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Abstract: We prove that there is a family of permutations which are computable by a
family ofNC0 circuits while their inverses are P-hard to compute. Thus these permutations
are oneway from the point of view of parallel computation.
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1. Permutations that are hard to invert.

A family of circuits (Cn)
1

n=1 is said to belong to NC0, if for every n, Cn has n inputs
and the depth of Cn is bounded by a constant K which is independent of n and the fanin
of any gate in the circuit is 2. We will extend the notion slightly by having a family
(Ci;n)

1

n=1
n

i=1
where Ci;n has n inputs and the depth of any Ci;n is bounded by K. Observe

that the restriction implies that the size of any Ci;n is bounded by 2K . We will in this
paper investigate permutations from �� to �� which for each n takes �n to �n and such
that the ith output bit is computed by Ci;n for NC0 family of circuits, and we call such
a permutation a NC0 permutation. We say that such a family of circuits is LOGSPACE
uniform if there is a Turing machine M which on input 1n operates in O(logn) workspace
and outputs the n NC0 circuits which de�nes the permutation from �n to �n.

Previous work has been done to determine the complexity of inverting permuta-
tions of the above type. Boppana and Lagarias [2] proved that there are permutations
which were computable in NC0 but whose inverses were as hard to compute as parity.
These permutations can be said to be oneway since parity is known not to be computable
even by unbounded fanin polynomial-size circuits [5]. Barrington [1] gave another exam-
ple of a oneway function which was computable in AC0, but computing its inverse was
LOGSPACE-complete. We prove the following stronger result.

Theorem: There is a LOGSPACE-uniform family of NC0 permutations which are P-

complete to invert.

Proof: We will reduce the problem of evaluating a straight line program to the problem of
inverting an NC0 permutation. Since the former problem is well known to be P-complete
[6] the latter will be P-hard. We will use the term P-complete to mean P-complete under
LOGSPACE-reductions. Thus if a P-complete problem is in LOGSPACE every problem
in P is in LOGSPACE. In a similar manner a problem is de�ned to be P-hard if it has the
above property but is not known to be in P.
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Let us set up some notation for the straight line program. The program contains a
sequence of variables which are either de�ned as a part of the input or in terms of two
previously de�ned variables. To make this formal let ik and jk be two indices which are
less than k and let fk be arbitrary functions of two Boolean inputs to one Boolean output.

Using this notation we de�ne an instance of straight line program.

INPUT: Boolean variables x1; x2; : : : xn
PROGRAM: xk = fk(xik ; xjk); k = n+ 1; n+ 2; : : :m
OUTPUT: Value of xm.

We will reduce this problem to the question of inverting an NC0 permutation. Let
us denote the permutation by g. It will be de�ned from f0; 1gm to f0; 1gm where m is the
number of variables occurring in the straight line program. Let z1; z2; : : : zm denote the
input bits and g1; g2 : : : gm the output bits. Let � be exclusive or.

Then,
gk(z) = zk k = 1; 2; : : : ; n

gk(z) = zk � fk(zik ; zjk) k = n+ 1; n+ 2; : : :m

where ik; jk and the functions fk are the same as in the straight line program.
Let us establish that the reduction is correct.

Fact 1 g is a permutation.

We need only show that g is onto. Given y 2 f0; 1gm �nd z 2 f0; 1gm such that
g(z) = y by solving for z1; z2; : : : zm in increasing order. This can be done since the
equations can be written zk = yk � f(zik ; zjk).

Fact 2 Them'th bit of g�1(x1; x2 : : : xn; 0; : : : ; 0) is the output of the straight line program.

Solving for this input as described above performs the computation of the straight
line program.

Fact 3 The reduction from straight line programs to permutations is e�ective and g is
computable by NC0 circuits.

The reduction is trivial computationally since it just replaces equality signs by �.
The second part of Fact 3 follows from the fact that any function that only depends on a
constant number of inputs can be computed in NC0.

To prove the theorem we need to establish that there is a uniform family of straight
line programs which are P-complete to evaluate. To see this let us recall the reduction
from any problem to a straight line program.

Let M be a Turing machine which solves a P-complete problem. The standard reduc-
tion to a straight line program uses the computation tableaux of M on input x which is a
matrix (mx

i;j) wherem
x
i;j contains information about the the ith square ofM 's tape at time

step j. In particular mx
i;j contains the following information: the content of the square,

whether the head is there and in this case which state the machine is in. Each mx
i;j will

correspond to a constant number of variables of the straight line program using a suitable
coding scheme. Now since mx

i;j only depends on mx
i�1;j�1, m

x
i;j�1, and mx

i+1;j�1 it is easy
to make a short piece of straight line code which computes the variables corresponding to
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mx
i;j from the variables corresponding tomx

i�1;j�1, m
x
i;j�1, and m

x
i+1;j�1. The code for this

computation is identical for all i and j and hence the only thing the machine constructing
the straight line program has to remember is the index of the variables and this can be
done in space O(logn). The input x enters as bits specifying mx

i;0. This consludes the
proof of the teorem.

We know ([3], [4], [7], [9]) that in the sequential setting the existence of oneway
functions implies the existence of good cryptosystems.

There are two obvious obstacles to using the present results to construct parallel
cryptosystems.

The �rst problem is that the function needs to be hard to invert on a random input.
This is not quite achieved since even if we start with a straight line program which is
hard to compute for a random input it is not necessarily true that the corresponding NC0

permutation is hard to invert for random outputs. This is so as our reduction only maps
to values of the permutation whose last m� n bits are 0.

The second problem is that the reductions from oneway functions to cryptographic
generators is sequential i.e. even if the oneway function is easy to compute in parallel
the resulting cryptographic generator will require large parallel time. For a discussion of
\parallel cryptography" we refer to Reif and Tygar [8].

We have proved that there is a sequence of uniformNC0 circuits which are P-complete
to invert. An interesting open question is whether inverting every uniform family of NC0

permutations is in P.
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