 then immediately follows that, for either A

orA=A,

N NI
A(0) — A < T 43)
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foralli € [n]. 1

If there is a lower bound on the minimum distance between any pair of markers
Theorem 5.1 gives an upper bound on the number of experiments required to find
the true order of the markers.

CoOROLLARY 5.1. Let Dy, be the minimum distance between any pair of
markers in the marker functiad, i.e., Dyin = min; ;{D[i, j]}. If Aisthe marker
function obtained by applying the 2-approximation algorithm¥ésTrIx-To-
LINE on the matrixD, estimated using

181n(n?/0) 22
~ p*PAD},, (1 (o + B)

(44)

experiments ford, then the order of the markers i will be the same as in,
with probabilityl — o.

Proof. From Theorem 5.1 follows that, if the number of experimentsatisfy
Eq. (44), then eithetA(i) — A(i)] < Dumin/2 or |A(i) — A(3)| < Dumin/2.
This means that the order of the markersdris the same as the order of the
markers in eitherd or A. However, sinced is a marker function we know
that the leftmost marker has lower index then the rightmost marker. Hence, the
order of the markers idl must be the same as the order of the markers.ir]

Disregarding constants, the bound in Corollary 5.1 on the number of experi-
ments is the same as the bound by Ben-Dor and Chor [2] for their algorithms to
find the correct order of the markers.

Each marker functior induces a probability distributioR4 on the sef0, 1}".

The L'-norm for these distributions can be used as a measure of the distance
between marker functions.

DEFINITION 5.3. Let A andB be two marker functions. Define

L'(Pa,Pp)= Y. |Pa(x) - Pp(a)| (45)
ze{0,1}™

This is thevariational distanceused for instance for Cavender-Farris trees
in [6]. Following [6], it is possible to show that this is a metric for the marker
functions. It is easy to check that it is symmetric, positive, and satisfies the
triangle inequality. What we need to show is that(P4, Pg) = 0 implies
A = B. However, this follows from the fact that the distances between two
markersi andj can be expressed as a function of the separation probability for
andj.

Under this metric the constructed marker functLénconverges to the true
marker functionA, as the number of experiments increases. We show that
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L*(P4,Pj;) < O(ny/log (n)/m). Furthermore, we show that if an algorithm
M given the output ofn experiments for any marker functiod, returns an
approximationd of A such thatL!(P4, P 1) < f(m), thenf(m) > Q(1/m).
Finally, we show how this bound gives a bound on the sum of the difference in the
positions of the markers id andA.

Lemma 5.2 enables us to get an upper bound od.theorm of the difference
in probability distribution for two marker functions, for which the differences in
distance between markers are bounded.

LEmMA 5.4. If AandB are two marker functions, then
LY(Pa, Pg) < 2)\|A — B||1 < 4 \|A, Bl|so, (46)

where

|A =Bl =Y _|A(i) - B(i)|. (47)
=1

Proof. From the definition of an experimentitis clear tfat = P4 for every
marker functiond. Therefore, w.l.0.g. we assume that there epigt r € [n]
such thatd(p) = B(q) =0, A(q) < A(r), andB(p) < B(r).

Assume that one experimentis performed simultaneously fordB. If the set
of markers is partitioned differently fot and B, then the probability for a certain
outcome of the experiment may differ, but otherwise it will not. We call such a
break adangerous break Each markei induces a subinterval(:), B(i)] (or
[B(7), A(i)] if A(4) > B(4)) of [0, 1], within which each break is dangerous. The
length of the union of all these intervals will be at miygt— B||; < 2n||A, B|c,
accordingto Lemma 5.2.

Since the breaks are distributed in the interf@all] according to a Poisson
process with rate,, the probability that at least one dangerous break occurs is at
mostl —e~*4=- Bl Let F be the eventthat at least one dangerous break occurs.
ThenPr4[z|F] = Prp[z|F ] for all z, since the probability of incorporation of
fragments in hamster cells and false answers in the test of occurrences of markers
are independent of the size of a fragment.

Y(Pa, Pp) =Y _ |Pa(x) (z)]
z€{0,1}"
<Pr[F] ) [Prala | F]—Prplz| F]|
936{01}” (48)
+Pr[F] ) |Prafa| F]—Prp[z| F]|
z€{0,1}"

< 2Pr[F] < 2(1 — e MIA=BIh)
< 2X||A - B[y < 4n)||A, Bl
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where we have used the inequality- < e=*. |

Combining Lemma 5.1 and Lemma 5.4, we obtain the following bound on the
difference in distribution betweesA and A.

THEOREM 5.2. With probabilityl — o,

1 ) 3v2ny/In(n?/0) e
L (Pa, Py) < pgym(l — (a+6))?

(49)

Proof. Follows immediately from Lemma 5.1 and Lemma5}.

6. LOWER BOUNDSFOR RH ALGORITHMS

In this section, we show a lower bound on the convergence rate for any algorithm
for the RH problem.

LeEmMA 6.1. LetA; and As be two marker functions and 181 be any decision
procedure that given the output from experiments for eithed; or A, decides
whether the experiments were performeddgror As. If e1 (M) is the probability
that M is incorrect when the experiments are performedA4erandes (M) is the
probability thatM is incorrect when the experiments are performedAer then

1—me
2 )
wheree(M) = max{e; (M), ea(M)} ande = L' (Pa,, Pa,).

e(M) > (50)

Proof. Thisis a reformulation of Lemma 1 in [6]]

Lemma 6.1 implies that it is interesting to study pairs of marker functions and
their possiblel; distances. We do this in Lemma 6.2 below.

LEMMA 6.2. For each marker functioml and constanf such that
K <B(1-a-p’1-c?), (51)
there is a marker functiod’ such thatl.! (P, Pa/) = K.

Proof. Consider the two marker functiofB; andW; defined in the following
way.

) . (52)
1 otherwise. 1 otherwise.

Wl(k):{o if k # n, WQ(k):{o ifh£n—1,
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Let E be the eventthat, > = 1 andz,,_1 = 1 in the outputz of an experiment.
From the definition of/; andW, follows that

Pry, [E] = p(1 - B)* + ga?, (53)

Priv,[E] = (0*(1 — ) + ¢?a? + 2pga(1 — B))(1 —e™)

(54)
+(p(1 = B)? +ga®)e .
Together with the triangle inequality, this shows that
Ll(PW17PW2): Z |PW1(x)_PW2(x)|
ze{0,1}™
> Y |Pw (@) = Puy()]
ze{0,1}"
Tp_2=Tp_1=1
> [Prw, [E] = Prw, [E]] (55)

= (p(1 = B)* + o) (1 —e™?)

— (P*(1 = B)? + ¢*a® + 2pga(l — B))(1 — e ™)
= (pg(1 — B)? + pga® — 2pga(l — B))(1 —e™?)
=pg(l—a—p)*(1—e?).

Finally, the triangle inequality for th&'-norm together with Eq. (55) imply that
max{L'(Pw,. Pa), L' (Pus, Pa)} 2 Bl(1—a = B*(1—e™).  (56)

By continuity, we thus conclude that there exists a marker functiosuch that
LY(P4, Pa) = K, for any

K <S(1-a-p’1-c?). (57)

THEOREM 6.1. Let A be any algorithm that for all marker functions,
given the output ofn experiments for4, returns an approximatiom such that
LY(Pa, Pj) < f(m) with probabilityl — o, for some constant < 1/2. Then
f(m) = Q(1/m).

Proof. ~Assume thatA is an algorithm that, given the output of ex-
periments for any marker functiod, returns an approximatiod of A, such
that L'(P4, P;) < f(m), with probability 1 — c. We want to show that
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flm) > Q(1/m). Assume for contradiction that this is not the case, i.e., as-
sume thatf(m) < o(1/m).

Let A be an arbitrary marker function. Singém) < o(1/m), Lemma 6.2
implies that there exists a marker functidh such thatL! (P4, Pa/) = 3f(m),
for large enoughn.

Consider the following decision proceduké’. Givenm experiments for the
two marker functions4 or A’, it first runs A to obtain a marker functiom;
Thereafter, it outputs! if L*(Pa, P;) < L*(Pas, P;) and A’ otherwise. Note
that we do not have to consider the running time\6f. It is clear that with this
definition,e(M’) < o. However, using Lemma 6.1, we see that

1—3mf(m)

> VY
o> 5 7 (58)

which contradicts the assumption thdin) < o(1/m). |

The lower bound o' (Py, P ;) together with Lemma 5.4 immediately gives
a lower bound on|A — Al|;.

COROLLARY 6.1. Let .4 be any algorithm that for all marker functions,
given the output ofn experiments for, returns an approximationi such that
|A — A||; < f(m) with probability1 — o, for some constant < 1/2. Then
f(m) = Q(1/m).

Proof. Lemma 5.4 states thdt' (P4, Pg) < 2\||A — Bl|;. 1
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