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Abstract

In this paper we describe a polynomial time aige-
rithm for computing the values of variables z,...,7;
when some of their bits and some linear relationships be-
tween thern are known. The algorithm is essentially op-

timal in its use of information in the sense that it can be

applied as soon as the values of the z; become nniguely
determined by the constraints. Its cryptanalytic signifi-
cance is demonstrated by two applications: breaking lin-
ear congruential generators whose outpnts are truncated,
and breaking Blum's protocol for exchanging secrets.

1. Introduction

The design and analysis of cryptographic schemes
and protocols has been a very active research area in re-
cent years. A large number of cryptosystems, signature
schemes, key distribution schemes, key sharing schemes,
secret exchange schemes, pseudo random bit generators,
and a variety of protocols were proposed in the literature.
However, progress in cryptographic research was accom-
panied by progress in cryptanalytic research, and some of
thesc schemes and protocols were shown to be insecure.
This game of proposing and breaking schemes might seem
a bit strange, but in the absence of any techniques for
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proving lower bounds on the complexity of problems in
NP, it is probably unavoidable.

To make researchin cryptography less empirteal, pro-
ponents of new schemes and protocols should carefully list
all the assumptions they make abont the computational
complexity of varicus problems, and rigorously prove the
security of their proposal under these assumptions. "The -
proof becomes particularly usefnl when the security of the
scheme i3 shown to he equivalent to the complexity of a
single well studied problem such as factoring or discrete
log. An alternative approach is to develop schemes which
are not based on a specific problem but on any one-way
funciion. The large class of possible implementations of
these schemes makes them less vulnerable to attacks (but
still leaves the possibility that such functions do not exist
or that P =NP).

One commen idea which is used in several of these
schemes and protocols is to hide the values of certain vari-
ables by applying (regular or modular) arithmetic opera-
tions fo them and then truneating the binsry representa-
tions of the results. A simple scheme of this type {which
was used extensively on the early computers) generates a
pseudo random sequence of numbers by alternately squar-
ing the previons n bit value and discarding the top and
bottom nf2 bits of the 2r-bit result.

The purpose of this paper is to analyze the security
of such procedures in a general setiing, The main result
is a novel eryptanalytic technigne which can solve many
of the instances of truncated linearly related variables in
polynomial time., We demonsirate the power of this tech-
nique by describing two applications:

1. It simplifies, generalizes, and puts in a clearer per-
spective the recent resuli by Frieze, Kannan and La-
garias [ 3| that truncated linear congruential genera-
tors are insecure.

2. Ii shows that an assumption in Blum’s protoeol for

exchanging secrets | 1] about the infeasibility of a
certain computational task is not correct and hence
the protocol is insecure. This example is particularly
surprising since at first glance the protocol appears
to be inherently quadratic while cur techniqnes are
inherently linear.



We believe that other applications of the technigue
will be found in the future.

2. Formulation of the Problem

Let m be a given number and et zi,...,%; be &
unkrown values in the range 0 < m; < m which are
related by ! independent homogeneous linear equations
{mod m):

&
(1.) Eafx‘-:() (mod m), j=1,...;
£=1

The coefficients af‘ and the modnlus m are assumed
to be known, but [ < k and ilis the #;’s are not nniquly
defined. However, we are given {or somebow obtain) cer-
tain bits of each x;, and our goal is to combine this partial
knowledge with the given linear relationships in order to
compute the remaining bits of all the z:’s. Our main
tools will come from the geometry of numbers. Let us
recall some facts:

A [attice is defined to be the set of pd’mts

k
L={§{§=>_ ab,o €2}

i=1

y_vhere 5,- are linearly independent vectors in R*. The set
B, is called a Basis and k is the démension of the lattice.
The determinant of a lattice is defined to be ihe absoluie
value of the determinant of the matrix whose rows are
;. Geometrically the determinant can be interpreted as
the volume of the parallelepiped ‘spanned by the basis
vectors. Using this interpretation it is possible to prove
that the determinant is equnal to the inverse of the density
of the lattice (where the density is the average oumber
of lattice poinis per unit volume). This characterization
shows that the determinant is independent of the choice
of basis, We define a set of k linearly independent vectors
in L inductively:

ify is the shortest vector in L.

;41 is the shortest vector in L which is linearly in-
dependent of #y,..., ;.

{Ties are broken in an arbitrary way.}

The lengths A; =|| #; || of these vectors are called
the successive minima of the lattice.

Definition: A lattice I ¢ R* with determinant D is
reqular with constant ¢ if Ay < eD%.

Generally it is easier o work with Ay than with Ag.
Thus we will rely on the following lemma to transform
lower bounds for A; to upper bounds for Ay.

k
Lemuma L: If & > ¢D# then Ay < o7 ¢~ ~H D% where
% is Hermite's constant.

Proof: Minkowski's second theorem | 2] tells us that

&
. H}‘,;S'yED

i=1

and therefore by using the lower bound for A;, { =
i,...,k — 1 we get the desired upper bound for Ak

Although the value of Heemite's constant is mot
known for & > 9, we have in | 2] the upper estimate
~g < k. 'Fhis estimate is not far from the actual value,
since it is known that -y, is of size O(k) | 10] . In fact

/55 D% | 5] . This also
shows that most Iattices will be regular with constants
which are not too large.

most lattices will satisfy Ay >

Let us return to our problem. Recall eguaticn {1}
Let L be the lattice in B spanned by the I vectors &7
(the coefficients of the known modular relations) and the
k vectors mé; where & are the unii vectors along the
coordinate axes.

Observe that L consists precisely of those vectors
7 €R* which are known to sabisfy

3
E #:2; = 0 {med m)

=1

The determinant of I is m*~'. To see this we use
the characterization of the determinant as the inverse of
the density. To calculate the density observe that in a
hypercube with side m there will be mt points in the
lattice and hence the demsity is m'™* and therefore the
determinant is m*t.

We are now ready fo state the main theorem.

Theorem 1: Suppose that the lattice L defined above
has determinant D and dimension k. Assume that L is
regular with constant ¢ and define & = ((log D)/k) + & +
%logk +loge+ 1. Then i we are either given as inpuis

(i) the s most sighificant bits of sl the ;. Or

(ii) the s least significant bits of all the ; and m is odd.
Then we can recover the z; completly in polynomial
time.

Proof: We use a three stage algorithm: First apply a
lattice reduction algorithm to the latiice of known mod-
ular relations L o get get modular equations with small
coefficients. Now use the known bits of the z; to traas-
form these equations to equations over the integers. From
these equations over the integers recover the exact values _
of the z;.

We apply the algorithm of Lenstra, Lensira and Lo-
vasz in | 8] to the lattice of modular relations to obtain a



good basis. They prove the following:

Theorem: (LLL) There exits a polynomial time algo-
rithm that on input L finds a basis &; such that || b; ||<
28 ;.

By our assumption on the A; this means that we can
find linearly independent vectors % such that

| & < 2%, < 25cD%,

As o are in L

k .
Z‘wf:ﬂi =0 (modm), j=1,...,1

i=1

These equations can be regarded as equations over the
integers by letting

k -

Fol — .
E wlz; = dym
i=1

where the d;’s are integers.

From this point on the proof depends on whether con-
dition (i} or condition {ii) of the theorem holds. Assume
first condition (i} ie., that we know the s most significant
bits of all the z;’s.

Decompose ; into z
and |z£2)] < mj2s,

(1)

(1)

2 .
-+ :':E ) where x;~ is known

This means that

k k k )

E Iz, = 7 (1) 7 o2

Jwiz =3 wlal 4 L
i=1

i=l1 i=1

The first sum is known, and the second sum can be
bounded since by the definition of &

k
A Y .
a
.?_..f w;
=l

-"’;(2) <|| @ || - 2 ||< 2%03%\/125"; < mf2

Since the uncertainty is less than m /2 and we know
that the total sum is a multiple of m we can calculate it
exactly and hence determine dy. This finishes the treat-
ment of case (i). :

Assuine now that condition (ii) holds instead. Then:
koo '
a1 <13 wlad fm < |87 Y fm < 25003 VE < 2772
i—1

If we consider the equation

k
Z wle; = dym (mod 27)
i=1

everything is known except d;. Since m is odd we can cal-
culate d; uniquely {mod 2°). Finally the size estimates
of the d;’s determine the d;’s over the integers. Once the
d; are determined all that remains are k linearly jnde-
pendent equations in k unknowns over the rationals and
these can be easily solved in polynomial time. §

‘Remark: It is also possible to consider the case when

we know a window of consecutive bits in the z;’s, but not
necesgarily the most or least significant bits. However in
this case the analysis is harder, and the conditions on m
turn out to be complicated. Thus we omit this analysis.

Remark: The leading term in 4 is log D/k, which equals
(% — I)logm/k by the definition of ). When the & un-
known values z; are related by [ independent linear equa-
tions {mod m), at least (k—1I}log m bits are required to
specify a particular solution. Consequently, the problem
cannot be solved uniquely if fewer than ((k — I}/k)logm
ofthe bits of each #; are known. When k is fixed our algo-
rithm matches this information-theoretic bound up to an
additive constant, and thus 1, is essentially optimal in its
use of information. Mote in addition that for any fixed &
we can replace the LI L algorithm by Karnnan’s sigerithm
| 6] and thus rednce s by &.

3. Cryptanalysis of Truncated Linear Congru-
ential Generators

A linear congruential generator is based on the re-
currence

Tit1=az; +¢ (mod m)

in which @, ¢ and m are known and the seed z, is secret.
Plumstead | 11] has shown that if the entire numbers are
published we can start predicting this sequence after hav-
ing been given a short initial segment even if a,c and m
are unknown. The case when g,¢ and m are known but
only some of the bits of the z;’s are published was first
considered by Knuth [ 7] . The first polynomial time al-
gorithm for this case was given by Frieze, Kannan and
Lagarias [ 3] . They show that with high probability it is
possible to recover the seed if at least 2/5 of the leading
bits of three consecutive numbers are known, and claim
(without proof) a similar result for any fixed fraciion of
the leading bits whenever m is squarefree. In this section
we show that this stronger resuli follows directly from our
general cryptanalytic technigue. We also improve 2/5 to
any fraction greater than 1/3 for a general m. The proof
in the case where m is square free involves analyzing the
same number of theoretic problems that were considered
in the unpublished proof of Frieze et. al. but our use of
lattices avoids several other complications they encoun-
tered.




In this section we consider the case when some of
the most significant bits are published, but our iechnique
applies to the other cases as well. Without loss of gen-
erality we can assume that ¢ = 0 (otherwise we can use
% = Ty — % requiring one extra number to be seen).
The & variables 3; are related by the following system of
k — 1 independent homogeneous equations: .

@z —2; =0 (modm) i=2...,k

The lattice spanned by the k — I coefficient vectors
(ai——laﬂf ":05 ﬁls 0!' ":0)

is the set of vectors

k
(Zﬂi_lvia"‘vaa"‘,“vk)
i=2

for all possible choices of ug,-- -, ug in Z. If we define
k +
= - Z a‘—li‘)i
=2

then an alternative characterization of this lattice is the

set of all vectors # = (v, -+, vx) in Z* for which
k
Za‘ﬁlv =0
i=1

When the vectors m#&; are added to the basis of this lat-
tice, we can change each v; by arbitrary nmltiples of m,
and thus ihe final lattice with which we have to deal is

k
Lo={t¢e Z" | Ea"“lvg =0 {mod m)}.
i=1 .

The density of L, is obviously % and hence the de-
terminant is m. Applying our general technique we get:

Theorem 2 Let m be squarefree, ¢ > 0, and k be 2
given integer. Then knowledge of log m(%+e) +¢, leading
bits of all the x; suffices to compute the #; completely in
polynomial time for 1 —-O(m—Ts) of the possible coefficients
a. :

Remark: The fraction of bits that must be known can
be made arbitrarily small, and this result is essentially
optimal except for the presence of the €.

The only noutrivial part of applying our geperal
framework is the analysis of the lattice L,. We have the
follvwing lemma:

Lerima 2: When m is squarefree, the lattice L, satisfies
the estimate A, < e, DE+ for 1 — Of{m'® Jof the possible
coellicient a.

Proof: A vector ¥ is in L, precisely when @ satisfies the
polynomial equation

[
Zviai_l =0 (mod m)
i—1

where @ = (v;,v3 ..., v;). We want to estimate the cardi-
nality of the set of @ which satisfy such an equation with
small coefficients. To do this we estimate the number of
such equations and the number of solutions to each equa-

~tion. Let us make this precise.

Suppose that m = [[i_, p; where the p; are differ-
ent primes. We want to estimate the cardinality of the
following set:

k
F(f) = {a ! 3l < m, Zvea""l =0}

Fistimating the size of F{{) involves counting the
pumber of latiice points in spheres. This is o compli-
cated problem| 9] . For this reason we trade constants for
clarity and replace the sphere by the larger cube:

lu] <mf, i=0,...,k—1

Let d be the product of r of the prime factors of
m. ¥ ged{ged(¥),m) = d the number of solutions to the
equation

k
Evia’:"l =10. (mod m)

=1

is estimated by d(k —1)®~". The reason for this is that
we have at most & — L solutions modulo the primes which
do not divide d. We therefore need to conat the number
of vectors thai satisfy the condition ged(ged(7),m) = d.

Lemma 3: If d | m then the number of integer vectors
satisfying ged(ged{d),m) =d.and |vi| <h, i=1,...,kis
less than {3)%.

Proof: Dividing the »; and m by d shows that it isenough
to prove the lemma when d = 1. In this case the estimate
follows from an estimate of the total number of points in
the region considered.

Therecfore we have:

4
|F(t)] < st"d(%w}k < B3 mtEy gk

dlm d|m

By elementary caleulation k* = O(m®1 ) for any ¢; >
0 and the same is true for the sum (the sum is of course
bounded by a constant if & > 2). Putting ¢ = {1 — ¢)
and € = €/4 and using the proof of lemma 1 gives lemma
2.

Now theorem 2 follows from theorem 1 by the same -
proct. §



The above proof works for m which are almost
squarefree. Define a number m to be d-squarefree it
m = 17_, p¥ and [I7=; P < m®. Then we have the
following theorem.

Theorem 3: Let m be d-squarefree ¢ > 0 and % a con-
stant. Then knowledge of log m(L +e+8) + e leading
bits of all the #; suffices to compute the #; completely in
bolynomial time for 1 — m 5 of the possible coefficients
a.

The proof is esseniially the same as for theorem 2.

For & = 3 we can prove the following theorem, in
which m need not be squarefree;

Theorem 4; For any m and given ¢ > 0, knowledge of
logmfé +€) + ¢¢ leading bits of %1,%7 and g4 suffices to
compute the numbers in polynomial time for all @ except
a set of cardinality m!—3, ;

As we have seen the hard part of the proof will be to
count the nnmber of sclutions o second degree equations
when the modulus is kighly composite. To fix notation
let A(z) = ay + a,z + aza?,

We wani o estimate ihe size of the following set:

) = {= | Il < m*, Alz) = 0)}

Lemma 4: For any ¢ > 0 it is true that [F()] <
O(ma.x(m“*‘f, m.5+t+€))

Assume first that ged(ged{@),m) = 1. Suppose
m = [I°_, p¥ where p; are different primes. If all the
¢ are unity the theorem follows from theorem 2. We
are therefore interested in the number of solutions to

quadratic equations modulo prime powers, Let us remind

ourselves thai the discriminant of a quadratic polynomial

“is 4agay — o? = I and that the discriminant is O ifft the
polynomial has a double root. We have the following (well
known?) lemma.

Lernma 5: If p does not divide ged(d@) then the num-
ber of solutions to Afz) = 0 {mod p)* is bounded by
min(png,Zpr) where r is the largest integer such that
D=0 (modp). :

Proof: We can assume that the highest degree coef
ficient is not divisible by psince in that case the equation
only has at most one solation. If r 2> e A(z) factors
as t(z+a)® [mod p°) and we have ple2 solutions. If
r < e then by the condition on the discriminant Az
does not have any quadratic factors (mod p'+1) but is
asquare  (mod 2"). We have two possibilities: either 4
does not factor  (mod p™+1) or factors into different lin-
ear factors. Tn the first case we get no solutions and in the
second we can lift the factorization {mod p™+1) to a fac-
torization  (mod p?) which can be written t(z+a}(z+b)

where a = b (mod p') while a # b (mod p7+1). It
is not hard to see thai the number of solutions in this
case is 2p". The number of solutions will therefore be
min(pl/2], 257). g

It remains to estimate the frequency with which the
condition in lemma 5 is satisfied.

Lemma 8: Given ¢ > 0 and d < m®* ihe number of
“t"f]] < m' that satisfy D{A) =0 {mod d) is O(mst.'.e/d)l

Proof: 42pa;-a} =0 (mod d) splits into the O{m* [d)
equaiions dagay — af = kd, & < Q;: over the integers.
For each fixed @, the equation becomes dagge = ¢ If
¢ # 0 theo this equation has as many solutions as divisors
of ¢ but it is not hard to see that this number i O(m#)
since ¢ < m*. ¢ = 0 gives 4m! possibilities for @ and ¢
but in this case b is determined by & and hence the total
mumber of solutions is O{m®*+¢/4), g

Back to the proof of lemma 4:
m3k+£

o Rl L apm g 14T a2 {number of A:s
such that D= 0) <

{namber of divisors of m} ey m¥te 4o oyml/atite <

eymdtHes | oo m L/

We would like to remove the resiriction that
ged(ged(3), m) = 1. Look at the set of o which satisfy
ged(ged(@),m) = d. Dividing the equation by d we get a
polynomial with coefficients of size m! /d and a modulus
mfd. Looking at the corresponding F-set we see that it
has cardinality at most O(m**+¢/d®) and that each solu-
tion will have exactly d images when lifted to {mod m).
This leaves us with the bound O(m+¢/42). The total
count will therefore be:

m8t+é Zd-—ﬂ < O(m3f+i}
dlm

Lemma 4 implies theorem 4 by a proof similar to that of
theorem 1.

4. Cryptanalysis of Blum’s Protocol for Ex-
changing Secrets

Blum’s protocol] 1] was one of the first results which
dealt with the issue of simultaneity in sequential pro-
cesses. It enables two parties 4 and B to exchan ge the fac-
torization of their published moduli m 4 and mp {which
are the products of two large primes) in a fair and verifi-
able way. Let n = logm, = log mpg be the size parameter.

The protocol is symmetric, and the two parties alter-
nately perform the following steps:

1. Choose & random numbers y,, ... , ¥k and send their
squares modulo the opponent’s modulus to the other
party.




2. Fxtract the four square roots medule your own num-
ber of each number yf received from the other pariy.
This is possible since you know ihe factorization.
Now write the 4k square roots in a 4k X n binary
matrix where the least significant bits are in the last
column.

3. Send the i-th column of the matrix to the other party.
(Fori=1,...,n).

The idea behind this procedure is that by having one
of the square roots of y¥ at hand it is possible to check
that what you receive is correct nformation. If B wants
to cheat he can guess which square root A has and send
that square root and its negation correctly while the resi
are onrelated bits. The probability that such a techaique
would not be detected by A is 27%. The security of the
protocol depends on the inability of the parties to facior
efficiently before all {or almost all} the columns have been
exchanged. Blum staied this as an assumption in the
proof of correctness of his protocol. We show that this
assumption is incorrect.

Theorem 5: There is a polynomial time algorithm
which when given as input k random numbers ¥ and
n/k+ck,c most significant bits of all square roots of the y?
(mod m) factors with probability i - e. The probability
is taken over the probability distribution over the y; and
the running time is polynomial in » but not in k.

Proof: For each i, the four square roots of y? can be
denoted by y;, —ph, 5; = riy; and —ry;  (mod m) where r
is a square root of 1 different from +1. Since y; is known,
the first two values can be easily identified. The selection
of x; from the remaining two values when only some of
its bits are known requires guessing. However, for fixed k
the total number of guesses is a constant {2°~*). Observe
that if we can recover-any of the x; we can factor m since
ged(z; — yi, m) will be nontrivial.

Since the unknown values of the z; are fixed multiples
of the known valies of the y;, we can relate them by k-1
modular linear equations:
gz —a =0 (modm), i=2--k
The lattice spanned by the k — 1 coefficient vectors
(yia 0, :01 —¥#, 0,.--, 0)

is the set of vectors

k
(Z YiVi, —H1 V2,77, —y1¥%)
=2 .
for all possible choices of vg, -, v, in Z. ¥ we define
k
hvy = — Z Hivi
=2

361

and add the k vectors mé; to the basis, then this lattice
becames the set of all the vectors of the form g ¥ for
# & ZF which satisfy

ko
Eyw,- =0 {mod m).
i=1

Since ¥y is almost certainly investible {mod m), we can
eliminate it and obtain the following characterization of
the lattice:

k
Ly = {#€E | wvi=0 (modm}}

i=1

To apply our general technique, we only have to prove
that L, is regular for almosi all choices of if.

Lemma T: Given ¢ > 0, with probability 1—¢ for random
Y1, -- - » Ui, the equation

k

Zciy,; =0 (mOd m)

=1
cannot be solved with ¢; not all 0 satisfying [e;| < dk,emilc“.

Proof: The lemma is true for all s but we ptove it only in
the case we need it, namely whea m s the product of two
large primes. For each fixed set of ¢; the proportion of the
y; which satisfy the linear equaiion is }% ‘The number of
sets of g; 15 approximately wy df;,em where wy, is the volume
of the unit ball in R*. By making dj . small we can make
the proportion of y; satisfying awy equation in the set as
small as we please, This implies the vegularity of Ly, and
theorem 5 is proved. §

Thus we can conclude that for almost all y; we can re-
cover the z; when nfk-t o columns have been exchanged.
As pointed out above this enables us to factor by caleu-
lating ged{z; — s, m}. The original protocol can therefore
be broken by somebody who only deviates from the pro-
tocol by stopping early and using onr algorithm—there is
o need to control the choice of random bits or to lie to
the other party.

Remark: The alternative protool in whick the columns
of the mairices are exchanged in reverse order {from least
significant bits to most significant bits) is just as insecure,
since m is odd.

Discussion:

Blum’s paper is one of the best examples of thorough
and responsible research in cryptography. Due to the ex-
traordinary care with which Blum listed his assumptions,
it is easy to trace the source of the problem to the follow-
ing redundancy condition ([1], pp. 187)

 “Alice cannot use the 100 x k most significant bits,
Y%, Ueo, to split g any betier than she can use just

ihe k most significant bits y¥”.




Blum’s paper axiomatically assumes that this con-
dition is true, and rigorously proves the security of the
protocol modulo this assumption (and a few others). We
did not find any error in Blum’s proofs — we just showed
that this assumption was too strong. This should not
be taken as a sign of sloppiness sinee progress in the de-
sign of efficient algorithms is relentless and unpredictable.
What is really important is to distingnish between facts,
assumptions and proofs, and te identify all the possible
sources of insecurity. Blum actually exceeds these mini-
mal criteria. While ke expresses his personal belief that

“these assumptions are not unreasonable, the protocol 13
hardier even than the assumptions that underie our proof,
and consequently, one would be hard put to find a flaw in
that prétocol“,

he also prepares alternatives to the protocol should some-
thing happen to his assumptions:

. “While the redundancy condition is the most demand-
ing of our assumptions, the protocol can be modified to
work without this redundancy condition at all - .- If this.
is domne, the applications at the end of this paper can still
go through as before”.

Blum’s modification is based on a mulimoduli vari-
ant of his protocol and a redefinition of the secrets which
are exchanged by the parties. Another possible modifi-
cation is to ask the parties to exchange fewer colwmns
from their matrices and to nse our algorithm to factor
the moduli at an earlier stage.” None of these varianis
seems to be vulnerable to the cryptanalytic attack pro-
posed in this paper, but its existence demonsirates once
more the extremely delicate nature of proofs of security
in cryptography.
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