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Abstract

Linial, Mansour and Nisan [7] proved that a function computed by a small-depth circuit of limited

size has most of its Fourier support on small sets. We improve their bounds. When the bottom fanin is

bounded we use essentially their argument, but to reduce the general case to this case without a loss in

the asymptotic bounds requires a new argument.

Warning: Essentially this paper is accepted for publication in Journal of Computer and System

Sciences and is subject to copyright restrictions. In particular it is for personal use only.
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1 Introduction

The computational class of small-depth circuits has the almost unique property that we are able to prove non-

conditional lower bounds, i.e. to establish that explicit functions do require large resources to be computed

in this model.

One of the two main methods, initiated by Furst, Saxe and Sipser [4] is to assign random values to some

of the inputs and see how much this simplifies the circuit. The procedure of doing this is now usually called

“hitting the circuit with a random restriction”. One useful tool for analyzing this process is given by the

switching lemma [5] which says that, if parameters are suitable, such a restriction can enable you to switch

a depth two circuit from CNF to DNF without getting a huge blowup.

Constant depth circuits are also studied from a learning point of view and a key result here is by Linial,

Mansour, and Nisan [7] that proved that such a function can be learned fairly efficiently through the Fourier

transform. The key technical result is that a function computed by a small-depth circuit of limited size has

most of it’s Fourier coefficients concentrated on sets of small size. To be more exact, if the circuit is of depth

d and size 2s, Linial et al. prove that the fraction of the Fourier mass that lies on sets of size at least t is

bounded by 2s�
(t1=d). Although their analysis is rather tight, it does leave some room for improvement and

the purpose of the current paper is to give such an improvement.

Our improvement is partly due to a more careful application of the switching lemma but this is a rather

simple argument and one could say that it appears implicitly in previous papers. In particular, Mansour [8]

uses this argument when the depth of the circuit is 2. The more difficult part of the improvement is to reduce

the general case to the case when all gates at the bottom level have small fanin.

In a Boolean circuit of size 2s it is usually not very productive to have gates on the bottom level that has

fanin much larger than s. Let us consider gates of fanin at least 2s and see why this is the case. Assume that

the gate in question is a logical and-gate. Such a gate would be false except for a fraction 2�2s of the inputs

and thus even given 2s such gates, replacing them all by “false” would only change the value of the circuit

on at most a fraction 2�s of the inputs. For results that are robust under such perturbations one can hence

assume that the bottom fanin is bounded by 2s. In our application the results are only robust under such

perturbations when s large and for small values of s the argument is not so simple and the main technical

contribution is to establish that indeed the general case can be reduced to the case of bottom fanin O(s).
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An outline of the paper is as follows. In Section 2 we give the necessary background information, in

Section 3 we give the proof for the case of small bottom fanin and in Section 4 we show how to reduce the

general case to this case. Finally, in Section 5, we briefly outline the construction of circuits of small depth

that, as far as we are aware, give the the strongest known correlation with parity.

2 Preliminaries

We are interested in Boolean circuits and thus we have ^-gates, _-gates and negations.

We can, using de-Morgan laws push all the negations to the inputs. If we for each gate in the original

circuit introduce two gates, one computing the original value and one that computes its complement we can

see that this at most doubles the size of the circuit. Since our bounds ignore multiplicative constants, we can

thus assume that the circuit contains no internal negations.

The ^-gates and the _-gates are of unbounded fanin and by collapsing adjacent gates of the same type,

and introducing gates of fanin 1, we can assume that the circuit consists of alternating levels of ^-gates and

_-gates. We assume that the circuit is of constant depth d and hence this operation only increases the size

of the circuit by at most a factor d.

Our main tool for analyzing small-depth circuits is the concept of random restrictions.

2.1 Restrictions

A restriction is a partial assignment to the inputs. A typical restriction is denoted by � and for a variable, x

we let �(x) = 1(0) denote that fact that x is given the value 1(0) and �(x) = � is used to denote the fact that

x is not given a value and remains a variable.

It turns out to be very useful to consider random restrictions and an important space of random restric-

tions was introduced by Furst, Saxe and Sipser [4].

Definition 2.1 A restriction � 2 Rp assigns values independently to variables. It gives each variable the

value � with probability p and the values 0 and 1 with probability 1�p
2 each.

For a function f , fd� denotes the function induced by making the substitutions given by �. If a circuit C

computes f then fd� is computed by a circuit obtained form C by making the substitutions described by �.

We denote this circuit by Cd�. At the same time as doing these substitutions we are also interested in doing

some simplifications of the resulting circuit and thus Cd� is not uniquely defined, but we are content to let

it be some circuit computing fd� and hopefully no confusion arises. We have the following basic result.

Lemma 2.2 [5] Let C be a depth 2 circuit of bottom fanin s. Then the probability that Cd� cannot be

written as a decision tree of depth t is at most (5ps)t.

The lemma is usually stated in the form that Cd� can be represented as depth 2 circuit of the other type,

i.e. converting an or-of-ands to an and-of-ors and the other way around. This statement clearly follows from

the current version of the lemma since a function that can be represented as a decision tree of depth t can
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be represented as a depth 2 bottom fanin t circuit of either type. The stronger version of the lemma follows

from the proof of [5], and was used, but not stated explicitly, in [6]. It is stated explicitly in many places

such as [3].

Another consequence of Lemma 2.2 is that Cd� can be written as a polynomial over the reals of degree

t with the same probability. In general we let deg(f) denote the real degree of f .

2.2 Fourier transforms

The discrete Fourier transform is extremely useful for analyzing Boolean functions. Let f be a function

mapping f0; 1gn into the real numbers. For a subset � � [n] we define

f̂� = 2�n
X
x

f(x)��(x):

The functions �� are the characters defined by

��(x) = (�1)(�;x)

where (�; x) is the inner-product. We have the inversion formula

f(x) =
X
�

f̂���(x)

and Plancherel’s equality

2�n
X
x

f(x)2 =
X
�

f̂2�:

We are interested in the case when f is a Boolean function and we assume that f takes the values �1 and

hence Plancherel’s equality states that X
�

f̂2� = 1:

It is known already from [4] that constant-depth circuits of polynomial size could not compute parity

exactly. Since the parity function equals �[n], it is not surprising that one can get strong information about

the Fourier transform of functions computed by small-depth circuits of limited size. For a function f let us

define

F (f; t) =
X
j�j�t

f̂2�:

Linial, Mansour, and Nisan [7] proved the following theorem.

Theorem 2.3 [7] If f is computed by a depth d circuits of size 2s, then F (f; t) � 2s+1�t1=d=20.

The main tool for proving this theorem is through analyzing the effect of restrictions on the Fourier trans-

form. We have the following lemma, which is a combination of Lemma 5 and Lemma 6 of [7].

Lemma 2.4 [7] Let t be an integer and p such that pt > 8, then

F (f; t) � 2Pr[deg(fd�) � pt=2];

where � is a random restriction from Rp.
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3 Small bottom fanin

In this section we prove the following theorem.

Theorem 3.1 If the function f is computed by a depth d circuit with at most 2s gates at distance at least 2

from the input and with bottom fanin bounded by s then

1. If d � 2 and t � sd then F (f; t) � 2�
(t=sd�1).

2. If d � 2 and t > sd then F (f; t) � 2�
((t=s)1=(d�1)).

Remark 3.2 The improvement over Theorem 2.3 is almost like replacing d by d� 1 and hence it is largest

for small d. The case when d = 2 is contained in the paper by Mansour [8]. Mansour attributes this result

to [7] but we have not been able to find the exact statement in [7] although it follows by examining the

proofs more closely, and making some optimizations.

Proof: The case of d = 2 is straightforward. Simply hit the circuit with a restriction from Rp with

p = 1=(10s). The theorem follows from a combination of Lemma 2.4 and Lemma 2.2.

For the general case we proceed as follows. Define

r = 2max(s; (t=s)1=(d�1)):

First apply a random restriction from Rp with p = 1=(10s) and then d � 2 restrictions with p = 1=(10r).

We apply Lemma 2.2 to any circuit that a appears as a depth 2 subcircuit of the restrictions of our initial

circuit. The hope is that the first d� 2 restrictions enables us to convert any such circuit to a depth 2 circuit

of the other type with bottom fanin at most r. Each such conversion creates two adjacent levels of gates

of the same type which can be collapsed decreasing the depth of the circuit by 1. If this is successful for

all subcircuits under the first d � 2 restrictions the resulting circuit is of depth 2. The probability of the

conversion failing for some depth 2 circuit is at most

2s � 2�r � 2�r=2:

If the conversion is successful we apply Lemma 2.2 once more and see that, for any k, except with probability

2�k the resulting function is now of degree at most k. Thus the probability that f after the d� 1 restrictions

is of degree larger than k is bounded by

2�r=2 + 2�k:

The combination of all the restrictions yield a restriction Rq with q = 
(s�1r2�d). We now apply

Lemma 2.4. If sd > t we have r = 2s and k = 
(ts1�d) gives the result. If sd < t then r = 2(t=s)1=(d�1)

and k = 
(r) gives the desired result.
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4 Unrestricted bottom fanin

We want to deal with the case where there is no bound on the bottom fanin of the circuit. In [7] such a circuit

is transformed into a circuit with bounded bottom fanin by applying a restriction with p = 1=10. This causes

a deterioration of the bounds and we avoid this by creating this first part of the restriction deterministically

and greedily. The proof is inspired by the inapproximability results for parity by Boppana and Håstad given

in [6].

The intuition of the approach is straightforward; we set the variables that appear in many large clauses.

In the current situation we have two parameters to balance, the number of large clauses and the total mass of

the Fourier coefficients on large coefficients. We have to decrease the former more than the latter and we are

only able to maintain this balance in a probabilistic setting. The problem being that even though xi appears

in many large clauses, fixing it to one of its two values might not erase a single large clause. In the long run,

we cannot be unlucky too many times and this is sufficient to establish the theorem.

Theorem 4.1 If the function f is computed by a depth d circuit of size 2s then

1. If d � 2 and t � sd then F (f; t) � 2�
(t=sd�1).

2. If d � 2 and t > sd then F (f; t) � 2�
((t=s)1=(d�1)).

Proof: As outlined above we give values to some variables trying to eliminate gates with large fanin at the

bottom. Let k be a real number and define

c(f; k) =
X

j�j�t(1+ k
2s
)

f̂2�min

�
j�j � t(1 +

k

2s
); 2t � t(1 +

k

2s
)

�
: (1)

One natural approach is to apply induction to prove c(f;m) is small for all f computed by a circuit of depth

d and size at most 2s with at most 2m gates at the bottom level of fanin at least 32s. We were not able to

follow this path and we use a slightly more complicated approach.

Let d0 be the value obtained from Theorem 3.1 with values t and 32s. We prove that

c(f; s) � td0 + 2�
(t) (2)

by analyzing a binary tree of functions obtained by fixing values of inputs to f . This is sufficient to establish

the theorem since

F (f; 2t) �
2

t
c(f; s) � 2d0 + 2�
(t)

and, adjusting the constants, Theorem 4.1 follows.

Each node in our binary tree is associated with a function g (which is obtained from f by fixing some

variables) and the two sons of a node labeled by g is found by fixing a suitable variable to both its values.

Call the two resulting functions by g0 and g1. A node labeled by g in the tree is given a value of the form

c(g;m) where m is an estimate for the logarithm of the number of gates at the bottom level with fanin at

least 32s. We prove that the average value of the two sons of each node is at least the value of the father.
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The function labeling the root is f and the value of the root c(f; s). For most leaves it turns out that we

can use Theorem 3.1 and for the rest we can use a trivial estimate.

Take a node in our tree labeled by a function g and with value c(g;m). Since g has been obtained from

f by substituting constants for some variables it is defined by a depth d circuit of size at most 2s. If g has

no gates of fanin � 32s at the bottom level or m � 0 we stop and the node becomes a leaf. Otherwise we

proceed as follows.

Define

G =
X

2t�j�j�t(1+m
2s

)

ĝ2�;

and

Gi =
X

2t�j�j�t(1+m
2s
) ^ i2�

ĝ2�:

Clearly

nX
i=1

Gi � 2tG; (3)

and also Gi � G.

For each i let li be the fraction of the bottom gates of fanin at least 32s of the circuit defining g that

contains the variable xi, with or without negation. Clearly

X
i

li � 32s: (4)

By (3) and (4) it is possible to find an i such that

li �
16sGi

tG
: (5)

Let us study the two functions obtained by setting xi to 0 and 1 respectively. These are the functions g0 and

g1 described above that we use to label the sons in the tree. The values that label the corresponding nodes

are given by (g0;m0) and (g1;m0) where

m0 = m�
4sGi

tG
: (6)

We have two cases depending on whether Gi > G=2. Suppose first that Gi > G=2. In this case we have

t(m�m0)

2s
� 1 (7)

Now look at the Fourier coefficients ĝ0� and ĝ1� for some fixed �. Let �0 = � [ fig. By inspection we have

ĝ0� = ĝ� + ĝ�0

and

ĝ1� = ĝ� � ĝ�0
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and hence

(ĝ0�)
2 + (ĝ1�)

2 = 2(ĝ2� + ĝ2�0): (8)

Now because of (7) we see that

((ĝ0�)
2 + (ĝ1�)

2)min

�
j�j � t(1 +

m0

2s
); 2t� t(1 +

m0

2s
)

�
�

2(ĝ2� + ĝ2�0)min
�
j�j+ 1� t(1 +

m

2s
); 2t � t(1 +

m

2s
)
�

�

2ĝ2�min
�
j�j � t(1 +

m

2s
); 2t� t(1 +

m

2s
)
�
+ 2ĝ2�0 min

�
j�0j � t(1 +

m

2s
); 2t � t(1 +

m

2s
)
�

and summing over � we conclude that

c(g0;m0) + c(g1;m0) � 2c(g;m); (9)

i.e. the average value of the two sons is at least the value of the father.

Let us now consider the case Gi � G=2. Using (8) and the fact that the size of each affected coefficient

decreases by at most 1, we have

c(g0;m) + c(g1;m) � 2(c(g;m) �Gi): (10)

For the same reasons we also have
X

2t�j�j�t(1+m
2s

)

(ĝ0�)
2 + (ĝ1�)

2 � 2(G�Gi) � G: (11)

It follows from (11), the definition of c(g;m), and (6) that

c(g0;m0) + c(g1;m0)� (c(g0;m) + c(g1;m)) � G �
t

2s
�
4sGi

tG
� 2Gi: (12)

From (10) and (12) we see that (9) holds also in this case.

It follows that the value of c(f; s) is at least the expected value of a leaf in the tree. For the leaves where

we stopped because g had no gates of fanin greater than 32s it follows (since m � 0) that they are labeled

by a value that it at most c(g; 0) and this can be bounded, by Theorem 3.1, by td0.

For the leaves defined by m � 0, first note that m � �4s
t (this follows from Gi � G, (6) and the fact

that we did not stop at the previous step). This implies that we can always use the bound

c(g;�
4s

t
) � (t+ 2) � 3t:

This implies that the contribution to the expectation of this type of leaves is at most 3tq where q is the

probability of reaching such a leaf when randomly walking down the tree. We now estimate q.

For a given node v labeled by g and with chosen variable xi consider the fraction of large bottom gates

that are erased. Let f0 the the fraction of gates that remains in g0 and f1 the fraction that remains in g1. By

the definition of li and (5) we have

f0 + f1 � 2� li � 2�
16sGi

tG
:
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Now define a random variable Xv which takes the value min(1 � f0;
16sGi
tG ) with probability 1/2 and the

value min(1� f1;
16sGi
tG ) with probability 1/2. We have that

E[Xv ] �
8sGi

tG
(13)

and

0 � Xv �
16sGi

tG
�

16s

t
: (14)

Now consider any path that leads to leaf with a function which still has large-fanin gates at the bottom and

m � 0.

We know that along such a path we must haveX
v

Xv � s (15)

since otherwise less than 2se�
P

v Xv < 1 gates at the bottom with fanin � 32s would remain.

By the update rule on m and the fact that its value is at most 0 at the leaf we know that
X
v

4sGi

tG
� s

But this, by (13), implies X
v

E[Xv ] � 2s: (16)

Now, since the Xv are independent and we are in a good position to apply Chernoff bounds and in particular

consider the following theorem which is Theorem A.1.19 of [2].

Theorem 4.2 For every C > 0 and � > 0 there exists Æ > 0 so that the following holds: Let Yi, 1 � i � n, n

arbitrary, be independent random variables with E[Yi] = 0, jYij � C and V ar[Yi] = �2i . Set Y =
Pn

i=i Yi

and �2 =
Pn

i=1 �
2
i so that V ar[Y ] = �2. Then for 0 < a � Æ�,

Pr[Y � a�] < e�
a2

2
(1��):

To apply this theorem set Yv = t
16s (E[Xv ]�Xv). We have E[Yv ] = 0, jYvj � 1, and

V ar[Yv] =

�
t

16s

�2

V ar[Xv] �

�
t

16s

�2

E[X2
v ] �

t

16s
E[Xv ]: (17)

If we let � denote
P

v E[Xv ] then (15) and (16) implies that
X
v

Yv �
t

16s
(�� s) �

t�

32s
:

By (17) �2 � t�
16s and applying Theorem 4.2 with C = 1, � = 1

2 , and a = min(Æ�; �=2), we see that the

probability of (15) happening is bounded by

2�
( t�
s
) � 2�
(t):

The proof of the inequality (2) is complete and hence the theorem follows.
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5 Circuits approximating parity

It is interesting to investigate constructions showing to what extent our bounds are tight. We have nothing

new to report but take the opportunity to recall known circuits approximating parity and hence giving a large

value of f̂[n]. The first construction of these circuits is unknown to us and we consider them as folklore.

Divide the inputs into groups of sd�1 variables and we want to compute the parity of each group in depth

d and size around 2s. The parity of such a group can be computed by a “parity-tree” of depth d � 1 and

fanout s where each node computes the parity of its inputs. Write each such parity as a depth 2 circuit of

size 2s, but use CNF on even levels and DNF on odd levels. The creates a depth 2(d � 1) circuit of size

O(ds2s) but closer inspection shows that we have adjacent levels of gates of the same type and thus it can be

collapsed to a depth d circuit. We thus have ns1�d circuits each computing the parity of a subset. Assume

that the output gates of these circuits are all _-gates.

Take the _ of these circuits. This does not increase the depth and gives a correlation with parity that is

at least 2�ns
1�d

, to see that latter, note that when the circuit outputs 0 then it is always correct. The size of

the constructed circuits is only marginally larger than 2s.

This implies that our bounds are close to tight when d = 2 and for general d when t � sd.

Our bounds are probably not tight for other values of s and d. In particular for small values of s better

bounds are known. In fact, Ajtai [1] proved that f̂[n] is of size at most

2�
(n1��)

for any � > 0 as long as d is any constant and s = O(logn).
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