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Abstract— Informally, an error-correcting code has “nice” list-
decodability properties if every Hamming ball of “large” radius has a
“small” number of codewords in it. Here, we report linear codes with
non-trivial list-decodability: i.e., codes of large rate that are nicely list-
decodable, and codes of large distance that arenot nicely list-decodable.
Specifically, on the positive side, we show that there exist codes of rateR
and block lengthn that have at mostc codewords in every Hamming ball of
radius H�1(1�R�1=c)�n. This answers the main open question from the
work of Elias [8]. This result also has consequences for the construction of
concatenated codes of good rate that are list decodable from a large fraction
of errors, improving previous results of [13] in this vein. Specifically, for ev-
ery " > 0, we present a polynomial time constructible asymptotically good
family of binary codes of rate
("4) that can be list decoded in polynomial
time from up to a fraction (1=2 � ") of errors, using lists of sizeO("�2).

On the negative side, we show that for everyÆ and c, there exists� < Æ,
c1 > 0 and an infinite family of linear codesfCigi such that if ni denotes
the block length of Ci, then Ci has minimum distance at leastÆ � ni and
contains more thanc1 �nc

i
codewords in some Hamming ball of radius� �ni.

While this result is still far from known bounds on the list-decodability of
linear codes, it is the first to bound the “radius for list-decodability by a
polynomial-sized list” away from the minimum distance of the code.

Warning: Essentially this paper has been published in
IEEE Transactions on Information Theory and is subject to
copyright restrictions. In particular it is for personal use
only.

Keywords—Error-correcting codes, List decoding, Concatenated codes,
Reed-Solomon code.

I. INTRODUCTION

L
IST decoding was introduced independently by Elias [7]
and Wozencraft [24] as a relaxation of the “classical” no-

tion of decoding by allowing the decoder to output a list of
codewords as answers. The decoding is considered successful as
long as the correct message is included in the list. Early work by
Elias and Wozencraft [7], [24] analyzed the probability of error
in this model and used random coding arguments to explore the
average decoding error probability of block codes at low rates
for the binary symmetric channel. List decoding was also used
by Shannon, Gallager and Berlekamp [17] in exploring low rate
average error bounds for general discrete memoryless channels,
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and Ahlswede [1] showed that it enables one to determine ca-
pacity of a wide class of communication channels.

Research in the eighties applied this notion in a more adver-
sarial setting and investigated what happens if the error is ef-
fected by an adversary or a “jammer”, as opposed to a prob-
abilistic channel. Works of Zyablov and Pinsker [25], Bli-
novsky [3], [4], and Elias [8] applied in this setting. (The paper
by Elias [8] also gives a very good summary of the prior work
and history.) The basic question raised in this setting was: How
many errors could still be recovered from, with lists of small
size? Two basic parameters thus are the number of errors and
the allowed size of the output list. These parameters are usually
studied as a function of some of the more classical parameters of
error-correcting codes. How large can the rate of a code be if we
want small list sizes for a certain number of errors? And how do
codes of large minimum distance perform with respect to list de-
coding? Recently there has been rejuvenated interest in this line
of work thanks to the development of some efficient algorithms
for list decoding in [19], [12], [18], [13]. These algorithms de-
code with polynomial sized lists (and sometimes with constant
sized lists) for much more than half the minimum distance of the
code, and investigations of the tightness of the algorithms have
led Høholdt and Justesen [16] to re-initiate the investigation of
the combinatorial bounds on list decoding.

In this paper we continue the investigation of bounds on list
decoding. In particular, we investigate codes that exhibit non-
trivial list decoding performance. Specifically, we report the ex-
istence of linear codes of large rate that are nicely list-decodable,
and codes of large minimum distance which are not nicely list-
decodable (the precise quantitative versions of these results are
stated in the next section). To motivate this study we first fix
some standard notation and then define two fundamental ques-
tions (parameters) to study in the context of list decoding.

Our results also has consequences for the construction of con-
catenated codes of good rate that are list decodable from a large
fraction of errors, improving previous results of [13] in this vein.
Specifically, for every " > 0, we present a polynomial time
constructible asymptotically good family of binary codes of rate

("4) that can be list decoded in polynomial time from up to a
fraction (1=2� ") of errors, using lists of size O("�2).

II. DEFINITIONS AND MAIN RESULTS

For a prime power q, let Fq denote a finite field of cardinality
q. An [n; k]q (linear) code C is a k-dimensional vector space in
F
n
2 . We refer to n as the blocklength of the code and to k as the

dimension of the code. Unless explicitly mentioned otherwise,
we will only be interested in linear codes in this paper and will
moreover restrict ourselves to the binary case (when q = 2).

For two strings x; y of length n over an arbitrary alphabet �,
let �(x; y) denote the Hamming distance between them, i.e.,
the number of coordinates where x and y differ. Denote by
Æ(x; y) = �(x;y)

n the relative (fractional) distance between x
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and y. The minimum distance of a code C, denoted dist(C), is
the quantity minx;y2C;x6=yf�(x; y)g. The relative distance of
the code C, denoted Æ(C), is analogously defined.

Since the main thrust of this paper is the asymptotic perfor-
mance of the codes, we define analogs of the quantities above for
infinite families of codes. An infinite family of (binary) codes is
a family C = fCiji 2 Z

+g where Ci is an [ni; ki]2 code with
ni > ni�1. We define the rate of an infinite family of codes C
to be

rate(C) = lim inf
i

�
ki
ni

�
:

We define the (relative) distance of an infinite family of codes C
to be

�(C) = lim inf
i

�
dist(Ci)

ni

�
:

We now define the list decoding radius of a code. For non-
negative integer r and x 2 F

n
2 , let B(x; r) denote the ball of

radius r around x, i.e., B(x; r) = fy 2 F
n
2 j�(x; y) � rg. For

integers e; `, a code C � F
n
2 is said to be (e; `)-list decodable if

every ball of radius e has at most ` codewords, i.e. 8 x 2 F
n
2 ,

jB(x; e) \ Cj � `.
Definition 1 (List Decoding Radius) For an [n; k] binary

code C, and list size `, the list of ` decoding radius of C, de-
noted radius(C; `) is defined to be the maximum value of e for
which C is (e; `)-list decodable.

Definition 2: (List Decoding Radius for code and function
families) For an infinite family of codes C and a function ` :
Z
+ ! Z

+, define the list of ` decoding radius of C, denoted
Rad(C; `), to be

Rad(C; `) = lim inf
i

�
radius(Ci; `(ni))

ni

�
:

For an infinite family of codes C and a family of integer-valued
functions F , the list decoding radius of C w.r.t F , also denoted
Rad(C;F) by abuse of notation, is defined as

Rad(C;F) = sup
`2F

Rad(C; `)
It is interesting to study the list decoding radius of infinite

families of codes as a function of their distance and rate, when
the list size is either bounded by a constant or a polynomial in
the length of the code. Within this scope the broad nature of the
two main questions are: (1) Do there exist codes of large rate
with large list decoding radius for a fixed function `? and (2)
Do there exist codes of large distance with small list decoding
radius for a given function `? Note that the other two questions
are uninteresting: specifically, it is possible to construct codes
of small rate that have small list decoding radius (for example,
the linear code that is spanned by a small number of standard
basis vectors has small rate, but the entire code is contained in
a small ball around the all zeroes codeword); and it is possible
to construct codes of small distance that have large list decod-
ing radius even for lists of size 2 (for example by taking a code
of large minimum distance and adding one codeword at a small
distance to some existing codeword). In what follows we intro-
duce some formal parameters to study the above questions.

A. List decoding radius vs. Rate of the code

Definition 3 (Upper bound on list decoding radius) For real
rate 0 � R � 1 and list size ` : Z+ ! Z

+, the upper bound on

list of ` decoding radius for (binary) codes of rate R, denoted
U`(R), is defined to be

U`(R) = sup
C j rate(C)�R

Rad(C; `):
Similarly, for a family of integer-valued functions F , one de-
fines the quantity

UF(R) = sup
`2F

U`(R) :

Note that the reason for the term “upper bound” is that U`(R)
is the list decoding radius of the best code (i.e. one with largest
possible list decoding radius) among all codes that have at least
a certain rate. The case where the list size function is a con-
stant, or growing polynomially is of special interest to us, and
we consider the following definitions.

Definition 4: For real rate 0 � R � 1 and constant c, the
quantity Uconst

c (R) is defined to be U`(R) where `(n) = c. The
quantityUpoly

c (R) is defined to be UFc(R) whereFc is the fam-
ily of functions f`c1 : Z+ ! Z

+ where `c1(n) = c1n
cg. The

quantity Uconst(R) (resp. Upoly(R)) will denote the quantity
lim supc!1fUconst

c (R)g (resp. lim supc!1fUpoly
c (R)g).

Thus the quantities Uconst(R) and Upoly(R) denote the max-
imum possible value of the (relative) list decoding radius for
lists of constant and polynomial size, respectively. These quan-
tities are actually surprisingly well-understood. The first to pin
this quantity down were Zyablov and Pinsker [25]. Zyablov and
Pinsker showed that

Uconst(R) = Upoly(R) = H�1(1�R):
Here H(�) is the binary entropy function and H�1(�) is its in-
verse. Specifically,

H(x) = �x lgx� (1� x) lg(1� x)
where lg x denotes the logarithm of x to base 2. Further, for 0 �
y � 1, H�1(y) denotes the unique z in the range 0 � z � 1=2
such that H(z) = y.

The behavior of the upper bound on list decoding radius for
lists of size c, for specific constants c, however, was not known
completely. This quantity has been investigated significantly in
[25], [3], [4], [8], [23], [5] and below we attempt to describe
their results and how it motivates our study. We start by not-
ing that Uconst

c (R) is monotonic in c, and is thus always at least
H�1(1�R)=2 which is the Gilbert-Varshamov bound. The re-
sults of Zyablov and Pinsker [25], stated in our notation, showed
that

Uconst
c (R) � H�1

�
1� 1

lg(c+ 1)
�R

�
; (1)

(this result implies the above-mentioned result Uconst(R) =
H�1(1�R)). The dependence on c above is weaker than what
what one can hope for and so the question merited further study.
Blinovsky [3] (see also [4]) initiated a systematic study of this
quantity for specific choices of c. His focus however was on
small values of c and the lower bounds in his result were ob-
tained using non-linear codes. In more recent work [5] shows
how the techniques from his prior work may be used to get lower
bounds on Uconst

c (R) for linear codes as well. Other researchers
to focus on Uconst

c (R) for small c include Wei and Feng [23].
The results of [3], [4], [5], [23] have a complex dependence on c
and so it is hard to extract the asymptotic behavior of Uconst

c (R)
as a function of c. The only other result with a nice asymptotic
relationship between Uconst

c (R) and R and c is that of Elias [8]
who shows:

Uconst
c (R) � 1

2

�
1�

r
1� 2(c� 1)

c
H�1(1�R)

�
: (2)
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The two results with analytic forms, specifically (1) and (2), are
incomparable to one another. Note that we are interested in re-
lating three parameters: the rate R, the list-size c, and the list-
decoding radius Uconst

c (R). The bound (2) has a better depen-
dence on the list-size, but a weaker dependence on the rate than
the bound (1). A setting which brings this incomparability out
very well and also motivates our result (Theorem 5 below) is the
following. Consider binary linear codes which have a list-of-c
decoding radius (1=2� ") for some constant c (that may depend
on "). The bound (1) guarantees the existence of such codes
of rate 
("2) with a list size c = 2O("

�2). While the rate is
good (in fact, optimal up to constant factors), the list size is very
high. On the other hand, the bound (2) guarantees the existence
of such codes of rate 
("4) with a list size c = O(1="2). Here
we strengthen the bounds and show the following result which,
for the case for a list decoding radius of (1=2 � "), combines
the optimal rate 
("2) with a list size of O(1="2). In particular,
our result answers the main open question posed by Elias [8]
on whether the bound (1), specifically its dependence on the list
size c, can be improved.

Theorem 5: For each fixed integer c � 1, and rate 0 < R <
1, Uconst

c (R) � H�1�1�R � 1
c

�
.

To see why this is the right form for the bound Uconst
c (R), we

survey some of the known upper bounds on this quantity.

A.1 Upper bounds on Uconst
c (R)

All the above results (including ours from Theorem 5) provide
lower bounds on Uconst

c (�) (except for the simple upper bound
U const
c (R) � Upoly(R) � H�1(1 � R)). Blinovsky [3] also

gave non-trivial upper bounds on Uconst
c (�) for fixed constants

c. Specifically, he obtains the following result:

U const
c (R) � �� c0 + 2

c0 + 1

�
2c0

c0

�
(�(1� �))c

0+1

(c0 + 2)� 2(2c0 + 1)�(1� �)
;

(3)
where c0 = dc=2e and � = H�1(1 � R). (For the special case
of c = 2, the exact upper bound was later improved in [2].)
The above bound applies to non-linear codes as well. While this
form of the result is hard to parse, it does imply the following
theorem:

Theorem 6: [Follows from [3]] For every c � 1 and 0 < R <
1, we have Uconst

c (R) < H�1(1�R).
A careful interpretation of the bound (3) above gives a hint

that Theorem 5 has the right behavior as a function of c. To get
this perspective, let us again focus on the case of a family of
binary codes C with Rad(C; `) � (1=2 � ") for some constant
" > 0 and where ` is the constant function `(n) = c 8n. Then
Theorem 5 tells us that such code families with rate 
("2) exist
for a list size of c = O("�2). On the other hand, the bound
(3) implies that in order to have rate(C) > 0, we must have
c = 
("�2). Indeed if we want Rad(C; c) � 1=2 � ", then
Equation (3) implies � � (1=2�") and thus �(1��) � 1=4�"2.
Therefore the second term in the right hand side of Equation (3)
is at least



� (1� 4"2)c

0+1

p
c0(2 + 4c0"2)

�
using Stirling’s approximation

�
2c0

c0

�
= �( 4

c0p
c0
). On the

other hand, this term must be at most O("), since we want

U const
c (R) � 1=2 � ". Together these facts imply that c0 =


("�2), as desired.
In this sense, the result of Theorem 5 is (nearly) the best

possible, and in particular the 1=c loss term in the bound for
U const
c (R) cannot be improved asymptotically (for instance, it

cannot be improved to 1=c1+ for a positive ). In fact, since
the upper bound of Equation (3) holds even for general codes,
Theorem 5 cannot be improved substantially even if one allows
general, non-linear codes.

We remark that an account of the results discussed above in a
slightly different notation which studies the rate as a function of
list decoding radius (instead of studying the list decoding radius
as a function of the rate) appears in [10, Chap. 5]. The presen-
tation there also gives more detailed descriptions of the various
results in the literature and their interconnections.

B. List decoding radius vs. Distance of the code

Next we move on to lower bounds on the list decoding radius.
As mentioned earlier, it makes sense to study this as a function
of the minimum distance of the code. A large minimum distance
implies a large list decoding radius by existing combinatorial
bounds (see for example [9]), and we want to find the smallest
possible list decoding radius for a code of (at least) a certain
minimum distance. This motivates the next definition.

Definition 7 (Lower bound on list decoding radius) For a dis-
tance 0 � Æ � 1, and list size ` : Z+ ! Z

+, the lower bound on
list-of-` decoding radius for (binary) codes of relative distance
Æ, denoted L`(Æ), is defined to be

L`(Æ) = inf
C j �(C)�Æ

Rad(C; `):
Note that both in the case of the upper bound function U` and

the lower bound function L` one could allow the arguments,
i.e., rate and distance to be functions of n, in which case the
supremum would be taken over codes C that satisfy dim(Ci) �
R(ni) �ni (or in the case of the lower bound function, we would
take the infimum over codes that satisfy dist(Ci) � Æ(ni) � ni).

As in the case of the upper bound function, we introduce no-
tation to study the special cases when the list size is a constant
or grows as a polynomial.

Definition 8: For real distance 0 � Æ < 1=2 and con-
stant c, the quantity Lconst

c (Æ) is defined to be L`(Æ) where
`(n) = c. The quantity Lpoly

c (Æ) is defined to be supc1 L`c1 (Æ)
where `c1(n) = c1n

c. The quantity Lconst(Æ) (resp.
Lpoly(Æ)) will denote the quantity lim supc!1fLconst

c (Æ)g
(resp. lim supc!1fLpoly

c (Æ)g).
Note that we restrict Æ < 1=2 since binary codes with relative

distance Æ � 1=2 have at most a linear number of codewords
and are thus not very interesting. It is clear that L1(Æ) = Æ=2.
It is also easy to see that Lpoly(Æ) � Æ (since there exist codes
of relative distance Æ with super-polynomially many codewords
in ball of radius close to the minimum distance.) Thus all lower
bounds of interest lie in the range [Æ=2; Æ]. The exact values are,
however, mostly unknown. The main motivation for our work is
the following conjecture.

Conjecture 9: For every 0 < Æ < 1=2, Lconst(Æ) =
Lpoly(Æ) = 1

2 �
�
1�p

1� 2Æ
�
.
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Evidence in support of the conjecture comes piecemeal.
Firstly, it is known that

Lpoly(Æ) � Lpoly
1 (Æ) � 1

2
�
�
1�p

1� 2Æ
�

and

Lconst
c (Æ) � 1

2
�
�
1�

p
1� 2Æ + 2Æ=c

�
(see, for example, [9], [14] for a proof of these facts). Upper
bounds on Lpoly and Lconst are not as well studied. Justesen
and Høholdt [16] demonstrate some MDS code families C of
distance Æ with Rad(C; c) � (1 � p

1� Æ) for every constant
c for certain values of Æ, but this does not apply for codes over
any fixed size alphabet, and in particular for binary codes.

The quantity Lpoly(Æ) is even less well understood. When Æ
is either very large (of the form 1=2 � o(1)) or very small (of
the form o(1)), there is some evidence confirming this bound. In
particular, Dumer et al. [6] construct a family of linear codes C,
for any " > 0, for which Æ(n) = n"�1 andLpoly(Æ) � Æ=(2�")
which matches the conjecture above reasonably closely. We give
a simple probabilistic argument to show the following:

Theorem 10: For every " > 0, there exists an infinite family
of binary codes C and a function ` : Z+! Z

+ that grows faster
than any polynomial such that every member of C 2 C with
block length n satisfies

(n=2��(C))

(n=2� radius(C; `(n)))
� 3":

This seems to show that the tangent of the curve Lpoly(Æ) has
infinite slope as Æ ! 1=2, which is consistent with the conjec-
ture above (and thus mild evidence in favor of the conjecture).
One additional reason for believing in the conjecture is that if the
definition of codes is extended to allow non-linear codes, then
indeed it is known that the conjecture is true (see for example
[9]). All this evidence adds support to the conjecture, however
remains far from proving it. In fact until this paper it was not
even known if Lpoly

c (Æ) < Æ. The following theorem resolves
this question.

Theorem 11: For every integer c � 1 and every Æ, 0 < Æ <
1=2, we have Lpoly

c (Æ) < Æ.

Further, for the case Æ = 1
2 � (1� o(1)), we actually get close to

proving the above conjecture. This is done in the theorem below
which informally states that if

Æ(n) =
1

2

�
1��((logn)"�1)

�
;

then

Lpoly(Æ) � 1

2
[1� (1� 2Æ)1=2+"];

for arbitrarily small ". (Of course, the above does not make
sense formally since Lpoly(Æ) was defined as a limit of a series
and not a function of n. The following theorem makes the as-
sertion formally, in slightly more cumbersome detail.) The the-
orem below follows from Lemma 14 which is stated and proved
in Section III-C.

Theorem 12: For every ", 0 < " < 1=2, for some Æ : Z+ !
Z
+ satisfying Æ(n) = 1

2

�
1 � �((logn)"�1)

�
and some super-

polynomial function ` : Z+ ! Z
+, there exists an infinite fam-

ily of codes C such that for every C 2 C of block length n, the
relative minimum distance of C is at least Æ(n) and the list of
`(n) decoding radius of C is at most 1

2 [1� (1� 2Æ)1=2+"].
In a recent result, Guruswami [11] has made significant

progress towards resolving Conjecture 9 — he resolves this

conjecture assuming a well-known number-theoretic conjecture.
We discuss this result further in Section VI.

Remark: For codes over an alphabet of size q for large enough
q, it turns out that Lpoly(q; Æ) < Æ for certain values of Æ can
be easily deduced from existing results on codes that beat the
Gilbert-Varshamov bound (hereLpoly(q; Æ) denotes the quantity
analogous to Lpoly(Æ) for the case of q-ary codes). Indeed, it is
easy to show that for any code that lies above the GV bound,
the expected number of codewords at a Hamming distance of
at most d from a random received word, where d is the min-
imum distance of the code, is exponential. Since q-ary codes
that beat the GV bound are known for all square prime powers
q � 49 (specifically certain algebraic-geometric codes achieve
this [21]), it follows that for certain q � 49 and certain val-
ues of Æ, we indeed have Lpoly(q; Æ) < Æ. However, our focus
is on binary codes, and since the GV bound is the best current
asymptotic trade-off between rate and distance known for bi-
nary codes, the above approach does not give anything for bi-
nary codes.

C. Organization of the Paper

We study the lower bound functionsLpoly(Æ) and Lpoly
c (Æ) in

Section III and prove Theorems 10, 11, and 12. In Section IV,
we study the functionUconst

c (R) and prove Theorem 5. We then
prove an adaptation of Theorem 5 (Lemma 22) in Section V,
and then use it to construct binary linear codes with very high
(algorithmic) list decodability.

III. LIST DECODING RADIUS AND MINIMUM DISTANCE

We now prove upper bounds on the functionLpoly(Æ) claimed
in Theorems 11 and 12. We will first prove Theorem 12 which
shows that when Æ = 1

2 � (1 � o(1)), one “almost” has a proof
of Conjecture 9. A modification of this proof will also yield the
proof of Theorem 11. We first review the basic definitions and
concepts from (Discrete) Fourier analysis that will be used in
some of our proofs.

A. Fourier analysis and Group characters

For this section, it will be convenient to represent Boolean
values by f1;�1gwith 1 standing for FALSE and �1 for TRUE.
This has the nice feature that XOR just becomes multiplica-
tion. Thus a binary code of blocklength m will be a subset of
f1;�1gm. There are 2t functions �� : f0; 1gt ! f1;�1g on t-
variables, one for each � 2 f0; 1gt. The function �� is defined
by ��(x) = (�1)��x = (�1)

P
�ixi . Fixing some represen-

tation of the field GF(2t) as elements of f0; 1gt, the functions
�� are the additive characters of the field GF(2t), and can also
be indexed by elements � 2 GF(2t). We will do so in the rest
of the paper. We also have, for each y 2 GF(2t),

P
� ��(y)

equals 0 if y 6= 0 and 2t if y = 0, where the summation is over
all � 2 GF(2t).

We can define an inner product hf; gi for functions f; g :
GF(2t) ! R as

hf; gi = 2�t
X
x

f(x)g(x):

We call this inner product the normalized inner product, in con-
trast to the unnormalized inner product

P
x f(x)g(x). The func-

tions �� form an orthonormal basis for the space of real-valued
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functions on GF(2t) with respect to the normalized inner prod-
uct. Thus every real-valued function on GF(2t), and in par-
ticular every Boolean function f : GF(2t) ! f1;�1g can be
written in terms of the ��’s as:

f(x) =
X

�2GF(2t)
f̂���(x) : (4)

The coefficient f� is called the Fourier coefficient of f with re-
spect to � and satisfies

f̂� = hf; ��i = 2�t
X
x

f(x)��(x):

If we define the distance between functions f; g as
�(f; g) = Pr

x

�
f(x) 6= g(x)

�
;

then
f̂� = 1� 2�(f; ��):

The Fourier coefficients of a Boolean function also satisfy
Plancherel’s identity

P
� f̂

2
� = 1.

Hadamard code: For any integer t, the Hadamard code Hadt
of dimension t maps t bits (or equivalently elements of GF(2t))
into f1;�1g2t as follows: For any x 2 GF(2t), Hadt(x) =
h��(x)i�2GF(2t).
B. Idea behind the Construction

Since our aim is to prove lower bounds on the list decoding ra-
dius we must construct codes with large minimum distance with
a large number of codewords in a ball of desired radius. The spe-
cific codes we construct are obtained by concatenating an outer
extended Reed-Solomon code over a finite field F = GF(2t)
with the Hadamard code Hadt of blocklength 2t and dimen-
sion t. Thus the messages of this code will be degree ` poly-
nomials over GF(2t) for some `, and such a polynomial P is
mapped into the codeword hHadt(P (z1)); : : : ;Hadt(P (z2t))i
where z1; z2; : : : ; z2t is some enumeration of the elements in
GF(2t).

Let n = 2t. It is easy to see that this code has blocklength
22t and minimum distance 1

2

�
1� `

n

�
22t. If ` = (1� 2Æ)n, then

the relative minimum distance is Æ, and for future reference we
denote this code by RS-HADt(Æ).

To construct the received word (which will be the center of the
Hamming ball with a lot of codewords), consider the following.
Suppose we could pick an appropriate subset S of GF(2t) and
construct a Boolean function f : GF(2t) ! f1;�1g that has
large Fourier coefficient f̂� with respect to � for � 2 S. Let
v 2 f1;�1g2t be the 2t-dimensional vector consisting of the
values of f on GF(2t). The word v

jF j, i.e., v repeated jF j
times will be the “received word” (the center of the Hamming
ball which we want to show has several codewords). Since f
has large Fourier support on S, vjF j will have good agreement
with all codewords that correspond to messages (polynomials)
P that satisfy P (zi) 2 S for many field elements zi. By picking
for the set S a multiplicative subgroup of GF(2t) of suitable
size, we can ensure that there are several such polynomials, and
hence several codewords in the concatenated code with good
agreement with vjF j.

The main technical component of our construction and anal-
ysis is the following Theorem which asserts the existence of
Boolean functions f with large support on subgroups S of
GF(2t). We will defer the proof of the theorem to Section III-E,
and first use it to prove Theorems 12 and 11.

Theorem 13: There exist infinitely many integers s with the
following property: For infinitely many integers t, there exists a
multiplicative subgroup S of GF(2t) of size s such that the fol-
lowing holds: For every � 6= 0 in GF(2t) there exists a function
f : GF(2t)! f1;�1g withX

�2��S
f̂� �

r
s

3
:

Here � � S denotes the coset f�x : x 2 Sg of S.
Remarks: Our proof of the above theorem in fact gives the fol-
lowing additional features which we make use of in our applica-
tions of the theorem.
1. The integers s exists with good density; in particular for any
integer k � 4, there exists an s, with k � s < 3k, that satisfies
the requirements of Theorem 13.
2. We can also add the condition that there exist infinitely many
t including one that lies in the range s=2 � t � s, and the
theorem still holds.

For any subset S � GF(2t), one can show that
P

�2S f̂� is
at most jSj1=2 using Plancherel’s identity and Cauchy-Schwartz,
and Theorem 13 shows that we can achieve a sum of 
(jSj1=2)
infinitely often for appropriate multiplicative subgroups S.

C. Proof of Theorem 12

We now employ Theorem 13 to prove Theorem 12. We in
fact prove the following Lemma which clearly establishes The-
orem 12.

Lemma 14: For every ", 0 < " < 1=2, there exist in-
finitely many integers t such that the following holds: Let
N = 22t. There exists a vector r 2 f1;�1gN and Æ =
1
2

�
1 � �((logN)"�1)

�
, such that the number of codewords C

of the code RS-HADt(Æ) with

�(r; C) � N

2

�
1� (1� 2Æ)1=2+"

�
is at least N
(log"N).

Proof: Let s; t be any pair of integers guaranteed by The-
orem 13 with t � s � 2t (we are using one of the remarks fol-
lowing Theorem 13 here). Let S be a multiplicative subgroup
of GF(2t) of size s and f : GF(2t) ! f1;�1g a function such
that X

�2S
f̂� �

r
s

3
: (5)

Let n = 2t, N = 22t and p = (n � 1)=s. Note that s =
�(logN) since we have t � s � 2t. Then S [ f0g consists of
all elements in GF(2t) which are p’th powers of some element
of GF(2t).

We first fix the “received word” r. Let v 2 f1;�1gn be the
vector hf(x)ix2GF(2t) of all values of f . Then r = v

n, i.e. the
vector v repeated n = 2t times, one for each position of the
outer Reed-Solomon code.

Let Æ be a parameter to be specified later and ` = (1� 2Æ)n.
Consider the binary code C = RS-HADt(Æ) obtained by
concatenating an extended Reed-Solomon code of dimension
`+1 = (1�2Æ)n+1 overGF(2t) with Hadt. C has blocklength
N and minimum distance ÆN . We now want to demonstrate sev-
eral codewords in C that are “close” to r. We prove this picking
codewords in C at random from some distribution and showing
that the agreement with r is “large” with good probability.
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Let m = b`=pc and consider a message (degree ` polynomial
over GF(2t)) P of C which is of the form P (x) = R(x)p for
a random polynomial R of degree at most m over GF(2t). The
Reed-Solomon encoding (b1; b2; : : : ; bn) of P satisfies bi 2 S [
f0g for every i, 1 � i � n. It is easy to see that for each i and
each a 2 S, we havePr[bi = a] = p=n, andPr[bi = 0] = 1=n.
Moreover, the choices of bi are pairwise independent.

Now, by definition of the Fourier coefficient, for each i, the
Hadamard codeword Hadt(bi) and the vector v we constructed
above have an unnormalized inner product equal to n � f̂bi (or

equivalently, agree on a fraction
1+f̂bi

2 of positions). For any i,

1 � i � n, the expected value of f̂bi satisfies
p

n

X
�2S

f̂� +
1

n
f̂0 � (n� 1)

ns

X
�2S

f̂� � 1

n
� 1

s

X
�2S

f̂� � 2

n

� 1p
3s

� 2

n
; (6)

where the last inequality follows from Equation (5). Let X de-
note the random variable which is the unnormalized inner prod-
uct of the codeword (encoding the message R(x)p for a random
polynomial R of degree at most m) with the received vector
r = v

n. By linearity of expectation and using (6), we have

E[X ] =
nX
i=1

E[nf̂bi ] �
Np
3s

� 2
p
N � 1:1Np

4s
(7)

for large enough N (since s = �(logN)). Now, for each i,
1 � i � n,

E[f̂
2
bi ] �

p

n

X
�2S[f0g

f̂2� �
1

s
:

Since the bi’s are evaluations of the polynomial R(x)p at the n
field elements for a random R, they are pairwise independent.
Thus the variance of the random variable X is bounded from
above by

E[X
2] =

nX
i=1

E[(nf̂bi)
2] � N3=2

s
: (8)

We now use Chebyshev’s inequality to prove that the inner prod-
uct X is greater than N=

p
4s with probability at least 1=2. In-

deed

Pr[X � Np
4s

] � Pr[X �E[X ] � � N

10
p
4s

]

� Pr[jX �E[X ]j � N

10
p
4s

]

� 400sE[X2]

N2
� 400p

N

<
1

2
(for large enough N ),

where we have used the lower bound on E[X ] from Equation
(7) and the upper bound on E[X2] from Equation (8).

Hence the codewords encoding at least 1
2 � nm of the polyno-

mials of the form R(x)p where R is a polynomial of degree at
most m, differ from r in at most ( 12 � 1

2
p
4s
)N codeword posi-

tions.
We now pick parameters (namely m; Æ) suitably to conclude

the result. Recall that s = �(logN). Picking m = s", we have

(1� 2Æ) =
`

n
= �(

`

ps
) = �(

m

s
) = �

�
(logN)"�1

�
:

Thus the minimum distance Æ (for our choice of m) satisfies
Æ = 1

2

�
1��((logN)"�1)

�
.

Also we have
(1� 2Æ)1=2+" ' s("�1)(1=2+") � (4s)�1=2

for large enough N (since " < 1=2). Thus there exist 
(nm) =
N
(log"N) codewords of RS-HADt(Æ) all of which lie in a
Hamming ball of radius N

2 (1 � (1 � 2Æ)1=2+"). Since Theo-
rem 13 implies that there are infinitely many choices for t that
we could use, we also have infinitely many choices of block-
lengths N available for the above construction, and the proof is
thus complete.

D. Proof of Theorem 11

We now turn to obtaining upper bounds on Lpoly
c (Æ) for a

fixed constant c. One way to achieve this would be to pick
m ' 2c in the above proof, and then pick s ' 2c=(1� 2Æ) and

this would give (roughly)Lpoly
c (Æ) � 1

2

�
1�
�
1�2Æ
6c

�1=2�
. How-

ever this upper bound is better than Æ only for Æ large enough,
specifically for Æ > 1

2 � 1
12c . We thus have to modify the con-

struction of Lemma 14 in order to prove Theorem 11. We prove
the following lemma which will in turn imply Theorem 11.
Since our goal was only to establish Theorem 11, we have not
attempted to optimize the exact bounds in the lemma below.

Lemma 15: For every c and every Æ, we have

Lpoly
c (Æ) � min

0���1=2�Æ

n
(Æ + �)

�
1� (

�

12(2c+ 1)
)1=2

�o
:

Proof: To prove the claimed upper bound on Lpoly
c (Æ),

we will closely follow the construction from the proof of
Lemma 14. Let 0 < Æ < 1=2, 0 � � � (1=2 � Æ), and c
be given. Define �0 = 2� and pick an integer s,

2(2c+ 1)=�0 � s < 6(2c+ 1)=�0

such that the conditions of Theorem 13 are met (we know such
an s exists by the remarks following Theorem 13). Let t be any
integer for which a subgroup S of GF(2t) exists as guaranteed
by Theorem 13 (there are once again infinitely many such values
of t).

Now we describe the actual construction for a particular
Æ; �0; s; t. Let n = 2t, N = n2 and p = (n � 1)=s. As in
the proof of Lemma 14, the code will again be RS-HADt(Æ)
(the messages of the code will thus be polynomials overGF(2t)
of degree at most ` = (1 � 2Æ)n and the code has blocklength
N ). The only change will be in the construction of the received
word r. Now, instead of using as received word the vector vn

(recall that v was the table of values of the Boolean function
f with large Fourier support on a multiplicative subgroup S of
GF(2t)), we will set the first B = (`� �0n) = (1� 2Æ � �0)n
blocks of r to be all zeroes. The last (n�B) blocks of r will be
vectors v(i), B < i � n, which will be specified shortly.

Letm = 2c+1. We will consider the messages corresponding
to polynomials of the form P (x) = (x� z1) � � � (x� zB)R(x)

p

where z1; : : : ; zB of GF(2t) are the B elements of GF(n) that
correspond to the first B positions of the Reed-Solomon code
and R is a random degree m polynomial. Note that

degree(P ) = B + pm = `� �0n+
n� 1

s
(2c+ 1) � `

since we picked s � 2(2c + 1)=�0. By the choice of P , the
codeword (b1; b2; : : : ; bn) corresponding to P (which we abuse
notation and also denote by P ) will agree with r in the first nB
positions (as both begin with a string of nB zeroes). At each
of the remaining (n � B) blocks, we will have bi 2 Si [ f0g
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where Si is a coset S (recall that S is s-element multiplicative
subgroup of GF(2t) consisting of all the p’th powers). Specif-
ically Si = �iS where �i = (zi � z1) � � � (zi � zB). Now, for
B < i � n, define v(i) 2 f1;�1g2t to the value of the func-
tions f (i) where f (i) : GF(2t) ! f1;�1g is a function withP

�2Si f̂
(i)
� �ps=3 as guaranteed by Theorem 13.

Using arguments similar to those in the proof of Lemma 14,
one can show that with probability at least 1=2, the codeword
corresponding to the polynomial P differs from r in at most
E = (n � B)

�
1
2 � 1

2
p
4s

�
n positions. Thus there are at least

1
2n

m codewords of RS-HADt(Æ) that lie within a ball of radius
E around r. Since N = n2, m = 2c+1 and s < 6(2c+1)=�0,
we have !(Nc) codewords in a Hamming ball of radius

N(Æ + �0=2)
�
1�

s
�0

24(2c+ 1)

�
;

and recalling that �0 = 2�, the claimed result follows. To
conclude, we just reiterate that by Theorem 13, for the picked
value of s, there are infinitely many values of t (and therefore
the blocklength N ) for which the code RS-HADt(Æ) has the
claimed properties. Thus we get an infinite family of codes with
the requisite property, and the proof is complete.

We now turn to the proof of of Theorem 11.
Proof: (of Theorem 11) We want to prove Lpoly

c (Æ) < Æ.
Note that when Æ > 1

2 � 1
48(2c+1) , setting � = 1=2� Æ gives

Lpoly
c (Æ) � 1

2

�
1� (

1� 2Æ

24(2c+ 1)
)1=2

�
< Æ :

When Æ � 1
2 � 1

48(2c+1) , setting � = Æ2=48(2c + 1) (this is a
valid setting since it is less than 1=2� Æ), we have

Lpoly
c (Æ) � Æ + �� Æ(

�

12(2c+ 1)
)1=2 < Æ:

Thus we have Lpoly
c (Æ) < Æ in either case.

E. Proof of Theorem 13

The proof proceeds in several steps. We first prove the fol-
lowing Lemma which shows that if a subset S of GF(2t) sat-
isfies a certain property, then there exists a Boolean function
f : GF(2t) ! f1;�1g such that

P
f̂� is large when summed

over � 2 S.
Lemma 16: For any integer t, let S be an arbitrary subset of

elements of the field GF(2t) such that no four (distinct) ele-
ments of S sum up to 0. Then there exists a function f :

GF(2t)! f1;�1g with
P

�2S f̂� �
q

jSj
3 .

Proof: For any set S, the following simple claim identifies
the “best” function f for our purposes.

Claim: Define the function g : GF(2t) ! R by g(x) =P
�2S ��(x). Then the maximum value of

P
�2S f̂� achieved

by a boolean function f is exactly 2�t �Px jg(x)j.
Proof: Indeed

2t
X
�2S

f̂� =
X
x;�2S

f(x)��(x) =
X
x

f(x)
X
�2S

��(x)

=
X
x

f(x)g(x) �
X
x

jg(x)j
with equality holding when f is defined as f(x) = sign(g(x)).

Thus the above claim “removes” the issue of searching for an
f by presenting the “best” choice of f , and one only needs to

analyze the behavior of the above character sum function g, and
specifically prove a lower bound on

P
x jg(x)j.1

To get a lower bound on
P

x jg(x)j, we employ Hölder’s in-
equality which states thatX

x

jh1(x)h2(x)j �
 X

x

jh1(x)jp
!1=p X

x

jh2(x)jq
!1=q

;

for every positive p and q that satisfy 1
p +

1
q = 1. Applying this

with h1(x) = jg(x)j2=3, h2(x) = jg(x)j4=3, p = 3=2 and q = 3
gives  X

x

jg(x)j
!2=3 X

x

g(x)4

!1=3

�
X
x

g2(x): (9)

This inequality is also a consequence of log convexity of the
power means (see Hardy, Littlewood, Polya [15]; Theorem 18).

Now
P

x g
2(x) =

P
�1;�2

P
x ��1+�2(x) which equals jSj �

2t (the inner sum equals 2t whenever �1 = �2 and 0 otherwise,
and there are jSj pairs (�1; �2) with �1 = �2). Note that this
also follows from Plancherel’s identity.

SimilarlyX
x

g4(x) =
X

�1;�2;�3;�42S

X
x

��1+�2+�3+�4(x)

equals N4;S � 2t where N4;S is the number of 4-tuples in
(�1; �2; �3; �4) 2 S4 that sum up to 0. But the property
satisfied by S, no four distinct elements of S sum up to 0,
and hence the only such 4-tuples which sum up to 0 are those
which have two of the �’s equal. There are at most 3jSj2
such 4-tuples (�1; �2; �3; �4) with two of the �’s equal. Hence
N4;S � 3jSj2, and hence

P
x g

4(x) � 3jSj22t. Plugging this
into Equation (9) we get, when f(x) = sign(g(x)),X

�2S
f̂� =

1

2t

X
x

jg(x)j �
s

jSj3
3jSj2 =

r
jSj
3
:

Given the statement of Lemma 16, we next turn to construct-
ing subgroups of GF(2t) with the property that no four (or
fewer) distinct elements of the subgroup sum up to 0. To con-
struct such subgroups, we make use of the following simple
lemma about the existence of certain kinds of cyclic codes. For
completeness sake, we quickly review the necessary facts about
cyclic codes. A binary cyclic code of blocklength n is an ideal
in the ring

R = F2 [X ]=(Xn � 1):
It is characterized by its generator polynomial g(X) where
g(X)j(Xn�1). The codewords correspond to polynomials inR
that are multiples of g(X) (the n coefficients of each such poly-
nomial form the codeword symbols). A (binary) cyclic code is
said to be maximal if its generator polynomial is irreducible over
GF(2). A BCH code is a special kind of cyclic code whose gen-
erator polynomial is defined to be the minimal polynomial that
has roots �; �2; : : : ; �d�1. Here � is a primitive n’th root of
unity over GF(2), and d is the “designed distance” of the code.

Lemma 17: Let k � 4 be any integer. Then there exists an
integer s in the interval [k; 3k) such that a maximal binary BCH
code of blocklength s and minimum distance at least 5 exists.
1It can be shown that the representation of the field (as a vector space of

dimension t over GF(2)) does not affect the value distribution of g, and thus
we can pick an arbitrary representation of the field, and the result will be the
same.
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Proof: Let s be an integer of the form 2f � 3 in the range
[k; 3k) (such an integer clearly exists). Let � be the primitive
s’th root of unity over GF(2) and let h be the minimal polyno-
mial of � over GF(2). Clearly, h(�2

i

) = 0 for all i � 1, and
hence h(�2) = h(�4) = 0. Since �2

f

= �3, we also have
h(�3) = 0. Now the consider the cyclic code Ch of blocklength
s with generator polynomial h. It is clearly maximal since h,
being the minimal polynomial of �, is irreducible over GF(2).
Also h(�i) = 0 for i = 1; 2; 3; 4. Using the BCH bound on
designed distance (see, for example, Section 6.6 of [22]), this
implies that the minimum distance ofCh is at least 5, as desired.

Lemma 18: Let k � 4 be any integer. Then there exists an
integer s in the interval [k; 3k) with the following property. For
infinitely many integers t, including some integer which lies in
the range s=2 � t � s, there exists a multiplicative subgroup S
of GF(2t) of size s such that no four or fewer distinct elements
of S sum up to 0 (in GF(2t)). Moreover, for any non-zero � 2
GF(2t) this property holds for the coset �S as well.

Proof: Given k, let k � s < 3k be an integer for which
there exists a binary BCH codeC of blocklength s as guaranteed
by Lemma 17 exists. Such a code is generated by an irreducible
polynomial h where h(x)j(xs � 1). Let t = degree(h); clearly
t � s. Consider the finite field F = F2 [X ]=(h(X)) which is
isomorphic to GF(2t), and consider the subgroup S of size s
of F comprising of f1; X;X2; X3; : : : ; Xs�1g. The fact that C
has distance at least 5 implies that

P
i2GX

i is not divisible by
h(X) for any set G of size at most 4, and thus no four or fewer
distinct elements of S sum up to 0 in the field F . This gives
us one value of t � s for which the conditions of Lemma 18
are met, but it is easy to see that any multiple of t also works,
since the same S is also a (multiplicative) subgroup of GF(2kt)
for all k � 1. In particular we can repeatedly double t until it
lies in the range s=2 � t � s (note that we had t � s to begin
with). The claim about the cosets also follows easily, since if
a1 + a2 + a3 + a4 = 0 where each ai 2 �S, then ��1a1 +
��1a2 + ��1a3 + ��1a4 = 0 as well, and since ��1ai 2 S,
this contradicts the property of S.

We now have all the ingredients necessary to easily deduce
Theorem 13.

Proof: (of Theorem 13) Theorem 13 now follows from
Lemma 16 and Lemma 18. Note also that the statement of
Lemma 18 implies the remarks made after the statement of The-
orem 13.

F. Proof of Theorem 10

We begin by bounding the expected number of codewords in
a random ball of an MDS code. Recall that an MDS code is an
[n; k] code whose minimum distance equals (the optimum value
of) (n� k + 1).

Lemma 19: For any MDS [n; k]q code C and a � k,
1

e

�
n

a

�
qk�a � E

x
[jB(x; n� a) \ Cj] �

�
n

a

�
qk�a:

Proof: The upper bound follows from the claim that for
any set Sa of a positions, the expected number of codewords
which agree with x on Sa is at most qk�a. To show this claim,
first fix a subset Sk � Sa of k of these positions. For each x,

there is a unique codeword wx that agrees with x on Sk. The
probability that wx agrees with x on Sa therefore equals qk�a.

The lower bound follows from a similar claim: that for any set
Sa of a positions, the probability that a codeword agrees with x
on Sa and disagrees with x outside of Sa is at least qk�a=e. This
claim is true because the probability that wx above agrees with
x on Sa and disagrees with x outside of Sa equals qk�a(1 �
1=q)n�a. For an MDS code, n < q+k�1, so n�a � n�k <
q � 1 so (1� 1=q)n�a > 1=e.

Corollary 20: For any constants ";  > 0, for large enough
n, Lpoly

n (1�n"�1) � 1� (1� )n"�1=", where Lpoly
q denotes

the analog of Lpoly for q-ary codes.
Proof: Use an MDS [n; k]q code with n = q and k = n",

such as a Reed-Solomon code. Then�
n

a

�
qk�a �

�n
a

�a
nk�a =

nk

aa
:

Letting a = (1 � )n"=", for large enough n we have aa �
n(1�=2)n

"

, and the expected number of codewords in a ball of
radius n� a is 
(n


2 n

"

), yielding the corollary.

Proof: (of Theorem 10) We show that the family of codes
C that we construct satisfies the property that every memberC 2
C with block length n satisfies
1. The relative minimum distance ofC is at least 1

2

�
1� n"�1=2

�
.

2. The list-of-`(n) decoding radius of C is at most
1
2

�
1� 1

3"n
"�1=2�.

This suffices to prove the theorem.
The codes C in our family are concatenations of Reed-

Solomon codes with Hadamard codes. For such a concatenated
code C to have block length n, the RS code must have block
length

p
n, and the relative minimum distance of C is half the

relative minimum distance of the RS code. The theorem then
follows from Corollary 20 for `(n) growing exponentially in n.

IV. LIST DECODING RADIUS VS. RATE

We now prove Theorem 5.
Proof: (of Theorem 5) For each fixed integer c � 1 and

0 < p < 1=2, we use the probabilistic method to guarantee
the existence of a binary linear code C of blocklength n, with
at most c codewords in any ball of radius e = pn, and whose
dimension is k = b(1�H(p)� 1=c)nc, for all large enough n.
This clearly implies the lower bound on Uconst

c claimed in the
statement of the Theorem.

The code C = Ck will be built iteratively in k steps by ran-
domly picking the k basis vectors in turn. Initially the code C0

will just consist of the all-zeroes codeword b0 = 0n. The code
Ci, 1 � i � k, will be successively built by picking a ran-
dom (non-zero) basis vector bi that is linearly independent of
b1; : : : ; bi�1, and setting Ci = span(b1; : : : ; bi). Thus C = Ck
is an [n; k]2 linear code. We will now analyze the list of c de-
coding radius of the codes Ci, and the goal is to prove that the
list of c decoding radius of C is at least e.

The key to analyzing the list of c decoding radius is the fol-
lowing potential function SC defined for a code C of block-
length n:

SC =
1

2n

X
x2f0;1gn

2
n
c �jB(x;e)\Cj : (10)
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For notational convenience, we denote SCi be Si. Also denote
by T i

x the quantity jB(x; e) \Cij, so that Si = 2�n
P

x 2
nT ix=c.

Let B = jB(0; e)j = jB(0; pn)j; then B � 2H(p)n where
H(p) is the binary entropy function of p (see for example The-
orem (1.4.5) in [22, Chapter 1]). Clearly

S0 = 1�B=2n +B2n=c=2n � 1 + 2n
�
H(p)�1+1=c

�
: (11)

Now once Ci has been picked with the potential function Si
taking on some value, say Ŝi, the potential function Si+1 for
Ci+1 = span(Ci[fbi+1g) is a random variable depending upon
the choice of bi+1. We consider the expectation E[Si+1jSi =
Ŝi] taken over the random choice of bi+1 chosen uniformly from
outside span(b1; : : : ; bi).

E[Si+1] = 2�n
X
x

E[2
n=c �T i+1

x ]

= 2�n
X
x

E[2
n=c�
�
jB(x;e)\Cij+jB(x;e)\(Ci+bi+1)j

�
]

= 2�n
X
x

�
2n=c �T

i
x E
bi+1

[2
n=c �T ix+bi+1 ]

�
(12)

where in the second and third steps we used the fact that if
z 2 B(x; e)\Ci+1, then either z 2 B(x; e)\Ci, or z+ bi+1 2
B(x; e) \ Ci. To estimate the quantity (12), first note that if
we did not have the condition that bi+1 was chosen from out-
side span(b1; : : : ; bi) (12) would simply equal Ŝ2

i . This follows
from the fact that x and x + bi+1 are independent and the def-
inition of Ŝi. Now we use the simple fact that the expectation
of a positive random variable taken over bi+1 chosen randomly
from outside span(b1; : : : ; bi) is at most (1� 2i�n)�1 times the
expectation taken over bi+1 chosen uniformly at random from
f0; 1gn. Hence, we get that

E[Si+1] � Ŝ2
i

(1� 2i�n)
: (13)

Applying (13) repeatedly for i = 0; 1; : : : ; k � 1, we conclude
that there exists an [n; k] binary linear code C with

SC = Sk � S2k

0Qk�1
i=0 (1� 2i�n)2k�i

� S2k

0

(1� 2k�n)k
� S2k

0

1� k2k�n
(14)

since (1 � x)a � 1 � ax for x; a � 0. Combining (14) with
(11), we have

Sk � (1� k2k�n)�1
�
1 + 2n(H(R)�1+1=c)�2k

and using (1 + x)a � (1 + 2ax) for ax� 1, this gives
Sk � 2(1 + 2 � 2k+(H(p)�1+1=c)n) � 6; (15)

where the last inequality follows since k = b(1�H(p)�1=c)nc.
By the definition of the potential Sk (10), this implies that

2n=c�jB(x;e)\Cj � 6 � 2n < 2n+3;
or

jB(x; e) \Cj � (1 +
3

n
)c

for every x 2 f0; 1gn. If n > 3c, this implies jB(x; e) \Cj <
c + 1 for every x, implying that the list of c decoding radius of
C is at least e, as desired.

Remark: One can also prove Theorem 5 with the additional
property that the relative minimum distance �(R) of the code
(in addition to its list decoding radius for list size c) also satisfies
�(R) � H�1(1 � R � 1=c). This can be done, for example,
by conditioning the choice of the random basis vector bi+1 in

the above proof so that span(b1; b2; : : : ; bi+1) does not contain
any vector of weight less than pn. It is easy to see that with this
modification, Equation (13) becomes

E[Si+1] � Ŝ2
i

(1� 2i+H(p)n�n)
:

Using exactly similar calculations as in the above proof, we can
then guarantee a codeC of dimension k = b(1�H(p)�1=c)nc
and minimum distance at least pn such that SC = O(1).

V. APPLICATION TO HIGHLY LIST DECODABLE CODES

We now apply the proof technique from the previous section
to give constructions of concatenated codes that are list decod-
able from very high noise and yet have good rate. We first de-
scribe the setting that we are interested in, which is the same as
the one that was considered in [13].

Given " > 0, we are interested in asymptotically good fam-
ily of binary linear codes C" that can be list decoded efficiently
for up to a fraction (1=2 � ") of errors. The goal is to give
explicit (polynomial time) constructions of such code families
with a reasonable rate. Such codes have a variety of applica-
tions some of which are discussed in [13], [20]. The best ear-
lier result, due to [13], gives constructions with a rate of 
("6)
(the construction is an algebraic-geometric code concatenated
with any inner code like the Hadamard code that has large min-
imum distance). Note that if we did not care about efficient
constructibility or efficient list decoding, then Theorem 5 guar-
antees that such code families exist with rate 
("2), and this is
the best possible asymptotically.

Using the codes guaranteed by Theorem 5 as inner codes in
a concatenation scheme with outer Reed-Solomon code, we can
show that a rate of 
("6) can be achieved without relying on
algebraic-geometric codes, thus “simplifying” the construction
in [13]. This does not, however, improve the quantitative as-
pects of the earlier result. Instead we prove an adaptation of
Theorem 5 that guarantees the existence of codes that have cer-
tain properties tailor-made for the weighted list decoding algo-
rithm for Reed-Solomon codes from [12] to work well. Using
such codes as inner codes in a concatenation scheme with outer
Reed-Solomon code, gives us code families of rate 
("4) that
are efficiently list decodable from a (1=2� ") fraction of errors.
This is summarized in the following theorem, which is the main
result of this section.

Theorem 21: There exist absolute constants b; d > 0 such
that for each fixed " > 0, there exists a polynomial time con-
structible code family C with the following properties:
1. rate(C) � "4

b
2. Rad(C; d"�2) � 1

2 � "
3. �(C) � ( 12 � ")
4. There is a polynomial time list decoding algorithm for C that
corrects up to a fraction (1=2� ") of errors.

The above theorem will follow from Theorem 24, which is
stated and proved in Section V-B.

A. An “inner code” construction

A.1 Existence of a good code

We now prove the existence of codes that will serve as ex-
cellent inner codes in our later concatenated code construction.
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The proof is an adaptation of that of Theorem 5. We will then
show how such a code can be constructed in 2O(n) time (where
n is the blocklength) using an iterative greedy procedure.

Lemma 22: There exist absolute constants �;A > 0 such that
for any " > 0 there exists a binary linear code family C with the
following properties:
1. rate(C) = �"2

2. For every code C 2 C and every x 2 f0; 1gn where n is the
blocklength of C, we haveX

c2C
Æ(x;c)�(1=2�")

�
1� 2Æ(x; c)

�2 � A : (16)

Proof: For every large enough n, we will prove the exis-
tence of a binary linear codeCk of blocklength n and dimension
k � �"2n which satisfies Condition (16) for every x 2 f0; 1gn.

The proof will follow very closely the proof of Theorem 5
and in particular we will again build the code Ck iteratively in
k steps by randomly picking the k basis vectors b1; b2; : : : ; bk in
turn. Define Ci = span(b1; : : : ; bi) for 0 � i � k. The key
to our proof is the following potential function WC defined for
a code C of blocklength n (compare with the potential function
(10) from the proof of Theorem 5):
WC =

1

2n

X
x2f0;1gn

2
n
A

P
c2C:Æ(x;c)�(1=2�")(1�2Æ(x;c))2 : (17)

(The constant A will be fixed later in the proof, and we assume
that A > ln 4.) Denote the random variable WCi by the short-
hand Wi, and for x 2 f0; 1gn, define

Ri
x =

X
c2Ci

Æ(x;c)�(1=2�")

(1� 2Æ(x; c))2 ; (18)

so that Wi = 2�n
P

x 2
n
A �Ri

x .
Now, exactly as in the proof of Theorem 5, we have Ri+1

x =
Ri
x + Ri

x+bi+1
, and using this it is straightforward to show that

E
bi+1

[Wi+1jWi = Ŵi] = Ŵ 2
i over the choice of bi+1 uniformly

at random from f0; 1gn, and it is therefore easy to argue that

E[Wi+1jWi = Ŵi] � Ŵ 2
i

1� 2i�n
: (19)

when the expectation is taken over a random choice of bi+1
outside span(b1; : : : ; bi). Applying (19) repeatedly for i =
0; 1; : : : ; k � 1, we conclude that there exists an [n; k] binary
linear code C = Ck with

WC =Wk � W 2k

0

1� k2k�n
: (20)

If we could prove, for example, that WC = O(1), then this
would imply, using (17), that Rk

x � A for every x 2 f0; 1gn
and thus C would satisfy Condition (16), as desired. To show
this, we need an estimate (upper bound) on W0, to which we
turn next.

Define A = (1=2 � ")n. Since C0 consists of only the all-
zeroes codeword, we haveR0

x = (1�2wt(x)=n)2 if wt(x) � a
and R0

x = 0 otherwise (here we use wt(x) = �(x;0) to denote
the Hamming weight of x). Let us denote 2x by exp2(x). We
now have
W0 = 2�n

X
x2f0;1gn

exp2
� n
A
R0
x

�

� 1 + 2�n
AX
i=0

�
n

i

�
exp2

� n
A

�
1� 2i

n

�2�

� 1 + n2�n exp2
�

max
0�i�A

n
H
� i
n

�
n+

4n

A

�1
2
� i

n

�2o �
� 1 + n2un (21)

where
u

def
= max

0�y�(1=2�")

n
H(y)� 1 +

4

A

�1
2
� y
�2o

:

We now claim that for every y, 0 � y � 1=2, we have H(y) �
1� 2

ln 2 (
1
2 �y)2. One way to prove this is to consider the Taylor

expansion around 1=2 of H(y), which is valid for the range 0 �
y � 1=2. We have H 0(1=2) = 0 and H 00(1=2) = �4= ln 2.
Also it is easy to check that all odd derivatives of H(y) at y =
1=2 are zero while the even derivatives are non-positive. Thus

H(y) � H(1=2)�H 00(1=2)
(1=2� y)2

2
= 1� 2

ln 2

�1
2
� y
�2
:

Therefore
u � max

0�y�(1=2�")

� 4
A
� 2

ln 2

��1
2
� y
�2

= �4
� 1

ln 4
� 1

A

�
"2 ; (22)

since A > ln 4. Combining (20), (21) and (22), it is now
easy to argue that we have WC = Wk = O(1) as long as
k < �un, which will be satisfied if k < 4( 1

ln 4 � 1
A)"

2n. Thus
the statement of the lemma holds, for example, with A = 2 and
� = 0:85.

Remark: Arguing exactly as in the remark following the
proof of Theorem 5, one can also add the condition �(C) �
(1=2 � ") to the claim of Lemma 22. The proof will
then pick bi+1 randomly from among all choices such that
span(b1; b2; : : : ; bi+1) \ B(0; ( 12 � ")n) = ;.

A.2 A greedy construction of the “inner” code

We now discuss how a code guaranteed by Lemma 22 can be
constructed in a greedy fashion. We will refer to some notation
that was used in the proof of Lemma 22. The algorithm works
as follows:

Algorithm GREEDY-INNER:

Parameters: Dimension k; "; A > 0 (where A is the absolute
constant from Lemma 22)

Output: A binary linear code C = GREEDY(k; ") with di-
mension k, blocklength n = O(k="2) and minimum distance
(1=2 � ")n such that for every x 2 f0; 1gn, Condition (16)
holds.
1. Start with b0 = 0.
2. For i = 1; 2; : : : ; k:
� Let Ui = fx 2 f0; 1gn : span(b1; b2; : : : ; bi�1; x) \
B(0; (1=2� ")n) = ; g.
� Pick bi 2 Ui that minimizes the potential function Wi =

2�n
P

x 2
n
A �Ri

x , where Ri
x is as defined in Equation (18) (break

ties arbitrarily)
3. Output C = span(b1; b2; : : : ; bk).
The following result easily follows from the proof of Lemma 22
and since each of the k iterations of the for loop above can be
implemented to run in 2O(n) time.

Lemma 23: Algorithm GREEDY-INNER constructs a code
GREEDY(k; ") with the desired properties in k � 2O(n) time.

B. A concatenated code construction

The statement of Theorem 21 follows immediately from the
concatenated code construction guaranteed by the following the-
orem.
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Theorem 24: There exist absolute constants b; d > 0 such
that for every integer K and every " > 0, there exists a con-

catenated code CK
def
= RS� GREEDY(m; "=2) (for a suitable

parameter m) that has the following properties:
1. CK is a linear code of dimension K, blocklength N � bK

"4 ,
and minimum distance at least ( 12 � ")N .

2. The generator matrix of CK can be constructed in NO("�2)

time.
3. CK is (( 12 � ")N; d="2)-list decodable; i.e. any Hamming
ball of radius (1=2 � ")N has at most O("�2) codewords of
CK .
4. There exists a polynomial time list decoding algorithm for
CK that can correct up to (1=2� ")N errors.

Proof: The code CK is constructed by concatenating an
outer Reed-Solomon code over GF(2m) of blocklength n0 =
2m and dimension k0 = K=m (for some integer m which will
be specified later in the proof) with an inner code Cinner =
GREEDY(m; "=2) (as guaranteed by Lemma 23). Since the
blocklength of Cinner is n1 = O(m"2 ), the concatenated code
CK has dimension K and blocklength

N = O
�n0m

"2

�
(23)

and minimum distance D at least

D �
�
1� K

mn0

��1
2
� "

2

�
: (24)

For ease of notation, we often hide constants using the big-Oh
notation in what follows, but in all these cases the hidden con-
stants will be absolute constants that do not depend upon ". Note
that sinceCinner is constructible in 2O(n1) = 2O(m="2) time, and
m = logn0, the generator matrix for CK can be constructed in
NO("�2) time. This proves Property 2 claimed in the theorem.

We will now present a polynomial time list decoding algo-
rithm for CK to recover from a fraction (1=2� ") of errors with
a small (O("�2)) list size. This will clearly establish both Prop-
erties 3 and 4 claimed in the theorem.

Let y 2 f0; 1gN be any received word. We wish to find a list
of all codewords c 2 CK such that �(y; c) � 1=2 � ". For
1 � i � n0, denote by yi (resp. ci) the portion of y (resp. c)
that corresponds to the ith codeword position of the outer Reed-
Solomon code. For 1 � i � n0 and � 2 GF(2m), define

wi;� = max
n�1

2
� "

2
��(yi; Cinner[�])

�
; 0
o

(25)

(hereCinner[�] denotes the inner encoding of � interpreted as an
m-bit string). By the property of Cinner guaranteed by Lemmas
22 and 23, we have, for each i, 1 � i � n0,X

�2GF(2m)

w2
i;� � B0 ; (26)

for some absolute constant B0.
Now, consider the following decoding algorithm for CK .

First, the inner codes are decoded by a brute force procedure
that goes over all codewords. Specifically, for each position i
of the outer Reed-Solomon code, the inner decoder passes a list
of all field elements � with the respective weights wi;� defined
in Equation (25). The weight wi;� may be interpreted as the
reliability information for the possibility that the i’th symbol of
the outer codeword was the field element �. The inner decoding
takes O(2m) = O(n0) time for each of the n0 inner codes, and
thus the total time required to perform this step is poly(N). We
now have to perform decoding of the outer Reed-Solomon code

taking into account these weights. For this we use a weighted
(or “soft-decision”) list decoding algorithm for Reed-Solomon
codes from [12], similar to its use in [13] for decoding the Reed-
Solomon concatenated with the Hadamard code. This algorithm
guarantees to find, in time polynomial in n0 and 1=, a list of
all codewords c 2 CK that satisfy

n0X
i=1

wi;ci �
vuut�n0 � n0 �K=m+ 1

1 + 

�
�
X
i;�

w2
i;� (27)

where  > 0 is a parameter to be set later, and by abuse
of notation wi;ci = wi;�i where �i 2 GF(2m) is such that
Cinner[�i] = ci. Moreover, it is also known that there will be at
most (1 + 1=) codewords c that satisfy Condition (27) for any
choice of weights wi;�, and thus the algorithm will output a list
of at most O(1=) codewords.

Using (25) and (26), we have that Condition (27) will be sat-
isfied if

n0X
i=1

�1
2
� "

2
� �(yi; ci)

n1

�
�
r�

n0 +
K

m

�
� n0B0

which is equivalent to

�(y; c) � N

�
1

2
� "

2
�
r
B0
�
 +

K

mn0

��
(28)

and, as long as we pick  � "2

8B0 and m such that K
mn0

=
K

m2m � "2

8B0 , we can hence conclude that Condition (27) is sat-
isfied provided

�(y; c) �
�1
2
� "
�
N:

Thus we have a decoding algorithm that outputs a list of all
O(1=) = O("�2) codewords that differ from y in at most
(1=2 � ")N positions. Finally, by our choice of m, we have
mn0 = O(K="2), and plugging this into (23) and (24), we have
that the blocklength N of CK satisfies N = O(K="4) and the
distance D satisfies D � (1=2� ")N , as desired.

Discussion: The time required to construct a code with the
properties claimed in Theorem 24, though polynomial for ev-
ery fixed ", grows as NO("�2). Thus these codes are not uni-
formly constructive (i.e. are constructible in O(f(")nc) time for
a fixed constant c, independent of ", for some arbitrary func-
tion f ). If one uses the best known algebraic-geometric codes
(which in particular beat the Gilbert-Varshamov bound) as the
outer code instead of Reed-Solomon codes, one can carry out
the code construction of Theorem 24 in 2O("

�2 log(1="))Nc time
for a fixed constant c (the constant c will depend upon the time
required to construct the outer algebraic-geometric code). This
is not entirely satisfying since the construction complexity of
such algebraic-geometric codes that beat the Gilbert-Varshamov
bound is still quite high. It is an interesting open question to
find an alternative, simpler construction of uniformly construc-
tive codes which meet the requirements of Theorem 24.

VI. CONCLUDING REMARKS

In this paper, we reported codes with non-trivial list decoding
properties. One of our results was to show the existence of linear
codes that have an arbitrarily large polynomial number of code-
words in a Hamming ball of relative radius strictly less than the
relative distance. While it is easy to show that non-linear codes
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with this property exist (by a simple random coding argument),
the situation for linear codes is more tricky. Recently, the tech-
niques used in Section III of this paper were used together with
some new ideas to prove that, under a widely believed number-
theoretic conjecture, the result of Conjecture 9 holds [11] (see
also [10, Chap. 4]). However, this does not subsume the result of
Theorem 11 in this paper, since our result holds unconditionally
without the need for any unproven number-theoretic conjecture.

We also demonstrated the existence of codes of good rate with
a small number of codewords in a Hamming ball of large radius
(Theorem 5). Our proof, however, was highly non-constructive
and does not even give a high probability result. It is an open
question whether a random linear code satisfies the property
claimed in Theorem 5 with high probability.

We then showed that the statement of Theorem 5 can be
adapted to guarantee the existence of certain linear codes which
serve as good (for purposes of list decoding) inner codes in a
concatenation scheme with an outer Reed-Solomon code. This
in turn gave us an efficiently constructible family of binary lin-
ear codes of rate 
("4) and relative distance at least (1=2� "),
which can be efficiently list decoded from up to a ( 12 � ") frac-
tion of errors, using lists of sizeO("�2). This improves upon the
results claimed in [13] (the best rate achieved by [13] for such
families of codes was 
("6)). The time required to construct
such a code, though polynomial for every fixed ", grows expo-
nentially in 1=", and it will be desirable to, if possible, bring this
down to polynomial in both N and 1=".
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