
Division in O(logn) Depth Using O(n1+�) Processors

Johan Hastad* and Tom Leightony
MIT

Abstract: Improving a result by Beame, Cook and Hoover we construct a family of P-
uniform O(1

�2
logn) depth circuits for division with size O(n1+�) for any � > 0. The key

improvement is that we are able to do Chinese remaindering with (n1+�) processors in
O(logn) depth.

Warning: This is a very old half �nished paper that has never been published

and is not �nally polished. Thus treat it as some set of ideas only we post for

the possible beni�t of anybody interested.

1.Introduction

Division seems to be harder than multiplication, addition or subtraction. The prob-
lem of constructing shallow circuits for division has been considered by several authors.
Classical methods using Newton iterations yields circuits of depth O(log2 n). The �rst
improvement of this was given by Reif in [4],[5]. Using a clever construction involving
discrete Fourier transforms he was able to construct polynomial size circuits of depth
O(logn log logn). By using an elegant method relying on modular arithmetic Beame,
Cook and Hoover [1] were able to construct circuits of depth O(logn). This is of course
optimal but the construction had two imperfections. The circuits were of size �(n5) and
only P-uniform while Reif's circuits were small and logspace-uniform. The result of this
paper is remove one of these imperfections in that we for any � > 0 construct circuits
for division of depth O(logn) and size O(n1+�). Unfortunately our circuits are still only
P-uniform.

Our construction basically follows the same ideas as the construction in [1], but we
introduce a number of improvements to make the construction more e�cient. The most
important of these improvements is to introduce a more e�cient way of implementing
Chinese remaindering. The other key idea is to use one extra level of modular arithmetic
to reduce the sizes of the lookup tables.

The outline of the paper is the following. In section 2 we give a high level description of
the algorithm. The e�cient implementation of Chinese remaindering is described in section
3. We believe that this result is of independent interest and that Chinese remaindering
could be used as a building block in other algorithms. Our algorithm will do a number of
approximations during the computation and in section 4.1 we verify that this does not a�ect

* Royal Institute of Technology
y MIT

1

the accuracy of the answer. In section 4.2 we describe in more detail the implementation
of the individual steps and prove the main theorem. Finally, in section 5 we have some
concluding remarks and open problems.

2. Description of Algorithm.

Assume for simplicity that n is a power of 2. If this is not the case we can work with
the smallest power of 2 larger than n. In this paper all logarithms will be to the base 2.

Since it is well known how to do multiplication e�ciently in parallel, the key step is
how to do inversion. Thus we will focus on this problem.

Inversion Algorithm.

1) Input y, an n-digit number to be inverted.
2) Put z = 2�ky where k is such that 1

2 < z � 1.
3) De�ne x = 1� z. Now 1

z
= 1

1�x =
P
1

i=0 x
i and 0 � x < 1

2 .

4) Compute w =
P2n�1

i=0 xi =
Qlog n

i=0 (1 + x2
i

) approximately by �rst �nding approxima-
tions ~xr for the powers x2

r

in parallel as follows.
5) Let � be a small number and assume for notational simplicity that � logn is an integer.

Take primes p1; p2 : : : ; ps such that
Qs

i=1 pi > 22n
1+�

. By [3] we can do this with
pi < 3n1+� and hence s < 3n1+�.

6) Let l = b r
� log nc and t = r � l� logn. Set a0 = x. For j = 0; 1 : : : ; l� 1

6a) Take the 2n bit approximation aj of x2
j� logn

. Compute mij � 22naj (mod pi),
i = 1; 2 : : : s.

6b) Compute m2� logn

ij (mod pi), combine the results using Chinese remaindering and

truncate to 2n bits to get an approximation aj+1 for x2
(j+1)� logn

.
Next j.
Take al and compute mi � 22nal (mod pi). Compute m2t

i (mod pi) and convert back
using Chinese remaindering to get a 2n bit approximation ~xr of x2

r

.
7) Compute ~w =

Qlog n
i=0 (1 + ~xi) using modular arithmetic.

8) Output ~w2�k to n digits accuracy.

We need to verify that this construction can be implemented as e�ciently as stated
and that the answer is correct. We will start by describing how to do Chinese remaindering
in the next section. An important fact that we will make use of repeatedly is the result
by Reif [4],[5] that multiplication of n-bit numbers can be done in depth O(logn) using
O(n logn log logn) processors.

3. E�cient Chinese Remaindering.

Let pi; i = 1; 2 : : : ; s be relatively prime numbers, each consisting of at most m digits.
Chinese remaindering consists of two separate problems. The �rst is that when given an
integer x �nd xi such x � xi (mod pi). The second problem is the inverse i.e. when

2

given the xi �nd the unique smallest x. Both problems, of course, have very e�cient
solutions using sequential computation since xi = x� b x

pi
cpi and x =

Ps
i=1 uixi where ui

are numbers such that ui � 1 (mod pi) and ui � 0 (mod pj) for j 6= i. We note for the
record that these numbers ui can be constructed in polynomial time given the numbers pi.
Our only problem is how to do these computations e�ciently in parallel.

As before � is a small positive number and assume for notational simplicity that s�

and 1
�
are integers. The computation can be wieved as taking place on a tree with fanout

s� and depth 1
�
. At the root there is the number x and at leaf i the number xi. Each

internal node v corresponds to the set of primes which belongs to the leaves in its subtree.
Let Pv be the product of these primes, then the number xv, associated with v is x (mod
Pv). Thus we have two computational problems, either we are given the number at the
root and we want to compute the numbers at the leaves or the other way around. Let us
�rst discuss the �rst problem.

We will do the computation level by level in the tree. All the computations on one level
are of course done in parallel. At level i we have si� nodes and to each node v corresponds
s1�i� primes. Thus in this case Pv is a s1�i�m bit number. Let f(v) be the father of v.
Then we have to compute xv � x (mod Pv), but this is just xf(v) � b

xf(v)
Pv

cPv. This can

be done in depth O(log(ms)) and size O((ms1�(i�1)�)1+�) for any � > 0 provided that we
have precomputed all Pv and 1=Pv and hardwired them into the circuit. This means that
we can construct a circuit of total size (ms)1+� for any � > � and depth O(1

�
logn) which

computes all the xi.

For the inverse problem we only have to traverse the tree in the opposite direction

using the formulas xv =
Ps�

i=1 ui;vxs(i;v) and xv = xv � b xv
Pv
cPv where s(i; v) is the i'th

son of v and ui;v is the suitable multiplier. The numbers ui;v can be precomputed and
hardwired into the circuit and thus we get the same bounds for the circuits as in the other
case.

Thus we have the following theorem:

Theorem: 1 Chinese remaindering with s m-bit moduli can be done by P-uniform circuits

of depth O(1
�
logms) and size O((ms)1+�) for any � > 0.

4. Error analysis and implementation details.

We have two things to analyze: That the approximations done in the algorithm does
not a�ect the accuracy of the output and how e�ciently the algorithm can be implemented.
Let us start with the former.

4.1 Error analysis.

We do approximations in two places. First we approximate 1
z
by w and then we only

3

compute x2
r

only approximately. The �rst approximation is harmless since

jw �
1

z
j =

1X

i=2n

xi �
1X

i=2n

2�i = 21�2n:

To estimate the error in computing x2
r

, �rst observe that there is no over
ow in step
6b and thus the only error comes from the truncation. We have

Lemma 1: jx2
j logn

� aj j � 21�2n for su�ciently large n.

Proof: We use induction over j. Clearly the lemma is true for j = 0. Now observe that
since there is no over
ow in the computation in 6b we know that

jaj+1 � a2
� logn

j j � 2�2n

and by the mean value theorem

jx2
(j+1)� logn

� a2
� logn

j j � jx2
j� logn

� aj j2
� logn�2

� logn
�1

for some � between aj and x2
j� logn

. Since both these numbers are between 0 and 2�2
j� logn

this latter number is � 2�2n for su�ciently large n. This �nishes the proof of Lemma 1.

By a similar analysis we get

Lemma 2: jx2
r

� ~xrj � 22�2n for su�ciently large n and all r � logn.

Finally let us see what Lemma 2 implies for ~w

Lemma 3: j ~w � wj � 24�2n logn for su�ciently large n.

Proof: Let wi =
Qi

r=0(1+x2
r

)
Qlog n

r=i+1(1+~xr), then w�1 = ~w and wlog n = w. By Lemma
2,

jwi � wi+1j � 3j~xr � x2
r

j � 24�2n

proving Lemma 3.

4.2 Details of Implementation.

Steps 1-5 are quite straightforward and we need to elaborate further on step 6. To do
the computation of the powers in 6 we will again use modular arithmetic. We will describe

the procedure for one �xed prime p. The essential step is to compute m2k (mod p) for
some k; 1 � k � � logn where m; p � n1+�.

Choose primes qi; i = 1; : : : t such that
Qt

i=1 qi > n(1+�)n� . This can be done with
qi < 2n� logn and t < 2n� logn by [3] as before. We can compute mi � m (mod qi) using

the theorem in section 3. To compute mk
i (mod qi) we store lookup tables for x2

k

for

4

1 � x < qi and 1 � k � � logn. This only requires O(n� log2 n) circuitry for each qi and
since we have at most 2n� logn qi's for every p and O(n1+�) p's the total size of the lookup
table is bounded by O(n1+4�) and these lookups can clearly be done in depth O(logn).

We have no trouble �nding m2k (mod
Qt

i=1 qi) using Chinese remaindering and since

m2k <
Qs

i=1 qi we know it over the integers and can compute m2k (mod p) using 1
p
as a

precomputed multiplier. By Theorem 1 also this can be done in size O(n1+2�) and this
�nishes the description and analysis of step 6.

To do the computation described by 7 we �rst compute cir = 22n + 22n~xr (mod pi)

i = 1; 2 : : : s. cij are O(logn) bit numbers and hence we can compute
Qlog n

r=0 cir (mod pi)
in a binary tree. Each multiplication requiring only O(log logn) depth giving a total depth
of O((log logn)2) and a O(log2 n) bound for the number of processors.

Since 8 obviously is easy this �nishes the description of how to construct the circuit
and we have the following theorem.

Theorem 2: For any � > 0 division has P-uniform circuits of depth O(1
�2
logn) and size

O(n1+�).

We have essentially already given the proof of the theorem. Let us just observe that
the expensive part of the algorithm is step 6 where we do 1

�
Chinese remainderings in

sequence. Each of these require O(1
�
logn) depth. To get the bound on the number of

processors use � = �
4 .

5. Open questions and discussion.

It would be interesting to reduce the number of processors even further. There seems
to be two reasons that we cannot get better bounds than O(n1+�) by the present techniques.
The �rst bottleneck is Chinese remaindering. The condition of O(logn) depth seems to
force us to use a large circuit. The other reason for the bound is that we can only go back
and forth between normal and modular representation a constant number of times and
hence we are forced to have O(n1+�) bits around and hence that size circuit. These two
problems suggest that to reduce the number of processors further e.g. to O(n logc n) for
some constant c new ideas must be used. We feel that this should be possible. It would
be interesting to be able to do division as e�ciently as multiplication which is the case in
the sequential model.

Our construction is as well as that of Beame, Cook and Hoover only P-uniform and
not logspace-uniform. This might seem unimportant if we want to build the circuits but a
logspace-uniform construction would be very interesting from a theoretical point of view.
The reason for this is that by a general theorem by Borodin [2], such a construction would
imply that division is in logspace. For a discussion of this question and reductions to
related problems we refer to [1].

Slight variations of the construction in this paper give small O(logn) depth circuits
for problems which can be done e�ciently using modular arithmetic. Examples of such

5

problems are iterated multiplication and powering.

References

[1] Beame P.W., Cook S.A. and Hoover H.J. \Log Depth Circuits for Division and Related
Problems" Proceedings 25'th Annual Symposium on Foundations of Computer Science,
1984, pp 1-6.

[2] Borodin A. \On Relating Time and Space to Size and Depth" SIAM J. Computing 6,
(1977), pp 733-744.

[3] Davenport H. \Multiplicative Number Theory" Springer Verlag 1980.

[4] Reif J. \Logarithmic Depth Circuits for Algebraic Functions" Proceedings 24'th Annual

Symposium on Foundations of Computer Science, 1983, pp 138-145.

[5] Reif J. \Logarithmic Depth Circuits for Algebraic Functions" Revised version 1984.

6

