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An average-case depth hierarchy theorem for Boolean circuits
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We prove an average-case depth hierarchy theorem for Boolean circuits over the standard basis of AND, OR,
and NOT gates. Our hierarchy theorem says that for every d ≥ 2, there is an explicit n-variable Boolean
function f , computed by a linear-size depth-d formula, which is such that any depth-(d − 1) circuit that
agrees with f on (1/2 + on(1)) fraction of all inputs must have size exp(nΩ(1/d)). This answers an open
question posed by Håstad in his Ph.D. thesis [Håstad 1986b].

Our average-case depth hierarchy theorem implies that the polynomial hierarchy is infinite relative to
a random oracle with probability 1, confirming a conjecture of Håstad [Håstad 1986a], Cai [Cai 1986], and
Babai [Babai 1987]. We also use our result to show that there is no “approximate converse” to the results of
Linial, Mansour, Nisan [Linial et al. 1993] and Boppana [Boppana 1997] on the total influence of bounded-
depth circuits.

A key ingredient in our proof is a notion of random projections which generalize random restrictions.
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1. INTRODUCTION
The study of small-depth Boolean circuits is one of the great success stories of com-
plexity theory. The exponential lower bounds against constant-depth AND-OR-NOT
circuits [Yao 1985; Håstad 1986a; Razborov 1987; Smolensky 1987] remain among our
strongest unconditional lower bounds against concrete models of computation, and the
techniques developed to prove these results have led to significant advances in compu-
tational learning theory [Linial et al. 1993; Mansour 1995], pseudorandomness [Nisan
1991; Bazzi 2009; Razborov 2009; Braverman 2010], proof complexity [Pitassi et al.
1993; Ajtai 1994; Krajı́ček et al. 1995], structural complexity [Yao 1985; Håstad 1986a;
Cai 1986], and even algorithm design [Williams 2014a; Williams 2014b; Abboud et al.
2015].

In addition to worst-case lower bounds against small-depth circuits, average-case
lower bounds, or correlation bounds, have also received significant attention. As
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one recent example, Impagliazzo, Matthews, Paturi [Impagliazzo et al. 2012] and
Håstad [Håstad 2014] independently obtained optimal bounds on the correlation of
the parity function with small-depth circuits, capping off a long line of work on the
problem [Ajtai 1983; Yao 1985; Håstad 1986a; Cai 1986; Babai 1987; Beame et al.
2012]. These results establish strong limits on the computational power of constant-
depth circuits, showing that their agreement with the parity function can only be an
exponentially small fraction better than that of a constant function.

In this paper we will be concerned with average-case complexity within the class
of small-depth circuits: our goal is to understand the computational power of depth-d
circuits relative to those of strictly smaller depth. Our main result is an average-case
depth hierarchy theorem for small-depth circuits:

THEOREM 1.1. For sufficiently large n and 2 ≤ d ≤ c logn
log logn , where c > 0 is an

absolute constant, there is an n-variable Boolean function Sipserd that is computed by a
read-once monotone depth-d formula and that has the following property: Any circuit C
of depth at most d−1 and size at most 2n

1/5(d−1)

agrees with Sipserd on at most 1
2 +n−Ω(1/d)

fraction of all inputs.

(We actually prove two incomparable lower bounds, each of which implies Theo-
rem 1.1 as a special case. Roughly speaking, the first of these says that Sipserd cannot
be approximated by size-S, depth-d circuits which have significantly smaller bottom
fan-in than Sipserd, and the second of these says that Sipserd cannot be approximated
by size-S, depth-d circuits with a different top-level output gate than Sipserd.)

Theorem 1.1 is an average-case extension of the worst-case depth hierarchy theo-
rems of Sipser, Yao, and Håstad [Sipser 1983; Yao 1985; Håstad 1986a], and answers
an open problem of Håstad [Håstad 1986a] (which also appears in [Håstad 1986b;
Håstad 1989]). A version of Theorem 1.1 for depths d up to Õ(

√
log n) was obtained

in [Rossman et al. 2015b]. The improved parameters of Theorem 1.1 were obtained in
subsequent work of [Håstad 2016].

We discuss the background and context for Theorem 1.1 in Section 1.1, and state our
two main lower bounds more precisely in Section 1.2.

Applications. We give two applications of our main result, one in structural complex-
ity and the other in the analysis of Boolean functions. First, via a classical connection
between small-depth computation and the polynomial hierarchy [Furst et al. 1981;
Sipser 1983], Theorem 1.1 implies that the polynomial hierarchy is infinite relative to
a random oracle:

THEOREM 1.2. With probability 1, a random oracle A satisfies ΣP,A
d ( ΣP,A

d+1 for all
d ∈ N.

This resolves a well-known conjecture in structural complexity, which first appeared
in [Håstad 1986a; Cai 1986; Babai 1987] and has subsequently been discussed in a
wide range of surveys [Johnson 1986; Hemaspaandra 1994; Shmoys and Tardos 1995;
Hemaspaandra et al. 1995; Vollmer and Wagner 1997; Aaronson ], textbooks [Du and
Ko 2000; Hemaspaandra and Ogihara 2002], and research papers [Håstad 1986b;
Håstad 1989; Tardos 1989; Fortnow 1999; Aaronson 2010a]. (Indeed, the results
of [Håstad 1986a; Cai 1986; Babai 1987], along with much of the pioneering work
on lower bounds against small-depth circuits in the 1980’s, were largely motivated by
the aforementioned connection to the polynomial hierarchy.) See Section 2 for details.

Our second application is a strong negative answer a question of Hatami in the
analysis of Boolean functions. Seeking an approximate converse to the fundamental
results of Linial, Mansour, Nisan [Linial et al. 1993] and Boppana [Boppana 1997] on
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the total influence of bounded-depth circuits, Hatami asked whether every Boolean
function with total influence log(n) can be approximated by a constant-depth circuit of
polynomial size [Hatami 2014]. Answering this question, as a consequence of Theorem
1.1, we obtain the following:

THEOREM 1.3.

(1) For every constant d, there is a sequence of monotone functions f (d) : {0, 1}n → {0, 1}
with total influence ≤ log n such that f (d) cannot be approximated on 51% of inputs
by depth-d circuits of size exp(exp(Ω((log n)1/d))).

(2) There is a sequence of monotone functions f : {0, 1}n → {0, 1} with total influence
≤ log n such that f cannot be approximated on 51% of inputs by depth-

√
log log n

circuits of size exp(exp(Ω(2
√

log logn))).

Theorem 1.3 shows that the total influence bound of [Linial et al. 1993; Boppana
1997] does not admit even a very weak approximate converse in the bounded-depth
setting. See Section 3 for details.

1.1. Previous work
In this subsection we discuss previous work related to our average-case depth hier-
archy theorem. We discuss the background and context for our applications, Theo-
rems 1.2 and 1.3, in Sections 2 and 3 respectively.

Sipser was the first to prove a worst-case depth hierarchy theorem for small-depth
circuits [Sipser 1983]. He showed that for every d ∈ N, there exists a Boolean function
Fd : {0, 1}n → {0, 1} such that Fd is computed by a linear-size depth-d circuit, but any
depth-(d − 1) circuit computing Fd has size Ω(nlog(3d) n), where log(i) n denotes the i-
th iterated logarithm. The family of functions {Fd}d∈N witnessing this separation are
depth-d read-once monotone formulas with alternating layers of AND and OR gates
with fan-in n1/d — these came to be known as the Sipser functions. Following Sipser’s
work, Yao claimed an improvement of Sipser’s lower bound to exp(ncd) for some con-
stant cd > 0 [Yao 1985]. Shortly thereafter Håstad proved a near-optimal separation
for (a slight variant of) the Sipser functions:

THEOREM 1.4 ([HÅSTAD 1986A]; SEE ALSO [HÅSTAD 1986B; HÅSTAD 1989]).
For every d ∈ N, there exists a Boolean function Fd : {0, 1}n → {0, 1} such that Fd is

computed by a linear-size depth-d circuit, but any depth-(d − 1) circuit computing Fd
has size exp(nΩ(1/d)).

The parameters of Håstad’s theorem were subsequently refined by Cai, Chen, and
Håstad [Cai et al. 1998], and Segerlind, Buss, and Impagliazzo [Segerlind et al. 2004].
Prior to the work of Yao and Håstad, Klawe, Paul, Pippenger, and Yannakakis [Klawe
et al. 1984] proved a depth hierarchy theorem for small-depth monotone circuits, show-
ing that for every d ∈ N, depth-(d − 1) monotone circuits require size exp(Ω(n1/(d−1)))
to compute the depth-d Sipser function. Klawe et al. also gave an upper bound,
showing that every linear-size monotone formula — in particular, the depth-d Sipser
function for all d ∈ N — can be computed by a depth-k monotone formula of size
exp(O(k n1/(k−1))) for all k ∈ N.

To the best of our knowledge, the first progress towards an average-case depth
hierarchy theorem for small-depth circuits was made by O’Donnell and Wim-
mer [O’Donnell and Wimmer 2007]. They constructed a linear-size depth-3 circuit F
and proved that any depth-2 circuit that approximates F must have size 2Ω(n/ logn):

THEOREM 1.5 (THEOREM 1.9 OF [O’DONNELL AND WIMMER 2007]). For w ∈ N
and n := w2w, let Tribes : {0, 1}n → {0, 1} be the function computed by a 2w-term
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read-once monotone DNF formula where every term has width exactly w. Let Tribes†

denote its Boolean dual, the function computed by a 2w-clause read-once monotone CNF
formula where every clause has width exactly w, and define the 2n-variable function
F : {0, 1}2n → {0, 1} as

F (x) = Tribes(x1, . . . , xn) ∨ Tribes†(xn+1, . . . , x2n).

Then any depth-2 circuit C on 2n variables that has size 2O(n/ logn) agrees with F on at
most a 0.99-fraction of the 22n inputs. (Note that F is computed by a linear-size depth-3
circuit.)

Our Theorem 1.1 gives an analogous separation between depth-d and depth-(d + 1)
for all d ≥ 2, with (1/2 − on(1))-inapproximability rather than 0.01-inapproximability.
The [O’Donnell and Wimmer 2007] size lower bound of 2Ω(n/ logn) is much larger, in
the case d = 2, than our exp(nΩ(1/d)) size bound. However, we recall that achieving a
exp(ω(n1/(d−1))) lower bound against depth-d circuits for an explicit function, even for
worst-case computation, is a well-known and major open problem in complexity the-
ory (see e.g. Chapter §11 of [Jukna 2012] and [Valiant 1983; Goldreich and Wigderson
2013; Viola 2013]). In particular, an extension of the 2Ω(n/polylog(n))-type lower bound
of [O’Donnell and Wimmer 2007] to depth 3, even for worst-case computation, would
constitute a significant breakthrough.

1.2. Our main lower bounds
We close this section with precise statements of our two main lower bound results,
a discussion of the (near)-optimality of our correlation bounds, and a very high-level
overview of our techniques.

THEOREM 1.6 (FIRST MAIN LOWER BOUND). For n sufficiently large and 2 ≤ d ≤
c logn

log logn , the n-variable Sipserd function has the following property: Any depth-d circuit

C : {0, 1}n → {0, 1} of size at most 2n
1/5(d−1)

and bottom fan-in logn
10(d−1) agrees with Sipserd

on at most 1
2 + n−Ω(1/d) fraction of inputs.

THEOREM 1.7 (SECOND MAIN LOWER BOUND). For n sufficiently large and 2 ≤
d ≤ c logn

log logn , the n-variable Sipserd function has the following property: Any depth-d

circuit C : {0, 1}n → {0, 1} of size at most 2n
1/5(d−1)

and the opposite alternation pattern
to Sipserd (i.e. its top-level output gate is OR if Sipserd’s is AND and vice versa) agrees
with Sipserd on at most 1

2 + n−Ω(1/d) fraction of inputs.

Clearly both these results imply Theorem 1.1 as a special case, since any size-S
depth-(d − 1) circuit may be viewed as a size-S depth-d circuit satisfying the assump-
tions of Theorems 1.6 and 1.7. In fact, Theorems 1.6 and 1.7 both follow from an even
stronger result, Theorem 10.2, showing that Sipserd cannot be approximated by depth
d+ 1 circuits with restricted bottom fan-in and the opposite alternation pattern.

(Near)-optimality of our correlation bounds. For constant d, our main result shows
that the depth-d Sipserd function has correlation at most (1/2 + n−Ω(1)) with any
subexponential-size circuit of depth d − 1. Since Sipserd is a monotone function, well-
known results [Bshouty and Tamon 1996] imply that its correlation with some input
variable xi or one of the constant functions 0,1 (trivial approximators of depth at most
one) must be at least (1/2 + Ω(1/n)); thus significant improvements on our correlation
bound cannot be achieved for this (or for any monotone) function.

What about non-monotone functions? If {fd}d≥2 is any family of n-variable func-
tions computed by poly(n)-size, depth-d circuits, the “discriminator lemma” of Hajnal
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et al. [Hajnal et al. 1993] implies that fd must have correlation at least (1/2 + n−O(1))
with one of the depth-(d−1) circuits feeding into its topmost gate. Therefore a “d versus
d− 1” depth hierarchy theorem for correlation (1/2 + n−ω(1)) does not hold.

Our techniques. Our approach is based on random projections, a generalization of
random restrictions. At a high level, we design a carefully chosen (adaptively chosen)
sequence of random projections, and argue that with high probability under this se-
quence of random projections, (i) any circuit C of the type specified in Theorem 1.6
or Theorem 1.7 “collapses,” while (ii) the Sipserd function “retains structure,” and (iii)
moreover this happens in such a way as to imply that the circuit C must have origi-
nally been a very poor approximator for Sipserd (before the random projections). Each of
(i)–(iii) above requires significant work; see Section 4 for a much more detailed expla-
nation of our techniques (and of why previous approaches were unable to successfully
establish the result).

2. APPLICATION #1: RANDOM ORACLES SEPARATE THE POLYNOMIAL HIERARCHY
2.1. Background: PSPACE 6= PH relative to a random oracle
The pioneering work on lower bounds against small-depth circuits in the 1980’s was
largely motivated by a connection between small-depth computation and the polyno-
mial hierarchy shown by Furst, Saxe, and Sipser [Furst et al. 1981]. They gave a super-
polynomial size lower bound for constant-depth circuits, proving that depth-d circuits
computing the n-variable parity function must have size Ω(nlog(3d−6) n), where log(i) n
denotes the i-th iterated logarithm. They also showed that an improvement of this
lower bound to super-quasipolynomial for constant-depth circuits (i.e. Ωd

(
2(logn)k

)
for

all constants k) would yield an oracle A such that PSPACEA 6= PHA. Ajtai indepen-
dently proved a stronger lower bound of nΩd(logn) [Ajtai 1983]; his motivation came
from finite model theory. Yao gave the first super-quasipolynomial lower bounds on the
size of constant-depth circuits computing the parity function [Yao 1985], and shortly
after Håstad proved the optimal lower bound of exp(Ω(n1/(d−1))) via his influential
Switching Lemma [Håstad 1986a].

Yao’s relativized separation of PSPACE from PH was improved qualitatively by Cai,
who showed that the separation holds even relative to a random oracle [Cai 1986].
Leveraging the connection made by [Furst et al. 1981], Cai accomplished this by prov-
ing correlation bounds against constant-depth circuits, showing that constant-depth
circuits of sub-exponential size agree with the parity function only on a (1/2 + on(1))
fraction of inputs. (Independent work of Babai [Babai 1987] gave a simpler proof of the
same relativized separation.)

2.2. Background: The polynomial hierarchy is infinite relative to some oracle
Together, these results paint a fairly complete picture of the status of the PSPACE
versus PH question in relativized worlds: not only does there exist an oracleA such that
PSPACEA 6= PHA, this separation holds relative to almost all oracles. A natural next
step is to seek analogous results showing that the relativized polynomial hierarchy is
infinite; we recall that the polynomial hierarchy being infinite implies PSPACE 6= PH,
and furthermore, this implication relativizes. We begin with the following question,
attributed to Albert Meyer in [Baker et al. 1975]:

QUESTION 1. Is there a relativized world within which the polynomial hierarchy is
infinite? Equivalently, does there exist an oracle A such that ΣP,A

d ( ΣP,A
d+1 for all d ∈ N?

Early work on Meyer’s question predates [Furst et al. 1981]. It was first consid-
ered by Baker, Gill, and Solovay in their paper introducing the notion of relativiza-
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tion [Baker et al. 1975], in which they prove the existence of an oracle A such that
PA 6= NPA 6= coNPA, answering Meyer’s question in the affirmative for d ∈ {0, 1}.
Subsequent work of Baker and Selman proved the d = 2 case [Baker and Selman
1979]. Following [Furst et al. 1981], Sipser noted the analogous connection between
Meyer’s question and circuit lower bounds [Sipser 1983]: to answer Meyer’s question
in the affirmative, it suffices to exhibit, for every constant d ∈ N, a Boolean function
Fd computable by a depth-d AC0 circuit such that any depth-(d − 1) circuit computing
Fd requires super-quasipolynomial size. (This is a significantly more delicate task than
proving super-quasipolynomial size lower bounds for the parity function; see Section 4
for a detailed discussion.) Sipser also constructed a family of Boolean functions for
which he proved an n versus Ω(nlog(3d) n) separation — these came to be known as the
Sipser functions, and they play the same central role in Meyer’s question as the parity
function does in the relativized PSPACE versus PH problem.

As discussed in the introduction (see Theorem 1.4), Håstad gave the first proof of a
near-optimal n versus exp(nΩ(1/d)) separation for the Sipser functions [Håstad 1986a],
obtaining a strong depth hierarchy theorem for small-depth circuits and answering
Meyer’s question in the affirmative for all d ∈ N.

2.3. This work: The polynomial hierarchy is infinite relative to a random oracle
Given Håstad’s result, a natural goal is to complete our understanding of Meyer’s ques-
tion by showing that the polynomial hierarchy is not just infinite with respect to some
oracle, but in fact with respect to almost all oracles. Indeed, in [Håstad 1986a; Håstad
1986b; Håstad 1989], Håstad poses the problem of extending his result to show this as
an open question:

QUESTION 2 ([HÅSTAD 1986A; HÅSTAD 1986B; HÅSTAD 1989]). Is the polyno-
mial hierarchy infinite relative to a random oracle? Equivalently, does a random oracle
A satisfy ΣP,A

d ( ΣP,A
d+1 for all d ∈ N?

Question 2 also appears as the main open problem in [Cai 1986; Babai 1987]; as
mentioned above, an affirmative answer to Question 2 would imply Cai and Babai’s
result showing that PSPACEA 6= PHA relative to a random oracle A. Further motiva-
tion for studying Question 2 comes from a surprising result of Book, who proved that
the unrelativized polynomial hierarchy collapses if it collapses relative to a random
oracle [Book 1994]. Over the years Question 2 has been discussed in a wide range of
surveys [Johnson 1986; Hemaspaandra 1994; Shmoys and Tardos 1995; Hemaspaan-
dra et al. 1995; Vollmer and Wagner 1997; Aaronson ], textbooks [Du and Ko 2000;
Hemaspaandra and Ogihara 2002], and research papers [Håstad 1986b; Håstad 1989;
Tardos 1989; Fortnow 1999; Aaronson 2010a].

Our work. As a corollary of our main result (Theorem 1.1) — an average-case depth
hierarchy theorem for small-depth circuits — we answer Question 2 in the affirmative
for all d ∈ N:

THEOREM 2.1 (THEOREM 1.2 RESTATED). The polynomial hierarchy is infinite rel-
ative to a random oracle: with probability 1, a random oracle A satisfies ΣP,A

d ( ΣP,A
d+1

for all d ∈ N.

Prior to our work, the d ∈ {0, 1} cases were proved by Bennett and Gill in their
paper initiating the study of random oracles [Bennett and Gill 1981]. Motivated by
the problem of obtaining relativized separations in quantum structural complexity,
Aaronson recently showed that a random oracle A separates ΠP

2 from PNP [Aaronson
2010b; Aaronson 2010a]; he conjectures in [Aaronson 2010a] that his techniques can
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be extended to resolve the d = 2 case of Theorem 1.2. We observe that O’Donnell
and Wimmer’s techniques (Theorem 1.5 in our introduction) can be used to reprove
the d = 1 case [O’Donnell and Wimmer 2007], though the authors of [O’Donnell and
Wimmer 2007] do not discuss this connection to the relativized polynomial hierarchy
in their paper.

PSPACEA 6= PHA ΣP,A
d ( ΣP,A

d+1 for all d ∈ N

Connection to lower bounds
for constant-depth circuits

[Furst et al. 1981] [Sipser 1983]

Hard function(s) Parity Sipser functions

Relative to some oracle A [Yao 1985; Håstad 1986a] [Yao 1985; Håstad 1986a]

Relative to random oracle A [Cai 1986; Babai 1987] This work

Table I: Previous work and our result on the relativized polynomial hierarchy

We refer the reader to Chapter §7 of Håstad’s thesis [Håstad 1986b] for a detailed ex-
position (and complete proofs) of the aforementioned connections between small-depth
circuits and the polynomial hierarchy (in particular, for the proof of how Theorem 1.2
follows from Theorem 1.1; see also [Rossman et al. 2015a]).

3. APPLICATION #2: NO APPROXIMATE CONVERSE TO
BOPPANA–LINIAL–MANSOUR–NISAN

The famous result of Linial, Mansour, and Nisan gives strong bounds on Fourier con-
centration of small-depth circuits [Linial et al. 1993]. As a corollary, they derive an
upper bound on the total influence of small-depth circuits, showing that depth-d size-S
circuits have total influence (O(logS))d. (We remind the reader that the total influ-
ence of an n-variable Boolean function f is Inf(f) :=

∑n
i=1 Inf i(f), where Inf i(f) is

the probability that flipping coordinate i ∈ [n] of a uniform random input from {0, 1}n
causes the value of f to change.) This was subsequently sharpened by Boppana via a
simpler and more direct proof [Boppana 1997]:

THEOREM 3.1 (BOPPANA, LINIAL–MANSOUR–NISAN). Let f : {0, 1}n → {0, 1} be
computed by a size-S depth-d circuit. Then Inf(f) = (O(logS))d−1.

(We note that Boppana’s bound is asymptotically tight by considering the parity
function.) Several researchers have asked whether an approximate converse of some
sort holds for Theorem 3.1. Benjamini, Kalai and Schramm [Benjamini et al. 1999]
conjectured that there is an absolute constant K such that every monotone Boolean
function f is approximated on 99% of inputs by a depth-d circuit of size at most
exp((K · Inf(f))1/(d−1)) for some d ≥ 2. This conjecture was disproved by O’Donnell
and Wimmer [O’Donnell and Wimmer 2007] (using the function from Theorem 1.5 in
our introduction).

Following O’Donnell and Wimmer’s disproof of the BKS conjecture, several re-
searchers have posed questions similar in spirit. For example, O’Donnell asked if a
weaker version of the BKS conjecture might be true with a relaxed bound on the size
of the approximating circuit [O’Donnell 2007].

Our work. As a corollary of our main result, we provide a strong counterexample
to versions of the BKS Conjecture in the bounded-depth and polylog influence regime
(answering a question raised in Problem 4.6.3 of [Hatami 2014]).
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THEOREM 3.2 (THEOREM 1.3 RESTATED).

(1) For every constant d, there is a sequence of monotone functions f (d) : {0, 1}n → {0, 1}
with total influence ≤ log n such that f (d) cannot be approximated on 51% of inputs
by depth-d circuits of size exp(exp(Ω((log n)1/d))).

(2) There is a sequence of monotone functions f : {0, 1}n → {0, 1} with total influence
≤ log n such that f cannot be approximated on 51% of inputs by depth-

√
log log n

circuits of size exp(exp(Ω(2
√

log logn))).

Theorem 1.3 shows that there is no approximate converse to Boppana–Linial–
Mansour–Nisan (Theorem 3.1), which implies that depth-d circuits with total influence
Ω(log n) have size exp(Ω(log n)1/(d−1)) (i.e. exponentially weaker than bound (1)).

PROOF. For (1): Consider any fixed value of d. Let f (d) : {0, 1}n → {0, 1} be the depth
d + 1 Sipser function on the first m = exp(Cd(log n)1/d) variables for a small constant
C > 0 (to be determined). Since f (d) is computed by depth d + 1 formulas of size m, a
result of [Rossman 2015] (strengthening Theorem 3.1 for formulas) shows that

Inf(f (d)) = (O( 1
d logm))d.

For an appropriate choice of constant C, we get Inf(f (d)) ≤ log n. On the other hand,
by Theorem 1.1, depth-d circuits that agree with f (d) on 51% of inputs have size
exp(mΩ(1/d)) = exp(exp(Ω((log n)1/d))).

For (2): With d =
√

log log n and m = exp(Cd(log n)1/d), we have d = (logm)o(1).
Therefore, Theorem 1.1 applies in this setting as well and we get the bound
exp(exp(Ω((log n)1/d))) = exp(exp(Ω(2

√
log logn))).

4. OUR TECHNIQUES
The method of random restrictions dates back to Subbotovskaya [Subbotovskaya 1961]
and continues to be an indispensable technique in circuit complexity. Focusing only on
small-depth circuits, we mention that the random restriction method is the common
essential ingredient underlying the landmark lower bounds discussed in the previous
sections [Furst et al. 1981; Ajtai 1983; Sipser 1983; Yao 1985; Håstad 1986a; Cai 1986;
Babai 1987; Impagliazzo et al. 2012; Håstad 2014].

We begin in Section 4.1 by describing the general framework for proving worst-
and average-case lower bounds against small-depth circuits via the random restric-
tion method. Within this framework, we sketch the now-standard proof of correlation
bounds for the parity function based on Håstad’s Switching Lemma. We also recall why
the lemma is not well-suited for proving a depth hierarchy theorem for small-depth cir-
cuits, hence necessitating the “blockwise variant” of the lemma that Håstad developed
and applied to prove his (worst-case) depth hierarchy theorem. In Section 4.2 we high-
light the difficulties that arise in extending Håstad’s depth hierarchy theorem to the
average-case, and how our techniques — specifically, the notion of random projections
— allow us to overcome these difficulties.

4.1. Background: Lower bounds via random restrictions
Suppose we would like to show that a target function f : {0, 1}n → {0, 1} has small cor-
relation with any size-S depth-d approximating circuit C under the uniform distribu-
tion U over {0, 1}n. A standard approach is to construct a series of random restrictions
{Rk}k∈{2,...,d} satisfying three properties:

– Property 1: Approximator C simplifies. The randomly-restricted circuit C �
ρ(d) · · ·ρ(2), where ρ(k) ← Rk for 2 ≤ k ≤ d, should “collapse to a simple function”
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with high probability. This is typically shown via iterative applications of an appro-
priate “Switching Lemma for the Rk ’s ”, which shows that each random restriction
ρ(k) decreases the depth of the circuit C � ρ(d) · · ·ρ(k−1) by one with high probabil-
ity. The upshot is that while C is a depth-d size-S circuit, C � ρ(d) · · ·ρ(2) will be a
small-depth decision tree, a “simple function”, with high probability.

– Property 2: Target f retains structure. In contrast with the approximating cir-
cuit, the target function f should (roughly speaking) be resilient against the ran-
dom restrictions ρ(k) ← Rk. While the precise meaning of “resilient” depends on
the specific application, the key property we need is that f � ρ(d) · · ·ρ(2) will with
high probability be a “well-structured” function that is uncorrelated with any small-
depth decision tree.

Together, these two properties imply that random restrictions of f and C are uncor-
related with high probability. Note that this already yields worst-case lower bounds,
showing that f : {0, 1}n → {0, 1} cannot be computed exactly by C. To obtain cor-
relation bounds, we need to translate such a statement into the fact that f and C
themselves are uncorrelated. For this we need the third key property of the random
restrictions:

– Property 3: Composition ofRk’s completes to U . Evaluating a Boolean function
h : {0, 1}n → {0, 1} on a random input X← U is equivalent to first applying random
restrictions ρ(d), . . . ,ρ(2) to h, and then evaluating the randomly-restricted function
h � ρ(d) · · ·ρ(2) on X′ ← U .

Correlation bounds for parity. For uniform-distribution correlation bounds against
constant-depth circuits computing the parity function, the random restrictions are all
drawn from R(p), the “standard” random restriction which independently sets each
free variable to 0 with probability 1

2 (1− p), to 1 with probability 1
2 (1− p), and keeps it

free with probability p. The main technical challenge arises in proving that Property
1 holds — this is precisely Håstad’s Switching Lemma — whereas Properties 2 and 3
are straightforward to show. For the second property, we note that

Parityn � ρ ≡ ±Parity(ρ−1(∗)) for all restrictions ρ ∈ {0, 1, ∗}n,

and so Parityn � ρ(d) · · ·ρ(2) computes the parity of a random subset S ⊆ [n] of coordi-
nates (or its negation). With an appropriate choice of the ∗-probability p we have that
|S| is large with high probability; recall that ±Parityk (the k-variable parity function or
its negation) has zero correlation with any decision tree of depth at most k− 1. For the
third property, we note that for all values of p ∈ (0, 1), a random restriction ρ ← R(p)
specifies a uniform random subcube of {0, 1}n (of dimension |ρ−1(∗)|). Therefore, the
third property is a consequence of the simple fact that a uniform random point within
a uniform random subcube is itself a uniform random point from {0, 1}n.

Håstad’s blockwise random restrictions. With the above framework in mind, we no-
tice a conceptual challenge in proving AC0 depth hierarchy theorems via the random
restriction method: even focusing only on the worst-case (i.e. ignoring Property 3), the
random restrictions Rk will have to satisfy Properties 1 and 2 with the target function
f being computable in AC0. This is a significantly more delicate task than (say) proving
Parity /∈ AC0 since, roughly speaking, in the latter case the target function f ≡ Parity
is “much more complex” than the circuit C ∈ AC0 to begin with. In an AC0 depth hier-
archy theorem, both the target f and the approximating circuit C are constant-depth
circuits; the target f is “more complex” than C in the sense that it has larger circuit
depth, but this is offset by the fact that the circuit size of C is allowed to be expo-
nentially larger than that of f (as is the case in both Håstad’s and our theorem). We
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refer the reader to Chapter §6.2 of Håstad’s thesis [Håstad 1986b] which contains a
discussion of this very issue.

Håstad overcomes this difficulty by replacing the “standard” random restrictions
R(p) with random restrictions specifically suited to Sipser functions being the target:
his “blockwise” random restrictions are designed so that (1) they reduce the depth of
the formula computing the Sipser function by one, but otherwise essentially preserve
the rest of its structure, and yet (2) a switching lemma still holds for any circuit with
sufficiently small bottom fan-in. These correspond to Properties 2 and 1 respectively.
However, unlike R(p), Håstad’s blockwise random restrictions are not independent
across coordinates and do not satisfy Property 3: their composition does not complete
to the uniform distribution U (and indeed it does not complete to any product distribu-
tion). This is why Håstad’s construction establishes a worst-case rather than average-
case depth hierarchy theorem.

4.2. Our main technique: Random projections
The crux of the difficulty in proving an average-case AC0 depth hierarchy theorem
therefore lies in designing random restrictions that satisfy Properties 1, 2, and 3 si-
multaneously, for a target f in AC0 and an arbitrary approximating circuit C of smaller
depth but possibly exponentially larger size. To recall, the “standard” random restric-
tionsR(p) satisfy Properties 1 and 3 but not 2, and Håstad’s blockwise variant satisfies
Properties 1 and 2 but not 3.

In this paper we overcome this difficulty with projections, a generalization of restric-
tions. Given a set of formal variables X = {x1, . . . , xn}, a restriction ρ either fixes a
variable xi (i.e. ρ(xi) ∈ {0, 1}) or keeps it alive (i.e. ρ(xi) = xi, often denoted by ∗). A
projection, on the other hand, either fixes xi or maps it to a variable yj from a possibly
different space of formal variables Y = {y1, . . . , yn′}. Restrictions are therefore a special
case of projections where Y ≡ X , and each xi can only be fixed or mapped to itself. (See
Section 7 for precise definitions of the restrictions that we will use.) Our arguments
crucially employ projections in which Y is smaller than X , and where moreover each
xi is only mapped to a specific element yj where j depends on i in a carefully designed
way that depends on the structure of the formula computing the Sipser function. Such
“collisions”, where blocks of distinct formal variables in X are mapped to the same new
formal variable yi ∈ Y, play a crucial role in our approach. (We remark that ours is not
the first work to consider such a generalization of restrictions. Random projections are
also used in the work of Impagliazzo and Segerlind, which establishes lower bounds
against constant-depth Frege systems with counting axioms in proof complexity [Im-
pagliazzo and Segerlind 2001].)

At a high level, our overall approach is structured around a sequence Ψ of carefully
designed random projections satisfying Properties 1, 2, and 3 simultaneously, with
the target f being Sipser, a slight variant of the Sipser function which we define in
Section 6. Below we briefly outline how we establish each of the three properties (it
will be more natural for us to prove them in a slightly different order from the way
they are listed in Section 4.1):

– Property 3: Ψ completes to the uniform distribution. Like Håstad’s blockwise
random restrictions (and unlike the “standard” random restrictions R(p)), the dis-
tributions of our random projections are not independent across coordinates: they
are carefully correlated in a way that depends on the structure of the formula com-
puting Sipser. As discussed above, there is an inherent tension between the need for
such correlations on one hand (to ensure that Sipser “retains structure”), and the re-
quirement that their composition completes to the uniform distribution on the other
hand (to yield uniform-distribution correlation bounds). We overcome this difficulty
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with our notion of projections: we prove that the composition Ψ of our sequence
of random projections completes to the uniform distribution (despite the fact that
every one of the individual random projections comprising Ψ is highly-correlated
among coordinates.)

– Property 2: Target Sipser retains structure. Like Håstad’s blockwise random
restrictions, our random projections are defined with the target function Sipser in
mind; in particular, they are carefully designed so as to ensure that Sipser “retains
structure” with high probability under their composition Ψ. (This is in sharp con-
trast with our results, described below for Property 1, showing that the approxima-
tor “collapses to a simple function” with high probability under Ψ.)

– Property 1: Approximator C simplifies. Finally, we prove that approximating
circuits C of the types specified in our main lower bounds (Theorems 1.6 and 1.7)
“collapse to a simple function” with high probability under our sequence Ψ of ran-
dom projections. Following the standard “bottom-up” approach to proving lower
bounds against small-depth circuits, we establish this by arguing that each of the
individual random projections comprising Ψ “contributes to the simplification” of C
by reducing its depth by (at least) one.
More precisely, we prove a projection switching lemma, showing that a small-width
DNF or CNF “switches” to a small-depth decision tree with high probability under
our random projections. Intuitively, the depth reduction of C follows by applying
this lemma to every one of its bottom-level depth-2 subcircuits.

To put things slightly differently, our approach can be viewed in a stage-by-stage
fashion. We show that after the i-th stage of random projections, the depth-d Sipserd
function is reduced to something similar to (but not exactly equal to) the depth-(d− i)
Sipserd−i function, while the “approximating” circuit C has, with high probability, lost
i levels.

4.3. Outline of the rest of the paper
We give basic definitions and set some terminology and notations in Section 5. In Sec-
tion 6 we define the function Sipserd. We define the precise restrictions and projections
that we use in Section 7. Their key properties — that they generate uniformly ran-
dom inputs and that they (with high probability and to a significant extent) transform
Sipserd into Sipserd−i — are established in Section 8.

It is convenient for us to consider “i-th level random projections” for i = 1, 2, . . . , d−1,
and to view the i-th level random projection (denoted ρi) as acting on gates at distance
i from the input variables. A useful way to think about the draw of an i-th level random
projection ρi is that first independent restrictions ρi−1 are drawn for each sub-formula
of depth i − 1 (each gate at distance i − 1 from the input variables) and then some
additional fixing is done. This is also the way we reason about ρi when performing the
simplifications, via a switching lemma, of the approximating circuit C. The switching
lemma we require is stated and proved in Section 9. Its analysis is carried out using
conditional probabilities using the formalism of [Håstad 1986b].

Finally, we put all the pieces together proving our main theorems in Section 10.

5. PRELIMINARIES
5.1. Notation and terminology
A DNF is an OR of ANDs (terms) and a CNF is an AND of ORs (clauses). The width
of a DNF (respectively, CNF) is the maximum number of variables that occur in any
one of its terms (respectively, clauses). We will assume throughout that our circuits
are alternating, meaning that every root-to-leaf path alternates between AND gates
and OR gates, and layered, meaning that for every gate G, every root-to-G path has the
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same length. By a standard conversion, every depth-d circuit is equivalent to a depth-
d alternating layered circuit with only a modest increase in size (which is negligible
given the slack on our analysis). The size of a circuit is its number of gates, and the
depth of a circuit is the length of its longest root-to-leaf path.

A restriction ρ of a base set X = {x1, . . . , xn} of Boolean variables is a function ρ :
[n]→ {0, 1, ∗} (we sometimes equivalently view a restriction ρ as a string ρ ∈ {0, 1, ∗}n).
Given a function f(x1, . . . , xn) and a restriction ρ, we write f � ρ to denote the function
obtained by fixing xi to ρ(i) if ρ(i) ∈ {0, 1} and leaving xi unset if ρ(i) = ∗. For two
restrictions ρ, τ ∈ {0, 1, ∗}n, we say that τ is a refinement of ρ if ρ−1(1) ⊆ τ−1(1) and
ρ−1(0) ⊆ τ−1(0). In other words, every variable xi that is set to 0 or 1 by ρ is set in
the same way by τ (and τ may set additional variables to 0 or 1 that ρ does not set).
For two restrictions ρ, ρ′ ∈ {0, 1, ∗}n, their composition, denoted ρρ′ ∈ {0, 1, ∗}n, is the
restriction defined by

(ρρ′)i =

{
ρi if ρi ∈ {0, 1}
ρ′i otherwise.

Note that ρρ′ is a refinement of ρ.
Throughout the paper we use boldfaced characters such as ρ, X, etc. to denote ran-

dom variables. We write “a = b ± c” as shorthand to denote that a ∈ [b − c, b + c], and
similarly a 6= b± c to denote that a /∈ [b− c, b+ c]. For a positive integer k we write “[k]”
to denote the set {1, . . . , k}. For F a Boolean function we write depth(F ) to denote the
minimal depth of any decision tree computing F

6. THE SIPSER FUNCTIONS
In this subsection we define the depth-d monotone n-variable read-once Boolean for-
mula Sipserd for 2 ≤ d ∈ N and establish some of its basic properties. The Sipserd
function is very similar to the depth-d formula considered by Håstad [Håstad 1986b];
the only difference is that the fan-ins of the gates at each level have been slightly ad-
justed, essentially so as to ensure that the formula is very close to balanced between
the two output values 0 and 1 (note that such balancedness is a prerequisite for any
(1/2−on(1))-inapproximability result.) The Sipserd formula is defined in terms of an in-
teger parameter m; in all our results this is an asymptotic parameter that approaches
+∞, so m should be thought of as “sufficiently large” throughout the paper. For future
reference it will be helpful to keep in mind that

m ≈ log n

2d
.

Every leaf of Sipserd occurs at the same depth (distance from the root) d; there are
exactly n leaves (n will be defined in terms of m and d below) and each variable occurs
at precisely one leaf. The formula is alternating; all of the gates that are adjacent to
input variables (i.e. the depth-(d−1) gates) are AND gates, so the root is an OR gate if d
is even and is an AND gate if d is odd. The formula is also depth-regular, meaning that
for each depth (distance from the root) 0 ≤ k ≤ d− 1, all of the depth-k gates have the
same fan-in. Hence to completely specify the Sipserd formula it remains only to specify
the fan-in sequence f1, . . . , fd−1, where fi is the fan-in of every gate at distance i from
the input variables. (We henceforth refer to such a gate as being at level i.)

The intuition that underlies the choice of fan-in sequence is that each gate should
have the “right bias” when the n input variables are set according to a draw from the
uniform distribution U over {0, 1}n. More precisely, under such a draw we would like
each internal (non-output) AND gate to be 1 with probability 2−2m and each internal
OR gate to be 1 with probability 1 − 2−2m, and we would like the output gate to be 1
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with probabilty 1/2. This cannot be achieved exactly but by an inductive choice of the
fan-in sequence we can come very close. Let us turn to the formal details and give the
parameters.

Definition 6.1. For d ≥ 2, let c0 = 1
2 and for 1 ≤ i ≤ d − 1 let fi be the smallest

integer such that

(1− ci−1)fi ≤ 2−2m,

and set ci = (1− ci−1)fi . Finally set fd to be the smallest integer such that

(1− cd−1)fd ≤ 1

2
.

As described above, the function Sipserd is defined by an alternating depth-regular
depth-d read-once monotone formula, with AND gates adjacent to the inputs, in which
the fan-in of each gate at level i is fi.

It is not difficult to see that

ci ∈ [2−2m − 2−4m, 2−2m] for 1 ≤ i ≤ d− 1 (1)

while

f1 = 2m,

fi = 2m ln 2 · 22m(1 +O(2−m)) for 2 ≤ i ≤ d− 1,

fd = ln 2 · 22m(1 +O(2−m)). (2)

It follows that the number of inputs of Fd is
d∏
i=1

fi = 22(d−1)mmd−12O(d) (3)

and we denote this number by n. We note that if d ≤ logn
2 log logn then the first factor of (3)

is the dominating factor and m = logn
2d−2 (1 + o(1)).

It follows by construction that if we feed a draw from U into the formula defining
Sipserd, then any gate at level i for odd i is an AND gate that is one with probability
ci, while any gate at level i for even i is an OR gate that is zero with probability ci. It
follows that the output of Sipserd satisfies |Prx∼U [Sipser(x) = 1]− 1

2 | ≤ 2−2m.

7. THE SPACES OF RANDOM PROJECTIONS R1,R2, . . .

Our approach makes crucial use of projections, which are an extension of restrictions.
Recall that a restriction maps each variable xi to one of the three values 0, 1 and ∗. The
two first values indicate that the corresponding constant should be substituted for this
variables while the third value says that that the value of xi remains undetermined.

Projections generalize restrictions in that a group of several variables may all be
mapped to the same new variable. This makes further simplifications possible. In prin-
ciple the mapping of old variables to new variables could be completely arbitrary, but
to avoid a generality that we do not utilize we define only a special class of projections
that are used in our proof.

The range set of variables that are mapped to by our projections is {xv} where v
ranges over all nodes in the tree (formula) defining Sipserd. Let Vi denote the set of
variables xv where v is at height i, i.e. at distance i from the inputs. Note that the set
of original input variables to Sipserd (i.e. the domain of our projections) is exactly given
by V0.
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Definition 7.1. A level i projection, denoted ρi, is a mapping of V0 into the set {0, 1}∪
Vi. For w ∈ [n] the possible values of ρi(xw) are 0, 1 and xv where v is the height i
ancestor of w in the Sipserd formula.

The only way we construct a level i projection in this paper is to first do a level i− 1
projection, then apply a classical restriction to the variables in Vi−1, and finally identify
each remaining live variable with its parent. (Looking ahead, the formal definition of
our distributionRi of level i projections that we give below will be described using such
a process.) Thus when going from a level (i − 1) projection ρi−1 to a level i projection
ρi we define a mapping ρ′ from Vi−1 to {0, 1} ∪ Vi and ρi is the composition of ρi−1 (a
mapping from V0 to {0, 1} ∪ Vi−1) with this ρ′. Any input mapped to a constant under
ρi−1 is still mapped to the same constant under ρi.

Our proof hinges on a sequence of carefully designed probability distributions
R1,R2, . . . ,Rd−1 whereRi is a distribution over level i projections; before giving formal
definitions, let us explain the key properties of these random projections. A restriction
ρi drawn from Ri operates independently on each height i sub-formula of Sipserd; for
the explanation below, let us assume that i is odd and hence that the top gate of such
a sub-formula is an AND gate. (If i is even and the top gate is an OR gate we reverse
the roles of 0 and 1 below.)

For 1 ≤ i < d, fix v to be any gate at level i in the Sipserd formula. Let Sipserv denote
the sub-formula of Sipserd that is rooted at v, and let Inputs(v) ⊂ V0 denote the subset
of the original input variables to Sipserd that belong to Sipserv. The following (to be
established later) are four key properties of our distribution Ri of level i projections.
KEY PROPERTIES: For ρi ← Ri,

(A) With probability 2−5m/2, all variables of Inputs(v) are fixed to constants in such a
way that Sipserv � ρi ≡ 1.

(B) With probability 1 − 2−m, all variables of Inputs(v) are fixed to constants in such a
way that Sipserv � ρi ≡ 0.

(C) With the remaining probability 2−m − 2−5m/2, we have Sipserv � ρ
i ≡ xv.

(D) If xv is set to 1 with probability bi defined as

bi =
ci − 2−5m/2

2−m − 2−5m/2
(4)

and is set to 0 with the remaining probability 1 − bi, then ρi combined with this
setting gives a uniformly random assignment to all variables in Inputs(v).

We remark that properties (A)–(C) correspond to Sipser � ρi “retaining structure” as
discussed in Sections 4 and 4.2, while property (D) corresponds to our random projec-
tions “completing to the uniform distribution.”

For future reference we note that
bi = 2−m(1−O(2−m/2)). (5)

Having presented the key properties of the Ri’s, we now proceed to a formal descrip-
tion of these distributions. We begin by definingR1 and then continue to the definition
of a general Ri (which is defined recursively using Ri−1).

7.1. Definition of the space of random projections R1

Recall that for v a gate at level one of Sipserd, the set Inputs(v) consists of those original
input variables that lie below v (so Inputs(v) is a set of size 2m). Recall also that a level
one projection (i.e. an element of the support of R1) is a mapping from V0 to {0, 1} ∪ V1

such that each original input variable xw is mapped either to {0, 1} or to xv where v is
the parent of w.
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Definition 7.2. A random restriction ρ1 ← R1 is generated by doing the fol-
lowing independently for each gate v at level one. First draw a random restriction
ρ ∈ {0, 1, ∗}Inputs(v) as follows:

(1) Draw a uniform random assignment α ∈ {0, 1}2m to all inputs xw ∈ Inputs(v).
(2) If α = 12m then with probability 2−m/2 set ρ(xw) = 1 for all xw ∈ Inputs(v), and oth-

erwise proceed as follows. Pick a uniformly random subset S of Inputs(v) conditioned
on S 6= ∅ and set ρ(xw) = ∗ for xw ∈ S and ρ(xw) = 1 for xw 6∈ S.

(3) Otherwise (if α 6= 12m), with probability (1 − 2−m)/(1 − 2−2m) set ρ(xw) = αw for
all xw ∈ Inputs(v) and otherwise set ρ(xw) = ∗ for all w such that αw = 0 while
ρ(xw) = 1 for all w such that αw = 1.

The random projection ρ1 is obtained by identifying all variables xw ∈ Inputs(v) such
that ρ(xw) = ∗ with xv (i.e. ρ1 maps all such xw to xv).

The following may be helpful intuition to aid in understanding Definition 7.2. We
think of the assignment α as a “tentative” assignment to all variables. Steps (2) and
(3) “forget” some of the values, but as we show below, if we later assign xv an element
of {0, 1} with the correct bias then we recover the same probability distribution as if
we had kept the original α. This assures that such a substitution creates a uniformly
random input.

Let ρ1 be a restriction in the support of R1. For a level one gate v, if any variable
xw ∈ Inputs(Sipserd) is mapped to xv by ρ then we say that xv is alive and also write
this as ρ1(xv) = xv. Keeping with this convention we also write ρ1(xv) = c when Sipserv
is fixed to the constant c ∈ {0, 1} by ρ1. In general we sometimes write ρ1(xv) for
Sipserv � ρ

1 and remember that this takes values 0, 1 or xv.
In the rest of this subsection we verify that R1 indeed has the four key properties

(A)–(D) described earlier. These verifications are mostly straightforward but let us still
check the properties in detail.

For (A), we observe that the probability that Sipserv is fixed to 1 under ρ1 is 2−5m/2,
as we need to pick α = 12m and then decide to use this assignment fully in step 2.
Similarly, for (B) the probability that Sipserv is fixed to 0 under ρ1 is

(1− 2−2m) · (1− 2−m)/(1− 2−2m) = 1− 2−m

as this must happen in step 3. Note that in all other cases we have a non-empty set S
such that ρ(xw) = xv for all xw ∈ S while all other variables of Inputs(v) are mapped to
1. This implies that Sipserv � ρ1 = xv, giving (C).

It remains to establish (D), which follows from the following lemma:

LEMMA 7.3. Let ρ1 ← R1. Let ρ′ be the refinement of ρ1 obtained as follows: for
each xv that is alive under ρ1, set it to 1 with probability b1 = 2−2m−2−5m/2

2−m−2−5m/2 and to 0
with probability 1 − b1. Then we have that ρ′ is distributed as a uniform random 0/1
assignment to Inputs(v).

PROOF. Fix any gate v at level one. For any non-empty subset S ⊆ Inputs(v), the
probability that S is chosen to receive ∗’s in step 2 is

pS2 =
2−2m(1− 2−m/2)

22m − 1

while the probability that the same set S is chosen in step 3 is

pS3 =
2−2m(2−m − 2−2m)

(1− 2−2m)
=

(2−m − 2−2m)

(22m − 1)
.
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This implies that, conditioned on S being the set of input variables xw such that
ρ1(xw) = xv, the probability that S was chosen in step 2 is

pS2
pS2 + pS3

=
2−2m − 2−5m/2

2−m − 2−5m/2
(6)

and this is exactly b1. This implies that if xv is set to 1 with probability b1 (and to 0
with probability 1− b1), then we get the same probability distribution on assignments
to Inputs(v) as if we had set xw = αw immediately. We conclude that we get a uniformly
random distribution over all 22m assignments to Inputs(v).

Having shown that R1 has all four of the key properties, we proceed to the case of a
general Ri.

7.2. Definition of the space of random projections Ri for general i > 1

When drawing a projection from the distribution Ri we first draw a projection ρi−1 ←
Ri−1 which reduces each sub-formula Sipserw of depth i − 1 to either a constant or a
variable xw. As a result, going from ρi−1 ← Ri−1 to ρi ← Ri is quite similar to drawing
a projection from R1. We again center the construction around a Boolean vector α
which now plays the role of a vector of independent but suitably biased values at level
i − 1. The bits of α now come in two flavors: there are “hard” bits which should be
thought of as already fixed by ρi−1 and hence cannot be changed to xv, and the other
bits are “soft” bits that can be changed.

As noted earlier, the random projection ρi ← Ri is independent across all nodes v at
level i, so to describe a draw of ρ← Ri it suffices to fix a level i gate v and explain how
ρi is generated at v. In the following explanation we assume that i is odd and hence
that each gate v on level i is an AND gate (in the case of even i each gate v on level i is
an OR gate and the roles of 0 and 1 are reversed in what follows). For v a gate at level i
we let Children(v) be the set of gates that feed directly into v, so Children(v) is of size fi.
(Note that Children(v) plays the role that Inputs(v) played when v was a level one gate;
indeed, for v a level one gate Children(v) and Inputs(v) are the same set, though they are
different sets at levels greater than one.)

We first define a distribution Di that is used to pick an input α ∈ {0, 1}fi where some
values are hard while other are soft. A draw of α← Di is obtained as follows: for each
coordinate w of α independently (i.e. for each w ∈ Children(v)),

(1) Make αw a hard zero with probability 2−5m/2.
(2) Make αw a hard one with probability 1− 2−m.
(3) Make αw a soft zero with probability ci−1 − 2−5m/2.
(4) Make αw a soft one with probability 2−m − ci−1.

We note that each coordinate that is not given a hard value is set to a soft zero with
probability exactly bi−1.

Given a draw of α ← Di, we write Soft(α) to denote the subset of Children(v) which
is the set of coordinates that are given soft values. Thus typically Soft(α) is of size
roughly 2−mfi; we write fv(α) = |Soft(α)| to denote the actual size of Soft(α).

Given a subset T ⊆ Children(v) (which should be thought of as a possible outcome of
Soft(α)), let PT denote the following probability distribution over nonempty subsets
of T : a draw of S ← PT (which should be thought of as a potential set of soft zeros)
is obtained by independently including each element of T with probability bi−1, and if
S comes out to be empty we try again. Note that if T is about the typical size 2−mfi
of Soft(α), then the probability that S is empty is about 2−2m so this conditioning
is in general mild. (We will sometimes refer to a S ← PT as a “uniform non-empty
subset of T of bias bi−1.”) For fixed sets ∅ 6= S ⊆ T let us write qS,T as shorthand for
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PrS←PT
[S = S]. Then it is not difficult to see that

qS,T = (1− (1− bi−1)|T |)−1b
|S|
i−1(1− bi−1)|T |−|S|. (7)

With this setup out of the way, we are ready to describe how ρi ← Ri is generated
at v. For notational convenience in our later arguments we first describe how a closely
related restriction (ρ′)i is generated at v (from a distribution over {0, 1, ∗}Children(v)); in
the last step of the draw, ρi (which belongs to {0, 1, xv}Children(v)) is obtained from (ρ′)i

by a simple variable identification (projection).
We proceed to the definition of Ri. (The following is analogous to and should be

compared with Definition 7.2.) We remind the reader again that i is assumed to be odd
and hence v is an AND gate. A draw of (ρ′)i and ρi from Ri is obtained as follows: 1

(0)i First draw α← Di as described above.
(Looking ahead, we never change a hard value while soft values are either made
permanent or may be turned into xv. We further note that the cases (1)i – (4)i below
should be viewed as disjoint and mutually exclusive, i.e. the description of each case
implicitly assumes that none of the previous cases hold.)

(1)i If α has at least one hard zero coordinate, then set (ρ′)i(xw) = αw for all w ∈
Children(v).
(Intuitively, if there is a hard zero present then the value of Sipserv is fixed to zero.)

(2)i If |fv(α)− fi2−m| ≥ 23m/4 then set (ρ′)i(xw) = αw for all w.
(Intuitively, if a very atypical number of soft values are received, then we give up on
target preservation. This is okay because as we will see it is a very low probability
event to have such an atypical number of soft values.)

Let us turn to the more interesting cases in the definition of (ρ′)i. Let q3 and
q4(fv(α)) be constants, which in rough terms satisfy q3 ≈ 2−m/2 and q4(fv(α)) ≈ 2−m,
but whose exact values are given during the analysis in Section 8.

(3)i If α = 1fi , then with probability q3 set (ρ′)i(xw) = 1 for all w ∈ Children(v) and with
the remaining 1− q3 probability proceed as follows. Choose a non-empty subset S of
Soft(α) with bias bi−1 (i.e. draw S ← PSoft(α)) and set (ρ′)i(xw) = ∗ for xw ∈ S and
(ρ′)i(xw) = 1 for xw 6∈ S.
(Note the similarity to Step 2 of Definition 7.2.)

(4)i If Soft(α) is nonempty then define S to equal Soft(α).With probability 1−q4(fv(α))
set (ρ′)i(xw) = αw for all w ∈ Children(v) and with the remaining q4(fv(α)) proba-
bility set (ρ′)i(xw) = ∗ for w ∈ S and set (ρ′)i(xw) = 1 = αw for w 6∈ S.
(Note the similarity to Step 2 of Definition 7.2.)

2

This concludes the description of how (ρ′)i is drawn fromRi. Finally, the random pro-
jection ρi is obtained from (ρ′)i by identifying all of the live variables xw ∈ Children(v)
(i.e. all of the xw such that (ρ′)i(xw) = ∗) with xv (i.e. ρi maps all such xw to xv).

Before proceeding let us observe that if any coordinate αw is set to a hard value,
then xw is always set to this value under ρi. This follows as in both steps (3)i and (4)i,
S is a subset of Soft(α), and hence is not given hard ones as values, and if any hard
zero is assigned then all values of α are used in ρi.

1Rocco: The format below is that intuition is mixed in with the algorithmic description of the draw from
the distribution, with the intuition in parentheses on a new line below each algorithmic step. This has the
advantage of having the intuition for each step be right by the description of the step but has the drawback
of mixing the intuition up with the formal description.
2Rocco: Check carefully: this ρi just defined maps what variables to what? Is it actually Ri or should it be
called something else? It hasn’t been coupled with Ri−1 yet...
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Steps (1)i – (4)i above tell us how to go from α to ρi. As indicated at the start of
this subsection, the hard versus soft status of the bits of α is what ties Ri to the
earlier distributions Ri−1 since as mentioned above hard bits of α should be thought
of as already fixed by some ρi−1 drawn from Ri−1. There are a couple of equivalent
ways to view the combination of draws ρi−1 ← Ri−1 and ρi ← Ri as specifying a
full assignment (i.e. to complete the overall recursive definition of Ri). One way is the
following:

(1) Draw an assignment α from Di.
(2) For each hard coordinate w of α, independently draw a restriction ρi−1 ← Ri−1

conditioned on ρi−1(xw) equalling this bit value αw.
(3) For each soft coordinate w of α, independently draw a restriction ρi−1 ← Ri−1 con-

ditioned on ρi−1(xw) = xw, and then set ρi(xw) as described in steps (1)i – (4)i above.
3

An equivalent way to describe the procedure is as follows: First draw a random inde-
pendent ρi−1 ← Ri−1 for each depth i − 1 gate w ∈ Children(v), and then draw a value
of α conditioned on getting hard coordinates with the correct value for each ρi−1(xw)
that was chosen to be a constant. In more detail this is the following procedure:

(I) Draw a random ρi−1 ∈ Ri−1. For each level i − 1 gate w such that ρi−1(xw) is a
constant, fix αw to be that constant in a hard way.

(II) For each level i− 1 gate w such that αw is not set in step 1, pick it to be a soft zero
with probability bi−1 and a soft one with the remaining 1− bi−1 probability.

At this point an assignment from {0, 1}Children(v) has been obtained for α. Based on
this assignment, continue as follows:

(III) For any w ∈ Children(v) such that case (1)i or (2)i applies, fix the value of xw to
a constant based on those cases. This is done by a traditional restriction taking
values 0, 1 and ∗ (i.e. a distribution over {0, 1, ∗}Children(v)) and we denote this random
restriction by ρ1 and denote its distribution byRi1. (To be explicit, a variable xw gets
assigned ∗ under ρ1 ← Ri1 if neither case (1)i nor case (2)i applies to it).

(IV) Given the outcome of ρ1, we extend it to obtain a restriction ρ2
4 as follows: for any

w ∈ Children(v) such that case (3)i or (4)i applies, fix the value of xw to a constant
based on those cases. This is again done by a traditional restriction taking values
0, 1 and ∗ and we denote this random restriction (which extends ρ1) by ρ2 and denote
its distribution by Ri2(ρ1). (Again to be explicit, a variable xw gets assigned ∗ under
ρ2 ← Ri2 if neither case (3)i nor case (4)i applies to it).

(V) Finally, ρi ← Ri is defined as follows: for each w ∈ Children(v) that has ρ2(xw) = ∗,
we take ρi(xw) = xv (and for each w ∈ Children(v) that has ρ2(xw) ∈ {0, 1} we take
ρi(xw) = ρ2(xw)). We let π denote this final projection step that maps each live
xw to xv. (Note that π is not boldfaced as there is no randomness involved — it
deterministically maps every xw to xv for every w ∈ Children(v).)

We say that ρi−1, ρ1, ρ2 and π are the components of ρi. The most interesting part
when going from ρi−1 to ρi turns out to be the third step ρ2. For a function f we let
f � ρ2 denote the function after this step. We let f � (ρ2 ◦ π) denote the function after
the projection π has also been applied. We observe that f � ρ2 is a function of the
variables in Vi−1 while f � ρ2 ◦ π is a function of the variables in Vi.

3Rocco: Is this right?
4Rocco: Note: renamed what was previously “ρ” as ρ2
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As an example suppose that f = xw1 ∨ x̄w2 where w1 and w2 are two nodes in the
same level i sub-formula Sipserv for some level i node v. Suppose furthermore that ρ2

is an outcome of ρ2 that does not fix either of these variables. In this situation f � ρ2 is
the same function as f while f � (ρ2 ◦ π)= xv ∨ x̄v is identically true.

8. THE DISTRIBUTIONS RI SATISFY THE KEY PROPERTIES
The construction of the distribution of restrictions Ri has been carefully crafted to,
more or less by definition, satisfy the four key properties. In this section we show that
these properties hold via a sequence of lemmas, starting with the following simple
observation.

LEMMA 8.1. Let ρi be a projection in the support of Ri and let v be a level i node
in Sipserd such that xv is alive under ρi. Then we have Sipserv � ρi = xv. Furthermore if
Sipserv � ρ

i is a constant then ρi assigns constants to all variables in Sipserv.

PROOF. Going over the construction line by line it is not difficult to see that this is
true.

The second lemma says that each level i sub-formula is projected to 1 with the correct
probability under Ri:

LEMMA 8.2 (KEY PROPERTY (A)). There is a value of q3 = 2−m/2(1 + o(1)) 5 such
that Prρi←Ri [Sipserv � ρ

i = 1] = 2−5m/2.

PROOF. Let p2 denote the probability that that case (2)i happens when ρi is drawn
from Ri. By standard Chernoff bounds 6 we have p2 = exp(−Ω(2m/2/m)). Let p2,1 be
the probability that the value of Sipserv is fixed to 1 under case (2)i (so p2,1 ≤ p2 is
extremely small).

Now let p3 denote the probability that case (3)i happens. 7 Since Prα←Di
[α = 1fi ] =

ci, we have that p3 = ci − p2,1 and thus p3 = 2−2m(1 − o(1)). Fix the value of q3 to be
(2−5m/2 − p2,1)/p3 and note that q3 = 2−m/2(1 + o(1)) as promised. The probability that
Sipserv is fixed to the value 1 under ρi ← Ri is p2,1 + p3q3 and this, by the choice of q3,
equals 2−5m/2.

We next determine a suitable value for q4(fv(α)). (Lemmas 8.3 and 8.4 can together
be viewed as establishing that the random projections Ri “complete to the uniform
distribution.”)

LEMMA 8.3 (TOWARDS KEY PROPERTY (D)). Let v be a level i node in Sipserd. There
is a value of q4(fv(α)) = 2−m(1 + o(1)) such that setting xv to 1 with probability bi
(and to 0 with probability 1 − bi) after we have drawn a random ρi ← Ri, gives the
same distribution over assignments to the variables {xw : w ∈ Children(v)} as setting
xw = αw, α← Di, for all w ∈ Children(v).

PROOF. We prove that for any ∅ 6= S ⊆ T , conditioned on T being the set Soft(α)
of soft values obtained when α ← Di and S being the set S of variables set to xv in
case (3)i or case (4)i, the probability that this happened in case (3)i is bi while the
probability that this happened in case (4)i is 1 − bi. Since we in case (3)i change the
values of the variables in S from 1 to xv and in case (4)i change the values from 0 to
xv, as in the proof of Lemma 7.3 this is sufficient to prove Lemma 8.3. For the rest of

5Rocco: Here and elsewhere where “1 + o(m)” appears, is this really the best thing to say – it seems a bit
odd to specify a lower-order term and then say “+o(m)”
6Rocco: check
7Rocco: check math in next sentence or two; shouldn’t p3 be less than ci which is less than 2−2m?
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this proof we condition on α being such that Soft(α) = T for a particular non-empty
set T of size fv(α) with |fv(α)− fi2−m| < 23m/4 and no hard zero being picked.

The conditional probability of having S = S and reaching case (3)i is

p3
S,T = (1− bi−1)fv(α)qS,T (1− q3),

where qS,T is the probability as in (7). The probability of getting the same sets in case
4 is

p4
S,T = (1− (1− bi−1)fv(α))qS,T q4(fv(α)).

We now set 8

q4(fv(α)) =
(1− bi−1)fv(α)(1− bi)(1− q3)

(1− (1− bi−1)fv(α))bi
(8)

with the result that
p4
S,T

p3
S,T

=
1− bi
bi

. (9)

By the given bounds on fv(α) we know that fv(α) = fi2
−m(1 + O(2−m/4)) and hence

(1 − bi−1)fv(α) = 2−2m(1 + o(1)). Furthermore as bi = 2−m(1 + o(1)) it is possible to
satisfy (8) with q4(fv(α)) = 2−m(1 + o(1)).

From now on we assume that we use the values of q3 and q4(fv(α)) determined by
Lemma 8.2 and Lemma 8.3. The next lemma is, more or less, an immediate conse-
quence of Lemma 8.3.

LEMMA 8.4 (KEY PROPERTY (D)). Let v be a level i node in Sipserd. Then drawing
ρi ← Ri and then setting xv to 1 with probability bi (and to 0 with probability 1 − bi)
gives the uniform distribution on Inputs(v).

PROOF. We proceed by induction on i, noting that for i = 1 we already established
the desired result in Lemma 7.3.

Lemma 8.3 tells us that fixing xv to 1 with probability bi (and to 0 with the remaining
probability) is the same as setting the soft values according to α. This, in its turn, is
the same as picking independent restrictions from ρi−1 for each sub-formula Sipserw
and setting any live xw to 1 with probability 1− bi−1 and to 0 with probability bi−1. By
induction this results in the uniform distribution.

Finally, we verify key properties (B) and (C) of Ri.
LEMMA 8.5 (KEY PROPERTIES (B) AND (C)). Fix a level i node v. We have

Prρi←Ri [Sipserv � ρ
i = 0] = 1− 2−m and Prρi←Ri [Sipserv � ρ

i ≡ xv] = 2−m − 2−5m/2.

PROOF. This could be done by a tedious calculation, but in fact it can be seen by
a high level argument. The restriction ρi can reduce Sipserv to 0, 1 or xv. Lemma 8.2
says that the value 1 is taken with the correct probability, and Lemma 8.4 says that if
xv is set to 1 with probability bi then we get a uniformly random input and hence the
output of Sipserv is one with probability ci. This implies that

2−5m/2 + bi Prρi←Ri [Sipserv � ρ
i ≡ xv] = ci

and hence, by the definition of bi, we conclude that Prρi←Ri [Sipserv � ρi ≡ xv] = 2−m −
2−5m/2 as desired. Since the probabilities of obtaining the three possible values for
Sipserv � ρ

i sum to one, the lemma follows.

8Rocco: check this math
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The most interesting property of our restrictions is that we can prove a switching
lemma and we proceed with this step.

9. THE SWITCHING LEMMAS
To establish a general hierarchy result (in particular one that separates depth d from
depth d − 2) it is sufficient to prove a switching lemma for Ri for i ≥ 2, and in view of
this we prove this lemma first. To get a tight result we later prove a modified lemma
that applies to R1.

As discussed in Section 7, a restriction ρi ← Ri is chosen by first drawing ρi−1 ←
Ri−1, followed by ρ1, ρ2 and finally making a projection π. In this section we assume
any fixed values of of ρi−1 for ρi−1 and ρ1 for ρ1 and consider the random draw of ρ2.
The fact that the distribution of ρ2 is dependent on the actual values of ρi−1 and ρ1 is
left implicit.

A set F of restrictions is said to be “downward closed” if changing the value of some
coordinate of ρ ∈ F from the value ∗ to an element of {0, 1} cannot make it leave the
set. Let us write this formally.

Definition 9.1. A set F of restrictions is downward closed if when ρ ∈ F and
ρ′(xw) = ρ(xw) for w 6= w0 and ρ(xw0) = ∗ then ρ′ ∈ F .

We can now formulate the main lemma.

LEMMA 9.2. Fix 2 ≤ i < d. Let ρi ← Ri be a random restriction with components
ρi−1, ρ1, ρ2 and π (note that as discussed earlier we condition on arbitrary fixed values
for ρi−1 and ρ1 so the only randomness is over ρ2). Let f be an arbitrary function.
Suppose g = f � ρi−1 is computed by a depth-2 circuit of bottom fan-in t ≤ 2m/8. Let F
be a downward closed set of restrictions. Then, for sufficiently large m,

Prρi←Ri [depth(g � ρi) ≥ s | ρ2 ∈ F ] ≤ Ds,

where D = t23−m/2.

PROOF. By symmetry we may assume that i is odd; recall that this means that each
gate at level i of Sipserd is an AND gate. By possibly looking at the negation of g (which
has the same depth decision tree as g) we can assume that g is a CNF, so after ρ1 has
been applied it can be written as

g � ρ1 =
∧̀
i=1

Ci,

where each Ci is a disjunction of at most t literals.
The proof proceeds by induction over ` and the base case is when ` = 0 in which case

g � ρi is always computable by a decision tree of depth 0.
For the inductive step, we divide the analysis into two cases depending on whether

C1 is forced to one or not. We can bound the probability of the lemma as the maximum
of

Prρi [depth(g � ρi) ≥ s | ρ2 ∈ F and C1 � ρ2 ≡ 1],

and

Prρi [depth(g � ρi) ≥ s | ρ2 ∈ F and C1 � ρ2 6≡ 1]. (10)

The first term is at most Ds as desired by induction applied to g without its first
conjunction (note that this is a CNF with at most ` − 1 clauses) and using that the
conditioning in this case is a new downward closed set. In the following we analyze the
second term (10).
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In order for g � ρi not to be identically 0 there must be some non-empty set Y of
variables appearing in C1 that are given the value ∗ by ρ2. For v a gate at level i of
Sipserd, let the set Inputs(Sipserv) of variables be called a “block,” and let us suppose that
the variables in C1 come from t1 different blocks. We say that a block is “undetermined
by ρ2” if it contains a variable that is given the value ∗ by ρ2. For a set Z of blocks let
us write size(Z) to denote the number of blocks it contains. We introduce the notation
undet(Z,ρ2) to denote the event that Z is precisely the set of blocks that are undeter-
mined by ρ2, and the notation det(ρ2, C1 \ Z) to denote the event that all variables in
C1 outside of Z are fixed to non-∗ values by ρ2.

We start constructing a decision tree for g � ρi by querying the new variables in the
blocks that are undetermined by ρ2. Let τ be an assignment to these variables. We can
now bound (10) as∑

τ,Z

Prρi [depth(g � τρi) ≥ s− size(Z) and undet(Z,ρ2) and det(ρ2, C1\Z)

| ρ2 ∈ F and C1 � ρ2 6≡ 1],

(11)

where in the sum Z ranges over all nonempty sets of blocks and τ ranges over all
possible assignments to the variables in Z. Observe that because of the final projection
step π in ρi, each block in Z contributes only one to the decision tree depth.

We will use the upper bound

Prρi [depth(g � τρi) ≥ s− size(Z) | undet(Z,ρ2) and det(ρ2, C1 \ Z) and
ρ2 ∈ F and C1 � ρ2 6≡ 1]×Prρi [undet(Z,ρ2) | ρ2 ∈ F and C1 � ρ2 6≡ 1]

(12)

for each term in (11), and hence a key lemma is the following.

LEMMA 9.3. If Z is a set of blocks appearing in C1, then for i ≥ 2 and sufficiently
large m, we have

Prρi [undet(Z,ρ2) | ρ2 ∈ F and C1 � ρ2 6≡ 1] ≤ 2size(Z)(1−m/2). (13)

PROOF. The crux of the proof is to, given an outcome ρ2 of ρ2 that contributes to the
probability in question, create a restriction ρ′2 that also satisfies the conditioning but
fixes all variables in the blocks of Z. This easily gives (13) as argued at the end of this
proof. We describe how to do this for the case when size(Z) = 1 but the general case
follows immediately as we can do the changes independently on each block. Thus let
us assume that Z contains the single block Inputs(Sipserv) and fix an outcome ρ2 of ρ2
that contributes to the event of the lemma, so Inputs(Sipserv) contains a variable that
is given the value ∗ by ρ2. Let P be the set of variables of Inputs(Sipserv) that appears
positively in C1 and N be the set of variables that appear negatively.

We can assume that we have no hard zero in Inputs(Sipserv) and that the number of
non-hard ones in Inputs(Sipserv) is close to fi2−m (recall (2)i) as otherwise already ρ1

would have fixed all variables in Inputs(Sipserv) to constants.
Clearly we must have ρ2(xv) = ∗.9 For variables xw ∈ P we must have ρ2(xw) = ∗

(recalling that there is no hard zero in Inputs(Sipserv)) while for variables in N we have
either ρ2(xw) = ∗ or ρ2(xw) = 1.

We now define a companion outcome ρ′2 = H(ρ2) for ρ2. If ρ2 maps some variable
outside N to ∗ (and in particular if P is non-empty) we set ρ′2(xv) = 0 and otherwise
ρ′2(xv) = 1. For each xw ∈ P we set ρ′2(xw) = 0 while for each xw ∈ N we set ρ′2(xw) = 1,
independently of the value of ρ2(xw). Outside C1 but in Inputs(Sipserv) we set ρ′2(xw) = 1

9Rocco: Doesn’t ρ2 act on variables at level i− 1 like xw, not xv?
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if ρ2(xw) = 1 and ρ′2(xw) = ρ′2(xv) otherwise. Outside Inputs(Sipserv), ρ2 and ρ′2 agree.
First observe that ρ′2 satisfies the conditioning, since we only have ρ2(xw) 6= ρ′2(xw)
when ρ2(xw) = ∗ and by the definition of P and N we are careful not to satisfy C1.

The mapping H is many-to-one as given ρ′2 we do not know the values of ρ2(xw) when
xw ∈ N (but we do for all other variables in Inputs(Sipserv)).

We note that we have
Prρi [ρ2 = ρ2]

Prρi [ρ2 = ρ′2]
=

Prρi [ρ2,v = ρ2,v]

Prρi [ρ2,v = ρ′2,v]

where ρ2,v is only the behavior of ρ2 on Inputs(Sipserv) and similarly for ρ′2,v. This is
true as ρ2 and ρ′2 take the same values outside Inputs(Sipserv) and the restrictions are
picked independently on each block.

Assume first that ρ′2(xv) = 0. In this situation ρ2 could have been picked under case
3(i) or case 4(i) while ρ′2 can only have been produced under case 4(i). We know, by (9),
that each ρ2 is about a factor 2m more likely to have been produced under case 4(i) than
under case 3(i) so let us ignore case 3(i), introducing a small error factor (1 + O(2−m))
that we temporarily suppress.

Let N1 denote the subset of N that was actually given the value ∗ by ρ2. If N1 is
empty then Prρi [ρ2,v = ρ2,v] = q4(fv(α))

1−q4(fv(α)) Prρi [ρ2,v = ρ′2,v] and in general we pick up

an additional factor of b|N1|
i−1 (1− bi−1)−|N1|. As∑

N1⊆N

b
|N1|
i−1 (1− bi−1)−|N1| = (1 +

bi−1

1− bi−1
)|N |

we get ∑
H(ρ2)=ρ′2

Prρi [ρ2 = ρ2] ≤
(

1 +
bi−1

1− bi−1

)|N |
q4(fv(α))

1− q4(fv(α))
Prρi [ρ2 = ρ′2]

≤ 21−m Prρi [ρ2 = ρ′2] (14)

for sufficiently large m. This follows as |N | ≤ 2m/8, bi = (1 + o(1))2−m and q4(fv(α)) =
(1 + o(1))2−m.

If, ρ′2(xv) = 1 the situation is similar except that ρ′2 is produced under case 3(i) (while
we still only consider the ρ2 produced under case 4(i)) and thus we pick up a factor q3

instead of 1− q4(fv(α)). We get in this case∑
H(ρ2)=ρ′2

Prρi [ρ2 = ρ2] ≤
(

1 +
bi−1

1− bi−1

)|N |
q4(fv(α))

q3
Prρi [ρ2 = ρ′2]

≤ 21−m/2 Prρi [ρ2 = ρ′2], (15)

again for sufficiently large m. The fact that we ignored restrictions ρ2 produced under
case 3(i) gives an additional factor (1 + O(2−m)) in the above estimates and thus the
calculations remain valid, possibly by making m slightly larger to make sure that the
“sufficiently large m” statements are true.

As mentioned earlier, the case of general size(Z) > 1 follows from the fact that we do
the modifications on all blocks of Z independently.

Remark 9.4. The careful reader might have noticed that in the case when ρ′2(xv) =
1 we can infer that N1 is non-empty, giving a slightly better estimate especially in the
case when t is small. This observation can probably be used to get a slightly better
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39:24 J. Håstad et al.

constant in the main theorem, but to keep the argument simple we ignore this point.
We return to the main argument.

We now upper bound

Prρi [depth(g � τρi) ≥ s− size(Z) | undet(Z,ρ2) and det(ρ2, C1 \ Z) and
ρ2 ∈ F and C1 � ρ2 6≡ 1]

(16)

by Ds−size(Z) using the inductive hypothesis. We need to check that the conditioning
defines a downward closed set. This is not complicated but let us give some details. Fix
any behavior of ρ2 inside the blocks of Z and satisfying the conditioning. As g � τρi

does not depend on the variables corresponding to Z, the event in (16) depends only
on the values of ρ2 outside Z. Changing ρ2 from ∗ to a constant value for any variable
outside Z cannot violate any of the conditions in the conditioning and hence we have a
downward closed set when considering ρ2 as a restriction outside Z. We conclude that
the probability of the event in (16) is, by induction, bounded by Ds−size(Z).

Recall that our goal is to upper bound the sum (11), using the bound (12) for each
term, Lemma 9.3, and the inductive hypothesis. If C1 intersects t1 different blocks
(where of course t1 ≤ t) then, using the fact that we have at most 2size(Z) different τ
and recalling the setting D = t23−m/2 we get the total estimate∑
Z 6=∅

2size(Z)2size(Z)(1−m/2)Ds−size(Z) = Ds
(

(1 +D−122−m/2)t1 − 1
)
≤ Ds

(
(1 +

1

2t
)t1 − 1

)
≤ Ds

and we are done with the proof of Lemma 9.2.

Lemma 9.2 is sufficient to prove a fairly tight hierarchy theorem. To prove a tight
variant we need also to analyze how R1 simplifies circuits.

LEMMA 9.5. Let g be computed by a depth-2 circuit of bottom fan-in t ≤ m/4. Let
F be a downward closed set of restrictions and consider a random projection ρ1 ← R1.
For sufficiently large m,

Pr[depth(g � ρ1) ≥ s | ρ ∈ F ] ≤ Ds,

where D = t23+t−m/2.

PROOF. The proof of this lemma is almost identical to the proof of Lemma 9.2 so we
only discuss the differences. Lemma 9.3 is replaced by the following.

LEMMA 9.6. If Z is a set of blocks appearing in C1 and ρ is a random restriction
appearing in the construction of ρ1 ← R1 (see Definition 7.2), then, for sufficiently large
m,

Prρ[undet(Z,ρ) | ρ ∈ F and C1 � ρ 6≡ 1] ≤ 2r(t+1−m/2).

PROOF. The proof is almost the same as the proof of Lemma 9.3. The reason for the
loss in parameters is that the factor(

1 +
bi−1

1− bi−1

)|N |
that used to be bounded by a constant strictly less than two can now be as large as
2t.

The rest of the proof of how Lemma 9.5 follows from Lemma 9.6 is identical with how
Lemma 9.2 followed from Lemma 9.3 with the obvious change in the final calculation.
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10. THE PROOF OF THE MAIN THEOREMS
We now proceed to prove Theorem 1.6. In fact we are going to prove the following,
slightly stronger, theorem.

THEOREM 10.1. Let C be a circuit of depth d and size S with bottom fan-in at most
m/4. Then for sufficiently large m, we have

Pr[Sipserd(x) = C(x)] ≤ 1

2
+O(2−m/4) + S2−2m/2−4

.

Recalling that m = logn
2d−2 (1 + o(1)), it is not difficult to see that this theorem implies

Theorem 1.6. We turn to proving Theorem 10.1.

PROOF. We analyze what happens when a random projection ρd−1 ∈ Rd−1 is applied
to both Sipserd and C. Let us assume that d is odd and hence the output gate of Sipserd
is an AND gate. (The case of even d is completely analogous.) By Lemma 8.4 we have

Prx←{0,1}n [Sipserd(x) = C(x)] = Prx←{0,1}Vd−1 ,ρd−1←Rd−1 [Sipserd � ρ
d−1(x) = C � ρd−1(x)]

where we stress that on the LHS the probability is over a uniform random n-bit string
x while on the RHS the probability is over a random draw of ρd−1 from Rd−1 and
a coordinate-wise independent assignment to the live variables in Vd−1 where each
variable is given the value 1 with probability 1− bd−1. Let us first see how ρd−1 affects
Sipserd.

Consider the output gate v of Sipserd, which has fan-in fd. Recalling key property
(A) and the value of fd from (2) (and observing that each input gate to v is at level
d− 1 which is even), we get that with probability O(2−m/2) some gate that is an input
to v is forced to 0 by ρd−1. Suppose that this does not happen and let h1 denote the
number of input gates to v that are not fixed to one. By key property (B) and a Chernoff
bound applied to each input gate to v and a union bound over those input gates, with
probability 1 − exp(−Ω(2m/2)) we have |h1 − fd2−m| ≤ 23m/4. Thus we conclude that,
with probability 1−O(2−m/2), Sipserd � ρd−1 has been reduced to an AND-gate of fan-in
(ln 2) · 2m · (1±O(2−m/4)).

Now let us see how ρd−1 affects C. We aim to prove by induction that ρi ← Ri, with
high probability, reduces the depth of C by i. Let us assume that C has Si gates at
distance i from the inputs.

Consider any gate in C at distance two from the inputs and suppose it is an OR gate
whose inputs are AND gates, the other case being similar. By Lemma 9.5, for suffi-
ciently large m, after ρ1 ← R1 has been applied, except with probability 2−2m/2−4

this
sub-circuit can be computed by a decision tree of depth at most 2m/2−4. This implies
that it can be written as an AND of OR gates of fan-in at most 2m/2−4. We conclude
that except with probability at most S2 · 2−2m/2−4

, by collapsing two adjacent levels of
AND-gates, C � ρ1 can be computed by a depth d− 1 circuit with bottom fan-in at most
2m/2−4 where each gate at distance at least two from the inputs corresponds to a gate
at distance at least three in the original circuit.

Applying Lemma 9.2 for i = 2, 3 . . . d − 2 in a similar way we conclude that for a
random draw of ρ2 ← Rd−2, except with probability at most

∑d−2
i=2 Si2

−2m/2−4

, C �
ρd−2 can be computed by a depth 2 circuit of bottom fan-in 2m/2−4. A final application
of Lemma 9.2 says that except with an additional failure probability 2−2m/2−4

, for a
random draw of ρd−1 ← Rd−1, C � ρd−1 can be computed by a decision tree of depth
2m/2−4.

Summarizing the above analysis, we have that except with probability O(2−m/2) +

S2−2m/2−4

over a random draw of ρd−1 ← Rd−1, it is true both that Sipserd � ρd−1 is an
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AND of fan-in ln 2 · 2m(1 ± O(2−m/4)) and that C � ρd−1 is computed by a decision tree
of depth 2m/2−4. For coordinate-wise independent input strings where each variable is
given the value 1 with probability 1 − bd−1, an AND of fan-in ln 2 · 2m(1 ± O(2−m/4))
evaluates to 1 with probability 1

2 (1±O(2−m/4)) (recalling (4)), while the probability
that any decision tree of depth s outputs 1 must be within sbd−1 of either 0 or 1. We
conclude that

Prx←{0,1}Vd−1 ,ρd−1←Rd−1 [Sipserd � ρ
d−1(x) = C � ρd−1(x)] =

1

2
±
(
O(2−m/4) + S2−2m/2−4

)
,

and the proof is complete.

Looking more closely at the proof, we can derive an even stronger theorem that
implies Theorem 1.7:

THEOREM 10.2. For odd d, let C be a circuit of size at most S and depth d+ 1 with
an OR-gate as its output gate, and bottom fan-in at most m/4. Then for sufficiently large
m we have

Prx←{0,1}n [Sipserd(x) = C(x)] ≤ 1

2
+O(2−m/4) + S2−2m/2−4

.

The same is true for even d if the output gate of C is an AND-gate.

PROOF. Let us assume that d is odd, the even case being completely analogous. We
follow exactly the proof of Theorem 10.1 until the very last step. We can conclude that
C � ρd−1, with high probability, is reduced to the disjunction of a set of functions each
computable by a decision tree of depth 2m/2−4. We can convert this to a DNF formula
of bottom fan-in 2m/2−4, and we must analyze the probability that such a DNF equals
Sipserd � ρd−1 under the coordinate-wise independent distribution on input strings
where each variable is given the value 1 with probability 1− bd−1. There are two cases
to consider.

Suppose first that each term in the DNF formula contains a negated variable. Then
C � ρd−1 rejects the all-ones input, which is chosen with probability 1

2 + O(2−m/4).
On the other hand, if Sipserd � ρd−1 is an AND-gate of fan-in ln 2 · 2m(1 ± O(2−m/4))
(which happens with probability 1 − O(2−m/2)), then the all-ones input is accepted by
Sipserd � ρ

d−1 with probability 1. We thus have that

Prρd−1 [Sipserd � ρ
d−1(x) = C � ρd−1(x)] ≤ 1

2
+O(2−m/2) +O(2−m/4) (17)

in this case, giving the desired bound.
On the other hand if there is a term in C � ρd−1 that only contains positive variables

then it (and hence C � ρd−1) is true with probability 1 − O(2−m/2). As Sipserd � ρd−1 is
close to unbiased, (17) is true also in this case and the theorem follows.

As stated previously we have not made any serious effort to get the best constants
in our main theorems. Our constants are, however, not too far from the truth as we
may take C to be one input sub-circuit to the output gate of Sipserd. This is a depth
d− 1 circuit of sub-linear size that agrees with Sipserd for a fraction 1

2 + Ω(2−2m) of all
inputs.

11. SOME FINAL WORDS
The main difference between the current paper and the early proof of the hierarchy
theorem in [Håstad 1986a] is the use of projections. The projections serve two pur-
poses. The first is to make sure that once a single ∗ is found in ρ we do not bias any
other value of ρi to be ∗. This property was achieved in [Håstad 1986a] by fixing the
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values of neighboring variables to constants while here we identify all the neighboring
variables with the same new variable and hence we only query one variable in the
decision tree. We feel that this difference is minor.

The more important difference is that projections enables us to choose a uniformly
random input where this seemed difficult to achieve. It is remarkable how seemingly
simple ideas can take care of problems that, at least initially, looks like fundamental
obstacles.
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