On small-depth Frege proofs for Tseitin for grids

Johan Hastad
School of Computer Science and Communication
KTH Royal Institute of Technology
Stockholm, Sweden
Email: johanh@kth.se

Abstract—We prove a lower bound on the size of a small
depth Frege refutation of the Tseitin contradiction on the grid.
We conclude that polynomial size such refutations must use
formulas of almost logarithmic depth.

Keywords-Frege proofs; proof complexity; switching lemma,
Tseitin formulas;

I. INTRODUCTION

This paper is in the setting of propositional proof com-
plexity. We are given a propositional statement and some
reasoning rules. The most basic proof system is resolution.
In this proof system we study clauses, i.e. disjunctions of
literals and have a simple way to derive new clauses from
existing clauses. If we derive the empty clause we have
reached a contradiction refuting the original formula.

Resolution has been studied extensively and by now we
have a large body of work understanding the strengths
and limitations of resolution. In an early paper [1], Tseitin
defined the set of contradictions based on graphs studied in
this paper and proved that any regular resolution proof of this
contradiction requires exponential size proofs in general. A
later result by Haken [2] gave the first strong lower bound for
unrestricted resolution proving that the pigeon-hole principle
(PHP) requires exponential size proofs. As this paper is not
about resolution let us not discuss the many strong results
obtained, but only mention the famous paper of Ben-Sasson
and Wigderson [3] as a high point which among other results
showed the importance of width when studying resolution
proofs.

There are many proof systems that are more powerful
than resolution and in this paper we study the case when
each formula appearing in the proof is restricted to be a
Boolean formula of small depth d. Here d = 1 corresponds
to resolution. There are many alternatives for the reasoning
rules and what is said below applies to any constant size
set of reasoning rules that are consistent. The first strong
result was obtain by Ajtai [4] showing that the PHP cannot
be proved in constant depth and polynomial size.

Ajtai did not work out an explicit lower bound for the
depth of polynomial size proofs but in a later reformula-
tion by Bellantoni et al. [5], a lower bound of Q(log™ n)
was given. This was later strengthened [6], [7] to obtain
Q(loglogn) lower bounds for PHP. Similar bounds were

later proved by Urquhart and Fu [8] and Ben-Sasson [9] for
Tseitin formulas for the complete graph and for constant-
degree expander graphs, respectively.

On the positive side Buss [10] proved that there are
polynomial size O(logn)-depth proofs for the PHP and his
methods can be adopted to also yield similar proofs for the
Tseitin formulas for any constant-degree graph.

The exponential gap between the depth bounds loglogn
and logn was recently partly closed by Pitassi et al. [11]
obtaining a (y/logn) lower bound for Tseitin formulas
on a certain 3-regular expander graph. It is curious to
note the the size lower bounds of [11] when considering
depth d is exponential in Q((logn)?/d?) and thus only
weakly superpolynomial. For small values of d, this bound
is weaker then the bounds of the form exp(ncfd) obtained
in previous paper but extends the range of d for which it is
superpolynomial.

In the current work we study the Tseitin formulas for the
2-dimensional grid and almost close the gap obtaining size
lower bounds exp(Q(n'/58(4+1))) for depth d proofs and
hence the depth lower bound €(logn/loglogn) for poly-
nomial size proofs. Our proofs follow the same paradigm as
earlier proofs and let us sketch the underlying mechanisms
at a semi high level to put our contribution in perspective.

When studying circuits of small depth it has turned out to
be profitable to study restrictions that fix most of the input
variables to constants. This is useful as for suitably chosen
restrictions it is possible to decrease the depth of almost
all small circuits by one. This was first used to prove lower
bounds for circuits size [12], [13], [14], [15] and the simplest
case is when proving lower bounds for the size of depth-d
circuits computing parity and let us briefly discuss this case.

In this situation one uses the simplest space of random
restrictions usually denoted by [2,,. In such a restriction each
input variable is kept with probability p and otherwise set to
0 or 1 with equal probabilities. The key notion for decreasing
depth is a switching lemma which says that if you are given
a depth two circuit with bottom fanin ¢ then, if you at the
same time apply a restriction, it can be switched to a depth
2 circuit of the other type of bottom fanin s, except with
probability at most (5pt)®.

Using this switching property for the two layers closest to
the inputs creates two adjacent layers of gates of the same

type which makes it possible to decrease the depth of the
circuit by one. To prove a lower bound for parity one just
needs to make the trivial observation that the resulting circuit
must compute the parity (or its negation) of the remaining
variables. Applying d—1 restrictions we are able to make the
circuit simple enough to be analyzed directly. The number
of remaining variables is about p~'n and we simply need
a large enough p to make this number non-trivial.

To prove lower bounds for the size of proofs for various
families of formulas one needs more subtle restrictions. We
are no longer computing a function but instead given a set
of axioms. We want that a restriction reduces the problem
to a smaller problem of the same type. This is more or less
equivalent to that each axiom is either reduced to an axiom
of the smaller instance or to something that is a tautology.
We must, at all cost, make sure that no axiom is made false
as this would imply that the contradiction we are trying
to prove cannot be produced efficiently is available as an
axiom. In most cases each axiom is of constant size and
this implies that we cannot use spaces of restrictions, such
as R, that treat the variables independently. Restrictions
that give values in a dependent way cause problems with the
proof (or even validity) of the switching lemma. The key is
thus finding a balance between the property of preserving
the axioms of the formula we are studying while still being
able to prove a switching lemma with good parameters.

On the high level, the strength of a switching lemma
is controlled by the size of the obtained problem (which
corresponds to the parameter p for independent restrictions)
and how the failure probability depends on the parameters
s and t. The switching lemma of [11] has failure bounds
on the form (cpt2")*. The reason for this factor 2° is a bit
mysterious and [11] conjectures that it is not needed. The
paper by Mehta [16] describes similar situations where the
factor is indeed needed. The worse bounds force the proof
to work with small values of s and ¢ (roughly (logn)/d)
and a p that is about 27 for a ¢ > 1.

We improve the troublesome factor 2¢ of [11] to the
better, but probably not optimal, factor ¢t© for a constant
c. This implies that the loss in one application of the
switching lemma roughly corresponds to ¢ applications of
the lemma with the optimal parameters and thus we get this
multiplicative factor in front of d. As this is a constant we
get asymptotically sharp bounds for the depth of polynomial
size proofs.

A key point in the proof is the choice of the space of
restrictions. The high level picture is not that surprising.
Given a n x n grid we pick sub-squares of size T'xT" (where
T is poly-logarithmic when studying polynomial size proofs
and n2(1/® in general) and in each sub-square we pick a
node and connect the picked nodes by paths. For each path
P we have a new variable x p and for each edge e on the path
it is either replaced by x p or its negation Z p. This is done in
a way that irregardless of the values of these new variables

all constraints, except at the picked nodes are automatically
satisfied while the constraints at the picked nodes give the
constraints of the smaller instance. The essential new part
of the current paper is the choice of restrictions and the
proof of the switching lemma. The way to analyze how
restrictions make all sub-formulas be represented by small-
depth decision trees is similar to previous papers.

An overview of the paper is as follows. We start with
some preliminaries in Section II and proceed with some
properties of the grid and assignments that satisfies some
parity conditions in Section III. We define our restriction
in Section IV. We proceed to recall the formalism of
t-evaluations in Section VI after having described some
basic properties of consistent decision trees in Section V.
Assuming the switching lemma we are able to complete the
proof of our main theorem also in Section VI and we end
by the proof of the switching lemma in Section VIIL.

II. SOME PRELIMINARIES

The Tseitin contradiction for a graph G is a statement on
a set of variables x. where e ranges over all edges of G. It is
usually stated for a small degree graph and in our case G is
what is usually, and also here, called “the grid” but in fact it
is the torus. In other words we have nodes indexed by (i, j),
for 0 <i7,7 < n—1 where n is an odd integer and a node
(i,7) is connected to the four nodes at distance 1, i.e. where
one coordinate is identical and the other has moved up or
down by 1 modulo n. The constraint at node v is that the
number of edges, e, incident to v with z. = 1 is odd. This
is a contradiction as can be seen by summing the constraints
over all nodes. Each edge appears in two equations while
the right hand sides sum to 1 modulo 2. The contradiction
can be formulated as a 4-CNF formula by having 8 clauses
of length four for each node.

Our formulas only contain V-gates and negations. We
simulate A in the obvious way and depth is the number
of alternations of V and —.

III. PROPERTIES OF ASSIGNMENTS ON THE GRID AND
DYNAMIC MATCHINGS

We are interested in assignments to some of the variables
on the grid and to what extent they satisfy the parity
constraints that the variables around any vertex sum to 1
modulo 2. Of course we cannot have a total assignment that
satisfies all constraints simultaneously but we have plenty
of assignments that satisfy all constraints in some particular
area of the grid.

On a set X of nodes we say that a partial assignment is
complete if it gives values to exactly all variable with at least
one endpoint in X. The support of a partial assignment is the
set of nodes adjacent to a variable given a value. Note that
the support of a complete assignment on X also includes
the neighbors of X.

In our proof we consider assignments to small sets of
variables and in particular we are interested in cases where
the size of the set X is o(n) and hence a small part of the
grid. Let X denote the complement of X.

In the situation when X is small, X contains a giant
component containing almost all nodes of the grid. This
follows as there are at least n — o(n) complete rows and
columns in X ¢ and the nodes of these rows and columns are
all connected. For a set X let the closure of X, ¢(X) denote
all nodes either in X or in small connected components of
X¢. Note that ¢(X)¢ is exactly the giant component of X°¢.

Definition 3.1: An assignment « supported on a set X
is locally consistent if it can be extended to a complete
assignment on ¢(X) that satisfies all parity constraints on
this set.

We extend this definition to say that two assignments are
consistent with each other if they do not give different values
to the same variable and when you look at the union of the
two assignment this gives a locally consistent assignment.
Let us prove a simple but useful lemma.

Lemma 3.2: Suppose « is a locally consistent assignment
supported on a set of size o(n) and z. a variable not in the
support of «. Then there is a locally consistent assignment
o’ that extends « and gives a value to ..

Proof: Suppose the support of o is X and let X+ be
X with the endpoints of e added. First extend « to be an
assignment that satisfies the constraints on ¢(X) and then
take any further extension that gives values to all variables
touching ¢(X ™). Suppose this assignment violates the parity
constraint at a node v. Take a path that starts at v and ends
in ¢(XT)¢ and does not pass through any node in ¢(X).
This is possible as ¢(X)¢ is connected. Negate the variables
corresponding to edges on this path. The new assignment
satisfies the constraint at v, still extends «v and does not cause
any new violations on ¢(X ™). Repeating this procedure for
any v € ¢(X ™) that has its constraint violated creates a
locally consistent assignment that extends « and gives a
value to z.. [|

The technique used in this proof of taking a path be-
tween two nodes and flipping the values along this path
is extremely useful for thinking about assignments under
the Tseitin conditions. This changes the validity of the
constraints at the endpoints but preserves the constraints at
all other nodes. Next we discuss a dynamic matching game
needed by our analysis.

We have two players, one adversarial player that supplies
nodes while the other, matching player P, is supposed to
dynamically create a matching that contains the nodes given
by the adversarial player. As the full grid is of odd size
and hence does not have a perfect matching the adversarial
player will eventually win, but clearly Pj; can survive for
a while and this is sufficient for us. To be more precise
we have the below lemma proved in the full version of the

paper.

Lemma 3.3: When the dynamic matching game is played
on the n x n grid, Pys can survive for at least /2 moves.

I'V. RESTRICTIONS

The plan is to make a probabilistic assignment to variables
of the grid that reduces the Tseitin contradiction to a smaller
contradiction of the same type in a way that enables us
to simplify all formulas appearing in an attempted proof.
As the final product is a rather rigid object we utilize
an intermediate partial restriction that leaves slightly more
variables unset but has better independence properties. We
start by defining the full restrictions.

A. Full restrictions

In an n x n grid we make sub-squares of size T' x T
where we assume that the number of sub-squares is odd.
In each sub-square we choose' A = /T'/2 of the nodes
and call them centers. These are located evenly spaced on
the diagonal of the 37/4 x 3T /4 central sub-square. This
implies that they have separation 3v/7"/2 in both dimension.

The centers in neighboring sub-squares are connected by
paths that are edge-disjoint except close to the endpoints. Let
us describe how to connect a given center to a center in the
sub-square on top, the sideways case being analogous. There
are T'/4 rows between the two central areas. For each pair
of centers (one in the top sub-square and one in the bottom)
we can hence designate a unique row in this middle area.

Now for the jth center in the lower sub-square to connect
to the ith center above we first go ¢ steps to the right and
then straight up to the designated row. This is completed by
starting at the upper center and then going j steps to the
left and then down to the designated row. We finally use the
appropriate segment from the designated row to complete
the path.

These paths have the property that the A first and last
edges belong to several paths, always starting at the same
center and going in the same direction while the rest of the
edges on a path uniquely identifies the entire path and hence
both endpoints. The “direction” is here and elsewhere in the
paper counted as the relative position of the sub-squares and
is thus one of “up”, “down”, “left” or “right”. It is important
for us that for any edge there is a unique center that is the
closest endpoint of all paths going through this edge and all
paths that go through that edge are in the same direction.

A restriction is defined by first picking one center in
each T' x T sub-square and then the paths described above
connecting these centers. Note that these paths are edge-
disjoint. The picked centers naturally form a n/T xn /T grid
if we interpret the paths between the chosen centers as edges.

'For simplicity we assume that some arithmetical expressions that are
supposed to be integers are in fact exact as integers. By a careful choice of
parameters this can be achieved but for the time being we leave this detail
to the reader.

We proceed to make the correspondence more complete by
assigning values to variables.

Each variable is given a value such that, at any node which
is not chosen, the parity of the sum of the adjacent variables
is one while the same parity at chosen centers is zero. As the
number of chosen centers is odd there is such an assignment.
For variables not on the chosen paths these are the final
values while for variables on the chosen paths we call them
suggested values.

For each path P between two chosen centers we have a
new variable zp and for each variable z. on the path it
is replaced by zp if the suggested value of z. is 0 and
otherwise it is replaced by Zp.

We claim that with these substitutions we have reduced
the Tseitin problem on an n X n grid to the same problem
on an n/T x n/T grid. This is true in the sense that we
have an induced grid when we interpret paths as new edges
and we need to see what happens to the axioms.

Given a formula F' we can apply a restriction to it in the
natural way. Variables given constant values are replaced
by constants while surviving variables are replaced by the
appropriate negation of the corresponding path variable. A
restriction has a natural effect on the Tseitin contradiction
as follows.

o The axioms for nodes not on a chosen paths are all
reduced to true as all variables occurring in them are
fixed in such a way that the axioms are true.

o The axioms for interior nodes of a chosen path are
reduced to tautologies as the axiom is true independent
of the value of the involved variable(s) xzp. This is
true as flipping a single xp changes the value of two
variables next to any such node.

o The axioms at the chosen centers turn into the axioms
of the smaller instance.

These just defined restrictions are called full restrictions
as they completely reduce a full size problem to a smaller
problem. A typical full restriction is denoted by o. We
construct such a full restriction by first making a partial
restriction and we turn to defining these next.

B. Partial restrictions and pairings

A typical partial restriction is called p and as we mostly
discuss partial restrictions we simply call the them restric-
tions while we use the term “full restrictions” when that
is what we have in mind. At the same time as describing
partial restrictions we give a probability distribution on such
restrictions.

Let k be an odd integer of the form Cs(n/T)? for a
constant C'. The first step of constructing p is picking k
centers uniformly at random from the set of all A(n/T)?
centers. These are the alive centers. In the future we only
consider the case when the number of live centers in each
sub-square is between a factor .99 and 1.01 of its expected

value C's. The probability of this being false is O(n2e=?(*))
and this is simply added to other failure probabilities.

For all variables not on any path between live centers we
fix these to random values respecting the parity constraints
at these nodes.

We now randomly pick preferred values for all remaining
variables. These preferred values satisfy all parity con-
straints, except at the live centers where they all violate
the parity constraint. As the number of live centers is odd,
there is one, and indeed many, such assignments of fixed
and preferred values.

The choice of the centers together with the fixed and
preferred variables is denoted by p. The choice of p is the
main probabilistic event. Note that the number of possible
values for fixed and preferred values is independent of which
centers are alive and even of k as long as it is odd. This is
true as the values (fixed and preferred) are selected to satisfy
a number of linear equations. The left hand sides of these
equations are always the same as we sum variables over
all edges adjacent to a node while the right hand sides do
change. Any choice for the right hand side for which there
is some solution has the same number of solutions as this
only depends on the number of variables and the rank of the
linear system of equations.

A partial restriction p is, for the analysis, preferable to
a full restriction o as it behaves more independently. A
drawback is, however, that as soon as a live center v is
discovered then we have many paths leaving v in p and this
could result in a deep decision tree if they all corresponded
to a live variable. In order to avoid this we add a second step,
a pairing , turning a partial restriction into a full restriction.

Choose one center to survive in each sub-square. These
are called the chosen centers and paths between such centers
correspond to the variables that remain and are called chosen
paths. Centers that were alive through the first part of
the process but are not chosen are called non-chosen. The
centers killed already by p are simply called dead.

The simplest way to eliminate the non-chosen centers
would be if we were able to pair them up in such a way
that the two centers in a pair are in adjacent sub-squares and
hence connected by a path. In such a case we could negate
the preferred values along any such path and after this make
the preferred values permanent outside the chosen paths. For
variables on the chosen paths we turn the preferred values
into suggested values completing the full restriction.

It might be that there is such a pairing with high proba-
bility but we allow a more general way of eliminating non-
chosen centers as this is easier to find. We still call the
process a pairing as it is not too far from the truth and gives
the right intuition.

Let us consider a graph on the non-chosen centers where
two centers are connected if there is a path between them
(which is true iff they are in neighboring sub-squares).

As the original grid is also a graph with edges we from

now on use the term “grid-edges” to refer to edges in the
original grid. The chosen centers form a smaller grid and
this also has edges and we call these “new grid-edges”. We
only consider paths in the grid and we keep the shorter
term “path” for these. Thus from now on an “edge” is a
connection between two live centers and corresponds to a
path in the grid-graph. A “new grid-edge” corresponds to a
chosen path and is thus also an edge in the graph of the live
centers.

Some edges are conflicting in that they cannot be present
in the graph at the same time. This is because we allow at
most one path in each of the four directions from a center.

Our second part of the full restriction is an odd degree
sub-graph 7 that covers all non-chosen centers such that
each connected component of 7 is either an edge or a star
with four nodes. A proof of the below lemma is given in
the full paper.

Lemma 4.1: If each sub-square has between .99C's and
1.01C's non-chosen centers such a pairing 7 exists.

As stated above 7™ makes it possible to turn p into o.
Variables not on live paths take their fixed values. Variables
on live paths but not on chosen paths take their preferred
values unless they are on a path chosen by 7 in which
case these values are negated. On the chosen paths the
preferred values now becomes suggested and this completes
the description of o.

We use the term “preferred values” as a vast majority
of the variables will eventually be fixed to these values as
very few variables appear on the paths of 7. On the other
hand “suggested values” are much less certain as the path
variables should be thought of as equally likely to be 0 and
1 and thus these variables are equally likely to take also the
non-suggested value.

As an intermediate between p and the full restriction o
we have p and some information in the form of edges and
“non-edges” which says that there is no edge from a certain
center in a certain direction. We call such an edge or non-
edge a piece of information and we let an information set
I be a collection of pieces of information. An information
set is consistent if it does not have two different pieces of
information from the same center in one fixed direction and
furthermore, if it has the information in all four directions
from a center v then it has an odd number of edges. Note
that here, as opposed to the grid, we do not have a problem
of small connected components in the complement of a
set of nodes. A center has a potential edge to all centers
in neighboring sub-squares and thus this is much more
connected graph than the grid. We need the notion of a
closed information set.

Definition 4.2: An information set I is closed if it is
supported on a set X of centers such that for any v € X
the set I contains the information in all four directions and
any edge in [is between two centers of X.

It follows that the size of X must be even and I contains

a non-edge from any v in a direction where X does not have
an element. When considered as a graph such an information
set is an odd-degree graph (with degrees one and three) on
the centers of X. One more definition.

Definition 4.3: Let p be a restriction and [an information
set. A variable z. is considered forced by (p, I) iff either its
closest endpoint, v, is not live in p or if the information of
v in the direction of e is contained in . It is forced to its
preferred value unless the information states that there is an
edge from v in the direction of e that corresponds to path
that passes through e in which case it takes the opposite
value.

There are other situations where the value of a variable
might be determined by p and I, such as the lack, or scarcity,
of live centers in a sub-square but it is not allowed to use
this information.

Note that if we have a closed information set [then if we
consider all variables forced by (p, I) this can be described
by a restriction where the centers in the support of I are
killed. We simply negate the values of any preferred variable
on any path in [and then forget that the centers in the
support of I were alive.

If we let such a closed information set operate on a
restriction p we get a restriction with fewer live centers
where the number of killed centers is exactly the number
nodes in the support of the corresponding graph.

V. DECISION TREES

We have decision trees where each internal node is marked
with a variable x. and the outgoing edges are marked with
0 and 1. The leaves of a decision tree are labeled by 0 and
1.

All decision trees considered in this paper have a depth
that is smaller than the dimension of the grid we are
currently considering. For each path in a decision tree there
is partial assignment that forces an input to follow this
branch. As the branch is short we call it consistent if
the corresponding assignment is consistent in the sense of
Definition 3.1. In this paper it is always the case that all
branches of a decision tree are consistent. This is achieved
by simply erasing inconsistent branches.

We are interested in what happens to a decision tree T’
when subject to a (full) restriction o or a partial assignment
7 and the results are denoted by T'[, and T'[, respectively.
There is no essential difference between the two cases as
in each case we have a decision tree where the values of
some variables are already fixed and we just keep the paths
consistent with these values.

Let us first state this in an operative manner. We start at
the root of 7' and at each node we have a variable under
consideration. If the value of this variables is forced by o
(or T, respectively), the values along the path so far, and
consistency, we choose the sub-tree with the consistent value
and otherwise we explore both sub-trees in the natural way.

A more static way is to consider all paths of 7' from
the root to a leaf and see which of the corresponding
assignments are consistent with o (or 7). The paths that
are consistent remain and those not consistent are erased. It
is easy to see that the remaining paths (possibly after some
contractions) nicely fit into a decision tree and in fact the
decision tree defined above.

When considering consistency with o we of course make
use of the information that all old variables that are governed
by the same new variables must take equal or opposite values
as governed by the negations of the new path variable xp.

Lemma 5.1: If ny + ny < o(n) where n is the size of
the current grid, then if 7" is a decision tree of depth n;
and 7 is a partial assignment that gives values to at most 7
variables then T'[, is a non-empty decision tree.

Proof: This follows from Lemma 3.2. |

Lemma 5.2: Suppose o is full restriction whose output is
an instance of size n and let 7" be a decision tree of depth
o(n). Then T'[, is a non-empty decision tree.

Proof: At each step going down a path on a decision
tree at least one of the two values of a variable is consistent
with ¢ and the path so far.]

Lemma 5.3: If T is a decision tree of depth ng and let
71 and 7o are assignments that gives values to at most 7
and ny variables, respectively, that are consistent with each
other. Then, provided that ny + ny + n3 < o(n) we have
T(r = T[r, [and both are non-empty decision trees.

Proof: Taking the static view of restricted decision trees
both contain all paths of 7' that are consistent with 71 U 9.

|

We let a /-tree be a decision tree where all leaves are
labeled 1 and define a 0-tree analogously. Special cases of
such trees are trees of depth 0. Next we turn to a procedure
of representing formulas by decision trees of small depth.

VI. t-EVALUATIONS

We have a supposed proof and we have the set of formulas
that appear in the proof. We also have each sub-formula in
each of these formulas and this gives a set of formulas I". We
use t-evaluations ¢, a concept introduced by [8], that map
formulas to decision trees of depth at most t. Such mappings
will not be total and we are interested in finding ¢-evaluations
defined over as large set of formulas as possible. This is
made possible by, at the same time as extending the range,
applying a restriction. Let us define the desired properties
required of ¢-evaluations.

1) The constant true is represented by a 1-tree and the
constant 0 is represented by a O-tree.

2) If F'is an axiom of the Tseitin contradiction then ¢(F')
is a 1-tree.

3) If p(F) =T then ¢(—F) is a decision tree with the
same topology as 7' but where the value at each leaf
is negated.

4) Suppose F' = VF;. Consider a leaf in ¢(F') and the
assignment, 7 leading to this leaf. If the leaf is labeled
0 then for each i ¢(F;)[, is a O-tree and if the leaf is
labeled 1 then for some i, @(F;)[, is a 1-tree.

The intuitive role of ¢ (F) is that it represents the formula F’
as a function on all assignments that satisfy> “the relevant”
local Tseitin constraints. Let us explicitly give the represen-
tation of the axioms and take (z., V Z, V X, V X,) Where
e; are the four edges incident to a center v. Naturally each
variable is represented by a decision tree of depth one. This
clause is represented by a decision tree of depth three with
all leaves labeled 1 asking the variables x.,, z.,, and z.,
in order. The only leaf that requires a little bit of thought to
see that it is labeled 1 is the node where all three variables
are zero. In this leaf z., is reduced to a decision tree of
depth 0 with label 1 as the only value of z., consistent the
three Os is 1.

Note that we cannot represent this formula by a smaller
tree as, by rule 4, for each 1-leaf, we must have an
assignment that forces one of the decision trees for z.; to
be a 1-tree.

Another example is the conjunction of all the axioms.
As we do not have any A-gates this is represented as the
negation of the disjunction of the negations of all axioms. As
we just saw, each axiom is represented by a 1-tree of depth
3 and hence its negation is a O-tree of the same depth. Any
disjunction of such trees can be represented by a decision
tree of depth zero where the only leaf has label 0 and hence
the representation of the negation of such a disjunction is a
tree of depth O with label 1.

Thus we have constant one as a representation for a
formula that, when interpreted in the natural way, evaluates
to false on each input. The reason is that each sub-formula
looks true in the local sense.

For a general set of formulas we cannot hope to have a ¢-
evaluation for a small ¢ and our plan is to proceed as follows
fori =0,1,2...d.

« We have a t-evaluation for all formulas of I' that were

originally of depth <.

o Pick a random restriction o; and extend the t-evaluation

to all formulas of I'[,, of original depth at most ¢ + 1.

At the starting point, ¢ = 0, each formula is a literal or a
constant which is represented by a natural decision tree of
depth at most 1 and we start by proving that ¢-evaluations
are compatible with restrictions.

Lemma 6.1: Given a set of formulas I'” and a ¢-evaluation
¢ whose range includes I and let o be a full restriction
whose output is a grid of size n. Then, provided that ¢ < n,
©(F)[s is a t-evaluation whose range includes I''[,.

Proof: This is an easy consequence of the definition but
let us go over the various possibilities. To start with, hitting

2This is achieved since we only consider paths in decision trees with are
consistent.

a decision tree with a restriction can never increase the depth
of the decision tree and hence all representations are decision
trees of depth at most ¢. Note also that as ¢ < n the resulting
tree is non-empty. We need to check the properties of a t-
evaluation.

The first and second properties are obvious as a restriction
does not change the fact that something is 1-tree or a O-tree.

The third property is also rather obvious. The decision
trees for I’ and —F are effected the same way and there is
nothing that can change that the corresponding leaves have
labels that are the negations of each other.

For the fourth property consider any path in T that appears
in T[, and the corresponding assignment 7 which thus is
consistent with o. As already 7 reduces the 7T; in a good way,
we need only observe that T;[, [, is a non-empty decision
tree and hence it is a 1-tree or a O-tree as desired. [|

Now we eventually come to the key lemma of the entire
argument.

Lemma 6.2: Let s’ be an integer and s = max(s’, t), then
there is a constant A such that the following holds. Suppose
there is a t-evaluation whose range includes F;, 1 <i < m
and let ' = V]2, F;. Let o be a random restriction from
the space of restrictions defined in Section IV. Then the
probability that F'[, cannot be represented by a decision
tree of depth at most s’ is at most

(A827tA_1)s//27.

We postpone the proof of this lemma to Section VII
and see how to use it. We apply it with s’ = ¢t = s =
1n!/(G8d+D) and A = 5?° (and hence T = 45°%).

We start with the original Tseitin contradiction on the
n x n grid. Let n; = nT~*. We are going to choose a
sequence of full restrictions o; mapping a grid of size n; to
a grid of size n;41 randomly. Let o be the composition of
09, 01, . ..0;. As stated above, I' is the set of sub-formulas
that appear in an alleged proof and we let

Ty = {F,:

F € T ANdepth(F) < i}.

Let f; be the number of sub-formulas of depth at most ¢ in
T.

Lemma 6.3: With probability 1 — f;(s/A)~5/?7 there is a
t-evaluation ; whose range includes I';.

Proof: We prove the lemma by induction over ¢. For
i = 0 we have the t-evaluation that maps each literal to its
natural decision tree of depth 1 and constants to decision
trees of depth 0.

When going from depth ¢ to depth i+ 1 we need to define
@i+1 on all formulas originally of depth at most ¢ + 1 and
consider any such F'.

1) For each F' of depth ¢ it is, by induction, in the range

of ¢; and we can appeal to Lemma 6.1.

2) If F is of depth i then ;1 (—F) is defined from

i+1(F) negating the leaves.

3) For F' = VF; where each F; is of depth ¢ we apply
Lemma 6.2.

The only place where the extension might fail is under
step three but, by Lemma 6.2, the probability of failure for
any individual formula is at most (s/A)~*/27 and as we have
at most f; — f;_1 formulas of depth exactly 4, the induction
is complete. []

As a final piece we establish that all formulas appearing
in a short proof must be represented by 1-trees and as the
constant false is represented by a O-tree this is a contradic-
tion. In order to prove this we must go over the derivation
rules of our proof system. The details are not important and
we choose the same rules as [11] and these are as follows.

o (Excluded middle) (p V —p)

« (Expansion rule) (p — pV q)

o (Contraction rule) (pV p) = p

o (Association rule) pV (qV 1) = (pVq)Vr
e (Cutrule) pVg,-pVr—qVr.

The below lemma is essentially a verification and the
proof of it can be found in the full version of this paper.

Lemma 6.4: Suppose we have derivation using the above
rules and using the Tseitin conditions in the n x n grid
as axioms. Let I' be the set of formulas appearing as sub-
formulas of any formula in the given derivation and suppose
that we have a t-evaluation whose range includes I where
t = o(n). Then each line in the derivation is mapped to a
1-tree. In particular we do not reach a contradiction.

We are now ready for the main theorem.

Theorem 6.5: Suppose that d < 59113%%, then, for
sufficiently large n, any depth-d Frege refutation of the
Tseitin contradiction on the n x n grid requires size
exp(Q(n1/58(d+1)))_

Proof: Suppose we have a refutation of size S and
consider the corresponding set of sub-formulas I'.

With the given choice of A we have T < n!/(d+1)
and hence we have a nT~¢ > T sized grid remaining
after ;. The probability that we fail to have ¢-evaluation
of all formulas in I" after ¢} is, by Lemma 6.2 bounded
by S(s/A)~5/27. The probability that we at any stage of
the process we do not have between .99C's and 1.01C's
alive centers in a sub-square is bounded by n2e=(*). As
s = w(logn), the sum of these two failure probabilities, for
sufficiently large n, is smaller than 1 and hence there exists
a o), which makes all sub-formulas in the proof have a ¢-
evaluation and such that the final restriction gives a grid of
size at least T. As t = o(T') we can appeal to Lemma 6.4
and the proof is complete. []

We have an immediate corollary.

Corollary 6.6: Any polynomial size Frege refutation of
the Tseitin contradiction on the n X n grid requires formulas
of depth Q(lolg‘;)ﬁ)gn).

Finally we turn to the proof of the switching lemma which
is the heart of the argument.

VII. PROOF OF THE SWITCHING LEMMA

Let T; = ¢(F;). We create an extended canonical decision
tree for F'[, by going over the trees 7; one by one. If there
is a path in 7; to a leaf with label 1 that is consistent with
the information we have so far, we explore the variables of
this path (and some extra variables). Let us proceed.

It is important that the constructed decision tree does not
depend on the preferred values along the chosen paths but we
may, and indeed we will, let it depend on other parameters
and in particular we make use of the knowledge of the non-
chosen centers.

As we go over the 7;’s we have a set S of exposed centers
and an information set [that, jointly with p, guides the
construction of the decision tree.

For non-chosen centers in S we know their connected
components in 7w and if one center in such a connected
component belongs to S then so does the entire component.
For chosen centers in S we have asked for the values of
all remaining variables adjacent to these centers and this
information is present in /. The one-answers are recorded in
the form of a path while the zero answers as two non-edges
supported at the two chosen centers that are the endpoints
of the chosen path.

We go over the decision trees one by one and let us see
what happens when we consider 7;. Take the first (in some
fixed order) path in 7; that leads to a leaf labeled 1. For
the variables appearing on this path we have unique values
required to reach this leaf. We let the forcing information,
J, be a set of edges and non-edges that, jointly with I and
p, forces? all variables on this path, from now on called “the
forceable path” to take these unique values. Furthermore we
require.

1) If J contains a non-edge from a chosen center it also
contains a non-edge in the ‘“reverse direction”. As
an example if it contains a non-edge going left from
chosen center v then J contains a non-edge going right
from the chosen center in the sub-square to the left of
.

2) Neither I nor J contains a path between a chosen
center and a non-chosen center.

3) The information sets I and J are jointly consistent
with p and disjoint.

At any point in the above procedure, the information
I comes from information in 7 and from queries in the
decision tree with answers 7. Let us first see that the lack
of forcing information implies that 7 is in fact reduced to
a O-tree.

Lemma 7.1: If there is no forcing information for 7; then
T;[o+ is a O-tree.

Proof: Suppose indeed that there is a path in T; that
leads to a 1-leaf and is consistent with o and 7. This implies

3Please remember, by Definition 4.3 for a variable to be forced we need
to know the relevant information at its closest endpoint.

that we can extend 7 to 71 such that we reach this leaf. In
other words, ¢ and 7; jointly determines the value of each
variable on this path.

We proceed to construct some forcing information J. Let
us consider a variable z. on the path. For e whose closest
endpoint is not chosen we include the information from 7 on
this closest endpoint in direction of e. If the closest endpoint
of e is chosen then e may or may not be on the chosen path
in its direction.

If e is on the chosen path then the information 7, must
contain the value of the corresponding path-variable and we
include that information in the form of an edge or two non-
edges in J. If e is not on the chosen path then we choose
some value to the path-variable in its direction from its
closest endpoint that is consistent with 7; and choices for
previous variable set in the current process. Given the value
of this variable we include this in J either as an edge or
two non-edges. We need to check that J is a valid forcing
information.

The first property that it forces the input to follow the path
is true by construction and we turn to the other properties
needed.

As 7 only contains paths between two non-chosen centers
and 7; and its extension only paths between two chosen
center, we cannot have a path between a chosen and non-
chosen center in J and we need to check consistency with
1.

On the non-chosen centers, I contains some information
from 7 and as the information in J on the non-chosen part
is also from 7 this is consistent (any duplicated information
can simply be dropped from J).

On the chosen centers we know that 71 is an extension
of 7, the information obtained in the decision tree up to
this point. As the information in I on the chosen centers
is exactly given by 7 and the information in .J, which is
consistent with 7, which is an extension of 7 we conclude
that .J is consistent with I. As we did not give this forcing
information in the construction of the extended canonical
decision tree we can conclude that the assumed 1-path does
not exist and the lemma follows. []

If there is forcing information .J we expose all centers in
the support of J but also some additional centers as follows.

o For any non-chosen center v in the support of J we
expose the centers in its connected component in 7.

e We let the chosen centers in the support of J be the
nodes supplied by the adversary in the matching game
described in Section III. We apply Lemma 3.3 and
expose also the partners of these nodes in the matching
provided by Pjy.

We note that if the support of the forcing set J is of size
r then the number of exposed centers is at most 4r as we
expose at most 3 more nodes for any non-chosen center and
at most one extra node for any chosen center.

We now extend the information I by including the
connected component from 7 of the non-chosen exposed
centers. For the chosen centers we ask all variables adjacent
to any exposed center. We record one-answers as an edge
in I and zero-answers as two non-edges including the other
endpoint of a potential chosen path, i.e. the chosen center
in the adjacent sub-square in the given direction.

Given this extended [it is possible to tell whether the
forceable path in T; is traversed. This follows as for any
variable on the path the closest endpoint is now exposed
and for each exposed node we have information pieces in
all four directions. If this path is indeed followed, the process
is ended as T;[,, is a 1-tree and the path of the decision
tree can be terminated with label 1.

If the forceable path is not followed we continue the
process by first looking at T; under this new extended infor-
mation I and searching for some new forcing information
of a different 1-path and then looking at T}/ for i’ > i.

Finally, if all 7;’s have been processed we terminate the
path in the decision tree and label the leaf 0. This ends the
description of the creation of the extended canonical decision
tree for F'[,. We observe that we have created a decision
tree that is a legitimate choice for ¢(F'). Indeed at any leaf
labeled 1 we have found a T; that is reduced to a 1-tree and
if all T; have been processed then, by Lemma 7.1, this leaf
in the decision tree is correctly labeled 0.

Note that this process depends on p and 7 but not, in a
serious way, on the negations of the preferred values along
the paths between the chosen centers. As we have no paths
between chosen and non-chosen centers the only difference
is that for variables on chosen paths in one case is forced
by the path and in the other case by two non-edges and this
does not cause any difference as the supports are identical.
As this is of key importance let us record this as a lemma.

Lemma 7.2: Let o1 be obtained from p; and 7 and o9
from py and ™ where p; and p» pick the same set of centers
and fixed values. Assume furthermore that there for each
chosen path P there is a bit c¢p such that for each grid-
edge e on P the preferred values of z. differ by cp in
p1 and po. Then the only difference between the extended
canonical decision trees of F'[,, and F[,, is the labeling
of the internal edges.

In the decision tree, at round j, we ask all questions to a
set of variables touching the chosen centers of the set 5. We
say that the answers are closed iff the answer to a query is
one iff it corresponds to an edge in the dynamic matching
created by Pys. The resulting information set is then closed
in the already defined sense. The following lemma is now a
consequence of Lemma 7.2.

Lemma 7.3: If the probability that F'[, needs a decision
tree of depth s’ is at least ¢, then the probability that the
extended canonical decision tree of F'[, contains a closed
path of length at least s it at least 2‘5/q.

In view of this lemma we complete the proof by analyzing

the probability of such a closed path. This analysis is done
using the labeling technique of Razborov [17]. In other
words we take a p that contributes to the above event and
create a p* which is also a restriction but with fewer live
centers. We then establish that given p* and some extra
information it is possible to reconstruct p. Noting that there
are many fewer p* than p and the extra information can
be limited in size we get the desired conclusion. Thus we
assume that we have such a closed path and we proceed to
construct p*.

For technical reasons we stop the creation of the extended
canonical decision tree once we have exposed at least s’
centers and we analyze the probability that we ever reach
this point. Suppose this happens after the gth stage, where
g < s’ as we expose at least one center in each stage.

At the end of the process we have a set, SY, of exposed
centers which is of cardinality at least s’ and at most s’ + 8¢,
as we at each stage expose at most 8¢ centers. This follows
as J contains at most 2¢ centers as the length of each path
in T;, is at most ¢ and we add at most 2 centers for each
variable on the path. We later expose at most three more
centers for each element in the support of .J.

Let us look at the forcing information in stage j and
introduce some notation. The forceable path appears in T,
and let J; be the forcing information set. As we continue
processing the same 7T; after a stage is completed it might
be the case that sz =1T; but then the forceable paths
are different.

Consider any center v in the support J;. It has information
in some of its directions coming from I and J;. If it has
information in all four directions nothing needs to be done.
Otherwise, take one direction for which the information is
not known. If there are more directions in which there is no
information, add a non-edge in any other such direction.

If we already have an odd number of edges next to v
we add a non-edge in the final direction and otherwise we
add an edge to a fresh center in the suitable sub-square. By
a fresh center we mean a non-chosen center that is not an
element of SY and has not been used for an earlier J;. As
we use at most one fresh center for each element in SY the
number of non-fresh centers is at most 2|S,| < 25" 4 16t.
As there are .99C's non-chosen centers in any sub-square
there is always a fresh center to add provided that C is a
large enough constant.

When we have processed all centers of J; we have created
a closed graph which extends the information set .J; and
which we denote ;. This follows as for each even degree
center we have added a fresh center that is of degree one.
As discussed previously, closed graphs can be used to define
restrictions with fewer live centers and we define p* to be the
restriction defined by p together with the graph v = ngﬂj-
This is a standard restriction where all centers in the support
of ~ are now dead. We call these the disappearing centers.

Before we turn to the reconstruction process let us intro-

i+

duce some notation for the information sets of the decision
tree process. Let us see what happens at stage j.

On the non-chosen centers there is the information of
some connected components of 7, namely all the exposed
centers and let I;, denote the union of these components
discovered in stage j. For the chosen centers the information
is obtained by the decision tree. As the decision tree is closed
this is given by a matching on the exposed chosen centers.
On top of this we have the information of non-edges of non-
exposed chosen centers in the direction of exposed chosen
centers. Call this information on the chosen centers I; . and
let I; be the union of I; , and I; .. Furthermore let /7 denote
U{;ll 1I;, the information set gathered during the first j — 1
rounds. It turns out to be convenient to consider U{_;, the
graphs added after stage j, and we let 7} denote this graph.

The high level plan is now as follows. As ; extends the
forcing information .J; we have that (p, I7 U~;) and hence
(p, I 7 UVJ’-*) forces the input to traverse the jth forceable path.
This path should enable us to find a good fraction of the
elements of 7; as the closest endpoints of some variable(s)
on this path. We then use some external information to find
the rest of the elements of ; (as well as its graph structure).
Finally we then use external information to reconstruct /;
and proceed with stage 7 + 1.

As I7 is the empty set and i = +y the starting point of
the decision process is (p,~y) which forces exactly the same
variables as p* and thus we know where to start. Although
these two objects force the same variables the information
content is different in that (p,) contains the information we
are trying to recreate, the identity of the disappeared centers.

We let p7 be the restriction obtained from applying 77 to
p and at stage j we will be working with (p?,[J*) instead
of (p, I; Uvj). Again these two objects force the same set
of variables but have different information contents.

It is important to identify 7;, and the forceable path
but unfortunately it might not be the first 1-path traversed
by (p},I;). The reason for this is that we might reach a
1-leaf by a path using variables that would give forcing
information that is not allowed. For instance when we make
sure that y; is closed we add paths between chosen and non-
chosen centers and this is not allowed as forcing information.
Another more subtle problem is that of requiring the other
endpoint of non-edges on chosen centers when used as
forcing information. It turns out that it is difficult to make
sure that the information at the other endpoint is consistent
with the rest of the information.

Let I;-‘* be the information pieces of I with any piece
supported on v} removed and let I;” be I; with the same
type of pieces taken away. The removed pieces are simple
to describe.

Lemma 7.4: An information piece in I that is on a center
in the support of ~; is in the form of a non-edge from a
chosen center in the direction of an exposed chosen center.

Proof: The information set I consists of a closed graph

jointly with non-edge information on chosen centers of the
type allowed in the lemma. Since any information set .J; for
i > j is disjoint with I no ~y; with ¢ > j can intersect the
closed graph part of I7. [|
We get a direct consequence of Lemma 7.4.
Lemma 7.5: Any variable forced by (p, I J*) is forced also
by (p},1;7).

Proof: The removed pieces of [are, by Lemma 7.4, on
centers that have disappeared in p; and hence any variable
forced by such a piece is fixed in pj. As the piece of
information is a non-edge in both I and ~7; it is forced
to the same value. []

As stated above we might have some 1-path before the
forceable path of stage j. This is, in some vague sense be
good, in that it reveals some element of . As we cannot
count on this happening, however, this possibility is only
a problem and we have to be careful to make sure that
the reconstruction process is not fooled. Towards this end
we introduce the signature of any disappearing center, v, as
follows.

1) The value of j such that v € ;.

2) The information of whether it is a closest endpoint to
any variable on the forceable path and in such a case
in which direction(s) it has variables appearing on this
path.

Let us now describe the reconstruction procedure for-
mally. It has the following information.

1) A counter j of the current stage to be reconstructed.
Initially j = 1.

2) The restriction pj. Initially p7 = p* and we describe
below how to update.

3) The information set [J* ~. Initially this is empty and
we describe below how to update.

4) A set E of disappearing centers together with their
signatures. Initially F is empty.

In the reconstruction process we need to find the identity
of some centers. Let us discuss different contexts where
this happens and how much external information is needed.
For some disappearing centers we also specify the signature
which amounts to O(s) possibilities for each center. We have
the following cases.

1) A disappearing center that is the closest endpoint of
a variables on a discovered 1-path. This can be found
by giving the distance from the root on the path at
cost ¢.

2) A disappearing center that is not the closest endpoint
of a variable on a path but we know the sub-square
where it is located. This can be specified at cost A.

3) A non-disappearing and live center where we know
the sub-square. This can be specified at cost 1.01C's
as these are the number of live centers in any sub-
square.

The two first situations appear when finding centers in
«v; while the last situation appears when finding centers in
I;. Identifying a disappearing center has “profit” (as will be
seen in the final calculation of counting the number of p*
compared to the number of p) of 2(A/s) and thus there is
a huge profit in the first case and the moderate loss in the
second. For the third case there is no associated profit but
on other hand only a moderate cost. The key for the final
analysis is to bound the number of costly step by a constant
times the number of profitable steps of the first kind. Let us
now formally define the reconstruction process.

1) Find the next I-path traversed by (pj, ;™).

2) Locate the closest endpoints of all variables on this
path. If any such center belongs to F and its signature
does not match the current path, go to the next 1-
path. By “not matching” we mean that the stage
information is incorrect or that the direction(s) of the
edges involved does not exactly match the signature.

3) Read a bit b to determine if there are more disap-
pearing centers to be found as the closest endpoint to
variables on this path.

4) If b = 1 read one integer that is at most ¢ to determine
a disappearing center that is the closest endpoint of
a variable on this path. Read its signature. If this
signature agrees with the current path repeat step 3
and otherwise include it in £ and go to the next path.

5) If b = 0 we have found the forceable path. We
read some external information to determine ; and
I (details below). Update p; to pj ., and I~ to
I;:l, drop any disappearing center of stage j from FE,
increase j and repeat from 1.

The are a few details and facts about this reconstruction
procedure to sort out. Let us start with establishing that we
are indeed correctly identifying the forceable path.

Lemma 7.6: If a 1-path is the first path to be forced
by (pj,1; ") and the signatures of all closest endpoints of
all variables on this path match, then this path is the jth
forceable path.

Proof: As all variables on the path are forced we must
have the information of their closest endpoints in the correct
direction. As none of the variables have a closest endpoint
of a stage later than j, and the signatures are correct, the
path is forced by (p, [;~ U J;) jointly possibly with a non-
edge in <, contained in 7. This implies that the forcing
information J; is valid for this path and being the first such
path it must be the jth forceable path.]

Let us now see how to reconstruct ;. We have already
identified all the closest endpoints of variables on the force-
able path and we know, by their signature which directions
they need a neighbor. We read the identity of these centers

at a cost* of at most A for each center. This identifies .J;.
To finalize the description of -y; we read the identity of the
fresh centers used to make ; closed at a cost of A for each
such center. Having identified ~; we turn to 1.

We have a bit for each element in v; to indicate whether
it is also an element of /; and we proceed to identify the rest
of I;. We first reconstruct the missing non-chosen centers.
For each non-chosen center in J; using O(1) bits we first
find out the size of the connected component in 7 and the
directions of each edge. Then we identify each such center
at cost 1.01C's. Here we use the fact that as these variables
are part of I; they cannot be included in the support v;_
and hence they are alive in p}.

For the chosen centers we can again discover the graph
part with O(1) bits per center for structure and an integer of
size 1.01C's for the identity (as also these are alive in p*. The
non-edges not supported on ~y;° are also reconstructed at cost
1.01C'’s for identity and O(1) bits per center for direction.

Finally for any center in -; we have 4 bits to describe
whether the piece of information in the form of non-edge in
any direction(s) should be added in [J*J:l

This terminates the description of the reconstruction and
let us sum up the external information needed. Let a; be the
number of disappearing centers that are discovered through
being the closest endpoint of a discovered variable and are
part of the jth forceable path and let b; the number of
additional centers in «y;. Furthermore let ¢; the the number
of centers needed to be discovered in I, after ; was
discovered.

Lemma 7.7: We have b; + ¢; < 25a;.

The fact that there is some constant such that the above
lemma is true is, hopefully, quite believable but getting the
best constant requires some case analysis. We leave the proof
of this lemma for the full version of the paper.

Now we are ready to make the final calculation. Letting
a= Z?Zl a; and defining b and c similarly we can add up
the extra information as follows.

« The disappearing centers that are discovered as closest

endpoints contribute a factor ¢°.

o The other disappearing centers a contribute a factor at
most A? (or less as discussed in the footnote).

« The signatures contribute at most (As’)* for a constant
A as signatures are only needed for disappearing cen-
ters discovered as closest endpoints.

o The centers discovered to be part of I contribute a
factor (1.01C's)".

o The graph structure of v and I as well as the informa-
tion which elements of +y; are included in I; contributes
a factor B**t*¢_ for some constant B.

« The bits b contribute 25 +87+s"_ This follows as we can
have at most s’ + 8t bits that are 1 (as each time a

4It might be the case that some of these centers are uniquely determined
and/or found previously and are part of E. In such a case the cost, including
the signature is O(st) which is much lower.

disappearing variable is discovered) and at most s’ bits
that are O (as each time a stage is ended).

Let m = A(n/T)? be the total number of centers.
The number of ways to choose p* is 2™ (k_(’;):_a)) where
2™ is the number of possibilities for the choice of fixed
and preferred variables once the choice of centers is fixed.
Similarly the number of choices for p is 2™ (7,?) This
implies that the probability of having a described closed

path is bounded by
taAbSascAa+b+c27’1 (k_gZ.H)))
2 (%)

for some (modified) absolute constant A. The quotient of
the the binomial coefficients equals

ey

a+b—1 ki k a+b Cs a+b
M-t < ()72)0
pal m+i—k m—k A—Cs

S Af(a+b) SaerAaer, (3)

for some (again different) constant A. We conclude that the
probability of the closed path in the decision tree we are
analyzing is at most

A7a82a+b+ctaAa+b+c’ (4)

for again a new constant A. Applying Lemma 7.7 and
modifying A we have that this is bounded by

AT T AT = (As*TEATT) . (5)

Finally as the number of exposed centers is at most a +
b+ ¢ we have a + b+ ¢ > s’ and hence a > s'/27 and
this concludes that analysis of the probability of a closed
path. Lemma 6.2 now follows from Lemma 7.3 and a final
modification of the constant A.

ACKNOWLEDGEMENT

Some early ideas of this paper were discussed with Pavel
Pudlak and Jakob Nordstrom. I am also grateful for later
discussions with Ilario Bonacina, Susanna F. de Rezende
Marc Vinyals, Joseph Swernofsky and Mladen Miksa.

REFERENCES

[1] G. S. Tseitin, “On the complexity of derivation in the propo-
sistional calculus,” in Studies in constructive mathematics and
mathematical logic, Part II, A. O. Slisenko, Ed., 1968.

[2] A.Haken, “The intractability of resolution,” Theoretical Com-
puter Science, vol. 39, pp. 297 — 308, 1985.

[3] E. Ben-Sasson and A. Wigderson, “Short proofs are narrow—
resolution made simple,” Journal of the ACM, vol. 48, no. 2,
pp. 149-169, 2001.

[4] M. Ajtai, “The complexity of the pigeonhole principle,”
Combinatorica, vol. 14, no. 4, pp. 417-433, 1994.

[5] S. Bellantoni, T., and A. Urquhart, “Approximation and small-
depth frege proofs,” SIAM J. Comput., vol. 21, no. 6, pp.
1161-1179, 1992.

[6] T. Pitassi, P. Beame, and R. Impagliazzo, “Exponential lower
bounds for the pigeonhole principle,” Computational Com-
plexity, vol. 3, pp. 97-140, 1993.

[7] J. Krajicek, P. Pudldk, and A. R. Woods, “An exponenetioal
lower bound to the size of bounded depth frege proofs of
the pigeonhole principle,” Random Struct. Algorithms, vol. 7,
no. 1, pp. 15-40, 1995.

[8] A. Urquhart and X. Fu, “Simplified lower bounds for proposi-
tional proofs,” Notre Dame Journal of Formal Logic, vol. 37,
no. 4, pp. 523-544, 1996.

[9] E. Ben-Sasson, “Hard examples for the bounded depth frege
proof system,” Computational Complexity, vol. 11, no. 3-4,
pp. 109-136, 2002.

[10] S. Buss, “Polynomial size proofs of the propositional pigeon-
hole principle,” Journal of Symbolic Logic, vol. 52, pp. 916—
927, 1987.

[11] T. Pitassi, B. Rossman, R. A. Servedio, and L.-Y. Tan,
“Poly-logarithmic frege depth lower bounds via an expander
switching lemma,” in Proceedings of the Forty-eighth Annual
ACM Symposium on Theory of Computing, ser. STOC ’16.
New York, NY, USA: ACM, 2016, pp. 644-657.

[12] M. Furst, J. Saxe, and M. Sipser, “Parity, circuits and the
polynomial-time hierarchy,” Mathematical Systems Theory,
vol. 17, pp. 13-27, 1984.

[13] M. Sipser, “Borel sets and circuit complexity,” in Proceedings
of the fifteenth annual ACM symposium on Theory of com-
puting, ser. STOC ’83. New York, NY, USA: ACM, 1983,
pp- 61-69.

[14] A. C.-C. Yao, “Separating the polynomial-time hierarchy by
oracles,” in Foundations of Computer Science, 1985., 26th
Annual Symposium on, oct. 1985, pp. 1 —10.

[15] J. Hastad, “Almost optimal lower bounds for small depth
circuits,” in Proceedings of the eighteenth annual ACM sym-
posium on Theory of computing, ser. STOC ’86. New York,
NY, USA: ACM, 1986, pp. 6-20.

[16] J. Mehta, “Tree tribes and lower bounds for switching
lemmas,” CoRR, vol. abs/1703.00043, 2017. [Online].
Available: http://arxiv.org/abs/1703.00043

[17] A. A. Razborov, Bounded Arithmetic and Lower Bounds in
Boolean Complexity. Boston, MA: Birkhiduser Boston, 1995,
pp. 344-386, editors Peter Clote and Jeffrey Remmel.

