
ON THE POWER OF INTERACTION

William Aielloy Sha� Goldwasser* Johan Hastadz

y�zLaboratory of Computer Science
�Dept. of Electrical Engineering and Computer Science

yzDepartment of Mathematics

Massachussets Institute of Technology

Abstract

Let IP [f(n)] be the class of languages recognized by interactive proofs with f(jxj) interactions.

Babai [B] showed that all languages recognized by interactive proofs with a bounded number of

interactions can be recognized by interactive proofs with only two interactions; i.e., for every

constant k, IP [k] collapses to IP [2].

In this paper, we give evidence that interactive proofs with an unbounded number of inter-

actions may be more powerful than interactive proofs with a bounded number of interactions.

We show that for any polynomially bounded polynomial time computable function f(n) and any

g(n) = o(f(n)) there exists an oracle B such that IPB [f(n)] 6� IPB [g(n)].

The techniques employed are extensions of the techniques for proving lower bounds on small

depth circuits used in [FSS], [Y] and [H1].

Warning: Essentially this paper has been published in Combinatorica and is hence

subject to copyright restrictions. It is for personal use only.

1. Introduction

The class NP has traditionally been recognized to capture the notion of e�cient provability,

containing those languages for which there exist short proofs of membership which can be veri�ed

e�ciently. The NP proof-system consists of a powerful prover which guesses the short proof, and

a polynomial time veri�er which checks the correctness of the proof. The interaction between the

prover and the veri�er consists of the prover sending a single string (the proof) to the veri�er.

Recently, Goldwasser, Micali, and Racko� [GMR], and Babai [B] each extended the familiar

NP proof-system to incorporate randomness and more complex interaction. In both cases the

veri�er is a randomized polynomial-time machine which exchanges messages with the prover before

deciding whether to be convinced by the \proof". Two new complexity hierarchies arise, corre-

sponding to the number of messages exchanged between prover and veri�er, both of which would

collapse to NP if the veri�er tosses no coins.

Goldwasser, Micali and Racko� [GMR] de�ne their hierarchy through the notion of an \inter-

active proof system". An interactive proof system consists of a prover of unlimited computational

power and a probabilistic polynomial time veri�er. Both receive a common input x, and exchange

y Supported by an ONR fellowship.
* Supported in part by NSF Grant DCR MCS8509905.
z Supported in part by an IBM fellowship. Currently at the Royal Institute of Technology.

1

up to polynomial in jxj number of messages back and forth, each being of length at most a poly-

nomial in jxj, with the veri�er sending the �rst message. The veri�er's ith response is the result

of a random polynomial time computation on input x, and all messages sent so far. At the end of

the interaction the veri�er makes a polynomial time computation to determine whether to accept

or reject x.

We say that an interactive proof system recognizes a language L if the probability that the

prover can make the veri�er accept is � 2
3
when x 2 L and � 1

3
when x 62 L. The interactive

proof (IP) hierarchy is now de�ned as follows. Language L 2 IP [f(n)] if there exists an f(n)-move

interactive proof system which recognizes L.

Babai's [B] proof system is de�ned via a combinatorial game played by a random player,

Arthur (in the role of the veri�er), and an optimal player Merlin (in the role of the prover). As

with the GMR system, on input x, Arthur and Merlin alternate exchanging messages, with Arthur

moving �rst, till Arthur accepts or rejects x (Merlin wins or loses). The di�erence with the [GMR]

formulation is that during Arthur's turn he is restricted to ipping a prescribed number of coins and

sending their outcome to Merlin. The class AM [f(n)] is de�ned in the same manner as IP [f(n)] .

Goldwasser and Sipser [GS] showed that the more powerful veri�er of IP does not increase the

power of the model with respect to language recognition. Namely, for any polynomially bounded

function f(n), IP [f(n)] = AM [f(n)].

Due to its simple combinatorial formulation, the Arthur-Merlin model is easier to work with

in the context of this paper. We will thus prove our results using the Arthur-Merlin game and AM

hierarchy terminology. Clearly, all results in this paper concerning the AM hierarchy extend to the

IP hierarchy.

One note on notation before we start. All functions f(n) and g(n) we consider are integer

valued.

1.1 The Finite Level Hierarchy Collapses

Babai [B] showed that the �nite levels of the Arthur-Merlin hierarchy collapse to the second

level: AM [k] = AM [2] for all integers k > 2. Moreover, Babai [B] showed that AM [2] is contained in

�2. These proofs relativize, that is for all B, AM
B [k] � �B

2 . Babai conjectured that AM [Poly] =S
cAM [nc] is contained in �k for some k. In addition, he made the stronger conjecture that

AM [Poly] = AM [2].

One of the most fundamental complexity issues concerning interactive proofs is to resolve

whether more rounds add language recognition power. On the positive side, Babai and Moran

[BM] subsequently showed that AM [f(n)] = AM [cf(n)] for all constants c > 0; this proof holds

for all oracles.

On the negative side we show that this is the best possible collapse theorem which relativizes.

1.2 Our Results

We prove that for polynomially bounded polynomial time computable function f(n) and any

g(n) = o(f(n)), there is an oracle B such that AMB [f(n)] is not contained in �B
g(n) where �

B
g(n)

is the class of languages recognized by a polynomial time alternating Turing machines with g(n)

alternations and access to oracle B. Further, we extend Babai's [B] proof that constant round AM

2

is contained in �2 to show that for all g(n), AMB [g(n)] � �B
g(n)+1 for all B. Hence, there is an

oracle B such that AMB [f(n)] strictly contains AMB [g(n)].

These results indicate that proving the collapse of the entire AM hierarchy, if it does indeed

collapse, will require proof techniques which do not relativize.

In Babai's proof that a k round AM game can be simulated by a two round AM game, the

length of the messages of the two-round simulating AM game is a polynomial factor greater than for

the k round game. We show that in a relativized setting the increase in complexity is inherent. Let

AM [k; r1; r2] be the class of languages recognized by AM [k] games where the length of each message

is bounded by nr1 and Arthur's computation time bounded by nr2 . We show that for all constants

l, r1, r2, and t, there exist a constant k and an oracle B such that AMB [k; t; t] 6� AMB [l; r1; r2].

The fact that the number of rounds seems to make a di�erence raises the question whether

AM [2] or AM [Poly] is the natural probabilistic version of NP . One vote for AM [2] is the re-

cent result by Nisan and Wigderson [NW] is that the class of languages which are in NPB with

probability 1 for a random oracle B is equal to AM [2].

1.3 Outline of Our Proof

Furst, Saxe, Sipser [FSS] and Sipser [S] were the �rst to show that oracle separation results

involving classes such as the levels of the polynomial time hierarchy could be achieved by proving

lower bounds for constant depth circuits. Since then improved bounds and subsequent separations

have been achieved by Yao [Y] and Hastad [H1]. We use essentially the same paradigm. However,

formulating AMB [f(n)] in a suitable way and deriving lower bounds will require some work. We

proceed as follows.

First we describe (in Section 2) a natural Arthur Merlin game with f(n) interactions in which

Arthur makes one query to an oracle B during his polynomial time evaluation of whether to accept

or reject the input. We call this the de�ning game. Let the value of the game be the probability

that Arthur accepts the input. We de�ne a unary language L(B) based on this game as follows:

1n 2 L(B) i� the value of the de�ning game is greater than 2=3. For some B the value of the

de�ning game will never fall between 1/3 and 2/3. In these cases L(B) 2 AMB [f(n)]. For the sake

of the outline the goal is to show that of these B's there exists one for which L(B) =2 �B
2 and hence

L(B) =2 AM [2]. We proceed as follows:

For any oracle Turing machine MB which has 2 alternations and runs in polynomial time we

want to choose B to ensure that L(B) is not accepted by MB. To do this we choose a su�ciently

large n and look at the behavior of MB on input 1n. The output of MB corresponds to the

value of a depth 3 circuit of small size as shown in [FSS]. (The general reduction from machines

with g(n) interactions to circuits of depth g(n) + 1 will be outlined in Section 3. The proof that

AM [g(n)] � �g(n)+1 will be given is Section 4.) The inputs to this circuit are boolean variables yBz
where yBz = 1 i� z 2 B. We �x the values of some of the inputs (determining whether some strings

are in the oracle set or not) in such a way as to determine the output of the circuit and hence

determine the computation of MB, but so that the value of the de�ning game played on input

1n will not be determined. (As in [FSS], [Y] and [H1] we do not know how to �nd such a setting

deterministically but rely on probabilistic arguments to show that one exists.) By determining

slightly more of the oracle set we can force the value of the game in such a way that ifMB accepted

then the value of the game will be less than 1/3 and if MB rejected then the value of the game will

3

be greater than 2/3. In this way we ensure that MB does not recognize L(B). Finally, to ensure

that no machine recognizes L(B) we do a standard diagonalization over all oracle Turing machines.

To keep track of what happens to the value of the game as we �x part of the oracle set we need

to introduce some notation. In Section 5 we de�ne a special type of circuit called the > circuit.

It has two types of gates: threshold gates and or gates. It takes 0 and 1 as inputs and outputs

0, 1, and a special symbol y. We introduce a > circuit that computes the value of the de�ning

game in the following sense. If the > circuit with f(n) levels evaluates to 1 on a certain setting

of input variables then the value of the de�ning game on 1n with the oracle corresponding to the

setting of the variables is � 2=3 ; if the circuit evaluates to 0 then the value of the de�ning game

is � 1=3; while if the circuit evaluates to y then no useful information about the value of the game

is obtained.

In Section 6 we de�ne new random restrictions we need to construct B. Restrictions assign

values to some input variables and hence simplify the functions to which they are applied. In

Section 7 we show that with high probability the de�ning > circuit hit with a restriction can be

written as an > circuit with a constant fewer levels. In Section 8 we show that with high probability

any small constant depth circuit hit with a restriction can be written as a small circuit of depth

one less. The technical part of this argument is postponed to Section 10. Since the number of

interactions in the de�ning game grow with n as f(n), the height of the > circuit grows in the

same manner. Hence, for n large enough , a constant number of restrictions completely determine

the depth 3 circuit but leave the > circuit undetermined. This will give us enough freedom (in

Section 8) to set the variables yBz by diagonalization so that L(B) is in AMB [f(n)] but not in �B
2 .

In Section 9 we consider games of �xed size. We conclude in Section 11 with some open problems.

This paper is a complete version of the conference paper [AGH].

2. AM Games and the De�nition of L(B)

Let us start my making a de�nition of AM .

An Arthur-Merlin game is played between two Turing-machines A(rthur) and M(erlin). A is

probabilistic polynomial time while M has no resource bounds. On input x, A and M interact for

a polynomial number of rounds in the following way:

1) A ips a predetermined number of random coins and sends the result to M . Call A's message

in the i'th round ai.

2) M responds with a message bi based on an arbitrary computation.

After at most a polynomial number of rounds the game terminates and A computes in poly-

nomial time a f0; 1g-valued function. The function depends on the ai, the bi and the input w.

If the value of this function is 1 we say that Arthur accepts the input while otherwise he rejects.

We will use the phrases \Arthur accepts the input" and \Merlin wins the game" synonymously

since one can think of the game as Merlin doing his best to make Arthur accept, while Arthur just

indi�erently ips coins.

Let the value of the game be the probability (over Arthur's coin ips) that Arthur accepts the

input when Merlin plays optimally. The value of the game is then a function of the input. Now we

de�ne a language L to be in AM [f(n)] if there is a f(jxj) round game such that

1) If x 2 L then the value of the game is at least 2=3.

4

2) If x =2 L then the value of the game is at most 1=3.

The de�nition of a relativized AM game is now straightforward.

De�nition: An Arthur-Merlin game with oracle B is an Arthur-Merlin game in which Arthur and

Merlin have access to oracle B.

De�nition: L 2 AMB [f(n)] if there exists an Arthur-Merlin game with oracle B which on input

x makes at most f(jxj) moves such that for all x 2 L the value of the game is at least 2=3; and for

all x 62 L the value of the game is at most 1=3.

The language L(B) is de�ned with respect to the following Arthur-Merlin game (which we will

often refer to as the de�ning game). It will be convenient for the game to have an even number of

interactions so de�ne f 0(n) = bf(n)=2c.

On input 1n, the game has f 0(n) rounds starting with Arthur. At the ith round the following

happens.

1. Arthur sends an n-bit random string, denoted ai.

2. Merlin responds with an n-bit string, denoted bi.

Arthur accepts if the string a1b1a2b2 � � � af 0(n)bf 0(n) of length 2nf 0(n) is in oracle B.

De�nition: The language L(B) is a unary language such that for all n, 1n 2 L(B) i� the value of

the above game is � 2=3.

Note that 1n =2 L(B) only means that the value of the game on 1n is < 2=3: However, for many

B's the value of the game is never between 1/3 and 2/3. In these cases L(B) 2 AMB [f(n)]. The

goal is for a given g(n) which is o(f(n)) to �nd a B for which it is also true that L(B) =2 �B
g(n)+1.

Our �rst step in doing so is to give a circuit formulation of �B
g(n)+1 and of the AM protocol

recognizing L(B) which we do in Sections 3 and 5 respectively.

3. Relativized Complexity and Circuits

Let us �rst state the connection between �B
g(n) and g(n) depth circuits. This was �rst estab-

lished in [FSS] and [S].

De�nition: A �B
g(n) (�

B
g(n))-machine is an alternating Turing machine which runs in polynomial

time, has at most g(n) alternations along any computation branch, starts with an ^ (_) alternation,

and makes polynomial length queries to an oracle for B:

De�nition: A language L is said to be in �B
g(n) (�

B
g(n)) i� it is accepted by some �B

g(n) (�
B
g(n))

machine.

For the remainder of the paper we will identify an oracle B with the values of the Boolean variables

fyBz j z 2 ��g by setting yBz = 1 i� z 2 B.

Lemma 3.1: Let MB be a �B
g(n) (�

B
g(n)) machine which runs in time t on input x for any oracle

B. Then there is a depth g(n) + 1 circuit C of size 22t which has a subset of the yBz as inputs such

that for every oracle B, MB accepts x precisely when C outputs 1 on inputs yBz .

Remark: The structure of the circuit depends on MB and the input x.

5

Proofs for the case g(n) = constant can be found in [FSS] and [H2]. The generalization to g(n)

unbounded is straightforward.

When we are studying the �ne structure of the size of games it is useful to have a re�nement of

Lemma 3.1. We say that an alternating machine is in non-alternating mode if it will make no more

alternations during its computation. While it can still make alternations we say it is in alternating

mode.

Lemma 3.2: Let MB be a �B
g(n) (�

B
g(n)) machine which runs in time t1 in alternating mode and

time t2 in non-alternating mode on input x for any oracle B. Then there is a depth g(n)+1 circuit

C which has at most 22t1 gates at least two away from the inputs and bottom fanin at most t1+ t2
which has a subset of the yBz as inputs such that for every oracle B, MB accepts x precisely when

C outputs 1 on inputs yBz .

This can again be seen by almost the same argument.

4. AM and alternating machines.

In this section we will establish the inclusion of AM [f(n)] in �f(n)+1. This inclusion will be

needed in the proof of our main theorem. In Section 10 we will need rather detailed information

about the size of games so we introduce some size parameters.

De�nition: Let AM [f(n); r1; r2] denote the set of languages which are recognizable by an Arthur-

Merlin game with the following properties: there are at most f(n) interactions; each interaction

has length at most nr1 ; and Arthur's decision procedure takes time at most nr2 .

For notational simplicity we will make the assumption that r2 > r1. This is natural since it is

always satis�ed if we assume that Arthur looks at the entire conversation.

Using this notation we can state the lemma we will prove in this section.

Lemma 4.1: If L 2 AM [f(n); r1; r2] then L can be recognized by a �f(n)+1 machine which runs in

time O(f2(n)n2r1 log (f(n)nr1)) in alternating mode and at most time O(f(n)nr1+r2 log (f(n)nr1))

in non-alternating mode.

Remark: Lemma 4.1 appears in a slightly di�erent form in [GMS]. For completeness we give the

proof.

Proof: We will convert the game between Arthur and Merlin to a game between two all powerful

players 8 and 9 with one extra move. In a certain sense to be made precise below, 9 will play the

role of Merlin and 8 the role of Arthur. By the usual correspondence between such games between

optimal players and alternating Turing machines the lemma will follow.

First we will decrease the uncertainty in the Arthur-Merlin game. Play the old game

24dlog (72f(n)nr1)e times in parallel and let Arthur accept if old Arthur accepts in a majority of the

games. It is easy to see that if x 2 L then the probability that Merlin can win the game is at least

1� 2�dlog(72f(n)n
r1)e and if x 62 L then Merlin can win with probability at most 2�dlog(72f(n)n

r1)e.

The size of each interaction in this game is bounded by 24nr1dlog(72f(n)nr1)e.

6

Let ai be Arthur's message in the ith round of this game and let bi be Merlin's message in

the ith round. Let P (a; b) denote the predicate such that P (a; b) = 1 i� Arthur accepts after

the conversation a1b1 : : : qdf(n)=2e, where q is b if f(n) is even and a if f(n) is odd. Consider the

following game between two all powerful players 9 and 8.

Let k = 36f(n)nr1 .

Round 0. 9 sends c(1); c(2) : : : c(k) to 8, where c(j) = (c
(j)
1 ; c

(j)
2 : : : c

(j)
bf(n)=2c) and

jc
(j)
i j = 24dlog (72f(n)nr1)enr1 .

For i = 1; 2 : : : bf(n)=2c

Round i. 8 sends ai; jaij = 24dlog (72f(n)nr1)enr1 .

9 sends b
(1)
i ; b

(2)
i ; : : : b

(k)
i where jb

(j)
i j = 24dlog (72f(n)nr1)enr1 .

If f(n) is odd 8 completes the game by sending adf(n)=2e.

9 wins the game i� for some j; P (c(j) � a; b(j)) = 1.

Lemma 4.2 9 has a winning strategy i� x 2 L.

Observe that Lemma 4.1 follows from Lemma 4.2 by just calculating the total size of the

messages. Thus we need only establish Lemma 4.2.

Assume �rst that x 2 L. Then we know that there is a strategy S for Merlin such that

he wins with probability at least 1 � 2�dlog(72f(n)n
r1)e. Let A be the set of a such that Merlin

wins if he follows S and Arthur has coins a. Let d(1)d(2); : : : d(k) be a random choice for 9's �rst

message and let a1; a2 : : : adf(n)=2e be 8's moves. If 9 follows strategy S on d(j) � a to produce

the moves b(j) then 9 wins i� for some j, d(j) � a 2 A. For any �xed a the probability that

d(j) � a =2 A for all j is at most
�
2�dlog(72f(n)n

r1)e
�k

= 2�36f(n)nr1 dlog (72f(n)nr1)e � 2�jaj�1, since

jaj = 24nr1dlog(72f(n)nr1)edf(n)=2e. Thus with probability at least 1=2 all a's lead to acceptance.

In particular, there is a choice of the d(j) such that 9 wins if he follows strategy S.

Now assume that x 62 L. Fix any initial message c(1); c(2) : : : c(k). If 8 sends random messages

ai, then by the property of the AM game no matter what strategy 9 uses, the probability that

P (a� c(j); b(j)) = 1 is bounded by 2�dlog(72f(n)n
r1)e. Thus the probability that 9 wins the game is

bounded by k=2dlog(72f(n)n
r1)e � 1=2. In particular, there are choices of a for which 8 wins. This

completes the proof of Lemma 4.2.

5. Oracle Games and AM Circuits.

To give the circuit formulation of the de�ning AM game for L(B) let us �rst de�ne something

slightly more general.

De�nition: A weak AM game with oracle B is an AM game with oracle B in which Arthur makes

only one oracle query in his polynomial time evaluation of the game. Without loss of generality we

can assume that this query is made at the end of the protocol.

Observe that the game de�ning L(B) is a weak AM game. In all that is to follow we will

assume without loss of generality that all interactions in an Arthur-Merlin game are of the same

7

length and also that the number of interactions only depends on the length of the input.

Let us now de�ne a new type of circuit. The circuit will have two types of gates: A gates and

M gates. Inputs and outputs of these gates will be rational numbers. A gates take the value which

is the average of the values of their inputs and M gates take the value which is the maximum of

the values of their inputs.

De�nition: An Al
d circuit is a 2

l-ary tree of height d where the root and nodes at every other level

are A gates and the remaining nodes are M gates.

Lemma 5.1: Let GB be a weak AM game with oracle B which has d interactions of length l. For

every x there is an assignment to the inputs of Al
d from f0; 1g [f(yBz ; �y

B
z)g, z 2 f0; 1g�, such that

for every B the value of GB on x is equal to the output of Al
d.

Proof: There is an obvious mapping between conversations of the AM game (i.e., strings of length

dl) and leaves of the Al
d tree. At each leaf four cases may occur:

1. Arthur accepts without asking an oracle query, in which case we mark the leaf 1.

2. Arthur rejects without asking an oracle query, in which case we mark the leaf 0.

3. Arthur accepts i� oracle query z 2 B is true, in which case we mark the leaf by variable yBz :

4. Arthur accepts i� oracle query z 2 B is false, in which case we mark the leaf by variable �yBz .

The lemma follows by an easy induction on d, the number of interactions.

In particular, the value of the de�ning game on 1n is equal to the output of An
2f 0(n) on the

yBz 's with jzj = 2f 0(n)n:

We will not work with AM circuits. Instead we will use > circuits. Apart from being of

interest on their own, these > circuits will be easier to work with. There will be two types of gates:

or gates, _, and threshold gates, >� . Both take inputs from f0; 1; yg and output f0; 1; yg as follows:

_ =

(
1; if there exists a 1 in the input;
y; if there exists a y but no 1;
0; if all inputs are 0.

>� =

8>>><
>>>:

1; if there are a � fraction
of 1's in the input;

0; if there are a � fraction
of 0's in the input;

y; otherwise.

where � is a threshold parameter which is always greater than 1=2:

De�nition: A >l
�;d circuit is a 2

l-ary tree of height d where the root is a >� gate and every other

level consists of >� gates and every other of _ gates.

We will show that there is a useful sense in which the two new types of circuits just de�ned

can simulate each other.

8

Lemma 5.2: For 1
2 < � � 1� (1� p)1=dd=2e

Al
d(x) � p) >l

�;d(x) = 1

Al
d(x) � 1� p) >l

�;d(x) = 0

Proof: We prove the �rst implication, the second being similar. Observe that if 1�(1�p)1=dd=2e >

1=2 then p > 1� 2�dd=2e and thus the lemma is only meaningful for p very close to 1.

Say the inputs to an average gate A of height i are q1i : : : q
2l

i . These are the outputs of the

corresponding maximum gates of height i � 1. Suppose the output of the average gate is at least

pi, then at least a fraction � of the qi's are at least (pi� �)=(1� �). Suppose we know by induction

that Al
i�2(x) � (pi � �)=(1 � �) implies >l

�;i�2(x) = 1, then Al
i(x) � pi implies that at least � _

gates at level i�1 in >l
�;i(x) are true. Hence, >

l
�;i(x) evaluates to one. This gives us the recurrence

pi � pi�2(1 � �) + � where p1 = p2 = � and pd = p. If � � 1 � (1 � p)1=dd=2e, this can be solved

with pi � p.

A partial converse is given below.

Lemma 5.3:
>l
�;d(x) = 1) Al

d(x) � � dd=2e

>l
�;d(x) = 0) Al

d(x) � 1� � dd=2e

Proof: Again we prove only the �rst implication. Use induction on d. The base cases, d = 1 and

d = 2, are straightforward. There are two di�erent case, d odd and d even. When d is odd the

lemma follows immediately from the d� 1 case by looking at the input to the _ gate which takes

the value 1.

Hence, assume that d is even and that the lemma is true for d� 2. >l
�;d(x) = 1 implies that a

fraction � of the _ gates at height d� 1 evaluate to 1. Using the induction hypothesis, this implies

that a fraction � of the M gates at height d�1 in the Al
d tree evaluate to a least �

d(d�2)=2e. Hence,

Al
d(x) is at least �

dd=2e.

Lemma 5.4: For � of the form 1� o(1=f(n)), if

8n; >n
�;2f 0(n)(y

B
z) = 0 or 1

where jzj = 2nf 0(n) then

L(B) 2 AMB [f(n)]

and the >n
�;2f 0(n) circuit evaluates L(B) correctly for su�ciently large n.

Proof: The proof follows from the de�nition of L(B) and Lemmas 5.1 and 5.3.

Remark: By the usual correspondence between game trees and quanti�ers, Lemmas 5.3 and 5.4

are su�cient to show that the set of languages given by a family of formulas which have alternating

threshold quanti�ers and existential quanti�ers followed by a polynomial time predicate is exactly

AM [Poly] (provided the threshold is su�ciently large). However if the threshold is smaller, the

9

threshold circuits seem to be more powerful. For example using threshold 2=3 it is possible to

recognize any language in PSPACE in polynomial depth.

This type of formula with a constant number of alternations has been studied by several people.

See [Z] for an overview.

For the remainder of the paper we will assume that l = n and � = 1� 2�n
1=4

unless otherwise

stated and we will write >2f 0(n) as shorthand for >l
�;2f 0(n). Later in the proof when we are setting

the variables yBz (i.e., determining our oracle set B) we will be careful to make >2f 0(n) = 0 or 1 for

all n so that we can claim L(B) 2 AMB [f(n)] using Lemma 5.4.

For most of the remainder of the paper (Sections 6-9) we work to show that >2f 0(n) cannot

be computed by small (o(f(n))) depth circuits. More speci�cally we will show that for all circuit

families of depth g(n) = o(f(n)) and size 22n
r

there exists n large enough such that there is some

input x for which Cg(n)(x) 6= >2f 0(n)(x) 6= y. Using this fact and Lemma 3.1 we will construct (in

Section 8) a setting of the variables yB1 ; y
B
2 ; : : : : such that no �B

g(n)+1 machine accepts L(B). At

the same time, however, the setting will satisfy the hypothesis of Lemma 5.4. This will give us

L(B) in AMB [f(n)] but not in �B
g(n)+1 and we will achieve the claimed separation.

6. New Random Restrictions

Let us start by recalling a de�nition from [FSS].

De�nition: A restriction � is a function of the variables xi to the set f0; 1; �g. �(xi) = 0 (1) means

we assign the value 0 (1) to xi while �(xi) = � means we keep xi as a variable.

Given a function F we will denote by F d� the function we obtain by applying � to the variables

of F . F d� will be a function of the variables which were given the value � by �. As in [FSS], [Y]

and [H1] we will use random restrictions. We de�ne however a new family of random restrictions,

Rk;n.

De�nition: For every integer k the random restriction � 2 Rk;n is de�ned as follows. Partition

the variables into disjoint groups of size 22kn. Call each group a k-block. Let the ith k-block be the

set fx(i�1)22kn+1,: : :, xi22kng. Now associate the variables in each k-block with the leaves of a >2k

circuit in the natural way. Label the nodes in each >2k circuit independently in the following way.

Mark the top node (which is a > node) with a � and mark the children recursively as follows:

1. For a > node marked 1, mark all the children 1.

2. For a > node marked 0 (�), mark each child 1 with probability 2�n
1=3

or 0 (�) with probability

1� 2�n
1=3

3. For an _ node marked 1 (�), mark each child 1 (�) with probability 2�n=2 or 0 with probability

1� 2�n=2

4. For an _ node marked 0, mark all the children 0.

Finally let �(xi) be the label assigned to xi.

Additionally, we need the new concept of an identi�cation. We will not make a general de�ni-

tion but only what we need in the present case.

10

De�nition: For each � 2 Rk;n let the identi�cation � work as follows. For all variables given the

value � in a k-block E by � 2 Rk;n, � forces all these variables to be equal. Let yE be the single

variable associated with E.

Thus, given any function F in the original variables, F d�� will be a function in the variables fyEg.

The idea behind these new identi�cations is the following. We want the value of the >2kd��
circuit corresponding to a k-block E to be equal to the new variable yE with high probability. Thus

applying a restriction to a game with 2f 0(n) interactions will result in a game with 2f 0(n) � 2k

interactions. We will make this precise in the next section.

7. The E�ect of Rk;n on the > Circuit

Our goal in this section is to show that the function computed by our> circuit after a restriction

from Rk;n has been applied is the same with high probability as the function computed by the circuit

with 2k fewer interactions. In the remainder of the paper we will often write Rk;n as Rk leaving

the n implicit.

Lemma 7.1: For any polynomial d and integer n such that d(n) > 2k, >d�2k = >dd�� with

probability (taken over � 2 Rk) at least 1 � 2�2n=4 for n � c log d where c is some absolute

constant.

Proof: Take a k-block in >d. Recall that � 2 Rk �rst labels the threshold gates at height 2k with

a � and recursively labels the children by �, 1, or 0. After all the variables have been labeled all

the starred variables are forced to be equal to a new variable yE .

De�ne a good gate to be a gate that is either labeled 0 (1) and takes the value 0 (1) or is

labeled � and takes the value yE . To prove Lemma 7.1 we only need to prove that the top node of

every block is a good node. We prove slightly more, namely that with high probability every node

is a good node. A node which is not good will be called bad. We say that an error occurs at a node

if the node is bad but all its descendant are good. The key to proving Lemma 7.1 is given below.

Lemma 7.2: The probability that an error occurs at an individual node is � 2�2n=2 for n > n0
for some absolute constant n0.

Proof: First observe that there cannot be an error at nodes at which rules 1 or 4 of Rn;k were

applied. Thus we only have to investigate rules 2 and 3. Let us start with the simpler rule 3 which

deals with _ gates. Call the �xed node we are interested in l.

If l was marked 1 the only way there can be an error at this node is if no child was marked 1.

The probability of this is

(1� 2�n=2)2
n

� e�2n=2

The same analysis applies to the case where l is marked �.

Next let us investigate rule 2. Assume for de�niteness that l is marked 0. Then the probability

that there will be an error at l is bounded by the probability that at least a fraction 1� � = 2�n
1=4

11

of the children are marked 1. The probability of this is bounded by

�
2n

2n�n1=4

��
2�n

1=3
�2n�n1=4

�

2ne2�n

1=3

2n�n1=4

!2n�n1=4

� 2�2n=2

for n > n0 for some constant n0. This concludes the proof of Lemma 7.2.

Now to prove Lemma 7.1 we just observe that since there are at most 2nd+1 nodes in a >d

circuit, the probability that an error occurs at some gate is at most 2nd+1�2n=2 . So the probability

that all >k circuits evaluate to yE is at least 1� 2�2n=4 for n > c log d for some constant c.

8. The Construction of B

Before we can construct our oracle we will �rst need to show that small depth circuits cannot

compute larger depth threshold circuits.

Theorem 8.1: For all constants r, any polynomially bounded functions f(n) and g(n) = o(f(n))

and any circuit Cn of depth g(n) and size 22n
r

where n > n0(r; f; g) there is a setting of the input

variables for which Cn(x) 6= >2f 0(n) 6= y.

Proof: To prove the theorem we will �rst show that if we hit an AND of OR's with small fanin

with �� then with high probability we can write the resulting function as an OR of AND's with

small fanin.

To state our main lemma, let AND(H) � s denote the event that the function H cannot be

written as an OR of ANDs of fanin < s.

Main Lemma: Let G = ^wi=1Gi, where Gi are OR's of fanin � nr where r � k�2
3 . Let F be an

arbitrary function and � a random restriction in Rk. Then for s � 1

Pr[AND(Gd��) � s j F d�� 1] � 2�sn=5

for n > n0(r).

Remark 1. By looking at :G one can see that it is possible to convert an OR of ANDs to an

AND or ORs with the same probability.

Remark 2. If there is no restriction � satisfying the condition F d�� 1 we use the convention that

the conditional probability in question is 0.

We will postpone the proof of the main lemma to the last section and for now use it to prove

the following lemma.

Lemma 8.2: Let g be any function bounded by a polynomial and let H be computed by a circuit

of depth g(n), bottom fanin at most nr; r � 1, and at most 22n
r

gates at least distance 2 from the

input. For k � 3r + 2, n > n0(r), and � 2 Rk;n, with probability at least 1 � 2�n, Hd�� can be

computed by a circuit of depth g(n)� 1, bottom fanin nr and at most 22n
r

gates at least distance

2 from the input.

Proof: Consider the given circuit Cn of depth g(n) which computes H. Without loss of generality

assume that the gates closest to the inputs are OR gates. By the main lemma with F � 1, for

12

n > n0(r) after applying ��, each height 2 subcircuit can be rewritten as an OR of ANDs of fanin

at most nr with probability at least 1 � 2�n
r+1=5. The probability that some depth 2 subcircuit

cannot be written as an OR of ANDs of fanin at most nr is at most 22n
r

2�n
r+1=5 < 2�n for n � 15,

r � 1. Hence with high probability we can collapse the two consecutive levels of OR gates and

write the resulting circuit as a depth g(n)� 1 circuit of bottom fanin at most nr with at most 22n
r

gates of distance at least 2 from the inputs. The last fact follows since each gate a distance at least

2 from the inputs in the new circuit corresponds to a gate a distance at least 3 from the inputs in

the old circuit.

Now we can prove Theorem 8.1 as follows. Let k = 2 + 3r. Choose n � 15 large enough so

that the following are all true: Lemma 7.1 holds; the main lemma holds; g(n)(2�n+2�2n=4) � 1=4;

and f 0(n) > kg(n). We will apply a series of g(n) restrictions from Rk to both Cn and to >2f 0(n).

Cn will be completely determined but the threshold circuit will be undetermined. Let us make this

precise.

First, consider Cn as a depth g(n) + 1 circuit with bottom fanin 1. After one application of a

restriction from Rk with probability at least 1 � 2�n we will be able to write the resulting circuit

as a depth g(n) circuit with bottom fanin at most nr. Note that there will be at most 22n
r

gates

at least distance 2 from the the input.

Now apply g(n)� 2 restrictions from Rk in succession. By repeated application of Lemma 8.2

the resulting circuit will be of depth 2 and bottom fanin at most nr with high probability. Finally,

hit this resulting circuit with one more restriction from Rk. By the main lemma with s = 1 and

F � 1 this will be a constant function with probability at least 1� 2�n=5.

Now apply g(n) restrictions from Rk to >2f 0(n). By Lemma 7.1 the resulting function will be

>t where t = 2f 0(n)� 2kg(n) with very high probability.

The probability that a sequence of g(n) restrictions simultaneously determine Cn and reduce

the threshold circuit to one with 2kg(n) fewer levels is at least 1 � g(n)(2�n=5 + 2�2n=4) � 3=4.

Hence, such a sequence of restrictions exists. Clearly there exists many settings of the remaining

variables such that >t is di�erent from the constant evaluated by Cn and is not y. In particular

set all of the remaining variables to the opposite of the value of Cn.

Now we can prove our main theorem.

Theorem 8.3: For any polynomially bounded function f(n) computable in polynomial time and

any g(n) = o(f(n)) there is an oracle B such that AMB [f(n)] 6� �B
g(n).

Proof: Assume that f is unbounded, since otherwise there is no integer valued g satisfying the

condition of the theorem. We will set yBz in rounds. Let MB
1 ;M

B
2 ; : : : be an enumeration of all

alternating Turing machines which have at most g(n) alternations and which run in polynomial

time. Assume without loss of generality thatMi runs in time ni. Let C1; C2; : : : be the corresponding

families of circuits of depth g(n) + 1 and size 22n
i

as given by Lemma 3.1. Let n0 be large enough

such that n0 � 15 and (g(n0) + 1)(2�n0=5 + 2�2n0=4) � 1=4. Set yBz arbitrarily to 0 for jzj = 1.

Now repeat the following for all i.

Round i. Given Mi the corresponding circuit family Ci has size bounded by 22n
i

and depth

g(n)+1. Let ni be the smallest integer such that ni > ni�1, 2f
0(ni)ni > max

�
ni�1
i�1; 2f

0(ni�1)ni�1

�
,

and ni > n0(i; f; g) where n0(i; f; g) is the constant from Theorem 8.1. The second condition ensures

13

that oracle queries of length 2f 0(ni)ni have not been determined in previous rounds. Arbitrarily

set to 0 all yBz with ni�1
i�1 < jzj < 2nif

0(ni) and 2nif
0(ni) < jzj � max

�
nii; 2f

0(ni)ni
�
Call the

resulting circuit C 0
n(y

B
z). Now use Theorem 8.1 to set yBz with jzj = 2nif

0(ni) such that C 0
n(y

B
z) 6=

>f(n)(y
B
z) 6= y.

Fact 1: B is well de�ned.

This follows from the fact that B is uniquely determined by the setting of the variables yBz
and each of these variables is assigned a value precisely once in the construction.

Fact 2: MB
i does not decide L(B) correctly on 1ni .

This is by the construction and the correspondence between oracle machines and circuits. To

conclude the proof of Theorem 8.3 we need only observe that by Lemma 5.4, L(B) 2 AM [f(n)].

Finally using Lemma 4.1 we get

Corollary 8.4: For any polynomially bounded function f(n) which is computable in polynomial

time and any g(n) = o(f(n)) there is an oracle B such that AMB [f(n)] 6� AMB [g(n)].

9. The hierarchy for restricted size.

The proof that AM [f(n)] = AM [cf(n)] for any constant c utilizes in a critical way that the

size of each message is only bounded by an arbitrary polynomial. In particular, when decreasing

the number of interactions by a factor of two, the size of each message is roughly squared. The

obvious question is whether this is necessary.

The answer appears to by yes since if the new size did not depend on c, c could be a function

of n. But this contradicts our main theorem. In this section we will make the connection between

the size of the game and the number of interactions more explicit.

Theorem 9.1: Let f(n) � nl for su�ciently large n and let f(n) be computable in polyno-

mial time. Let c � 28 be an even integer such that f(n) � 2c for su�ciently large n and let

t � max
�
36l+36r1

c ; 18r1+18r2+18l+18
f(n)

�
. Then there is an oracle A such that AMA[f(n); t; t + l] 6�

AMA[1cf(n); r1; r2].

Remark: Observe that the second term in the bound for t matters only when f is bounded.

Proof: The proof is very close to the proof of the main theorem and hence let us only describe

the key points. We will assume that r2 � r1 + l which is the case if Arthur looks at the entire

conversation.

Of course, the language which will achieve the separation is identical to L(B), except that in

the de�nition each message is of length nt. Thus L(B) corresponds to a >nt

2f 0(n) tree.

To any protocol in AMA[1cf(n); r1; r2] corresponds by Lemma 4.1 a �A
1
cf(n)+1

machine which

runs in alternating time � 1
10n

2l+2r1+1 and non-alternating time � nr1+r2+l+1 for su�ciently large

n. Such a machine corresponds by Lemma 3.2 to a family of circuits Cn of depth 1
cf(n) + 2 with

at most 2
1
5
n2l+2r1+1 gates at least 2 away from the inputs and of bottom fanin at most nr1+r2+l+1.

14

As in the proof of the main theorem we only have to establish that Cn cannot compute the

same function as >nt

2f 0(n).

Let Rk;nt be the space of random restrictions similar to Rk;n but where n is replaced by nt

in the de�nition. Of course, the main lemma then is true for Rk;nt with n replaced by nt. Thus

following the proof of the main theorem we can use a Rk1 restriction where k1 = d 3(r1+r2+l+1)
t e+2

to eliminate the bottom level of Cn and obtain a circuit of depth one less with bottom fanin at

most n2r1+2l. After this �rst round we can use a Rk2 with k2 = d 6r1+6l
t

e+2 to eliminate a level of

Cn and to maintain the fanin. Doing this 1
c
f(n) rounds we have reduced Cn to a constant while

we have removed 2k1 +
2
cf(n)k2 levels of the >2f 0(n) circuit. Thus to complete the proof we just

have to check that

2k1 +
2

c
f(n)k2 � 2f 0(n):

But this follows from

2k1 +
2

c
f(n)k2 = 2

�
3(r1 + r2 + l + 1)

t

�
+ 4 + 2

��
6r1 + 6l

t

�
+ 2

�
1

c
f(n)

<
6(r1 + r2 + l + 1)

t
+ 6 +

�
12r1 + 12l

t
+ 6

�
1

c
f(n) � 1

where the last inequality follows by the conditions on t and c.

Theorem 9.1 gives the following interesting corollary concerning languages that can be recog-

nized in �xed size and constant number of interactions.

Corollary 9.2: For any constant t there is an oracle A such that the hierarchy (AMA[k; t; t])1k=1

contains an in�nite number of levels.

Please observe that Theorem 9.1 is not too far from optimal (except for the values of the

constants, which can be improved) since Babai and Moran [BM] proves that AM [f(n); r1; r2] �

AM [1cf(n); kcr1; r2 + kcr1] for some constant k.

10. Main Lemma

In this section we prove our main lemma which is a version of the main lemma in [H1]. The

di�erence being that we are presently working with the space Rk of random restrictions. Recall

that AND(Gd��) � s denotes the event that the function Gd�� cannot be written as an OR of

ANDs of size < s.

Main Lemma 10.1: Let G = ^wi=1Gi, where Gi are OR's of fanin � n
k�2
3 . Let F be an arbitrary

function and � a random restriction in Rk. Then for s � 1

Pr[AND(Gd��) � s j F d�� 1] � 2�sn=5

for n > n0(k).

Proof: We prove the lemma by induction on w the number of ORs in G. If w = 0 the lemma is

obvious (G � 1). We �rst study what happens to G1, the �rst OR in the circuit. Note that

Pr[AND(Gd��) � s j F d�� 1]

15

is less than the maximum of

Pr[AND(Gd��) � s j F d�� 1 ^G1d�� 1]

and

Pr[AND(Gd��) � s j F d�� 1 ^G1d� 6� 1]:

The �rst term is

Pr[AND(Gd��) � s j (F ^G1)d�� 1]:

However in this case

Gd�= ^wi=1Gid�= ^wi=2Gid�

since we are only concerned about �'s which forces G1 to be 1. Thus AND(Gd��) � s is equivalent

to saying that ^wi=2Gid�� cannot be written as an OR of ANDs of fanin at most s. But this

probability is � 2�sn=5 by the inductive hypothesis since we are talking about a product of size

w � 1.

Now consider the second term

Pr[AND(Gd��) � s j F d�� 1 ^G1d� 6� 1]

Since we will be conditioning on these two events often we will denote them by 1F ^ 1G1
. Let T

denote the set of variables occurring in G1. Since we are looking at the case when G1 is not made

true by � we have two possibilities. Either G1d�� 0 or G1d� is undetermined. The �rst case adds

nothing to the above probability since in this case Gd�� 0. Thus we only have to consider the

second case. In this case there must be at least one variable xi 2 T which is given the value � by

�. We will say that a k-block E is exposed if there is a variable xi such that xi 2 E, xi 2 T , and

�(xi) = �. Let Z denote the set of blocks which have some variable in common with G1 and let Y

denote the set of exposed blocks. We let exp(Y) denote the event that precisely the blocks of Y

are exposed. For shorthand we will use exp(E) rather than exp(fEg) when we are talking about a

single block. By the above discussion we have

Pr[AND(Gd��) � s j 1F ^ 1G1
] �

X
Y�Z;Y 6=;

Pr[AND(Gd��) � s ^ exp(Y) j 1F ^ 1G1
]

=
X

Y�Z;Y 6=;

Pr[exp(Y) j 1F ^ 1G1
]� Pr[AND(Gd��) � s j 1F ^ 1G1

^ exp(Y)]

The last equality follows by the de�nition of conditional probability. We derive a bound for

the �rst factor in Lemmas 10.2 and 10.3 and we use induction for the second factor. Assume �rst

for simplicity that only one block is exposed.

Lemma 10.2: Let E be a k-block. Then

Pr[exp(E) j 1F ^ 1G1
] �

1

4nk
2�n=5

16

for su�ciently large n.

Proof: By the de�nition of conditional probability we want to prove

P0
exp(E) Pr(�)P0 Pr(�)

�
1

4nk
2�n=5

Here the 0 indicates that we are only summing over �'s satisfying the condition F d�� 1^G1d� 6�

1. If this quotient is 0
0
we use the convention that it takes on the value 0.

Let � be any restriction which satis�es F d�� 1 ^ G1d� 6� 1 ^ exp(E). To estimate the above

quotient we will �nd a restriction ~� which only satis�es the �rst two conditions and gives a large

contribution to the denominator. Let N denote the set of variables in T
T
E which appear as �xi in

G1 and let P denote the ones that appear without negation.

Let f be the map from � to ~� de�ned by the following rules.

1. ~�(xk) = �(xk) for xk 62 N
S
P .

2. ~�(xk) = 0 for xk in P .

3. ~�(xk) = 1 for xk in N .

In this way we maintain the condition G1d� 6� 1: Unfortunately as de�ned so far ~� may not be a

possible restriction for Rk. Look at the >2k circuit which was used to label the variables in E.

After 3 we may have _ gates at the bottom level labeled � with children labeled 1. We are forced

to relabel the _ to 1 and remark all remaining starred variables (those not in T) to 1. This in turn

will force us to make further global changes to >2k. Starting at the _ gates of height 1 repeat steps

4 and 5 one level in the >2k tree at a time until they cannot be applied further. Then percolate

changes down all a�ected subtrees using rules 6{9.

4. If a child of an _ gate was changed from � to 1 remark the _ gate and all remaining starred

children from � to 1.

5. If fewer than n1=3 children (but at least one child) of an > gate were changed from � to 1

remark the > gate and all remaining starred children from � to 0.

If at least n1=3 children were changed from � to 1 remark the > node and all remaining starred

children from � to 1.

6. If an _ gate was changed from � to 1 remark all � children to 1.

7. If an _ gate was changed from � to 0 remark all � children to 0.

8. If a > gate was changed from � to 0 remark all � children to 0.

9. If a > gate was changed from � to 1 remark all � children to 1.

We will establish several properties of ~�.

Fact 1: No gate above level 2(k � 1) in >2k is changed.

This follows from the condition in rule 5. The number of > gates changed to 1 on level 2i is at

most nr�
i
3 due to the restriction on the fanin of G1. However, r is bounded by (k � 2)=3 so that

at most one > gate at level 2(k � 2) changes from � to 1 and hence at most one > gate at level

17

2(k � 1) changes from � to 0. Note that in particular the top node of >2k is still marked �, and

only variables in E are changed.

Fact 2: ~� satis�es F d~�� 1 and G1d~� 6� 1.

Since we only change �'s to non �'s we cannot violate the �rst condition. Since we never change

the value of variables in T after applying rules 2 and 3 ~� also satis�es G1d~� 6� 1.

By these two facts it follows that ~� gives a contribution to the denominator. Note that f is

not 1� 1. Let �� be any restriction in the preimage of ~�. To bound the quotient of the lemma we

will bound P
��2f�1(~�) Pr[��]

Pr[~�]
:

To do this it will be convenient to use the following concept of an atom.

De�nition: An atom is a mapping from the each node of a >2k tree to subsets of its 2n children.

An atom a determines a restriction � 2 Rk in the following manner: At each node v where a

probabilistic choice has to be made, the children corresponding to the set a(v) will be given the

marking according to the alternative with the smaller probability. We will write this transformation

from atom to restriction as � = h(a). There are two things to observe.

Observation 1. There are several atoms corresponding to the same original restriction.

The reason for this is that at the nodes where there is no choice made (i.e., > gates labeled 1 and

_ gates labeled 0) it does not matter what value that atom takes.

Observation 2. There is a natural way to de�ne probability on these atoms with respect to a

given k-block. Let T and V be the set of > nodes and _ nodes respectively. Then

Pr(a) =
Y
v2V

(2�
n
2)ja(v)j(1� 2�

n
2)2

n�ja(v)j
Y
v2T

(2�n
1
3)ja(v)j(1� 2�n

1
3)2

n�ja(v)j:

Using this de�nition, the probability of a labeling of a given k-block is

Pr(�) =
X

a2h�1(�)

Pr(a):

This can be seen as follows. Let T1 and V0 be the set of all > gates labelled 1 and _ gates labelled 0

by � respectively. All a 2 h�1(�) will agree on T �T1 and V �V0. Let t1; : : : ; tq be an enumeration

of T1 nodes and v1; : : : ; vp be an enumeration of V0 nodes. Let C(w) denote the children of a node

w. Using the above de�nitions we get

X
a2h�1(�)

Pr(a) =
Y

v2V�V0

(2�
n
2)ja(v)j(1� 2�

n
2)2

n�ja(v)j
Y

t2T �T1

(2�n
1
3)ja(v)j(1� 2�n

1
3)2

n�ja(v)j�

0
@ X

a(v1)�C(v1)

(2�
n
2)ja(v1)j(1� 2�

n
2)2

n�ja(v1)j

1
A � � �

0
@ X

a(tq)�C(tq)

(2�n
1
3)ja(tq)j(1� 2�n

1
3)2

n�ja(tq)j

1
A :

Note that all the sums are equal to 1. Now it is clear that the remaining product is precisely the

probability of �.

18

Obtaining ~� from �� can be done by changing the atoms corresponding to �� into atoms corre-

sponding to ~� and then obtaining ~� from these atoms. Translating the mapping f of �� to ~� into the

mapping g on atoms results in the following rules. We make fewer changes but some nodes become

\active" without changing.

1. No operation.

2. Let v be a leaf corresponding to a variable in P . If v 2 a(parent(v)) (i.e., if v was labelled �

by ��) then remove v from a(parent(v)):

3. A variable xi 2 N given the value � becomes active.

4. If v corresponds to an _ gate and one of its children is active, it becomes active.

5. If v corresponds to a > gate and has at least one but fewer than n1=3 active children then

remove v from a(parent(v)) and add the active children to a(v). If v has more than n
1
3 active

children it becomes active.

6{9. No operation.

To check that g on atoms correspond to f on restrictions is a simple but tedious veri�cation which

we leave to the reader.

The mapping g is still not 1{1. However, it is simple enough that we will be able to establish

the following claim

Claim: For all ~� and all a 2 h�1(~�),

X
b2g�1(a)

Pr[b] � (2�n=5=4nk)Pr[a]:

Observe that the claim implies Lemma 10.2:

X
��2f�1(~�)

Pr[��] =
X

��2f�1(~�)

X
b2h�1(��)

Pr[b] =
X

a2h�1(~�)

X
b2g�1(a)

Pr[b] �
2�n=5

4nk

X
a2h�1(~�)

Pr[a]

and the last sum is just Pr[~�].

Thus we only have to establish the claim. Consider an atom a such that h(a) = ~�. Say

b 2 g�1(a). The only nodes at which they may di�er are the nodes at which rules 2 and 5 apply.

Let Mb be the set of nodes at which rule 5 applies in the map from b to a; let mb = jMbj. Let

Lb, lb, be de�ned similarly for rule 2. Also, let ci;b be the number of children changed when rule

5 was applied for the ith time during the map from b to a. Note that 1 � ci;b � n1=3 and that

lb +mb � 1. Using the above de�nitions we have

Pr(b) =

�
2�

n
2

1� 2�
n
2

�lb+mb mbY
i=1

1� 2�n

1
3

2�n
1
3

!ci;b

Pr(a)

To bound the sum of the probabilities over all b 2 g�1(a) let M be the union of all Mb's where

b 2 g�1(a); let m = jM j. De�ne L and l similarly and let Ch(i; ci;b) be the number of ways of

19

choosing the ci;b children changed at the i'th node where rule 5 is applied. We get

X
b2g�1(a)

Pr(b) �
X�

l

lb

��
m

mb

��
2�

n
2

1� 2�
n
2

�lb+mb X
1�ci;b�n

1
3

mbY
i=1

Ch(i; ci;b)

1� 2�n

1
3

2�n
1
3

!ci;b

Pr(a)

where the �rst sum is taken over 1 � lb +mb � l +m.

To complete the calculation we will need a bound on l + m and Ch(i; ci;b). We claim that

l +m � nr = n(k�2)=3. To see this, �rst note that rule 2 might be applied only at variables of P

labelled � by ��. Hence, l � jP j.

Now let us investigate where rule 5 might apply. Rule 5 of g corresponds to changing the label

of a > gate from � to 0 during the map f . Say we are given �� 2 f�1(~�) and v 2 N labelled � by

��. Observe that for a leaf to be labelled � by ��, �� must have labelled all its ancestors on the path

from the root to the leaf with a �. Once v is changed from � to 1, then by application of rules 4

and 5 of f , nodes up the path will change from � to 1 until eventually a > node, t, changes from �

to 0 (note that this is guaranteed to happen eventually). Once t changes from � to 0, none of the

changes which occurred in the subtree rooted at t contribute to any changes higher up in the tree.

Hence, for this �� v contributes to Rule 5 of g being applied only at t. Moreover, for all �� 2 f�1(~�)

which label v with �, v changing from � to 1 contributes to exactly t changing from � to 0. This is

true since we now know that ~� must label the path from v to t with all ones then a zero. Hence,

there can be no application of rule 5 below t and, again, any application of rule 5 above t cannot

be due to changes in the subtree rooted at t. So, for every variable in N which is ever labelled � by

some �� 2 f�1(~�) we can associate exactly one node in M . Hence, m � jN j and l +m � jN j+ jP j

which is bounded by n(k�2)=3 by the restriction on the fanin of G1.

By the same argument, at any node of M there are at most n
k�2
3 children which could change

when rule 5 is applied. Thus

Ch(i; ci;b) �

�
n

k�2
3

ci;b

�
�

�
n

k�2
3

n
1
3

�

Using this and continuing with the calculation we have

X
b2g�1(a)

Pr(b) �

X
1�lb+mb�l+m

�
l

lb

��
m

mb

��
2�

n
2

1� 2�
n
2

�lb+mb

n
1
3

�
n

k�2
3

n
1
3

�!mb

22n
1
3mbPr(a) �

X
1�lb+mb�l+m

�
l

lb

��
m

mb

��
2�

n
2

1� 2�
n
2

�lb+mb

2mbn
1
3 (k�23 logn+3)Pr(a) �

X
1�lb+mb�l+m

�
l

lb

��
m

mb

��
1

8n3k
2�n=5

�lb+mb

Pr(a)

20

=

l+mX
i=1

�
l +m

i

��
1

8n3k
2�n=5

�i
Pr(a) =

 �
1 +

1

8n3k
2�n=5

�l+m
� 1

!
Pr(a) �

0
@�1 + 1

8n3k
2�n=5

�n k�2
3

� 1

1
APr(a) �

1

4nk
2�n=5Pr(a):

In the calculation we used that n was su�ciently large.

Thus we get the desired estimate for the quotient and we have proved Lemma 10.2.

Next we have

Lemma 10.3: For su�ciently large n

Pr[exp(Y) j 1F ^ 1G1
] � (

1

4nk
)jY j2�jY jn=5

Proof: The proof is almost identical to the proof of Lemma 10.2. Instead of changing � on only one

block we do the same changes independently on all blocks in Y . Thus we gain a factor 1
4nk 2

�n=5

for each block and the result follows.

Now we estimate the other factor needed for the main lemma 10.1. Namely,

Pr[AND(Gd��) � s j 1F ^ 1G1
^ exp(Y)]

We want to use induction. To do this we have to get rid of the two last conditions. The blocks

in Y correspond to jY j remaining variables after �. We will try all possibilities of these variables

and eliminate these blocks from the future probabilities.

By the condition exp(Y) the variables in G1 not in the blocks contained in Y were all given

non � values. Since these variables do not make G1 true and do not take the value �, they take a

�xed value. This conditioning can easily be incorporated in F d�� 1 by changing F .

We have

Pr[AND(Gd��) � s j 1F ^ 1G1
^ exp(Y)] �

� max
�0

Pr[AND(Gd��) � sj1F ^ 1G1
^ exp(Y) ^ �Y = �0]

where we maximize over all behaviors, �Y , of � on the blocks Y . This is in its turn bounded by:X
�2f0;1gjY j

Pr[AND(Gd���) � s� jY j j F
0

d�� 1]

where � is a part of a possible minterm and F 0 is a modi�cation of F . The stars of � in the blocks

Y are substituted in F 0 by taking AND of the two formulas resulting from F by substituting 0

and 1. This can be done since making a function 1 even when some variable is undetermined is

the same as making the function 1 in the two cases where 0 and 1 are substituted for the variable.

Non-� values are just included as usual equalities.

21

Each of these probabilities can now be estimated by 2�(s�jY j)n=5 by the induction hypothesis

(with a restriction with fewer blocks). The size of the ANDs we are looking for has decreased by

jY j since we have included the variables corresponding to Y .

Finally, since there are 2jY j possible � we need to evaluate the sum.

X
Y�Z; Y 6=;

2�jY jn=5(
1

4nk
)jY j2jY j2�(s�jY j)n=5

= 2�sn=5
jZjX
i=1

�
jZj

i

�
(
1

2nk
)i = 2�sn=5((1 +

1

2nk
)jZj � 1) � 2�sn=5

since jZj � jT j � n
k�2
3 .

This �nishes the induction step and the proof of the Main Lemma.

11 Discussion

The relation between co-NP and AM [Poly] remains an interesting open problem at this point.

Evidence that co-NP is not contained in AM [2] has been given by Boppana, Hastad and Zachos

[BHZ] who showed that if co-NP � AM [2] then the polynomial time hierarchy collapses to AM [2].

If in fact co-NP 6� AM [2] it would be interesting to resolve whether co-NP � AM [Poly]. As an

indication that here the answer might also be no, Fortnow and Sipser [FS] proved that there is an

oracle A such that co-NPA 6� AMA[Poly].

One disturbing detail when proving the size hierarchy result when f is constant is that we

need to bound the running time of Arthur. This should not really be necessary since intuitively

there should be no way to compensate for lost communication by doing more polynomial time

computation. However we did not see how to prove this.

Acknowledgments: We would like to thank Oded Goldreich for many valuable comments.

References

[AGH] Aiello W., Goldwasser S. and Hastad J., \On the Power of Interaction," Proc. of the 27th

IEEE Symposium on Foundations of Computer Science, pp 368-379, Toronto, 1986.

[B] Babai L., \Trading Group Theory for Randomness," Proc. of the 17th ACM Symposium on

Theory of Computing, pp 421-429, Providence, 1985.

[BM] Babai L. and Moran S., \Arthur-Merlin Games: a Randomized Proof System, and a Hierarchy

of Complexity Classes," JCSS, Vol. 36 (1988), No. 2, pp 254-276.

[BHZ] Boppana R., Hastad J. and Zachos S., \Does co-NP have Short Interactive Proofs?" Infor-

mation Processing Letters, Vol. 25 (1987), No. 2, pp 127-132.

[FS] Fortnow L. and Sipser M., \Are There Interactive Protocols for co-NP ?" Information Pro-

cessing Letters, Vol. 28 (1988), pp 249-251.

22

[FSS] Furst M., Saxe J. and Sipser M., \Parity, Circuits, and the Polynomial Time Hierarchy," Math.

System Theory, Vol. 17 (1984), pp 13-27.

[GMS] Goldreich O., Mansour Y. and Sipser M., \Interactive Proof Systems: Provers that Never Fail

and Random Selection," Proc. of the 28th IEEE Symposium on Foundations of Computer

Science, pp 449-461, Los Angeles, 1987.

[GMR] Goldwasser S., Micali S. and Racko� C., \The Knowledge Complexity of Interactive Proofs,"

Proc. of the 17th ACM Symposium on Theory of Computing, pp 291-305, Providence, 1985,

also in SIAM J. on Computing, Vol. 18 (1989), No. 1, pp 186-208.

[GS] Goldwasser S. and Sipser M., \Private Coins vs. Public Coins in Interactive Proof Systems,"

Proc. of the 18th ACM Symposium on Theory of Computing, pp 59-68, Berkeley, 1986.

[H1] Hastad J., \Almost Optimal Lower Bounds for Small Depth Circuits," Proc. of the 18th ACM

Symposium on Theory of Computing, pp 6-20, Berkeley, 1986.

[H2] Hastad J., \Computational Limitations of Small Depth Circuits," Ph.D. thesis, MIT, 1986.

[NW] Nisan N. and Wigderson A., \Hardness vs. Randomness," Proc. of the 29th IEEE Symposium

on Foundations of Computer Science, pp 2-11, White Plains, 1988.

[S] Sipser M., \Borel Sets and Circuit Complexity," Proc. of the 15th ACM Symposium on Theory

of Computing, pp 61-69, Boston, 1983.

[Y] Yao A., \Separating the Polynomial-Time Hierarchy by Oracles" Proc. of the 26th IEEE

Symposium on Foundations of Computer Science, pp 1-10, Portland, 1985.

[Z] Zachos S., \Probabilistic Quanti�ers, Adversaries and Complexity Classes; An Overview,"

Structures in Complexity Theory, Lecture Notes in Computer Science, Vol 233 (1986), pp

383-398.

23

