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BEATING THE RANDOM ORDERING IS HARD:
EVERY ORDERING CSP IS APPROXIMATION RESISTANT∗

VENKATESAN GURUSWAMI† , JOHAN HÅSTAD‡ , RAJSEKAR MANOKARAN§,
PRASAD RAGHAVENDRA¶, AND MOSES CHARIKAR§

Abstract. We prove that, assuming the Unique Games conjecture (UGC), every problem in the
class of ordering constraint satisfaction problems (OCSPs) where each constraint has constant arity
is approximation resistant. In other words, we show that if ρ is the expected fraction of constraints
satisfied by a random ordering, then obtaining a ρ′ approximation for any ρ′ > ρ is UG-hard. For
the simplest OCSP, the Maximum Acyclic Subgraph (MAS) problem, this implies that obtaining
a ρ-approximation for any constant ρ > 1/2 is UG-hard. Specifically, for every constant ε > 0 the
following holds: given a directed graph G that has an acyclic subgraph consisting of a fraction (1−ε)
of its edges, it is UG-hard to find one with more than (1/2 + ε) of its edges. Note that it is trivial
to find an acyclic subgraph with 1/2 the edges by taking either the forward or backward edges in
an arbitrary ordering of the vertices of G. The MAS problem has been well studied, and beating
the random ordering for MAS has been a basic open problem. An OCSP of arity k is specified by
a subset Π ⊆ Sk of permutations on {1, 2, . . . , k}. An instance of such an OCSP is a set V and a
collection of constraints, each of which is an ordered k-tuple of V . The objective is to find a global
linear ordering of V while maximizing the number of constraints ordered as in Π. A random ordering

of V is expected to satisfy a ρ = |Π|
k!

fraction. We show that, for any fixed k, it is hard to obtain a
ρ′-approximation for Π-OCSP for any ρ′ > ρ. The result is in fact stronger: we show that for every
Λ ⊆ Π ⊆ Sk, and an arbitrarily small ε, it is hard to distinguish instances where a (1 − ε) fraction
of the constraints can be ordered according to Λ from instances where at most a (ρ + ε) fraction
can be ordered as in Π. A special case of our result is that the Betweenness problem is hard to
approximate beyond a factor 1/3. The results naturally generalize to OCSPs which assign a payoff
to the different permutations. Finally, our results imply (unconditionally) that a simple semidefinite
relaxation for MAS does not suffice to obtain a better approximation.
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1. Introduction. We begin by discussing our results about the simplest order-
ing constraint satisfaction problem—Maximum Acyclic Subgraph (MAS)—that
involves local ordering constraints on pairs of variables.
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1.1. MAS. Given a directed acyclic graph G, one can efficiently order (“topo-
logical sort”) its vertices so that all edges go forward from a lower ranked vertex to
a higher ranked vertex. But what if a few, say a fraction ε, edges of G are reversed?
Can we detect these “errors” and find an ordering with few back edges? Formally,
given a directed graph whose vertices admit an ordering with many, i.e., a fraction
(1 − ε), forward edges, can we find a good ordering with fraction α of forward edges
(for some α → 1)? This is equivalent to finding a subgraph of G that is acyclic and
has many edges, and hence this problem is called the MAS problem.

It is trivial to find an ordering with fraction 1/2 of forward edges: take the
better of an arbitrary ordering and its reverse. This gives a factor 1/2 approximation
algorithm for MAS. (This is also achieved by picking a random ordering of the
vertices.) Despite much effort, no efficient ρ-approximation algorithm for a constant
ρ > 1/2 has been found for MAS. The existence of such an algorithm has been a
long-standing and central open problem in the theory of approximation algorithms.
In this work, we prove a strong hardness result that rules out the existence of such an
approximation algorithm, assuming the Unique Games conjecture (UGC). Formally,
we show the following.

Theorem 1.1. Conditioned on the UGC, the following holds for every constant
γ > 0. Given a weighted directed graph G with m edges, it is NP-hard to distinguish
between the following two cases:

1. There is an ordering of the vertices of G with at least a fraction (1−γ) of the
edges (in weight) directed forward (or, equivalently, G has an acyclic subgraph
with at least a fraction (1− γ) of the weight).

2. For every ordering of the vertices of G, there are at most a fraction (1/2+γ)
of forward edges in weight (or, equivalently, every subgraph of G with more
than a fraction (1/2 + γ) of the weights contains a directed cycle).

To the best of our knowledge, the above is the first tight hardness of approximation
result for an ordering/permutation problem. As an immediate consequence, we obtain
the following hardness result for the complementary Min Feedback Arc Set (FAS)
problem, where the objective is to minimize the number of back edges.

Corollary 1.2. Conditioned on the UGC, for every C > 0, it is NP-hard to
find a C-approximation to the FAS problem.

Combining the unique game integrality gap instance of Khot and Vishnoi [26]
along with the UG reduction, we obtain semidefinite programming (SDP) integrality
gaps for the MAS problem. Our integrality gap instances also apply to a related
SDP relaxation studied by Newman [33]. This SDP relaxation was shown to obtain
an approximation better than half on random graphs which were previously used to
obtain integrality gaps for a natural linear program [32].

1.2. General ordering constraints. Building on these techniques and the
work of Raghavendra [35], we obtain tight UGC-based hardness results for the entire
class of ordering constraint satisfaction problems (OCSPs).

An OCSP Λ of arity k is specified by a constraint payoff function P : Sk → [0, 1],
where Sk is the set of permutations of {1, 2, . . . , k}. An instance of such an OCSP
consists of a set of variables V and a collection of constraint tuples, T , each of which
is an ordered k-tuple of V . The objective is to find a global ordering σ of V that
maximizes the expected payoff E[P (σ|T )] for a random T ∈ T , where σ|T ∈ Sk is
the ordering of the k elements of T induced by the global ordering σ. This is just
the natural extension of CSPs to the world of ordering problems. For generality,
we allow payoff functions with range [0, 1] instead of {0, 1} which would correspond
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to True/False constraints. Without loss of generality, by reordering the inputs of
any constraint, we may assume that the permutation σ which maximizes P (σ) is the
identity, id.

As with CSPs, we say that an OCSP of arity k and a payoff function P is approx-
imation resistant if its approximation threshold equals

Eα∈Sk
[P (α)]

P (id)
,

which is the ratio that can be obtained by choosing a random ordering.
Note that in this language, MAS corresponds to the simplest OCSP: the arity 2

OCSP with a payoff function that gives value 1 to the identity permutation and 0 to
its reverse.

Our main result is that every OCSP, of arity bounded by a fixed k, is approxima-
tion resistant. Specifically, for every such OCSP, outperforming the trivial approxi-
mation ratio achieved by random ordering is UG-hard.

Theorem 1.3 (main). Let k be a positive integer, and let Λ be an OCSP asso-
ciated with a payoff function P : Sk → [0, 1] on the set of k-permutations, Sk. Let
Λmax = maxα∈Sk

P (α) be the maximum payoff of P , and let Λrandom = Eα∈Sk
P (α)

be the average payoff of P (expected value achieved by a uniform random ordering).
Then, for every ε > 0, the following hardness result holds. Given an instance of

the OCSP specified by the payoff function P that admits an ordering with a payoff at
least Λmax−ε, it is UG-hard to find an ordering of the instance that achieves a payoff
of at least Λrandom + ε with respect to the payoff function P .

A special case of our result is that the Betweenness problem is hard to approx-
imate beyond a factor 1/3. The Betweenness problem consists of constraints of the
form “j lies between i and k” corresponding to the subset {123, 321} of S3.

Indeed, our result holds in a more general setting where the OCSP could consist
of a mixture of predicates—a formal statement appears in section 8 (Theorem 8.4).

1.3. Related work. MAS is a classic optimization problem, figuring in Karp’s
early list of NP-hard problems [22]; the problem remains NP-hard on graphs with max-
imum degree 3, when the in-degree plus out-degree of any vertex is at most 3. MAS
is also complete for the class of permutation optimization problems, MAX SNP[π],
defined in [34], that can be approximated within a constant factor. It is shown in [32]
that MAS is NP-hard to approximate within a factor greater than 65

66 .
Turning to algorithmic results, the problem is known to be efficiently solvable

on planar graphs [27, 21] and reducible flow graphs [36]. Berger and Shor [5] gave a
polynomial time algorithm with approximation ratio 1/2 + Ω(1/

√
dmax), where dmax

is the maximum vertex degree in the graph. When dmax = 3, Newman [32] gave a
factor 8/9 approximation algorithm.

The complementary objective of minimizing the number of back edges, or equiv-
alently deleting the minimum number of edges in order to make the graph a di-
rected acyclic graph (DAG), leads to the FAS problem. This problem admits a factor
O(log n log logn) approximation algorithm [37], where n is the number of vertices,
based on bounding the integrality gap of the natural covering linear program for
FAS; see also [11]. Using this algorithm, one can get an approximation ratio of
1
2 +Ω(1/(logn log logn)) for MAS.

Charikar, Makarychev, and Makarychev [7] gave a factor (1/2 + Ω(1/ logn))-
approximation algorithm for MAS. In fact, their algorithm is stronger: given a di-
graph with an acyclic subgraph consisting of a fraction (1/2 + δ) of edges, it finds
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a subgraph with at least a fraction (1/2 + Ω(δ/ logn)) of edges. This algorithm,
and specifically an instance showing tightness of its analysis from [7], is used as the
combinatorial gadget for our hardness result for MAS.

Apart from MAS, another OCSP that has received some attention is the Be-

tweenness problem. Betweenness is an OCSP where all the constraints are of
the form “X appears between Y and Z” for variables X , Y , and Z. Chor and Su-
dan [9] gave a SDP-based factor 1

2 approximation algorithm for Betweenness on
instances that were promised to be perfectly satisfiable; a simpler algorithm with the
same guarantee was given by Makarychev [28]. Recently, Guruswami and Zhou [15]
proved that the extension of MAS to higher arities, with constraints of the form
xi1 < xi2 < · · · < xik , can be approximated within a factor greater than 1/k! on
bounded-degree instances. They extend this to prove that all OCSPs of arity 3 (with
arbitrary payoff functions) can be approximated beyond their random ordering thresh-
old on bounded-degree instances.

1.3.1. Approximation resistance. Our main result is that every OCSP is
approximation resistant under the UGC. In contrast, in the world of CSPs over fixed
domains (such as Boolean CSPs), there are CSPs which are approximable beyond the
random assignment threshold. There is by now a rich body of work on approximability
of CSPs, though we are quite far from a complete classification of which CSPs are
approximation resistant and which ones admit a nontrivial approximation algorithm
that beats the trivial random assignment algorithm. But we now know fairly broad
classes of CSPs which are approximation resistant, as well as those that are not. We
mention some of these results below.

H̊astad [17] proved many important CSPs to be approximation resistant, including
Max 3SAT, Max 3LIN (whose predicate stipulates that the parity of 3 literals is 0),
and in fact any binary 3CSP whose predicate is implied by the parity constraint
x ⊕ y ⊕ z = 0, Max k-set splitting for k � 4, etc. Complementing H̊astad’s hardness
result for 3CSPs, Zwick [38] gave approximation algorithms outperforming a random
assignment for every 3-ary predicate not implied by parity, thereby leading to a precise
classification of approximation resistant Boolean 3CSPs. The situation for arity 4 and
higher gets more complicated, as one might imagine. Hast succeeds in characterizing
355 out of 400 different predicate types for binary 4CSPs [16].

It is known that every 2CSP, even over nonbinary domains, can be approximated
better than the random assignment threshold [13, 10, 18]. The approximation thresh-
old of 2CSPs (such as Max Cut) remained a fascinating mystery until recent progress
based on the UGC tied it to the integrality gap of SDP relaxations [24, 2, 35]. In
fact, under the UGC, Raghavendra showed the general result [35] that for every CSP,
the approximation threshold equals the integrality gap of a natural SDP relaxation.
Unfortunately, determining this integrality gap itself is often an extremely challeng-
ing task, so this does not immediately tell us which CSPs are approximation resistant
(even assuming the UGC).

An elegant result of Austrin and Mossel [4] states that under the UGC any CSP
whose satisfying assignments can support a pairwise independent distribution is ap-
proximation resistant. Using this, Austrin and H̊astad [3] (see also [19]) showed that
most k-ary predicates (a fraction approaching 1 for large k) are approximation resis-
tant under the UGC.

Our main contribution in this work is to extend the above-mentioned result of
Raghavendra [35] to OCSPs. Executing this plan requires several new ideas which we
elaborate on in section 2. Roughly stated, we prove that for OCSPs, the existence of a
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certain kind of “weak” SDP integrality gap implies a corresponding UG-hardness. We
are then able to construct instances whose integrality gap is close to the random or-
dering threshold. Together, these two results imply that all OCSPs are approximation
resistant, assuming the UGC.

1.4. Organization. We begin with an outline of the key ideas of the proof in
section 2. In section 3, we review the definitions of influences and noise operators
and restate the UGC. The groundwork for our reduction is laid in sections 4 and 5,
where we define influences for orderings and multiscale gap instances, respectively.
We present the dictatorship test in section 6 and convert it to a UG-hardness result
in section 7. Using this UG-hardness result we later, in section 12, establish present
SDP integrality gaps for MAS.

Towards generalizing these hardness results, we begin with a formal definition of
OCSPs and the natural semidefinite program for OCSPs in section 8. The construc-
tion of dictatorship tests for an OCSP starting from an object termed as a multiscale
gap instance is presented in section 9. An important part of the soundness analysis is
done in section 10 and is based on the ideas of [35]. Finally, in section 11, we exhibit
the needed explicit construction of multiscale gap instances for every OCSP.

2. Proof overview. At the heart of all UG-hardness results lies a dictatorship
testing result for an appropriate class of functions. As is standard we use [m] to
denote {1, . . . ,m}. A function F : [m]R → [m] is said to be a dictator if F(x) = xi

for some fixed i. A dictatorship test (DICT) is a randomized algorithm that, given a
function F : [m]R → [m], makes a few queries to the values of F and distinguishes
between whether F is a dictator or is far from every dictator. While Completeness
of the test refers to the probability of acceptance of a dictator function, Soundness
is the maximum probability of acceptance of a function far from a dictator. The
approximation problem for which one is showing UG-hardness determines the nature
of the dictatorship test needed for the purpose.

A dictatorship test (also referred to as long code test) serves as a gadget to be
used in the reduction from UG. In UG, the input consists of a graph whose vertices
are to be labeled, so as to satisfy the maximum number of constraints given on the
edges. Given a UG instance Φ, a standard reduction technique is to introduce a
dictatorship test gadget for each vertex in the instance Φ. We refer the reader to the
work of Khot et al. [24] for an example of a long-code-based UG-hardness reduction.

Every orderingO of [m]R can be viewed as a function from [m]R to {1, 2, . . . ,mR}.
For the purpose of defining influence of orderings, we define m2R functions F [s,t] :
[m]R → {0, 1} as follows:

(1) F [s,t](x) =

{
1 if s � O(x) � t,

0 otherwise.

Given an orderingO : [m]R → {1, . . . ,mR} of [m]R, the ith coordinate of the input
is said to be influential on O if it has a large influence (> τ) on any of the functions
F [s,t]. Here influence of a coordinate on a function F [s,t] refers to the traditional
notion of influence for real-valued functions on [m]R. Roughly speaking, the influence
of the ith coordinate is the expected variance of the output of the function F [s,t]

on fixing all but the ith coordinate randomly and varying the ith coordinate (see
section 3). An ordering O is said to be τ -pseudorandom (far from a dictator) if it has
no coordinate of influence at least τ .
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For the sake of concreteness, let us consider the UG-hardness reduction to MAS.
In this case, we introduce mR vertices {(b, z) | z ∈ [m]R} for each vertex b of the
UG instance Φ. Let O be an ordering of all the vertices of the resulting instance of
MAS. Let Ob denote the induced ordering on the block of vertices {(b, z) | z ∈ [m]R}
corresponding to a UG vertex b. The intent is to use Ob to decode a label for the UG
vertex b.

Usually, in a long-code-based UG-hardness reduction, a small candidate set of
labels decoded for a vertex b is given by the set of influential coordinates for the
function corresponding to b. Hence, for the notion of influences for orderings to be
useful, it is necessary that any given ordering Ob of [m]R not have too many influential
coordinates. Towards this, in Lemma 4.3 we show that the number of influential
coordinates is bounded (after certain smoothening). Further, this notion of influence
is well suited to deal with orderings of multiple long codes instead of one—a crucial
requirement in translating dictatorship tests to UG-hardness.

2.1. MAS. Let us describe the proof strategy for the UG-hardness of MAS.
Given an ordering O of the vertices of a directed graph G = (V,E), let Val(O) refer
to the fraction of the edges E that are oriented in O correctly.

Designing the appropriate dictatorship test for MAS amounts to the following:
Construct a directed graph over the set of vertices V = [m]R (for some large constants
m, R) such that the following hold:

– For a dictator ordering O of V , which is defined by using one of the coordi-
nates of each vertex to give the ordering, Val(O) ≈ 1.

– For any ordering O which is far from a dictator, Val(O) ≈ 1
2 .

Recall that our definition of influential coordinates for orderings can be used to
formalize the notion of being “far from dictator functions.” Under this definition, we
obtain a directed graph on [m]R (a dictatorship test) for which the following holds.

Theorem 2.1 (soundness). If O is any τ-pseudorandom ordering of [m]R, then
Val(O) � 1

2 + oτ (1).
This dictatorship test yields tight UG-hardness for the MAS problem. Further-

more, using the SDP gap instance for UG from the work of Khot and Vishnoi [26],
the hardness reduction yields an integrality gap instance for a natural SDP relaxation
(see subsection 3.2) of MAS.

Now we describe the design of the dictatorship test in greater detail. At the outset,
the approach is similar to recent work on CSPs [35]. Fix a CSP Λ. Starting with an
integrality gap instance � for the natural semidefinite program for Λ, [35] constructs
a dictatorship test DICT�. The Completeness of DICT� is equal to the SDP value
sdp(�), while the Soundness is close to the integral value opt(�).

Since the result of [35] applies to arbitrary CSPs, a natural direction would be
to pose the MAS as a CSP. MAS is fairly similar to a CSP, with each vertex being
a variable taking values in domain [n] and each directed edge a constraint between
two variables. However, the domain, [n], of the CSP is not fixed but grows with
input size. We stress here that this is not a superficial distinction but an essential
characteristic of the problem. For instance, if MAS was reducible to a 2CSP over
a domain of fixed size, then we could obtain an approximation ratio better than a
random assignment [18].

Towards using techniques from the CSP result, we define the following variant of
MAS.

Definition 2.2. A q-ordering of a directed graph G = (V,E) consists of a map
O : V → [q]. The value of a q-ordering O is given by
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valq(O) = Pr
(u,v)∈E

(
O(u) < O(v)

)
+

1

2
Pr

(u,v)∈E

(
O(u) = O(v)

)
.

In the q-Order problem, the objective is to find a q-ordering of the input graph G with
maximum value.

The choice to give half credit for edges where the two endpoints are mapped to the
same value is motivated by two similar reasons. The first reason is that the constraint
is neither violated nor fulfilled, and the second is that the constraint is satisfied with
probability 1

2 if we choose a random, full ordering that respects the partial ordering
defined by the given q-ordering.

On the one hand, the q-Order problem is a CSP over a fixed domain that is similar
to MAS. However, to the best of our knowledge, for the q-Order problem, there are no
known SDP gaps, which constitute the starting point for the results in [35]. For any
fixed constant q, Charikar, Makarychev, and Makarychev [7] construct DAGs G (i.e.,
with the value of the best ordering equal to 1) such that the value of any q-ordering
of G is close to 1

2 , say, at most 1
2 + η. We call such a graph an (η, q)-pseudorandom

DAG. For the rest of the discussion, let us fix one such graph G on m vertices. Notice
that the graph G does not serve as an integrality gap example for the natural SDP
relaxation of either the MAS problem or the q-Order problem.

As the graph G has only m vertices and an ordering of value ≈ 1, it has a good
q-ordering for q = m. Viewing G as an instance of the m-Order CSP (corresponding
to predicate < and =), we obtain a directed graph, G, on [m]R. Loosely speaking, G is
similar to a direct product of R copies of G, and hence the given good m-ordering of G
ensures that the dictator m-orderings O : [m]R → [m] given by O(z) = zi for some
i ∈ [R] yield value ≈ 1 on G. In other words, the dictator orderings have value ≈ 1
on G, implying the completeness of the dictatorship test.

Now let us turn to the soundness analysis. Fix a τ -pseudorandom ordering O.
Obtain a q-ordering O∗ by the following coarsening process: Divide the ordering O
into q equal blocks, and map the vertices in the ith block to value i. The crucial
observation relating O and O∗, which relies on the fact that we have some noise in
the construction, is as follows (proved in Lemma 6.3):

Coarsening observation. For a τ -pseudorandom orderingO, valq(O∗) ≈
val(O).

Note that val(O) − valq(O∗) is clearly bounded by the fraction of edges whose end-
points both fall in the same block during the coarsening. Using the Gaussian noise
stability bounds of [30], we obtain a bound for the fraction of such edges, thereby prov-
ing the above observation. From the above observation, in order to prove val(O) ≈ 1

2
for a τ -pseudorandom ordering O, it is enough to bound valq(O∗). Recall that the
q-order problem is a CSP over a finite domain. Consequently, the soundness analysis
of Raghavendra [35] can be used to show that valq(O∗) is at most the value of the
best q-ordering for the original graph G, which is close to 1

2 .
Summarizing the key ideas, we define the notion of influential coordinates for

orderings and then use it to construct a dictatorship test for orderings based on a
certain gap instance for MAS. Using Gaussian noise stability bounds, we relate the
value of a pseudorandom ordering to a related CSP and then apply techniques from
[35]. Instantiating the gap instance with the (η, q)-pseudorandom DAG G finishes the
proof.

2.2. OCSPs. The techniques developed in the case of MAS, along with ideas
from [35], yield an approach to proving UG-hardness results for general OCSPs. In
a general OCSP, a set of local ordering constraints such as “i is before j” or “i is
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between j and k” is given, and the goal is to find an ordering that satisfies the
maximum number of constraints (see section 8 for a formal definition).

First, as in the case of MAS, for every OCSP Λ, it is possible to define a related
CSP Λq over the domain [q] for every positive integer q. Roughly speaking, the
CSP Λq consists of the problem of finding the q-Order that achieves the maximum
payoff. Given a q-Order O of an instance � of Λ-OCSP, we use valq(O) to denote
its objective value (fraction of constraints satisfied). Further, let optq(�) denote the
optimum value of a q-Order for the instance �.

In case of CSPs, the work of Raghavendra [35] established a black-box reduction
from an integrality gap instance for a certain canonical SDP relaxation to a matching
UG-hardness result. However, constructing integrality gap instances for OCSPs is
in itself a challenging task. In this light, for every OCSP, we exhibit a black-box
reduction to a UG-hardness result starting from what we refer to as a multiscale gap
instance—a weaker object than an SDP integrality gap. Formally, a multiscale gap is
defined as follows.

Definition 2.3. An instance � of a Λ-OCSP is a (q, c, s)-multiscale gap instance
if sdp(�) � c and optq(�) � s. Here the SDP value refers to the optimum of a
canonical SDP relaxation, described in section 8.3.

It is not difficult to see that an integrality gap instance � with sdp(�) = c and
opt(�) = s (as opposed to optq(�) = s) is a (q, c, s)-multiscale gap instance for all q
(see Claim 8.6). Hence, a multiscale gap instance is formally easier to construct than
an integrality gap instance. We give a reduction that obtains a UG-hardness result
for an OCSP Λ starting with a multiscale gap instance for it. Specifically, we prove
the following.

Theorem 2.4. If there exists a (q, c, s)-multiscale gap instance � for an OCSP Λ,
then, for every η > 0, it is UG-hard to distinguish Λ-OCSP instances with optimum
at least c− η from instances with optimum at most s+ η +O(q−η).

To show Theorem 2.4, we give a black-box reduction that converts the instance
� with SDP solution (V ,µ) into a dictatorship test DICTε

V ,μ with completeness c−η
and soundness at most s + η + O(q−η). Further, all the predicates checked by the
dictatorship test DICTε

V ,μ belong to the family of predicates corresponding to the
OCSP Λ.

Let m denote the number of variables in the instance �. The dictatorship test
DICTε

V ,μ is constructed by viewing the instance � as a CSP over a domain of size m.
Specifically, DICTε

V ,μ is an instance of a Λ-OCSP over the set of variables indexed by

[m]R for an integer R. The m-orderings of [m]R given by the dictator functions have
an objective value close to the SDP value (c− η in this case; the η loss is due to some
noise added by the dictatorship test). To perform the soundness analysis, we appeal
to the coarsening observation above. By using this observation, we can relate the
value of an ordering O of � to the value of the q-Order Oq obtained by coarsening O.
Finally, using a proof strategy along the lines of [35], we relate the value valq(Oq) of
the q-Order Oq of [m]R to the optimum q-Order value optq(�) of the instance �.

Starting from the dictatorship test DICTε
V ,μ, the UG-hardness result for OCSP Λ

can be obtained exactly along the lines of MAS. Therefore, we omit the proof of the
UG-hardness result from this presentation.

In section 11, we exhibit an explicit construction of multiscale gap instances for
every OCSP, which, when plugged into Theorem 2.4, give our main result on the
approximation resistance of all OCSPs under the UGC.

Theorem 2.5. For all positive integers q, k, for all η > 0, and for every OCSP Λ
of arity k, there exists a (q,Λmax,Λrandom + η)-multiscale gap instance � of Λ.
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The core of the above gap instance is our construction of a distribution D on [m]k

with the following properties (here k, q are positive integers, η > 0 can be arbitrarily
small, and m is a large enough integer):

– Completeness: Pr(x1,x2,...,xk)∈D

[
xi < x2 < · · · < xk

]
= 1.

– Soundness: For every permutation π ∈ Sk and every q-ordering Oq of [m], the
probability over random linear extensions of Oq that a sample (x1, x2, . . . , xk)
∈ D is ordered according to π is at most 1

k! + η.
Theorems 2.4 and 2.5 together imply the main UG-hardness result for all OCSPs,

and hence we obtain Theorem 1.3.

3. Preliminaries. For a positive integer q, Δq denotes the set of corners of the
q-dimensional simplex, i.e., Δq = {ei | i ∈ [q]}, where ei is the unit vector in the ith
dimension. Let �q denote the convex hull of the set Δq; in other words, �q is the
q-dimensional simplex. More generally, for a set S, we use �(S) to denote the set
of probability distributions over the set S. For two sets A,B, let AB denote the set
of functions from B to A. For notational convenience, if B = [n], then we write An

instead of A[n]. Let oτ (1) denote a term that goes to 0 as τ → 0, while keeping all
other parameters fixed.

We use boldface letters z to denote vectors z = (z(1), . . . , z(R)). A q-ordering O of
the graph G consists of a map O : V → [q]. Note that the map O need not be injective
or surjective. If the map O is a injection, then it corresponds to an ordering of the
vertices V . In a q-ordering O, an edge e = (u, v) is a forward edge if O(u) < O(v).

Given an ordering O of the vertices of a directed graph G or more generally
variables in an OCSP, we use val(O) to denote the fraction of constraints satisfied by
O. Furthermore, for a directed graph G, let opt(G) denote the largest value of val(O)
for an ordering O of the vertices of the G. The quantities valq(O) and optq(G) are
defined analogously for q-Order O using Definition 2.2.

Observation 3.1. For all directed graphs G and integers q � q′, optq(G) �
optq′(G) � opt(G).

While the first part of the inequality is trivial, let us elaborate on the latter half.
Given a q′-ordering O∗, construct a full ordering O by using a random permutation
of the elements within each of the q′ blocks, while retaining the natural order between
the blocks. It is easy to check that the expected value of the ordering O is exactly
equal to valq(O∗), thus proving the latter half of the inequality.

3.1. Noise operators and influences. Let Ω denote the finite probability
space corresponding to the uniform distribution over [m]. Let {χ0 = 1, χ1, χ2, . . . ,
χm−1} be an orthonormal basis for the space L2(Ω) of real-valued functions over [m]
with the inner product

〈f, g〉 = E
x∈[m]

[f(x)g(x)].

For σ ∈ {0, 1, . . . ,m− 1}R, define

χσ(z) =
∏

k∈[R]

χσk
(z(k)).

Every function F : ΩR → R can be expressed as a multilinear polynomial as

F(z) =
∑
σ

F̂(σ)χσ(z).
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The L2-norm of F in terms of the coefficients of the multilinear polynomial is

||F||22 =
∑
σ

F̂2(σ).

For the sake of brevity, we denote 〈m〉 = {0, 1, . . . ,m− 1}. For σ ∈ 〈m〉R, we define
its “weight” |σ| as

|σ| =
∣∣ {i ∈ [R] | σi 
= 0}

∣∣.
Definition 3.2. For a function F : ΩR → R, define

Infk(F) = E
z
[Var
z(k)

[F ]] =
∑

σ:σk �=0

F̂2(σ).

Here Varz(k) [F ] denotes the variance of F(z) over the choice of the kth coordinate
z(k).

Definition 3.3. For a function F : ΩR → R, define the function TρF as follows:

TρF(z) = E[F(z̃) | z] =
∑

σ∈〈m〉R
ρ|σ|F̂(σ)χσ(z),

where each coordinate z̃(k) of z̃ = (z̃(1), . . . , z̃(R)) is equal to z(k) with probability ρ
and with the remaining probability, z̃(k) is a random element from the distribution Ω.

It is useful for us that indicator functions of small support that have no influential
coordinates are not very stable under the noise operator Tρ.

Lemma 3.4. For every ε > 0, there exists a μ0 > 0 such that for all μ < μ0 the
following holds: Let F : [m]R → [0, 1] be any function with E[F ] = μ, and let

Infk(T1−εF) � τ

for all k ∈ {1, 2, . . . , R}. Then,

||T1−2εF||22 � μ1+ε/2 + oτ (1).

Proof. The lemma essentially follows from the Majority is Stablest theorem (see
Theorem 4.4 in [31]). We have

||T1−2εF||22 =
∑

σ∈〈m〉R
(1− 2ε)2|σ|F̂2(σ) �

∑
σ∈〈m〉R

(1− ε)|σ|F̂(σ)(1 − ε)2|σ|F̂(σ)

� E[(T1−εF)(x)T1−ε(T1−εF)(x)].

Since the influences of T1−εF are low, we can apply Theorem 4.4 from [31] to bound
the last expression by noise stability in Gaussian space Γ1−ε(μ):

E[(T1−εF)T1−ε(T1−εF)] � Γ1−ε(μ) + oτ (1).

By Theorem B.5 from [31], Γ1−ε(μ) is bounded by μ1+ε/2 for μ small enough compared
to ε, establishing the desired bound.

We have the following immediate consequence of Lemma 3.4.
Lemma 3.5. Let F ,G : [m]R → [0, 1] be any two functions satisfying the as-

sumption of Lemma 3.4, and let x,y be random vectors in [m]R whose marginal
distributions are uniform over [m]R but are arbitrarily correlated. Then,

E
x,y

[T1−2εF(x)T1−2εG(y)] � μ1+ε/2 + oτ (1).
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Proof. The quantity in question is upper bounded by ||T1−2εF||2||T1−2εG||2 by the
Cauchy–Schwarz inequality. The result now follows from the previous lemma.

The following lemma is useful in bounding the number of influential coordinates
of a function.

Lemma 3.6 (sum of influences lemma). Given a function F : [m]R → [0, 1], if
H = T1−εF , then

R∑
k=1

Infk(H) � 1

2e ln 1/(1− ε)
� 1

ε
.

Proof. Let F(x) =
∑

σ F̂(σ)χσ(x) denote the multilinear expansion of F . The

function H is given by H(x) =
∑

σ(1− ε)|σ|F̂(σ)χσ(x). Hence we get

R∑
i=1

Infi(H) =

R∑
i=1

∑
σ,σi �=0

(1 − ε)2|σ|F̂2(σ) =
∑
σ

(1− ε)2|σ||σ|F̂2(σ)

� max
σ∈〈m〉R

(
(1− ε)2|σ||σ|

)
·
∑
σ

F̂(σ)2 � max
σ

(1− ε)2|σ||σ|.

The function h(x) = x(1 − ε)2x achieves a maximum at x = −1/2 ln(1 − ε). Substi-

tuting, we get
∑R

i=1 Infi(H) � 1
2e ln 1/(1−ε) � 1

ε .

3.2. Semidefinite program. We use the following natural SDP relaxation of
the MAS problem. Given a directed graph G = (V,E) with |V | = n, the program has
n variables {bu,i | i ∈ [n]} for each vertex u ∈ V and a unit vector I representing the
constant 1. In the intended solution, we have bu,i = I and bu,j = 0 for all j 
= i if u
is assigned the ith location in the ordering.

MAS-SDP Relaxation

maximize E
e=(u,v)∼E

⎡
⎢⎢⎣ ∑

i<j
i,j∈[n]

〈bu,i, bv,j〉+
1

2

∑
i∈[n]

〈bu,i, bv,i〉

⎤
⎥⎥⎦

(MAS− SDP)

subject to 〈bu,i, bu,j〉 = 0 ∀ u ∈ V, i, j ∈ [n], i 
= j,
(2)

〈bu,i, bv,j〉 � 0 ∀ u, v ∈ V, i, j ∈ [n],(3) ∑
i∈[n]

‖bu,i‖22 = 1 ∀u ∈ V,(4)

〈bu,i, I〉 = ‖bu,i‖22 ∀u ∈ V, i ∈ [n],(5)

‖I‖22 = 1.(6)

The above semidefinite program has the same set of constraints as the relaxations
for Max Dicut [12], Linear Equations Mod p [1], and UG [23, 8].

The program can also be written succinctly in terms of distributions over lo-
cal integral assignments. Specifically, define a set of probability distributions µ =
{μe | e ∈ E} over [n]2, one for each edge. The probability distribution μe is to be
thought of as a distribution over local assignments to the vertices of the edge e.
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LC Relaxation for MAS

maximize E
e=(u,v)∼E

[
Pr

(xu,xv)∈μe

{
xu < xv

}
+

1

2
Pr

(xu,xv)∈μe

{
xu = xv

}](7)

subject to 〈bu,i, bv,j〉 = Pr
(xu,xv)∈μe

{
xu = i, xv = j

}
(e = (u, v) ∈ E, i, j ∈ [n]),

μe ∈ �([n]2) ∀e ∈ E.

3.3. UGC. Let us give a formal definition of the constraint satisfaction problem
that underlies this famous conjecture.

Definition 3.7. An instance of UG represented as Φ = (AΦ ∪ BΦ, E,Π, [R])
consists of a bipartite graph over node sets AΦ,BΦ with the edges E between them.
Also part of the instance is a set of labels [R] = {1, . . . , R} and a set of bijections
πa→b : [R] → [R] for each edge e = (a, b) ∈ E, where a ∈ AΦ and b ∈ BΦ. (We will
sometimes also denote the bijection πa→b for an edge e = (a, b) by πe.)

An assignment A : AΦ ∪ BΦ → [R] of labels to vertices is said to satisfy an edge
e = (a, b) if πa→b(A(a)) = A(b). The objective is to find an assignment A of labels
that satisfies the maximum number of edges.

For the sake of convenience, we use the following version of the UGC, which was
shown to be equivalent to the original conjecture [25].

Conjecture 3.8 (UGC). For every δ > 0, the following problem is NP-hard
for a sufficiently large choice of R: Given a bipartite UG instance Φ = (AΦ ∪ BΦ, E,
Π = {πa→b : [R] → [R] | e = (a, b) ∈ E}, [R]) with number of labels R, distinguish
between the following two cases:

– (1 − δ)-strongly satisfiable instances: There exists an assignment A of labels
such that a fraction (1− δ) of vertices w ∈ AΦ are strongly satisfied; i.e., all
the edges (w, v) are satisfied.

– Instances that are not δ-satisfiable: No assignment satisfies more than a δ-
fraction of the edges E.

4. Orderings and their influences. In this section, we develop the notions of
influences for orderings and prove some basic results about them.

Definition 4.1. Given an ordering O of vertices V , its q-coarsening is a q-
ordering O∗ obtained by dividing O into q contiguous blocks and assigning label i to
vertices in the ith block. Formally, if M = |V |/q, then

O∗(u) =
⌊
O(u)

M

⌋
+ 1.

For an ordering O of points in [m]R, we have functions F [s,t] : [m]R → {0, 1}
for integers s, t defined by (1). For the sake of brevity, we write F i for F [i,i], and
F = (F1, . . . ,Fq).

Definition 4.2. For an ordering O of [m]R, define the set of influential coor-
dinates Lτ (O) as follows:

Lτ (O) = {k | Infk(T1−εF [s,t]) � τ for some s, t ∈ Z}.

An ordering O is said to be τ-pseudorandom if Lτ (O) is empty.
It is not difficult to see that we can bound the number of influential coordinates.
Lemma 4.3 (few influential coordinates). For any ordering O of [m]R, we have

|Lτ (O)| � 400
ετ3 .
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Proof. For integers s, t, δ1, δ2 such that |δi| < τ
8m

R, let f = T1−εF [s,t] and

g = T1−εF [s+δ1,t+δ2]. Now,

Infk(f−g) � ||f−g||22 � ||F [s,t]−F [s+δ1,t+δ2]||22 = Pr
z
[F [s,t](z) 
= F [s+δ1,t+δ2](z)] � τ

4
.

Hence, using a2 � 2(b2 + (a− b)2), we get

Infk(f) =
∑

σ:σk �=0

f̂2(σ) � 2

⎡
⎣∑
σk �=0

ĝ2(σ) +
∑
σk �=0

(
f̂(σ) − ĝ(σ)

)2⎤⎦ � 2 · Infk(g) +
τ

2
.

Thus, if Infk(f) � τ , then Infk(g) � τ/4. It is easy to see that there is a set
N = {F [s,t]} of size at most 100/τ2 such that for every F [s′,t′] there is a F [s,t] ∈ N

such that max |s−s′|, |t− t′| < τmR

8 . Further, by Lemma 3.6, each function T1−εF [s,t]

has at most 4
ετ coordinates with influence more than τ/4. Hence, |Lτ (O)| � 400

ετ3 .
Claim 4.4. For any τ-pseudorandom ordering O of [m]R, its q-coarsening O∗

is also τ-pseudorandom.
Proof. Since the functions {F [·,·]} with respect to the ordering O∗ are a subset of

the same functions with respect to O, we have Sτ (O∗) ⊆ Sτ (O).

5. Gap instances for MAS. In this section, we construct DAGs with no good
q-ordering. These graphs are crucial in designing the dictatorship test in section 6.
Actually, in section 11, we construct such instances for ordering constraints of higher
arity, which in particular proves the existence of the needed graphs. In particular,
Lemma 5.3 is a special case of Theorem 11.1 when the arity k equals 2. However, for
self-contained treatment of the MAS result, we present the specialized construction
for graphs separately in this section. Even though it is of little importance for our
applications, we note that the constants obtained in this section are superior to those
of the general construction.

Definition 5.1. For η > 0 and a positive integer q, an (η, q)-pseudorandom
DAG is a weighted directed graph G = (V,E) with the following properties:

opt(G) = 1 and optq(G) � 1

2
+ η.

Clearly, if opt(G) = 1, then the value of the LC relaxation for MAS (from sec-
tion 3.2) on G is also at least 1. Thus, a pseudorandom DAG as above gives a “weak”
integrality gap, where the optimum for q-orderings is small. Specifically, an (η, q)-
pseudorandom DAG is also a (q, 1, 1/2 + η)-multiscale gap instance for MAS, in the
sense of Definition 2.3. The formal claim, along with certain smoothness properties
of the SDP solution, is made at the end of this section in Corollary 5.4. We now turn
to the construction of (η, q)-pseudorandom DAGs.

The cut norm of a directed graph, G, represented by a skew-symmetric matrix W ,
is defined as

||G||C = max
xi,yj∈{0,1}

∑
ij

xiyjwij .

We need the following theorem from [7] relating the cut norm of a directed graph G
to opt(G).

Theorem 5.2 (Theorem 3.1 in [7]). If a directed graph G on n vertices has an
acyclic subgraph with at least a fraction (12 + δ) of the edges, then ||G||C � Ω

(
δ

logn

)
.

The following lemma constructs (η, q)-pseudorandom DAGs from graphs that are
the “tight cases” of the above theorem.
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Lemma 5.3. Given η > 0 and a positive integer q, for every sufficiently large
n, there exists a directed graph G = (V,E) on n vertices such that opt(G) = 1,
optq(G) � 1

2 + η.
Proof. Charikar, Makarychev, and Makarychev (section 4 in [7]) construct a di-

rected graph, G = (V,E), on n vertices whose cut norm is bounded by O (1/ logn).

The graph is represented by the skew-symmetric matrixW , where wij =
∑n

k=1 sin
π(j−i)k
n+1 .

It is easy to verify that for every 0 < q < n,
∑n

k=1 sin
(
πqk
n+1

)
� 0. Thus, wij � 0

whenever i < j, implying that the graph is acyclic (in other words, opt(G) = 1).
We bound optq(G) as follows. Let optq(G) = 1

2 + δ, and let O : V → [q] be
the optimal q-ordering. Construct a (multi)graph H on q vertices with a directed
edge from O(u) to O(v) for every edge (u, v) ∈ E with O(u) 
= O(v). Now, using
Theorem 5.2, the cut norm of H is bounded from below by Ω

(
δ

log q

)
. Moreover,

since O is a partition of V , the cut norm of G is at least the cut norm of H . Thus,
Ω
(

δ
log q

)
� ||H ||C � ||G||C � O (1/ logn). This gives δ � O

(
log q
logn

)
, implying that

optq(G) � 1
2 +O

(
log q
log n

)
. Choosing n sufficiently large (specifically n � qΩ(1/η)) gives

the required result.
We now have the following corollary to Lemma 5.3, which shows how to obtain a

“smooth” SDP gap instance from the (η, q)-pseudorandom DAG.
Corollary 5.4. For every η > 0 and positive integer q, there exists a (q, 1− η,

1/2+η)-multiscale gap instance with a corresponding SDP solution V = {bu,i | u ∈ V,
i ∈ [|V |]} and µ = {μe | e ∈ E} of objective value 1− η which further satisfies

(8) ‖bu,i‖22 = 1/|V | ∀u ∈ V, i ∈ [|V |].

Proof. Let G = (V,E) be the graph obtained by taking b = �1/η� disjoint copies
of the graph guaranteed by Lemma 5.3, and let m = |V |. Note that the graph still
satisfies the required properties: opt(G) = 1, optq(G) � 1

2 + η. The ordering, O,
that satisfies every edge of G is obtained by taking the good ordering inside any
copy and letting each copy have contiguous places in the ordering. Let D denote the
distribution over labelings obtained by shifting O by a random offset cyclically. For
every u ∈ V , i ∈ [m], Pr[D(u) = i] = 1/m. Further, every directed edge is satisfied
with probability at least 1− 1/b � 1− η. Being a distribution over integral labelings,
D gives rise to a set of vectors satisfying the constraints in (8). The graph G along
with these vectors form the claimed multiscale gap instance.

6. Dictatorship test for MAS. Let G = (V,E) be a (q, 1 − η, 1/2 + η)-
multiscale gap instance on m vertices, where m is divisible by q, with corresponding
SDP solution (V ,µ) as guaranteed by Corollary 5.4. Using the graph G and the SDP
solution, we construct a dictatorship test DICTε

G on [m]R as follows.

DICTε
G Test:
– Pick an edge e = (u, v) ∈ E at random from G.
– Sample ze = {zu, zv} from the product distribution μR

e ; i.e., for each 1 �
k � R, z

(k)
e = {z(k)u , z

(k)
v } is sampled using the distribution μe given by

μe(i, j) = 〈bu,i, bv,j〉.
– Obtain z̃u, z̃v by perturbing each coordinate of zu and zv independently.

Specifically, sample the kth coordinates z̃
(k)
u , z̃

(k)
v as follows: With probabil-

ity (1 − 2ε), z̃
(k)
u = z

(k)
u , and with the remaining probability, z̃

(k)
u is a new

sample from Ω.
– Introduce a directed edge z̃u → z̃v (alternatively test if O(z̃u) < O(z̃v)).
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Note that since the test takes a form of a directed edge, DICTε
G can be viewed as

a weighted MAS instance where the weight of a particular directed edge z̃u → z̃v is
the probability the above test outputs it. Let us first establish that the test indeed
accepts dictator orderings with high probability.

Lemma 6.1.

Completeness(DICTε
G) � 1− η − 4ε.

Proof. A dictator m-ordering O is given by O(z) = z(j). With probability

(1 − 2ε)2, z̃
(j)
u = z

(j)
u and z̃

(v)
u = z

(j)
v . As the value of the ordering of G is at least

1− η, the lemma follows.
Theorem 6.2 (soundness analysis). For every ε > 0, there exist sufficiently large

m, q such that for any τ-pseudorandom ordering O of [m]R,

val(O) � optq(G) +O(q−
ε
2 ) + oτ (1).

Let F [s,t] : [m]R → {0, 1} denote the functions associated with the q-ordering O∗,
and remember that we write F i for F [i,i]. The result follows from Lemmas 6.3 and 6.4.

Lemma 6.3. For every ε > 0, there exist sufficiently large m, q such that for any
τ-pseudorandom ordering O of [m]R,

val(O) � valq(O∗) +O(q−
ε
2 ) + oτ (1),

where O∗ is the q-coarsening of O.
Proof. The loss in val(O) due to coarsening is because some edges e = (z, z′)

which are oriented correctly in O fall into the same block during coarsening, i.e.,
O∗(z) = O∗(z′). Thus we can write

val(O) � valq(O∗) +
1

2
Pr
(
O∗(z̃u) = O∗(z̃v)

)
,

Pr
(
O∗(z̃u) = O∗(z̃v)

)
=
∑
i∈[q]

E
e=(u,v)

E
zu,zv

E
z̃u,z̃v

[
F i(z̃u) · F i(z̃v)

]

=
∑
i∈[q]

E
e=(u,v)

E
zu,zv

[
T1−2εF i(zu) · T1−2εF i(zv)

]
.

As O∗ is a q-coarsening of O, for each value i ∈ [q], there is exactly a fraction 1
q of

z for which O∗(z) = i. Hence, for each i ∈ [q], Ez[F i(z) = 1
q ]. Further, since the

ordering O∗ is τ -pseudorandom, for every k ∈ [R] and i ∈ [q], Infk(T1−εF i) � τ .
From Corollary 5.4 we know that zu and zv individually are uniformly distributed,
and hence using Lemma 3.5, for sufficiently large q, the above probability is bounded
by q · q−1− ε

2 + q · oτ (1) = O(q−
ε
2 ) + oτ (1).

We proceed with the other essential lemma to prove Theorem 6.2.
Lemma 6.4. For every choice of m, q, ε and any τ-pseudorandom q-ordering O∗

of [m]R,

valq(O∗) � optq(G) + oτ (1).

In section 10 we give a proof of the more general Lemma 9.4, and to avoid dupli-
cation of arguments we here give only a sketch of the main ideas behind the proof of
Lemma 6.4.
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The q-ordering problem is a CSP over a finite domain and is thus amenable to
techniques of [35]. Specifically, consider the payoff function P : [q]2 → [0, 1] defined
by P (i, j) = 1 for i < j, P (i, j) = 0 for i > j, and P (i, j) = 1

2 otherwise.
First, we can extend the domain of the payoff [q]2 to �2

q using the following
multilinear extension:

P (x,y) =
1

2

∑
i=j

x(i)y(j) +
∑
i<j

x(i)y(j)

for all x = (x(1), . . . , x(q)), y = (y(1), . . . , y(q)) ∈ �q.
Let F [s,t] : [m]R → {0, 1} denote the functions associated with a τ -pseudorandom

q-ordering O∗, and recall that we write F i for F [i,i], and F = (F1, . . . ,Fq). Arith-
metizing valq(O∗) in terms of functions F i we get

valq(O∗) = E
e

E
zu,zv

E
z̃u,z̃v

⎡
⎣1
2

∑
i=j

F i(z̃u) · F j(z̃v) +
∑
i<j

F i(z̃u) · F j(z̃v)

⎤
⎦

= E
e

E
zu,zv

E
z̃u,z̃v

[
P (F(z̃u),F(z̃v))

]
,

where the expectation is over the edge e = (u, v), zu, zv, z̃u, and z̃v. If we denote
H = T1−εF , then, using the multilinearity of P to transfer the expectation inside the
application of P , we can rewrite the preceding expression as

valq(O∗) = E
e

E
zu,zv

[
P (H(zu),H(zv))

]
.

Being functions on a product space [m]R, F ,H can be expressed as vectors of mul-
tilinear polynomials in variables xi,j , i ∈ [m], j ∈ [R], where xi,j is the indicator
variable for the event that the jth input takes the value i. Let F and H denote the
vector of multilinear polynomials associated with the functions F andH, respectively.

Let {bu,i | u ∈ V, i ∈ [m]} denote the SDP solution associated with the (q, 1− η,
1/2 + η)-multiscale gap instance G. We exhibit a randomized rounding RoundF of
this SDP solution into a q-ordering for the graph G. If RoundF (G) denotes the
expected value of the ordering returned by the rounding scheme, then we show that
RoundF (G) ≈ valq(O∗). Clearly, the expected value of the q-ordering returned by the
rounding scheme has value at most optq(G). Hence we get

valq(O∗) � RoundF (G) + oτ (1) � optq(G) + oτ (1).

The rounding scheme RoundF proceeds as follows: Pick R random Gaussian
vectors, and project the SDP solution along these directions. For each vertex v ∈ V ,
the values of the projections of corresponding vectors {bv,i | i ∈ [m]} are fed as inputs
to the multilinear polynomial H to obtain a vector pv in R

q. The pv is rounded to a
point p∗

v on the q-dimensional simplex �q using a fairly natural procedure. Finally, the
vertex v is assigned a label � ∈ [q] by independently sampling from the distribution p∗

v.
The vector of multilinear polynomials H has no input coordinates with influence

greater than τ , since the ordering O∗ is τ -pseudorandom. Furthermore, since H =
T1−εF , the polynomial H is close to a low-degree polynomial.

Roughly speaking, the invariance principle of Mossel [30] asserts that low-degree
and low-influence polynomials cannot distinguish between two distributions over in-
puts with matching moments up to order two. More precisely, the distribution of the
output of the multilinear polynomial H depends only on the first two moments of
the distribution of inputs. Note that the distribution used in the dictatorship test
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is inspired by the vectors {bu,i}. This leads to closeness in the distribution of H
when applied to the Gaussians used in Round and H applied to evaluate the payoff
of a pseudorandom ordering O
. This, in turn, implies that RoundF (G) ≈ valq(O∗),
completing the outline of the proof of Lemma 6.4.

Lemma 6.4 asserts that the value of the q-ordering is bounded by optq(G)+oτ (1)
for all τ -pseudorandom functions F = (F1, . . . ,Fq) that correspond to a q-ordering.
Specifically, for each z ∈ [m]R, F(z) is a corner of the simplex; F(z) ∈ Δq.

For the UG-hardness reduction, we need the above lemma to hold for the more
general class of functions that take values in �q—the q-dimensional simplex—and
indeed we need the following stronger claim.

Claim 6.5. For a function F : [m]R → �q satisfying Infk(T1−εF) � τ for all
k ∈ [R],

E

⎡
⎣1
2

∑
i=j

F i(z̃u)F j(z̃u) +
∑
i<j

F i(z̃u)F j(z̃u)

⎤
⎦ � optq(G) + oτ (1),

where the expectation is over the edge e = (u, v), zu, zv, z̃u, and z̃v.
We give the proof of the above claim in the more general setting (see Lemma 10.5)

of OCSPs in section 10.

7. Hardness reduction for MAS. In this section we describe how to turn the
dictator test of the previous section into a UG-hardness result for MAS. This is a
quite standard procedure, and hence we do not repeat the argument for the case of
general k-ary ordering constraints.

Let G = (V,E) be a (q, 1−η, 1/2+η)-multiscale gap instance, and let V = {bv,i}
and µ = {μe | e ∈ E} be the corresponding SDP solution as guaranteed by Corol-
lary 5.4. Let m = |V |.

Let Φ = (AΦ ∪ BΦ, E,Π = {πe : [R] → [R] | e ∈ E}, [R]) be a bipartite UG
instance. Towards constructing a MAS instance Ψ = (V , E) from Φ, we introduce
a long code for each vertex in BΦ. Specifically, the set of vertices V of the directed
graph Ψ is indexed by BΦ × [m]R.

Hardness Reduction:
Input: UG instance Φ = (AΦ ∪ BΦ, E,Π = {πe : [R] → [R] | e ∈ E}, [R]).
Output: Directed graph Ψ = (V , E) with set of vertices V = BΦ× [m]R and edges E
given by the following verifier:

– Pick a random vertex a ∈ AΦ. Choose two neighbors b, b
′ ∈ BΦ of a indepen-

dently at random. Let π = πa→b and π′ = πa→b′ denote the permutations
on the edges (a, b) and (a, b′), respectively.

– Pick an edge e = (u, v) ∈ E at random from G.
– Sample ze = {zu, zv} from the product distribution μR

e ; i.e., for each 1 �
k � R, z

(k)
e = {z(k)u , z

(k)
v } is sampled using the distribution μe given by

μe(i, j) = 〈bu,i, bv,j〉.
– Obtain z̃u, z̃v by perturbing each coordinate of zu and zv independently.

Specifically, sample the kth coordinates z̃
(k)
u , z̃

(k)
v as follows: With probabil-

ity (1 − 2ε), z̃
(k)
u = z

(k)
u , and with the remaining probability, z̃

(k)
u is a new

sample from Ω.
– Introduce a directed edge (b, π(z̃u)) → (b′, π′(z̃v)), where for a vector z =
(z(1), z(2), . . . , z(R)) ∈ [m]R and a permutation σ of [R], σ(z) ∈ [m]R is

defined by σ(z)(i) = z(σ
−1(i)).
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Theorem 7.1. For every η > 0, there exists a choice of parameters ε, q, δ such
that the following hold:

– Completeness: If Φ is a (1 − δ)-strongly satisfiable instance of UG, then
there is an ordering O for the graph Ψ with value at least (1 − 5η), i.e.,
val(Ψ) � 1− 5η.

– Soundness: If Φ is not δ-satisfiable, then no ordering to Ψ has value more
than 1

2 + 4η, i.e., val(Ψ) � 1
2 + 4η.

In the rest of the section, we present the proof of the above theorem. To begin
with, we fix the parameters of the reduction.

Parameters. Fix ε = η/100. Let τ, q be the constants obtained from Theorem 7.5.
Finally, let us choose δ = min{η/4, ηε2τ8/109}.

7.1. Completeness. In order to show that val(Ψ) � 1 − 5η, we instead show
that valm(Ψ) � 1− 5η, which, by Observation 3.1, implies the required result.

By assumption, there exist labelings to the UG instance Φ such that for a fraction
(1− δ) of the vertices a ∈ AΦ all the edges (a, b) are satisfied. Let A : BΦ ∪AΦ → [R]
denote one such labeling. Define an m-ordering of Ψ as follows:

O(b, z) = z(A(b)) ∀b ∈ BΦ, z ∈ [m]R.

Clearly the mapping O : V → [m] defines an m-ordering of the vertices V = BΦ×[m]R.
To determine valm(O), let us compute the probability of acceptance of a verifier that
follows the above procedure to generate an edge in E and then checks whether the
edge is satisfied. Arithmetizing this probability, we can write

valm(O) =
1

2
Pr
(
O(b, π(z̃u)) = O(b′, π′(z̃v))

)
+Pr

(
O(b, π(z̃u)) < O(b′, π′(z̃v))

)
.

With probability at least (1 − δ), the verifier picks a vertex a ∈ AΦ such that the
assignment A satisfies all the edges (a, b). In this case, for all choices of b, b′ ∈ N(a),
π(A(a)) = A(b) and π′(A(a)) = A(b′). Let us denote A(a) = l. By definition of the

m-ordering O, we get O(b, π(z)) = (π(z))(A(b)) = z(π
−1(A(b))) = z(l) for all z ∈ [m]R.

Similarly, for b′, O(b′, π′(z)) = z(l) for all z ∈ [m]R. Thus we get

valm(O) � (1− δ) ·
(
1

2
Pr
(
z̃(l)u = z̃(l)v

)
+Pr

(
z̃(l)u < z̃(l)v

))
.

With probability at least (1− 2ε)2, we have z̃
(l)
u = z

(l)
u and z̃

(l)
v = z

(l)
v . Further, note

that each coordinate z
(l)
u , z

(l)
v is generated according to the local distribution μe for

the edge e = (u, v). Substituting in the expression for valm(O), we get

valm(O) � (1− δ)(1− 2ε)2 E
e=(u,v)

[
Pr

(xu,xv)∈μe

{
xu < xv

}
+

1

2
Pr

(xu,xv)∈μe

{
xu = xv

}]
.

Recall that the SDP solution (V ,µ) has an objective value at least (1− η). Thus for
a small enough choice of δ and ε, we have valm(O) � 1− 5η.

7.2. Soundness. Let O be an ordering of Ψ with val(O) � 1
2 + 4η. Using the

ordering, we will obtain a labeling A for the UG instance Φ. Towards this, we build
machinery to deal with multiple long codes. For b ∈ BΦ, define Ob as the restriction
of the map O to vertices corresponding to the long code of b. Formally, Ob is a map
Ob : [m]R → Z given by Ob(z) = O(b, z). Similarly, for a vertex a ∈ AΦ, let Oa denote
the restriction of the map O to the vertices N(a)× [m]R, i.e., Oa(b, z) = O(b, z).
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7.2.1. Multiple long codes. Throughout this section, we fix a vertex a ∈ AΦ

and analyze the long codes corresponding to all neighbors of a. For ease of notation, for
a neighbor b ∈ N(a), we use πb to denote the permutation πa→b along the edge (a, b).

Let F [s,t]
b denote the functions associated with the ordering Ob. Define functions

F [s,t]
a : [m]R → R as follows:

F [s,t]
a (z) = Pr

b∈N(a)

(
Oa(b, πb(z)) ∈ [s, t]

)
= E

b∈N(a)
[F [s,t]

b (πb(z))].

Definition 7.2. Define the set of influential coordinates Lτ (Oa) as follows:

Lτ (Oa) =
{
k
∣∣ Infk(T1−εF [s,t]

a ) � τ for some s, t ∈ Z
}
.

An ordering Oa is said to be τ-pseudorandom if Lτ (Oa) is empty.
Lemma 7.3. For any influential coordinate k ∈ Lτ (Oa), for at least a fraction τ

2
of b ∈ N(a), πb(k) is influential on Ob. More precisely, πb(k) ∈ Lτ/2(Ob).

Proof. As the coordinate k is influential onOa, there exist s, t such that Infk(F [s,t]
a )

� τ . Recall that F [s,t]
a (z) = Eb∈N(a)[F [s,t]

b (πb(z))]. Using the convexity of Inf, this

implies Eb∈N(a)[Infπb(k)(F
[s,t]
b )] � τ . All the influences Infπb(k)(F

[s,t]
b ) are bounded

by 1, since each of the functions F [s,t]
b takes values in the range [0, 1]. Therefore,

for at least a fraction τ/2 of vertices b ∈ N(a), we have Infπb(k)(F
[s,t]
b ) � τ/2. This

concludes the proof.
Lemma 7.4. For any vertex a ∈ AΦ, |Lτ (Oa)| � 800

ετ4 .
Proof. From Lemma 7.3, for each coordinate k ∈ Lτ (Oa), there is a corresponding

coordinate πb(k) in Lτ/2(Ob) for at least a fraction τ/2 of the neighbors b. Further,
from Lemma 4.3, the size of each set Lτ/2(Ob) is at most 400/ετ3. By double counting,
we get that |Lτ (Oa)| is at most 800/ετ4.

It is in fact not difficult to get a better bound than obtained in Lemma 7.4 by
applying an extension of Lemma 4.3 directly to the function Fa. Note that the lemma
does not apply directly, as Oa is not an ordering but a set of orderings. This extension
is not difficult, but the improvement in parameters is not a real concern to us.

Theorem 7.5. For all ε, η > 0, there exist constants q, τ > 0 such that for any
vertex a ∈ AΦ, if Oa is τ-pseudorandom, then val(Oa) � optq(G) + η/4.

Proof. The proof outline is similar to that of Theorem 6.2. Let O∗
a denote the

q-coarsening of Oa. Then we can write

val(Oa) � valq(O∗
a) +

1

2
Pr
(
O∗

a(b, πb(z̃u)) = O∗
a(b

′, πb′(z̃v))
)
.

The q-coarsening O∗
a is obtained by dividing the order Oa into q-blocks. Let [1 =

p1 + 1, p2], [p2 + 1, p3], . . . , [pq + 1, pq+1 = m] denote the q blocks. For the sake of

brevity, let us denote F i
a = F [pi+1,pi+1]

a and F i
b = F [pi+1,pi+1]

b . In this notation, we
can write

Pr
(
O∗

a(b, πb(z̃u)) = O∗
a(b

′, πb′(z̃v))
)

=
∑
i∈[q]

E
e=(u,v)

E
b,b′

E
zu,zv ,z̃u,z̃v

[
F i

b(πb(z̃u)) · F i
b′(πb′ (z̃v))

]

=
∑
i∈[q]

E
e=(u,v)

E
zu,zv

E
z̃u,z̃v

[
F i

a(z̃u) · F i
a(z̃v)

]

=
∑
i∈[q]

E
e=(u,v)

E
zu,zv

[
T1−2εF i

a(zu) · T1−2εF i
a(zv)

]
.
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As the ordering Oa is τ -pseudorandom, for every k ∈ [R] and i ∈ [q], Infk(T1−εF i
a) �

τ . Hence by the fact that zu and zv are uniformly distributed and using Lemma 3.5,
the above value is less than O(q−

ε
2 ) + oτ (1).

Now we bound the value of valq(O∗
a). In terms of the functions F i

b, the expression
for valq(O∗

a) is as follows:

valq(O∗
a) = E

⎡
⎣1
2

∑
i=j

F i
b(πb(z̃u)) · F j

b′(πb′(z̃v)) +
∑
i<j

F i
b(πb(z̃u)) · F j

b′(πb′(z̃v))

⎤
⎦

= E

⎡
⎣1
2

∑
i=j

F i
a(z̃u) · F j

a(z̃v) +
∑
i<j

F i
a(z̃u) · F j

a(z̃v)

⎤
⎦ .

Again, since the ordering Oa is τ -pseudorandom, for every k ∈ [R] and i ∈ [q],
Infk(T1−εF i

a) � τ . Hence, by Claim 6.5, the above value is bounded by optq(G) +

oτ (1). From the above inequalities, we get val(Oa) � optq(G)+O(q−
ε
2 )+oτ (1), which

finishes the proof.

7.2.2. Defining a labeling. Define the labeling A for the UG instance Φ as
follows: For each a ∈ AΦ, A(a) is a uniformly random element from Lτ (Oa) if it is
nonempty and a random label otherwise. Similarly, for each b ∈ BΦ, assign A(b) to
be a random element of Lτ/2(Ob) if it is nonempty and an arbitrary label otherwise.

If val(O) = Ea∈AΦ [val(Oa)] � 1
2+4η, then for at least a fraction 2η of vertices a ∈

AΦ, we have val(Oa) � 1
2 +2η. Let us refer to these vertices a as good vertices. From

Theorem 7.5, for every good vertex, the order Oa is not τ -pseudorandom. In other
words, for every good vertex a, the set Lτ (Oa) is nonempty. Further, by Lemma 7.3,
for every label l ∈ Lτ (Oa), for at least a fraction τ/2 of the neighbors, b ∈ N(a), πb(l)
belongs to Lτ/2(Ob). For every such b, the edge (a, b) is satisfied with probability
at least 1/|Lτ (Oa)| × 1/|Lτ/2(Ob)|. By Lemmas 4.3 and 7.4, this probability is at
least ετ4/800× ετ3/3200. Summarizing the argument, the expected fraction of edges
satisfied by the labeling A is at least ηε2τ8/10240000. By a small enough choice
of δ (the soundness of the original UG instance), this yields the required result and
completes the proof of Theorem 7.1.

8. OCSPs. In this section, we outline the ideas of the proof of Theorem 1.3.
To this end, we begin by formally defining a class of ordering constraint satisfaction
problems.

8.1. Formal definitions.
Definition 8.1. An ordering constraint satisfaction problem (OCSP) Λ is spec-

ified by a probability distribution over the family of payoff functions P : Sk → [0, 1]
on the set Sk of permutations on k elements. The integer k is referred to as the arity
of the OCSP Λ.

An example of an OCSP would be all instances that contain 75% of constraints
of the form “i before j” and 25% of constraints of the form “i between j and k.”
Hence the definition fixes not only the set of predicates but also the proportion of
each predicate that appears in an instance.

Let us use the notation P ∼ Λ to denote a payoff sampled from the distribution Λ.
Notice that every payoff P ∼ Λ is assumed to be on the set of permutations of exactly
k elements. However, there is no loss of generality, since for every q � k, a payoff on
set Πq of permutations on q elements can be expressed as a payoff on Sk by including
dummy variables.
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Let Πk→N denote the set of one-to-one maps from [k] → N. The domain of a payoff
function P can be extended naturally from the set of permutations Sk to Πk→N. In
particular, an injective map f ∈ Πk→N, along with the standard ordering on the range
N, induces a permutation πf on [k]. To extend the payoff, just define P (f) = P (πf )
for all f ∈ Πk→N.

Definition 8.2 (Λ-OCSP). An instance � of OCSP Λ is given by � = (V ,P),
where the following hold:

– V = {y1, . . . , ym} is the set of variables that need to be ordered. Thus an
ordering O is a one-to-one map from V to natural numbers N.

– P is a probability distribution over constraints/payoffs applied to subsets of at
most k variables from V. More precisely, a sample P ∼ P would be a payoff
function from Λ, applied on a sequence of variables yS = (ys1 , . . . , ysk). If
O|S denotes the injective map from yS → N obtained by restricting O to yS,
then the payoff returned is P (O|S).
Moreover, the type of payoff P ∼ P sampled from P is identical to the distri-
bution associated with the OCSP Λ.

For a payoff P ∈ P, we define V(P ) ⊆ V to denote the set of variables on which P
is applied. The objective is to find an ordering O of the variables that maximizes the
total weighted payoff/expected payoff, i.e.,

E
P∼P

[
P (O|P )

]
.

Here O|P denotes the ordering O restricted to the variables in V(P ). We define the
value opt(P) as

opt(�) def
= max

O:ΠV→N

E
P∼P

P (O|P ).

Observe that if the payoff functions P are predicates, then maximizing the pay-
off amounts to maximizing the number of constraints satisfied. We use the notions
“payoff function” and “constraint” interchangeably. As noted earlier, by reordering
the inputs, we can assume that P (σ) is maximized when σ is the identity, id.

Definition 8.3. Given an OCSP Λ, let

Λmax = E
P∼Λ

[P (id)] , Λrandom = E
P∼Λ

E
σ∈Sk

[P (σ)] .

With these definitions, we can state the following general UG-hardness for OCSPs.
Theorem 8.4 (general UG-hardness). For every η > 0 and every OCSP of

bounded arity k, the following holds: Given an instance of the OCSP Λ that admits
an ordering with payoff at least Λmax − η, it is UG-hard to find an ordering of the
instance that achieves a payoff of at least Λrandom + η.

Notice that Theorem 1.3 corresponds to the special case where the probability
distribution Λ consists of a single payoff function. For the sake of exposition, we
present the proof of Theorem 1.3 here. The proof of the more general Theorem 8.4 is
essentially the same.

8.2. Relation to CSPs. An ordering O can be thought of as an assignment
of values from [m] to each variable yi such that yi 
= yj for all i 
= j. By suitably
extending the payoff functions P ∈ Λ, it is possible to eliminate the “one-to-one”
condition (yi 
= yj whenever i 
= j). More precisely, we extend the domain of payoff
functions P ∈ Λ from Πk→[m] to N

[k]—the set of all maps from [k] to N.
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Given an arbitrary function f : [k] → N, define a probability distribution Df on
the set of permutations Sk by the following random procedure:

1. For each j ∈ N with f−1(j) 
= φ, pick a uniform random permutation πj of
elements in f−1(j).

2. Concatenate the permutations πj in the natural ordering on j ∈ N to obtain
the permutation π ∈ Sk. For a payoff P ∈ Λ, define

(9) P (f) = E
π∼Df

[P (π)].

With this extension of payoff functions, the following lemma shows that optimiz-
ing over all orderings is equivalent to optimizing over all assignments of values in [m]
to variables {y1, . . . , ym}.

Lemma 8.5. For an instance � = (V ,P) of a Λ-OCSP with |V| = m, we have

max
O∈ΠV→N

E
P∈P

P (O|P ) = max
f∈[m]V

E
P∈P

P (f|P ).

Here [m]V denotes the set of all functions from V to [m].
Proof. For every injective map O : V → N, there is an injective map O′ : V → [m]

corresponding to the permutation induced by O. Clearly, the objective value of O is
the same as O′. Since O′ ∈ [m]V , we have

max
O∈ΠV→N

E
P∈P

P (O|P ) � max
f∈[m]V

E
P∈P

P (f|P ).

As the payoff of an arbitrary function f : V → [m] is defined as an expectation of the
payoff of permutations, the reverse inequality follows, finishing the proof.

By virtue of Lemma 8.5, the Λ-OCSP instance � = (V ,P) is transformed into
a CSP over variables V , albeit over a domain [m] whose size is not fixed. Specifi-
cally, the problem of finding an optimal ordering O for the Λ-OCSP instance can be
reformulated as computing

(10) opt(�) = max
y∈[m]V

E
P∈P

[
P (yV(P ))

]
.

Here P refers to the extended payoff function as defined in (9). For the sake of
convenience, we use yP as shorthand for yV(P ).

Taking the analogy with CSPs a step further, one can define a CSP Λq for every
positive integer q > 0. Given an instance � = (V ,P) of Λ-OCSP, the corresponding
Λq problem is to find a q-ordering that maximizes the expected payoff. Formally, the
goal of the Λq-CSP instance � is to compute an assignment y ∈ [q]m that maximizes
the following:

(11) optq(�) = max
y∈[q]m

E
P∈P

[
P (yP )

]
.

The following claim is an easy consequence of the above definitions.
Claim 8.6. For every Λ-OCSP instance � = (V ,P) and integers q � q′,

optq(�) � optq′ (�) � opt(�).

Further, if |V| = m, then optm(�) = opt(�).
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8.3. SDP relaxation. Inspired by the interpretation of a Λ-OCSP as a CSP
over a large domain, one can formulate a generic semidefinite program along the lines
of [35]. The details of the generic semidefinite program are described here.

Given a Λ-OCSP instance � = (V ,P), the goal is to find a collection of vectors
{bi,a}i∈V,a∈[m] in a sufficiently high-dimensional space and a collection {μP }P∈supp(P)

of distributions over local assignments. For each payoff P ∈ P , the distribution μP is
a distribution over [m]V(P ) corresponding to assignments for the variables V(P ). We
write Prx∈μP {E} to denote the probability of an event E under the distribution μP .

LC Relaxation

maximize E
P∼P

E
x∼µP

P (x)

(LC)

subject to 〈bs,i, bs′,j〉 = Pr
x∼µP

{
xs = i, xs′ = j

}
(P ∈ supp(P), s, s′ ∈ V(P ), i, j ∈ [m]),

(12)

µP ∈ �([m]V(P )) ∀P ∈ supp(P).

We claim that the above optimization problem can be solved in polynomial time.
To show this claim, let us introduce additional real-valued variables μP,x for P ∈
supp(P) and x ∈ [m]V (P ). We add the constraints μP,x � 0 and

∑
x∈[m]V (P ) μP,x = 1.

We can now make the following substitutions to eliminate the distributions μP :

E
x∼μP

P (x) =
∑

x∈[m]V (P )

P (x)μP,x, Pr
x∼μP

{
xi = a

}
=

∑
x∈[m]V (P )

xi=a

μP,x,

Pr
x∼μP

{
xi = a, xj = b

}
=

∑
x∈[m]V (P )

xi=a,xj=b

μP,x.

After substituting the distributions μP by the scalar variables μP,x, it is clear that an
optimal solution to the relaxation of P can be computed in time poly(mk, |supp(P)|)
using standard results about semidefinite programming.

The LC relaxation succinctly encodes several constraints. In the following claim,
we present some of the additional properties that a feasible solution to LC can be
assumed to satisfy.

Claim 8.7. Given a feasible solution {bs,i | s ∈ V , i ∈ [m]}, µ = {μe | e ∈ E}
to the LC relaxation, the vectors can be transformed to another SDP solution {b∗s,i}
with the same objective value such that for some unit vector I the following hold:

〈b∗s,i, b∗s,j〉 = 0 ∀ i, j ∈ [m], i 
= j,∑
i∈[m]

〈b∗s,i, b∗s,i〉 = 1,

∑
i∈[m]

b∗s,i = I ∀s ∈ V ,

〈b∗s,i, I〉 = ‖b∗s,i‖22 ∀s ∈ V , i ∈ [m],

‖I‖22 = 1.

We do not formally verify this claim, but any reader that doubts the claim can
include these conditions, as they are of the correct form, into LC. In any case from
now on we assume that the conditions of Claim 8.7 are fulfilled.
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Note that an integrality gap instance to the above relaxation would be a Λ-OCSP
instance, �, such that sdp(�) is “large” while opt(�) is “small.” A multiscale gap
instance, on the other hand, has much weaker properties—requiring only optq(�)
to be small—thus making it easier to construct. Recall Definition 2.3 of multiscale
gap instances: An instance � of a Λ-OCSP is a (q, c, s)-multiscale gap instance if
sdp(�) � c and optq(�) � s.

8.3.1. Smoothing gap instances. Let us start with a definition.
Definition 8.8. For α > 0, a (q, c, s)-multiscale gap instance � = (V ,P) over

m variables is said to be α-smooth if for every P ∈ P and x ∈ [m]k, μP,x � α.
Here we outline a transformation on a multiscale gap instance �∗ to another

multiscale gap instance � with certain special properties including α-smoothness. In
particular, the lemma implies that the smoothness parameter of the resulting solutions
is α = η

10mk .
Lemma 8.9. For all η > 0, the following holds: given a (q, c, s)-multiscale

gap instance �∗ = (V∗,P∗) of a Λ-OCSP, for large enough m, there exists a
(q, c − η/5, s + η/5)-multiscale gap instance � = (V ,P) on m variables, an SDP
solution {bs,i}s∈V,i∈[m], {μP }P∈supp(P), and a vector I satisfying

〈bv,i, bv,i〉 =
1

m
∀v ∈ V , i ∈ [m],(13)

μP,x � η

10mk
∀P ∈ P , x ∈ [m]k,(14)

and

E
P∼P

E
x∼μP

P (x) � c− η

5
, optq(�) � s+

η

5
.

Note that although I does not appear in the claim explicitly it does so implicitly
by our assumption that the conditions of Claim 8.7 are valid.

Proof. Intuitively, the SDP solution corresponding to instance � assigns each of
the variables in V to each of the locations in [m] with equal probability. The instance
� is constructed by taking many copies of �∗ and joining them side by side such that
cyclic shifts of orderings obtain around the same payoff.

More formally, let L = � 20
η � and set V = V∗ × [L]. The distribution P is

simply the product of the distribution P∗ and the uniform distribution over [L].
That is, for every p = (y1, y2, . . . , yk) in the support of P∗ and for every l ∈ [L],
PrP((y1, l), (y2, l), . . . , (yk, l)) = PrP∗(p)/L.

Let O be an optimal ordering for �. Let m = |V| = L|V∗|. For every i ∈ [m],
define ordering O∗

(i) : V → [m] to be O∗(v, k) = i+ k|V|+O(v) (addition modulo m).
Since, except for at most one copy of P∗, every other constraint is ordered as in O,
the payoff of O∗

(i) is at least c− η/20.
Further, since the q-ordering value of P is simply the average of the q-ordering

values of the individual pieces, valq(P) � s.
To construct the vectors, we consider the distribution over assignments obtained

by taking, with probability 1 − η/10, one of O∗
(i) with equal probability and taking

a completely random assignment with probability η/10. It is easy to see that the
probability that y ∈ V is assigned to a ∈ [m] is exactly 1/m. Further, since we take a
completely random assignment with probability η/10, for any constraints p ∈ P and
x ∈ [m]k, the distribution assigns x to p with probability at least η

10mk . The payoff
obtained by this distribution is at least (1−η/10)(c−η/20) � c−η/5. The distribution
over assignments naturally gives vectors satisfying the required constraints.
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9. Dictatorship test for OCSP. In this section, we construct a dictatorship
test for an OCSP Λ starting with a multiscale gap instance � for the problem. For-
mally, let �∗ = (V∗,P∗) be a (q, c, s)-multiscale gap instance with |V| = m. Let
� = (V ,P) denote the (q, c− η

5 , s+
η
5 )-multiscale gap instance, which is α = η/10mk-

smooth, obtained from Lemma 8.9. Let (V ,µ) denote the SDP solution associated
with the instance �. Define a dictatorship test DICTε

V ,μ on orderings O of [m]R as
follows.

DICTε
V ,μ Test

Let � = (V ,P) denote a (q, c− η
5 , s+

η
5 )-multiscale gap instance for OCSP Λ, which

is α = η/10mk-smooth. Let (V ,µ) denote the SDP solution associated with the
instance �.

– Sample a payoff P from the distribution P . Let V(P ) = S = {s1, s2, . . . , sk}.
– Sample zS = {zs1 , . . . , zsk} from the product distribution μR

P ; i.e., for each

1 � j � R, z
(j)
S = {z(j)s1 , . . . , z

(j)
sk } is sampled using the local distribution μP

on [m]V(P ).
– For each si ∈ S and each 1 � j � R, sample z̃jsi as follows: With probability

(1 − ε), z̃
(j)
si = z

(j)
si , and with the remaining probability, z̃

(j)
si is a uniform

random element from [m].
– Query the ordering values O(z̃s1 ), . . . ,O(z̃sk ).
– Return the payoff: P

(
O
(
z̃s1
)
, . . . ,O

(
z̃sk
))
.

9.1. Completeness analysis. It is fairly simple to check that the completeness
of the dictatorship test DICTε

V ,μ is close to the SDP value of �. Specifically, we now
state the following lemma.

Lemma 9.1.

Completeness(DICTε
V ,μ) � val(V ,µ)− εk = c− η

5
− εk.

Proof. A dictator m-ordering O is given by O(z) = z(j). The expected payoff
returned by the verifier DICTε

V ,μ on O is given by

E
P∈P

E
zS

E
z̃S

[
P
(
O
(
z̃s1
)
, . . . ,O

(
z̃sk
))]

= E
P∈P

E
zS

E
z̃S

[
PS

(
z̃(j)s1 , . . . , z̃(j)sk

)]
.

With probability (1 − ε)k, z̃
(j)
si = z

(j)
si for each si ∈ S. Hence a lower bound for the

expected payoff is given by

E
P∈P

E
zS

E
z̃S

[
P
(
O
(
z̃s1
)
, . . . ,O

(
z̃sq
))]

� (1− ε)k E
P∈P

E
zS

[
P
(
z(j)s1 , . . . , z(j)sq

)]
.

The jth coordinates z
(j)
S = {z(j)s1 , . . . , z

(j)
sq } are generated from the local probability

distribution μP . Thus we get

(15) E
P∈P

E
zS

[
P
(
z(j)s1 , . . . , z(j)sq

)]
= E

P∈P
E

x∈μP

[
P (x)

]
= val(V ,µ).

The expected payoff is at least (1− ε)k · val(V ,µ) � val(V ,µ)− εk.

9.2. Soundness of dictatorship test. Let us state our soundness claim.
Theorem 9.2 (soundness analysis). For every ε > 0, for any τ-pseudorandom

ordering O of [m]R,

val(O) � optq(�) +O(q−
ε
2 ) + oτ (1).
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This theorem is an immediate consequence of Lemmas 9.3 and 9.4, and let us
turn to the first of these statements.

Lemma 9.3. For every ε > 0, for any τ-pseudorandom ordering O of [m]R,

val(O) � valq(O∗) +
(
k

2

)
q−

ε
2 + oτ (1),

where O∗ is the q-coarsening of O and k denotes the arity of the OCSP Λ.
Proof. Let F [s,t] : [m]R → {0, 1} denote the functions associated with the q-

ordering O∗.
Note that the loss due to coarsening arises because for some payoffs P the k

variables in V(P ) do not fall into distinct bins during coarsening. Let us upper bound
the probability that some two of the variables queried, z̃si and z̃sj , fall into the same
block during coarsening, i.e., O∗(z̃si ) = O∗(z̃sj ). Observe that

Pr
(
O∗(z̃si ) = O∗(z̃sj )

)
=
∑
i∈[q]

E
P∈P

E
zsi ,zsj

E
z̃si ,z̃sj

[
F i(z̃si ) · F i(z̃sj )

]

=
∑
i∈[q]

E
P∈P

E
zsi ,zsj

[
T1−2εF i(zsi ) · T1−2εF i(zsj )

]
.

As O is a q-coarsening of O, for each value i ∈ [q], there is exactly a fraction 1
q of z for

which O∗(z) = i. Hence, for each i ∈ [q], Ez[F i(z) = 1
q ]. Further, since the ordering

O∗ is τ -pseudorandom, for every j ∈ [R] and i ∈ [q], Infj(T1−εF i) � τ . Hence, using
Lemma 3.5 and the fact that zsi and zsj are uniformly distributed, for sufficiently
large q, the above probability is bounded by q · q−1− ε

2 + q · oτ (1). By a simple union
bound, the probability that two of the queried values fall in the same bin is at most(
k
2

)(
q · q−1− ε

2 + q · oτ (1)
)
. As all the payoffs are bounded by 1 in absolute value, we

can write

val(O) � valq(O∗) +Pr
(
∃i, j ∈ [k] such that O∗(z̃si) = O∗(z̃sj )

)
� valq(O∗) +

(
k

2

)
q−

ε
2 + oτ (1).

We now state the second lemma needed to prove Theorem 9.2. The proof of this
lemma is postponed to section 10.

Lemma 9.4. For every choice of m, q, ε and any τ-pseudorandom q-ordering O∗

of [m]R, valq(O∗) � optq(�) + oτ (1).

10. Soundness analysis for q-orderings. In this section, we give the proof
of Lemmas 9.4 and 6.4. As Lemma 6.4 is a special case of Lemma 9.4, we restrict
ourselves to the proof of Lemma 9.4, which completes the soundness analysis for the
dictatorship test for arbitrary OCSPs. The proof of Lemma 9.4 closely resembles
the soundness analysis of dictatorship tests for the case of generalized CSPs in [35].
However, in [35], the dictatorship test is analyzed for functions with domain [q]R and
range �q. In our application, we are interested in functions whose domain is [m]R

while the output is in �q for some q. Hence Lemma 9.4 is not a formal consequence
of the lemmas in [35]. We start with some preliminaries and tools.

10.1. Invariance principle. The following invariance principle is an immediate
consequence of Theorem 3.6 in the work of Isaksson and Mossel [20].
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Theorem 10.1 (invariance principle [20]). Let Ω be a finite probability space with
the least nonzero probability of an atom at least α � 1/2. Let L = {�1, �1, . . . , �m}
be an ensemble of random variables over Ω. Let G = {g1, . . . , gm} be an ensemble of
Gaussian random variables satisfying the following conditions:

E[�i] = E[gi], E[�2i ] = E[g2i ], E[�i�j] = E[gigj] ∀i, j ∈ [m].

Let K = log(1/α). Let F = (F1, . . . , Fd) denote a vector-valued multilinear polyno-
mial, and let Hi = (T1−εFi) and H = (H1, . . . , Hd). Further assume that Infi(H) � τ
and Var[Hi] � 1 for all i.

If Ψ : Rd → R is a Lipschitz-continuous function with Lipschitz constant C0 (with
respect to the L2-norm), then∣∣∣E [Ψ(H(LR))

]
− E

[
Ψ(H(GR))

]∣∣∣ � Cd · C0 · τε/18K = oτ (1)

for some constant Cd depending on d.

10.2. Payoff functions. For the sake of the proof, we extend the payoff func-
tions P corresponding to the CSP Λq to a multilinear polynomial on �k

q . Specifically,

the payoff functions P ∈ Λq are defined over the set [q]k, where k is the arity of Λ.
Given a payoff function P : [q]k → [0, 1], we define a function P ′ : Rqk → R follows:

– Define the function P ′ on �k
q as a multilinear polynomial:

P ′(x1, . . . ,xk) =
∑

β∈[q]k

P (β)

k∏
i=1

x(i,βi) ∀{x1, . . . ,xk} ∈ �k
q .

Note that when the inputs belong to Δk
q the sum contains only one nonzero

element, and we have the following simpler definition:
– The function P ′ on Δk

q equals

P ′(eβ1 , . . . , eβk
) = P (β) ∀β ∈ [q]k.

Abusing notation, we use P ∈ Λq to denote both the payoff function over [q]k and
the corresponding multilinear function (the P ′ defined above) over �k

q . The domain
of the input to P will hopefully be clear from the context.

10.3. Local and global distributions. Now, we describe two ensembles of
random variables, namely the local integral ensembles LP for each payoff P , and a
global Gaussian ensemble G.

Definition 10.2. For every payoff P ∈ P of size at most k, the local distribution
μP is a distribution over [m]V(P ). In other words, the distribution μP is a distribution
over assignments to the CSP variables in set V(P ). The corresponding local integral
ensemble is a set of random variables LP = {�s1 , . . . , �sk} each taking values in Δm.

Definition 10.3. The global ensemble G = {gs | s ∈ V , j ∈ [m]} is generated by
setting gs = {gs,1, . . . , gs,m}, where

gs,j = 〈I, bs,j〉+ 〈bs,j − 〈I, bs,j〉I, ζ〉

and ζ is a normal Gaussian random vector of appropriate dimension.
It is easy to see that the local and global integral ensembles have matching mo-

ments up to degree two. Let �s,j denote the jth component of �s.



BEATING THE RANDOM ORDERING IS HARD 905

Lemma 10.4. For any set P ∈ P, the global ensemble G matches the following
moments of the local integral ensemble LP :

E[gs,j] = E[�s,j ] = 〈I, bs,j〉, E[g2s,j ] = E[�2s,j ] = 〈I, bs,j〉,
E[gs,jgs′,j′ ] = E[�s,j�s′,j′ ] = 〈bs,j , bs′,j′ 〉 ∀j, j′, s, s′.

Proof. The statement of the expectations of the expressions involving the �-
variables is easy to check. For the expressions involving the g-variables, we need the
fact that

E[〈b, ζ〉〈b′, ζ〉] = 〈b, b′〉

and E[〈b, ζ〉] = 0 for any vectors b and b′. The quantity that requires some calculation
to compute is E[gs,jgs′,j′ ], which equals

〈I, bs,j〉〈I, bs′,j′〉+ 〈bs,j − 〈I, bs,j〉I, bs′,j′ − 〈I, bs′,j′〉I〉 = 〈bs,j , bs′,j′〉.

Note that local distributions μP for different payoffs P ∈ P do not fit together
to form a global distribution, and in fact when applying Theorem 10.1 we use this
theorem on each term in the payoff function locally. From this we can conclude that
the value obtained by the global ensemble on each local condition gives about the
same expected contribution to the objective function as the local distribution specific
for that constraint.

10.4. Putting it all together. Finally, we now show the following lemma,
which forms the core of the soundness argument in Lemma 9.4 and is a generalization
of Claim 6.5.

Lemma 10.5. For a function F : [m]R → �q satisfying Infj(T1−εF) � τ for all
j ∈ [R],

E
P∈P

E
zS

E
z̃S

[
P
(
F(z̃s1), . . . ,F(z̃sk))] � optq(�) + oτ (1).

Before proving this lemma let us establish Lemma 9.4.
Proof of Lemma 9.4. Let F [s,t] : [m]R → {0, 1} denote the functions associated

with the q-ordering O∗. The expected payoff returned by the verifier in the dictator-
ship test DICTε

V ,μ is given by

valq(O∗) = E
P∈P

E
zS

E
z̃S

[
P
(
F(z̃s1), . . . ,F(z̃sk))].

Further, since the orderingO∗ is τ -pseudorandom, for every j ∈ [R], we have Infj(T1−εF i)
� τ , and thus Lemma 10.5 concludes the proof.

Let us turn to establishing Lemma 10.5.
Proof of Lemma 10.5. Let us denote H = T1−εF . Let F(x),H(x) denote the

multilinear polynomials corresponding to functionsF ,H, respectively, where the vari-
ables xi,j for i ∈ [R] and j ∈ [m] can be thought of as indicator variables if the jth
input equals i. Let us denote

DICTε
V ,μ(F) = E

P∈P
E
zS

E
z̃S

[
P
(
F(z̃s1), . . . ,F(z̃sk))].
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Each vector zsi is independently perturbed to obtain z̃si . The payoff functions P are
multilinear when restricted to the domain �q. Consequently, we can write

DICTε
V ,μ(F) = E

P∈P
E
zS

[
P
(

E
z̃s1

[F(z̃s1)|zs1 ], . . . , E
z̃s1

[F(z̃sq |zsk ]))]
= E

P∈P
E
zS

[
P
(
H(zs1), . . . ,H(zsk))].

The last equality is due to the fact that Ez̃si
[F(z̃si)|zsi ] = T1−εF(zsi ) = H(zsi). For

each s ∈ S, the coordinates of zs are generated by the distribution μP . Therefore
the above expectation can be written in terms of the polynomial H applied to an
instance of the integral ensemble LP . Specifically, we can write
(16)

DICTε
V ,μ(F) = E

P∈P
E
zS

[
P
(
H(zs1), . . . ,H(zsk))] = E

P∈P
E
LR

P

[
P
(
H
(
�Rs1
)
, . . . ,H

(
�Rsk
))]

.

The following procedure RoundF returns an ordering for the original Λ-OCSP instance
�.
RoundF Scheme
Input. A Λ-OCSP instance � = (V ,P) with m variables and an SDP solution
{bv,i}, {μP}.
Truncation Function. Let f� : Rq → �q be a Lipschitz-continuous function such
that for all x ∈ �q, f�(x) = x. Clearly, a function f� of this nature can be
constructed with a Lipschitz constant Cq depending on q.
Scheme. Sample R vectors ζ(1), . . . , ζ(R) with each coordinate being an independent
and identically distributed normal random variable.
For each v ∈ V do

– For all 1 � j � R and i ∈ [m], compute the projection g
(j)
v,i of the vector

bv,i as follows:

g
(j)
v,i = 〈I, bv,i〉+

[
〈(bv,i − 〈I, bv,i〉I), ζ(j)〉

]
.

– Evaluate the function H = T1−εF with g
(j)
v,i as inputs. In other words,

compute pv = (pv,1, . . . , pv,q) as follows:

pv = H(gv).

– Round pv to p∗
v ∈ �q by using the Lipschitz-continuous truncation function

f� : Rq → �q:

p∗
v = f�(pv).

– Assign the Λ-OCSP variable v ∈ V the value j ∈ [q] with probability p∗v,j.

Let RoundF (V ,µ) denote the expected payoff of the ordering returned by the
rounding scheme RoundF on the SDP solution (V ,µ) for the Λ-OCSP instance �.
By definition, we have

(17) RoundF (V ,µ) � optq(�).

In the remainder of the proof, we show the following inequality:

RoundF (V ,µ) � DICTε
V ,μ(F)− oτ (1).
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Along with (17), this would imply that DICTε
V ,μ(F) is less than optq(�)+oτ (1), thus

showing the required claim. To this end, we arithmetize the value of RoundF (V ,µ).
Notice that the gi are nothing but samples of the global ensemble G associated with �.
By definition, the expected payoff is given by

(18) RoundF (V ,µ) = E
P∈P

E
GR
P

[
P
(
f�
(
H(gR

s1)
)
, . . . , f�

(
H(gR

sk
)
))]

.

We show that the quantities in (16) and (18) are roughly equal. Fix a payoff P ∈ P .
Let ΨP : Rqk → R be a Lipschitz-continuous function defined as follows:

ΨP (p1,p2, . . . ,pk) = P
(
f�
(
p1

)
, . . . , f�

(
pk

))
∀p1, . . . ,pk ∈ �q.

Applying the invariance principle (Theorem 10.1) with the ensembles LP , GP , Lip-
schitz-continuous functional Ψ, and the vector of kq multilinear polynomials given by
(H ,H, . . . ,H) where H = (H1, . . . , Hq), we get the required result:

RoundF (V ,µ) = E
P∈P

E
GR
P

[
ΨP

(
H
(
gR
s1

)
, . . . ,H

(
gR
sk

))]
� E

P∈P
E
LR

P

[
ΨP

(
H
(
�Rs1
)
, . . . ,H

(
�Rsk
))]

− oτ (1)

(∵ invariance principle (Theorem 10.1))

= E
P∈P

E
LR

P

[
P
(
H
(
�Rs1
)
, . . . ,H

(
�Rsk
))]

− oτ (1)

(∵ ΨP (p1, . . . ,pk) = P (p1, . . . ,pk) if ∀i, pi ∈ �q)

= DICTε
V ,μ(F)− oτ (1) (∵ (16)).

11. Constructing multiscale gap instances for general OCSP. In this
section, we prove Theorem 11.1, which is the last piece to complete the proof of
Theorem 2.5. We remind the reader that the step moving from the dictator test to
the UG-hardness is completely analogous to the transition done in section 7 for MAS
and is not presented in this paper.

Theorem 11.1. For every η > 0 and positive integers q, k, there is an m =
m(k, q, η) and a distribution, D, over k-tuples of [m] such that the following hold:

– The support of D is contained in the set of strictly increasing k-tuples of [m].
– For any f : [m] → [q], let Df denote the distribution over permutations of [m]
obtained by extending f as in section 8.2. For any σ = (σ1, σ2, . . . , σk) ∈ Sk,∣∣∣∣ Pr

y∈Df ;(d1,d2,...,dk)∈D
[y(dσ1) < y(dσ2) < · · · < y(dσk

)]− 1
k!

∣∣∣∣ � η.

Note that the k = 2 case of Theorem 11.1 is the content of Lemma 5.3. Before
delving into the proof of Theorem 11.1, let us see why it implies a proof of Theorem 2.5.

Proof of Theorem 2.5. Let P be the payoff associated with OCSP Λ, and re-
member that it is maximized by the identity permutation. Let m = m(k, q, η/k!),
let D be the distribution as promised by Theorem 11.1, and let � = ([m], D) be an
OCSP instance with payoff P . Almost by definition, the value obtained by the trivial
ordering of [m] is the maximal possible P (id). Certainly, the SDP value can be only
higher.
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Now, viewing � as an instance of the OCSP Λ, define f to be an optimal q-ordering
of �. Then, optq(�) can be bounded as follows:

optq(�) = val(f) = EDEπ∈Df
[P (π)] �

∑
σ

P (σ)

k!
+ η � Λrandom + η.

Let us now turn to the proof of Theorem 11.1.
We set m = ks for some integer s to be chosen depending on q and η, and we

think of [m] as the s-tuples of [k], ordered by the lexicographic ordering of the tuples.
For an integer r, 0 � r � s, a k-adic interval of order r is an interval of [m] specified
by an element α ∈ [k]r and denotes the subset of [k]s whose first r coordinates match
those in α. It is easy to check that for every r and α, such a set is, in fact, an interval
of [m] (due to the lexicographic ordering) and is of length ks−r. For r = 0, it is
the entire set [m], and for r = s, such a set consists of a single element. A random
k-adic interval of order r is a k-adic interval of order r where α is chosen uniformly
at random from [k]r.

Every k-adic interval, I, of order r strictly smaller than s naturally contains k
disjoint k-adic intervals of order r + 1, denoted by I1, I2, . . . , Ik in the order they
appear in I. A random k-adic subinterval, J , is obtained by picking one of these k
subintervals uniformly at random. Let us define our distribution.

Definition 11.2. The distribution Ds is a distribution over k-tuples from [m]
for m = ks defined as follows:

1. Pick a random r uniformly in 0 � r � s− 1.
2. Pick a random k-adic interval I of order r from [k]s.
3. Pick xj uniformly at random from the k-adic subinterval Ij of I, for j =

1, 2, . . . , k.
4. Output (x1, x2, . . . , xk).

The first claim of Theorem 11.1 follows immediately from the definition, since the
elements chosen are always in increasing order in the lexicographic ordering of [m].

In the rest of this section, we prove that, for the distribution Ds, no function
f : [m] → [q] obtains more than negligible advantage over random with respect to any
permutation π (for large enough s).

Fix a particular function f : [m] → [q]. For p ∈ [q] and an interval I, let μp(I)
denote the fraction of I mapped to p by f . The following lemma is the heart of our
analysis.

Lemma 11.3. For a random k-adic interval I chosen as in Definition 11.2 and
a random k-adic subinterval, J , of I, we have

q∑
p=1

E
I,J

[
|μp(I)− μp(J)|

]
�
√

q

s
.

Proof. Let βr,p be E[μp(I)
2] when I is a random k-adic interval of order r. Note

first that as E[X ]2 � E[X2] and

μp(I) = EJ [μp(J)],

where the expectation is over a random k-adic subinterval J of I, we have that
βr+1,p � βr,p. Now, for any p ∈ {1, 2, . . . , q}, and a random k-adic interval I of



BEATING THE RANDOM ORDERING IS HARD 909

order r and a random k-adic subinterval J of I,

E
I,J

[
|μp(I)− μp(J)|

]
�
(
E
I,J

[
(μp(J)− μp(I))

2
])1/2

=

⎛
⎝E

I

⎡
⎣1
k

k∑
j=1

(μp(Ij)− μp(I))
2

⎤
⎦
⎞
⎠

1/2

=

⎛
⎝E

I

⎡
⎣ 1
k

k∑
j=1

μp(Ij)
2 − μp(I)

2

⎤
⎦
⎞
⎠

1/2

= (βr+1,p − βr,p)
1/2.

Thus, averaging over the choice of random r ∈ {0, 1, . . . , s−1} and summing over
all values p in the range [q], we have

q∑
p=1

E
I,J

[
|μp(I)− μp(J)|

]
� 1

s

q∑
p=1

s−1∑
r=0

(βr+1,p − βr,p)
1/2

� 1

s

q∑
p=1

(
s−1∑
r=0

1

)1/2(s−1∑
r=0

(
βr+1,p − βr,p

))1/2

� 1√
s

q∑
p=1

β1/2
s,p �

√
q

s

(
q−1∑
p=1

βs,p

)1/2

=

√
q

s
.

Next we have the following lemma.

Lemma 11.4. Given nonnegative numbers a
(j)
i , b

(j)
i , i ∈ [q], j ∈ [k], such that for

every j,
∑

i a
(j)
i =

∑
i b

(j)
i = 1, we have

∑
σ∈[q]k

∣∣∣∣∣∣
k∏

j=1

a
(j)
σ(j) −

k∏
j=1

b
(j)
σ(j)

∣∣∣∣∣∣ �
k∑

j=1

q∑
i=1

∣∣∣ a(j)i − b
(j)
i

∣∣∣ ,
where σ(j) denotes the jth element of the k-tuple σ.

Proof. The proof follows by an induction over k. The two sides of the expression
are equal for k = 1. For k > 1,

∑
σ∈[q]k

∣∣∣∣∣∣
k∏

j=1

a
(j)
σ(j) −

k∏
j=1

b
(j)
σ(j)

∣∣∣∣∣∣
�
∑

σ∈[q]k

⎛
⎝
∣∣∣∣∣∣a(1)σ(1)

k∏
j=2

a
(j)
σ(j) − a

(1)
σ(1)

k∏
j=2

b
(j)
σ(j)

∣∣∣∣∣∣+
∣∣∣∣∣∣a(1)σ(1)

k∏
j=2

b
(j)
σ(j) − b

(1)
σ(1)

k∏
j=2

b
(j)
σ(j)

∣∣∣∣∣∣
⎞
⎠

=

⎛
⎝∑

i∈[q]

a
(1)
i

⎞
⎠ ·

∑
σ∈[q]k−1

∣∣∣∣∣∣
k−1∏
j=1

a
(j+1)
σ(j) −

k−1∏
j=1

b
(j+1)
σ(j)

∣∣∣∣∣∣+
⎛
⎝ k∏

j=2

(
q∑

i=1

b
(j)
i

)⎞
⎠ q∑

i=1

∣∣∣a(1)i − b
(1)
i

∣∣∣

=
∑

σ∈[q]k−1

∣∣∣∣∣∣
k−1∏
j=1

a
(j+1)
σ(j) −

k−1∏
j=1

b
(j+1)
σ(j)

∣∣∣∣∣∣+
q∑

i=1

∣∣∣a(1)i − b
(1)
i

∣∣∣
�

k∑
j=2

q∑
i=1

∣∣∣a(j)i − b
(j)
i

∣∣∣+ q∑
i=1

∣∣∣a(1)i − b
(1)
i

∣∣∣ (by induction hypothesis)

=

k∑
j=1

q∑
i=1

∣∣∣a(j)i − b
(j)
i

∣∣∣.
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We can now finish the proof of Theorem 11.1 using the above two lemmas. For
any σ ∈ [q]k, let Pr(σ) denote the probability of the event f(xj) = σ(j) when x =
(x1, x2, . . . , xk) is chosen according to the distribution Ds. For an interval I, let
Pr(σ, I) denote the above probability conditioned on Ds choosing I in the second
claim. Since xj is chosen uniformly from the k-adic subinterval Ij of I, we have

Pr(σ, I) =
∏k

j=1 μσ(j)(Ij). Now

∑
σ

∣∣∣∣∣∣Pr(σ)− E
I

⎡
⎣∏

j

μσ(j)(I)

⎤
⎦
∣∣∣∣∣∣ =
∑
σ

∣∣∣∣∣∣EI [Pr(σ, I)] − E
I

⎡
⎣∏

j

μσj (I)

⎤
⎦
∣∣∣∣∣∣

� E
I

⎡
⎣∑

σ

∣∣∣∣∣∣Pr(σ, I) −
∏
j

μσ(j)(I)

∣∣∣∣∣∣
⎤
⎦

= E
I

⎡
⎣∑

σ

∣∣∣∣∣∣
∏
j

μσ(j)(Ij)−
∏
j

μσ(j)(I)

∣∣∣∣∣∣
⎤
⎦

� E
I

⎡
⎣ k∑
j=1

∑
p∈[q]

∣∣∣μp(Ij)− μp(I)
∣∣∣
⎤
⎦ (by Lemma 11.4)

� k
√
q/s (by Lemma 11.3).

For any permutation π ∈ Sk, the value of the q-ordering f with respect to π is
valπt (Ds, f) =

∑
σ Pr(σ)Payoff

π(σ). Since Payoff takes values in [0, 1], from the above
argument, ∣∣∣∣∣ valπt (D, f)−

∑
σ

Payoffπ(σ)E
I

[
Πjμσj (I)

] ∣∣∣∣∣ � k
√
q/s.

Further, since the value of the second factor in terms of the sum depends on which
values appear in σ and not their order, the sum is independent of the permutation π,
and we get ∣∣valπt (D, f)− 1

k!

∣∣ � k
√
q/s.

Choosing s greater than k2q/η2, we immediately obtain the statement of Theorem
11.1.

Remark 11.5. In Lemma 5.3, we constructed an (η, q)-pseudorandom DAG,
which corresponds to the k = 2 case of Theorem 11.1, with n � qO(1/η) vertices. The
above construction gives an instance of size ks = kO(k2q/η2) which is exp(O(q/η2))
for constant k. This is somewhat worse than the size of the DAG construction from
section 5. But the above construction works for all k, and since we treat q, η as
constants, the exact dependence of the size on these parameters does not matter for
our applications.

12. SDP integrality gap. In this section, we construct integrality gaps for the
MAS-SDP relaxation using the hardness reduction from UG. Specifically, we show
the following result.

Theorem 12.1. For any γ > 0, there exists a directed graph G such that the
value of semidefinite program (MAS− SDP) is at least 1− γ, while opt(G) � 1

2 + γ.
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The proof uses a bipartite variant of the Khot–Vishnoi UG integrality gap instance
[26] as in [35, 29]. Specifically, the following is a direct consequence of [26].

The integrality gap instance Φ = (AΦ ∪ BΦ, E,Π = {πe : [R] → [R] | e ∈ E}, [R])
presented in [26] is not bipartite. To obtain a bipartite UG instance Φ′, duplicate the
vertices by setting AΦ = {(b, 0) | b ∈ V } and BΦ = {(b, 1) | b ∈ V }. Further, for each
edge (a, b) ∈ E, introduce two edges ((a, 0), (b, 1)) and ((a, 1), (b, 0)) in Φ′. The SDP
solution for the bipartite instance Φ′ is obtained by assigning the vector corresponding
to b ∈ V to both vertices (b, 0) and (b, 1). Except for these minor modifications, the
following theorem is a direct consequence of [26].

Theorem 12.2 (see [26]). For every δ > 0, there exist a UG instance, Φ =
(AΦ ∪ BΦ, E,Π = {πe : [R] → [R] | e ∈ E}, [R]), and vectors {vb,�} for every b ∈ BΦ,
� ∈ [R], and a unit vector I such that the following conditions hold:

– No assignment satisfies more than a fraction δ of constraints in Π.
– For all b, b′ ∈ BΦ, �, �

′ ∈ [R], 〈vb,�,vb′,�′〉 � 0, and, if � 
= �′, 〈vb,�,vb,�′〉 = 0.
– For all b ∈ BΦ,

∑
�∈[R] vb,� = I and 〈vb,�, I〉 = ‖vb,�‖22.

– The SDP value is at least 1−δ: Ea∈AΦ,b,b′∈BΦ

[∑
�∈[R]〈vb,πa→b(�),vb′,π′

a→b′(�)
〉
]

� 1− δ.
Proof of Theorem 12.1. Let G be an (η, t)-multiscale gap instance with m vertices.

Apply Theorem 12.2, with a sufficiently small δ, to obtain a UGC instance Φ and SDP
vectors {vb,� | b ∈ BΦ, � ∈ [R]}. Consider the instance Ψ constructed by running the
UG-hardness reduction in section 7 on the UG instance Φ. The set of vertices of Ψ is
given by BΦ × [m]R. Set M = |BΦ| ×mR and N = |BΦ|.

The program (MAS − SDP) on the instance Ψ contains M vectors {W(b,z)
i |

i ∈ [M ]} for each vertex (b, z) ∈ BΦ × [m]R.
Define a solution to (MAS − SDP) as follows: Set the vector I to be the corre-

sponding vector in the instance Φ. For each vertex (b, z) of the graph Ψ, define SDP

vectors {W(b,z)
i | i ∈ [M ]} as follows:

W
(b,z)
i =

{∑
z�=i vb,� ∀i ∈ [m], (b, z) ∈ BΦ × [m]R,

0 ∀i /∈ [m].

Now we check that the SDP vectors {W(b,z)
i } satisfy conditions (2)–(6) of the MAS-

SDP relaxation.
– (Constraint (3)) Since the vectors {vb,�} have a nonnegative dot product, the

vectors {W(b,z)
i } have nonnegative inner products too.

– (Constraint (2)) For a fixed b and z, the vectors {W(b,z)
i } are constructed by

partitioning the vectors {vb,�} and assigning the vector sum over the parti-

tions. Hence, for any i, j, the vectors W
(b,z)
i and W

(b,z)
j sum over the disjoint

set of �. Thus,

〈W(b,z)
i ,W

(b,z)
j 〉 =

〈∑
z�=i

vb,�,
∑
z�′=j

vb,�′

〉
= 0.

– (Constraint (4)) For every vertex (b, z) we have

∑
i,j∈[M ]

〈W(b,z)
i ,W

(b,z)
j 〉 =

∑
�,�′∈[R]

〈vb,�,vb,�′〉 =
∑
�∈[R]

〈vb,�,vb,�〉 = 1.
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– (Constraint (5)) For i /∈ m, we have W
(b,z)
i = 0, thereby trivially satisfying

constraint (5). For i ∈ [m], we can write

〈I,W(b,z)
i 〉 =

∑
z�=i

〈I,vb,�〉 =
∑
z�=i

‖vb,�‖22.

Due to orthogonality of the vectors {vb,i} for every vertex b ∈ BΦ, we get

〈W(b,z)
i ,W

(b,z)
i 〉 =

〈∑
z�=i

vb,�,
∑
z�=i

vb,�

〉
=
∑
z�=i

‖vb,�‖22 = 〈I,W(b,z)
i 〉.

– (Constraint (6)) This is satisfied by the choice of I.
To prove that the SDP value is close to 1, we first fix a particular choice of a ∈ AΦ,

b, b′ ∈ BΦ. Set π = πa→b, π
′ = πa→b′ . The SDP value of edges from (b, ∗) to (b′, ∗) is

E
e∈G

E
z̃u,z̃v

∑
i<j

〈W(b,π(z̃u))
i ,W

(b′,π′(z̃v))
j 〉 = E

e∈G
E

z̃u,z̃v

∑
i<j

〈(∑
z̃�u=i

vb,�

)
,

( ∑
z̃�′v =j

vb′,�′

)〉

�
∑
�

(〈vb,π(�),vb′,π′(�)〉) E
e∈G

Pr
z̃u,z̃v

[z̃�u < z̃�v].

With probability at least (1 − 2ε)2, z̃u = zu, z̃v = zv. Further, since the coordinates
of zu, zv are generated from the multiscale gap instance, G, Pr[z�u < z�v] � 1 − η.
Hence,

E
e∈G

E
z̃u,z̃v

∑
i<j

〈W(b,π(z̃u))
i ,W

(b′,π′(z̃v))
j 〉 � (1− 2ε)2(1− η)

∑
�

〈vb,π(�),vb′,π′(�)〉.

Thus, the expected payoff over the whole instance is

E
a,b,b′

E
e∈G

E
z̃u,z̃v

∑
i<j

〈W(b,π(z̃u))
i ,W

(b′,π′(z̃v))
j 〉

� (1− 2ε)2(1− η) E
a∈AΦ,b,b′∈BΦ

∑
�

〈vb,π(�),vb′,π′(�)〉

� (1− 2ε)2(1− η)(1 − δ).

Hence, for a sufficiently small choice of parameters ε, η, and δ, the SDP value for Ψ
is greater than 1− γ. On the other hand, the soundness analysis in section 7 (Theo-
rem 7.1) implies that the integral optimum for Ψ is at most 1

2 + γ with a sufficiently
small choice of ε, η, and δ.
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[19] J. Håstad, On the approximation resistance of a random predicate, Comput. Complexity, 18

(2009), pp. 413–434.
[20] M. Isaksson and E. Mossel, Maximally stable Gaussian partitions with discrete applications,

Israel J. Math., to appear.
[21] A. Karazanov, On the minimal number of arcs of a digraph meeting all its directed cutsets,

Graph Theory Newsletters, 8 (1979).
[22] R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Compu-

tations, Plenum, New York, 1972, pp. 85–103.
[23] S. Khot, On the power of unique 2-prover 1-round games, in Proceedings of the 34th Annual

ACM Symposium on Theory of Computing, 2002, pp. 767–775.
[24] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell, Optimal inapproximability results for

MAX-CUT and other 2-variable CSPs?, SIAM J. Comput., 37 (2007), pp. 319–357.
[25] S. Khot and O. Regev, Vertex cover might be hard to approximate to within 2-epsilon, J.

Comput. System Sci., 74 (2008), pp. 335–349.
[26] S. Khot and N. K. Vishnoi, The Unique Games conjecture, integrality gap for cut problems

and embeddability of negative type metrics into l1, in Proceedings of the 46th Annual IEEE
Symposium on Foundations of Computer Science, 2005, pp. 53–62.

[27] C. Lucchesi and D. H. Younger, A minimax theorem for directed graphs, J. London Math.
Soc. (2), 17 (1978), pp. 369–374.

[28] Y. Makarychev, Simple Linear Time Approximation Algorithm for Betweenness, Microsoft
Research Technical report MSR-TR-2009-74, 2009.

[29] R. Manokaran, J. S. Naor, P. Raghavendra, and R. Schwartz, SDP gaps and UGC
hardness for multiway cut, 0-extension and metric labelling, in Proceedings of the 40th
ACM Symposium on Theory of Computing, 2008, pp. 11–20.

[30] E. Mossel, Gaussian bounds for noise correlation of functions and tight analysis of long codes,



914 GURUSWAMI ET AL.

in Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science,
2008, pp. 156–165.

[31] E. Mossel, R. O’Donnell, and K. Oleszkiewicz, Noise stability of functions with low influ-
ences: Invariance and optimality, Ann. of Math. (2), 171 (2010), pp. 295–341.

[32] A. Newman, Approximating the Maximum Acyclic Subgraph, Master’s thesis, MIT, Cambridge,
MA, 2000.

[33] A. Newman, Cuts and orderings: On semidefinite relaxations for the linear ordering problem,
in Proceedings of APPROX-RANDOM, 2004, pp. 195–206.

[34] C. H. Papadimitriou and M. Yannakakis, Optimization, approximation, and complexity
classes, J. Comput. System Sci., 43 (1991), pp. 425–440.

[35] P. Raghavendra, Optimal algorithms and inapproximability results for every CSP?, in Pro-
ceedings of the 40th ACM Symposium on Theory of Computing, 2008, pp. 245–254.

[36] V. Ramachandran, Finding a minimum feedback arc set in reducible flow graphs, J. Algo-
rithms, 9 (1988), pp. 299–313.

[37] P. Seymour, Packing directed circuits fractionally, Combinatorica, 15 (1995), pp. 281–288.
[38] U. Zwick, Approximation algorithms for constraint satisfaction problems involving at most

three variables per constraint, in Proceedings of the Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, 1998, pp. 201–210.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


