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Abstract

We show that the operations of permuting columns and rows sepa-
rately and independently mix a square matrix in constant time.

1 Introduction

The number of iterations needed to achieve a (close to) random permutation
on a large set of elements by repeatedly performing a random permutation
from a limited class is the central question of shuffling. This question has lead
to interesting and beautiful mathematics [3]. For the most famous class of
shuffles, the riffle shuffle, the time to get close to a random permutation has been
determined up to a constant [2] and many other sets of limited permutations
have been analyzed. One interesting case that has proved to be difficult to
analyze is the Thorp shuffle, introduced in [5].

In the Thorp shuffle we have a deck of cards with an even number of cards
which is split into two piles of equal size. Then we do a rather special riffle
shuffle, we let go one card from one of the piles and then one from the other.
Thus a step is given by releasing two cards, one from each pile, and the only
randomness is the order in which we release the two cards. This is repeated
until all cards are dropped.

If the number of cards is a power of two then, as also described in [4], this
shuffle has an alternative, very convenient description. Put the cards at the
corners of the hypercube. Consider all the edges along one fixed dimension and
for each edge independently interchange the two cards at the endpoints. Now
deterministically move each card to an address which, when written in binary,
is one cyclic shift of its current address to the right and repeat this process.
With this description of the Thorp shuffle it is clear that the interesting part
to analyze is the random step exchanging elements along edges in the fixed
dimension as this is the only probabilistic step.

Up to recently not much has been known on the number of iterations of the
Thorp shuffle needed to get close to the uniform distribution on permutations
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but, for the case of n = 2d, Morris [4] has obtained the bound O(d44), proving
that the mixing time is at most poly-logarithmic in the number of cards.

Motivated by the problem on the Thorp shuffle and as an appealing problem
in general we propose to study the mixing of md elements distributed in a d-
dimensional cube where we at each point in time make a random permutation
of the m elements with all but one coordinate fixed. In this paper we analyze
the case d = 2 and prove that a constant number of repetitions is sufficient for
mixing, independently of the value of m.

2 Preliminaries

We study permutations on n elements organized in an m×m square created as
follows.

Definition 2.1 At each time step m permutations of [m], (σi)mi=1 each on m
elements, are picked independently and and uniformly at random. At even time
steps, for 0 ≤ i < m, σi is applied to the elements in row i while at odd steps it
is applied to column i. Repeating this process for t time steps with independent
choices at each point in time creates a random permutation from the distribution
Πt.

We want to prove that the distribution Πt is not too different from the
uniform distribution on permutations. Our measure of “different” is given by
the statistical distance.

Definition 2.2 The statistical distance between two probability distributions Π1

and Π2 is given by

∆(Π1,Π2) =
∑

π

|PrΠ1(π)− PrΠ2(π)|.

We let Un be the uniform distribution on permutations on n elements. It is
useful for us to study what happens when we compose a random permutation
with a fixed permutation and we let Π ◦ π be the result of composing a random
permutation from distribution Π with π.

Lemma 2.3 We have

∆(Π, Un) ≤ Eπ1,π2 [∆(Π ◦ π1,Π ◦ π2)],

where π1 and π2 are picked independently with the uniform distribution.

Proof: Let id denote the identity permutation. As

∆(Π ◦ π1,Π ◦ π2) = ∆(Π ◦ id,Π ◦ π2 ◦ π−1
1 ),
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we can assume that π1 = id. The probability, over a random π2, that Π ◦ π2

takes any specific value is (n!)−1 and hence

∆(Π, Un) =
∑

π

|PrΠ(π) − (n!)−1| =
∑

π

|Pr[Π ◦ id = π]− Eπ2 [Pr[Π ◦ π2 = π]]| ≤
∑

π

Eπ2 [|Pr[Π ◦ id = π]− Pr[Π ◦ π2 = π]|] = Eπ2 [∆(Π ◦ id,Π ◦ π2)].

We get the following consequence

Lemma 2.4 We have

∆(Π, Un) ≤ nmax
π1,π2

∆(Π ◦ π1,Π ◦ π2),

where the maximum is taken over any pair of permutations that differ by a
transposition.

Proof: This follows from Lemma 2.3, the triangle inequality, and the fact that
we can move from any permutation π1 to a permutation π2 by n transposi-
tions.

We prove that ∆(Π ◦ π1,Π ◦ π2) is small for any pair of permutations dif-
ferent by a transposition by a coupling argument. An introduction to coupling
can be found in Chapter 4 of [3] but let us describe how it is used here. We
have a probability distribution over pairs (τ1, τ2) of permutations such that the
marginal probability distribution of the first component is that of Π and the
same applies to the second component. Furthermore we have that the property
that for two given permutations π1 and π2 different by a transposition, we have
that τ1 ◦ π1 = τ2 ◦ π2 holds with probability at least 1 − q while, otherwise,
τ1 ◦ π1 and τ2 ◦ π2 differ by a transposition. We call this property coupling of
permutations of distance two with parameter q. The coupling is constructed in
such a way that the number q is independent on the choice of the permutations
π1 and π2. We have the following easy lemma.

Lemma 2.5 Let Πt be the composition of t independent copies of Π and suppose
Π allows a coupling of permutations of distance two with parameter q. Then

∆(Πt ◦ π1,Πt ◦ π2) ≤ qt.

for any pair of permutations π1 and π2 different by a transposition.

Proof: By straightforward induction on t, π1 and π2 couples under Πt except
with probability qt. Let (τ t

1 , τ
t
2) give this coupling. Then

∆(Πt ◦ π1,Πt ◦ π2) =
∑

σ

|Pr[τ t
1 ◦ π1 = σ]− Pr[τ t

2 ◦ π2 = σ]| ≤

Pr[τ t
1 ◦ π1 �= τ t

2 ◦ π2] ≤ qt.
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3 The main result

Our main result is

Theorem 3.1 Let Πt be the distribution of Definition 2.1. Then

∆(Πt, Un) ≤ O(n1−� t
3 � 1

4 (log n)�
t
3 �).

Thus already for t = 15 the distance is small for large n and we have mixing
in constant time independently of n.

We establish the theorem by, as discussed in the preliminaries, constructing
a coupling and the key lemma is the following.

Lemma 3.2 The distribution Π3 allows a coupling of permutations of distance
two with parameter O((m/ logm)−1/2).

As rows and columns are symmetric, Lemma 2.4, Lemma 2.5, and Lemma 3.2
jointly imply Theorem 3.1. We proceed to establish Lemma 3.2.

Proof: (Of Lemma 3.2) We let the coupling take place under three steps of
the procedure, the first being a row-permutation. We have two permutations
π1 and π2 that differ only by a transposition. First observe that if the positions
in which the two permutations differ are located in the same row then we have
an obvious coupling that couples the permutations in one step with probability
one and hence we we can assume that positions in which the permutations differ
are in different rows.

As we do independent random permutations of the rows, the relative starting
positions between different rows are of no consequence. We may hence assume
that the two positions in which π1 and π2 differ are in different columns. As
all rows and columns are equivalent we may hence assume that one position is
(0, 0) and the other is (1, 1).

Before we continue we need to make some preliminary observations and to
establish some notation.

The main information we are interested in after one row-permutation and
one column-permutation is the row in which each element ends up. We define
a pattern to be an m × m square filled with numbers from 0 to m − 1. An r in
position (i, j) means that the element in the ith row and jth column ends up
in row r.

Each number appears exactly m times in a pattern and any pattern with
this property is possible. To see the latter consider the following bipartite multi-
graph on 2m vertices. It has m vertices to the left labeled {0−, 1−, . . . (m−1)−}
and m vertices to the right labeled {0+, 1+, . . . (m− 1)+}. There is an edge for
each element in the matrix and if the element is in row i and takes the value r
the edge is between i− to r+. As several elements in the same row might take
the same value this creates a multi-graph and to be able to speak of edges in
an unambiguous way we label each edge by the starting column of its element.
As each row has m positions and each r appears m times we have an m-regular
bipartite graph.
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To achieve a particular pattern, use the fact that each regular bipartite
graph can be written as a union of matchings. Write the graph as the union
of m matchings, M = M0, M1, . . . Mm−1. We call M a matching cover and it
defines a set of row permutations and column-permutations as follows. Each
(labeled) edge in M corresponds to an element in a unique way, the left hand
endpoint giving the starting row and the label giving the starting column. If
this element has value r and belongs to Mj then it is moved to column j by the
row permutation and then to the row r by the column permutation.

A matching Mi can, in the natural way, be thought of as a permutation. We
use the same notation for this permutation as there is no need to distinguish
the two interpretations of the object.

We conclude that one matching cover corresponds uniquely to one set of row
and column permutations while the same pattern is obtained by many different
matching covers. The probability space on patterns we consider is the one given
by picking a random matching cover uniformly from all possible matching covers
and then using the corresponding pattern.

As a change in the column-permutation on column i results in the corre-
sponding change in the permutation corresponding to Mi and vice versa, we
conclude that the the set of permutations (disregarding labels) occurring as Mi

1 ≤ i ≤ m are uniformly random and independent of each other.
We proceed to construct a coupling of patterns by appending a row-permutation.

The patterns that give the same value to (0, 0) and (1, 1) move, by definition,
our two special elements to the identical rows. The subsequent row permutation
will give a perfect coupling and hence we need to study patterns giving different
values to (0, 0) and (1, 1).

Construct randomly a partial pattern p containing m2−2 values to all squares
except (0, 0) and (1, 1). To be precise p is constructed by picking a full random
pattern (as induced by picking a random matching cover) and then erasing the
contents of these two positions. We want to prove that for most p the two
ways of completing the pattern are approximately equally likely. To be more
specific, let p1 and p2 be the two ways to complete the pattern, then we have
the following lemma.

Lemma 3.3
∑

p |Pr[p1]− Pr[p2]| ≤ O

((
log m

m

)1/2
)
.

Let us first see that Lemma 3.3 is sufficient to establish Lemma 3.2 by
defining a suitable coupling.

First with probability (Pr[p1] + Pr[p2]) decide that the patterns of both
chains are either p1 or p2. Suppose for concreteness that Pr[p1] ≥ Pr[p2]. Then
with probability Pr[p2](Pr[p1] + Pr[p2])−1 choose the pattern to be p1 in the
first chain and to be p2 in the second chain and with equal probability choose
p2 in the first chain and p1 in the second chain. Finally with the remaining
probability, i.e., (Pr[p1]−Pr[p2])(Pr[p1] +Pr[p2])−1, choose p1 in both chains.

Once we have chosen the patterns we choose matching covers corresponding
to the given patterns. We couple these choices such that if the same pattern is
chosen in both chains we choose the same matching covers in both chains. If
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different patterns are chosen, the matching covers are paired in some arbitrary
way.

If the opposite patterns were chosen, the two squares, after the row and
column-permutations in both chains we have the same elements in each row
and in the subsequent row-permutation we can couple the permutations with
probability one. If we have the same pattern for both chains then the permuta-
tions remain different by a transposition.

We conclude that the probability of not coupling is
∑

p

|Pr[p1]− Pr[p2]|

and we have established Lemma 3.2 using Lemma 3.3.

We proceed to establish Lemma 3.3.

Proof: (Lemma 3.3) We can without loss of generality assume that p1 takes
(0, 0) to 0 and (1, 1) to 1. This has created an edge from 0− to 0+ with label 0
and an edge from 1− to 1+ with label 1. We call these edges the green edges.
In p2 we instead have an edge from 0− to 1+ with label 0 and an edge from 1−

to 0+ with label 1. We call these edges the red edges.
Now take any matching cover M0, M1, . . .Mm−1 corresponding to p1 and

suppose that the first green edge (the one with label 0) appears in Mi and the
other edge appears in Mj. If i = j then way say that we have a special matching
cover. For such covers we can replace the green edges by the red edges and we
have a one-to-one correspondence of the special matching covers of p1 and p2

and we write it as p1 = C(p2).
Let us consider i �= j and look at the graph induced by Mi and Mj. Direct

the edges of Mi going left to right and the ones of Mj right to left. We get a
graph of in-degree and out-degree one and hence it is a union of disjoint cycles.
Since the graph is bipartite all cycles are of even length. We say that graph is
good if the two green edges are on the same cycle and bad otherwise. We have
a similar definition for matching covers corresponding to the pattern p2 with
“red” replacing “green”.

We now proceed to define a one-to-one correspondence of the good matching
covers. Start with a good matching cover corresponding to p1.

We have the two green (directed) edges (a−, b+) ∈ Mi and (c+, d−) ∈ Mj .
Note that a, b, c and d takes values in {0, 1} and in fact a is chosen to be the 0,
however keeping the letters makes the argument easier to follow.

The two (undirected) red edges are (a−, c+) and (b+, d−). The directed cycle
in the union of Mi and Mj can be written as

a− − b+ − P1 − c+ − d− − P2 − a−,

for paths P1 and P2. Consider now the cycle

a− − c+ − PR
1 − b+ − d− − P2 − a−,
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where PR
1 is the reverse of P1. This is a directed cycle with one of the red edges

going from left to right and the other from right to left. We split the graph
including the red edges into two matchings in the following way. Edges not in
the changed cycle remain in their original matching. The changed cycle is split
into two partial matchings and the red edge containing a− joins with its partial
matching into Mi. This gives a matching cover corresponding to the pattern
p2. As we have a cycle containing both red edges this is a good matching cover
and it is easy to see that we have a one-to-one mapping between good matching
covers corresponding to p1 and p2, respectively.

Now let us analyze a bad matching cover corresponding to p1. The two green
edges are on the different cycles

a− − b+ − P1 − a−

and
c+ − d− − P2 − c+.

Taking the green edges out and putting in the red edges we get the one cycle

a− − c+ − PR
2 − d− − b+ − P1 − a−.

Note that we get the same direction of the two red edges. We create a matching
cover corresponding to the pattern p2 in the same way as above, i.e. edges
not in the affected cycle stay where they are and the affected cycle is split into
two pieces. In this split both red edges go to the same partial matching and
we include them in Mi, the matching that originally contained the green edge
(a−, b+). We have created a special matching cover corresponding to the pattern
p2 and, not surprisingly, the mapping is many-to-one.

Similarly we can define a mapping from bad matching covers corresponding
to p2 to special matching covers corresponding to p1.

Let us sum up the facts so far. We have a pair of patterns p1 and p2 different
in only a pair of elements. Matching covers corresponding to either of these two
patterns can be partitioned as follows.

1. We have equally many special matchings covers and a one-to-one mapping,
C which is a pairing of these matching covers.

2. We have equally many good matchings covers and a one-to-one mapping
of these matchings covers.

3. We have a mapping of bad matchings covers corresponding to p1 to special
matchings covers corresponding to p2.

4. We have a mapping of bad matchings covers corresponding to p2 to special
matchings covers corresponding to p1.

For a special matching cover M corresponding to p2 let GM be the number of
bad matching covers corresponding to p1 that are mapped to M . Similarly let
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RM be the number of bad matching covers corresponding to p2 that are mapped
onto C(M). If follows from the above facts that

∑
p

|Pr[p1]− Pr[p2]| ≤
∑
M

Pr[M ]|RM − GM |, (1)

where the sum is over special matching covers.
Let us consider GM for a special matching cover M and suppose that both

red edges appear in Mi. We claim that, for each j �= i, there is one unique bad
matching cover coming from operating on matchings Mi and Mj that is mapped
to M iff, when looking at the graph containing Mi and Mj, the two red edges
are on the same cycle, and otherwise M does not arise from operating on Mi and
Mj. To see this, first note that the procedure described above always creates
a special matching cover where the two red edges are on the same cycle in the
graph given by Mi and Mj. Uniqueness and existence of the preimage follows if
we can prove that, once the value of j is given, the procedure is reversible. We
establish this by explicitly describing how to find a preimage.

In the graph given by Mi and Mj take out the red edges and put in the green
edges. This splits the cycle into two different cycles each containing one green
edge. The two cycles are split into partial matchings. Combine the matching
pairwise to make each set contain one green edge. Finally including the part
with the green edge adjacent to 0− in Mi and the other part in Mj we obtain
a matching cover. By inspection this is a preimage of the given pattern. It is
the only possible preimage as the green edge adjacent to 0− must be included
in Mi and there must be one green edge in each of Mi and Mj .

We now turn to computing, for a random special matching cover, the number
of j’s such that the two red edges belong to the same cycle when Mj is combined
with Mi.

Lemma 3.4 Let Mi be a fixed matching and suppose another matching Mj is
chosen randomly. Fix two edges e1 and e2 of Mi. The probability that e1 and
e2 belongs to the same cycle in the graph given by the union of Mi and Mj is
1/2.

This is just a restatement of the fact that the probability that two elements
belong to the same cycle in a random permutation is 1/2, but for completeness
let us give a proof.

Proof: Let us reveal Mj one edge at the time. Let us start by traversing e1

going left to right. Every time we traverse an edge of Mi left to right we ask
what edge of Mj is adjacent to this node. If this edge does not attach to the
left hand side of e1 or e2 we continue the process with another edge from Mi.
If we hit e1 before we hit e2 the two edges are in different cycles while if we hit
e2 before e1 the two edges are in the same cycle. By symmetry the two cases
are equally likely and the lemma follows.

As the event of the two red edges being on the same cycle is independent
for different j, when M is chosen randomly from from all special matchings
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the number of preimages of M is Binomial(m − 1, 1/2) distributed. The same
argument applies to RM . The two numbers are not independent and hence it is
convenient to use the upper bound

∑
M

Pr[M ]|RM − (m − 1)/2|+
∑
M

Pr[M ]|GM − (m − 1)/2| (2)

for (1).
The probability that a matching cover is special is exactly 1/m. This follows

since with probability 1/m our two special entries go to the same column. We
conclude that we have a stochastic variable X which is distributed according do
Binomial(m− 1, 1/2) and we are summing |X − (m− 1)/2| over a fraction 1/m
of the space. We have the following lemma.

Lemma 3.5 Let X be distributed according to Binomial(m − 1, 1/2). Let Ω be
any event subset of total probability 1/m, then

∑
ω∈Ω

|X(w)− (m − 1)/2|Pr(ω) ≤ O((m/ logm)−1/2).

Proof: Clearly the sum is maximized if Ω is chosen as the event |X − (m −
1)/2| ≥ a where a is chosen to make Ω have total probability 1/m. By a standard
result ([1], Theorem A.1.1) we have a = O(

√
m logm). By the same result

Pr[|X − (m − 1)/2| ≥ 2
√

m logm] ≤ m−2

and we conclude∑
ω∈Ω

|X(w)− (m − 1)/2|Pr(ω) ≤ Pr(Ω)2
√

m logm + m−2 max |X − (m − 1)/2|

≤ O((m/ logm)−1/2).

By the above discussion, Lemma 3.5 gives an upper bound for (2) and this
concludes the proof of Lemma 3.3.

3.1 Improving the estimate for the rate of mixing

Looking more closely that at the proof we can get a better bound for the mixing
time. Let us sketch the argument.

We have essentially analyzed Π2 and Lemma 3.2 was proved by a coupling
that after two steps had moved all elements in both chains to identical rows.
Assuming this was successful the third step produced coupling with probability
one.

If the two key elements are not in the same row after the second step the
third step does not contribute anything. Thus we should immediately start the
argument from the scratch.
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In other words if we let the success condition, not be “equal permutations”
but rather “permutations with the difference in only one row” we couple except
with probability O((m/ logm)−1/2) in two time steps. Coupling in the old sense
is achieved one step later. We get the following theorem.

Theorem 3.6 Let Πt be the distribution of Definition 2.1. Then

∆(Πt, Un) ≤ O(n1−� t−1
2 � 1

2 (log n)�
t−1
2 �).

4 Discussion

The goal of this paper was to prove that our process mixes in constant time and
we have not made a strong effort to determine the exact constant.

Clearly, two steps are not sufficient as the elements that start in the same
row end up in different columns with probability one. Thus at least three steps
are needed. On the other hand, since any pattern is possible we know that Π3

has full support. It is quite possible that Π3 is in fact close to the uniform
distribution on permutations. To prove this one would have to prove that most
patterns are almost equally likely. In other words that the induced probability
distribution on patterns is close to uniform on possible patterns. We have not
been able to determine whether this is the case and we leave it as an open
problem.
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