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Abstract

The Random Oracle Hypothesis, attributed to Bennett and Gill, essentially states
that the relationships between complexity classes which hold for almost all rela-
tivized worlds must also hold in the unrelativized case. Although this paper is not
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oracles A, co-NPA 6� IPA. These results extend to the multi-prover proof systems
of Ben-Or, Goldwasser, Kilian and Wigderson. In addition, this paper shows that
the Random Oracle Hypothesis is sensitive to small changes in the de�nition. A
class IPP, similar to IP, is de�ned. Surprisingly, the IPP = PSPACE result holds
for all oracle worlds.
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1 Introduction

Computational complexity theory studies the quantitative laws which govern computing. It
seeks a comprehensive classi�cation of problems by their intrinsic di�culty and an under-
standing of what makes these problems hard to compute. The key concept in classifying
the computational complexity of problems is the complexity class which consists of all the
problems solvable on a given computational model and within a given resource bound.

Structural complexity theory is primarily concerned with the relations among various
complexity classes and the internal structure of these classes. Figure 1 shows some major
complexity classes. Although much is known about the structure of these classes, there have
not been any results which separate any of the classes between P and PSPACE. We believe
that all these classes are di�erent and regard the problem of proving the exact relationships
among these classes as the Grand Challenge of complexity theory.

The awareness of the importance of P, NP, PSPACE, etc, has led to a broad investigation
of these classes and to the use of relativization. Almost all of the major results in recursive
function theory also hold in relativized worlds. Quite the contrary happens in complexity
theory. It was shown in 1975 [3] that there exist oracles A and B such that

PA = NPA and PB 6= NPB:

This was followed by an extensive investigation of the structure of complexity classes under
relativization. An impressive set of techniques was developed for oracle constructions and
some very subtle and interesting relativization results were obtained. For example, for a long
time it was not known if the Polynomial-time Hierarchy (PH) can be separated by oracles
from PSPACE. In 1985, A. Yao [32] �nally resolved this problem by constructing an oracle
A, such that

PHA 6= PSPACEA:

H�astad [21] simpli�ed this proof and constructed an oracle B, such that

8k; PHB 6= �P;B
k :

These methods were re�ned by Ko [25] to show that for every k � 0 there is an oracle which
collapses PH to exactly the kth level and keeps the �rst k� 1 levels of PH distinct. That is,
for all k, there exists an A such that

�P;A
0 6= �P;A

1 6= � � � 6= �P;A
k and �P;A

k = �P;A
k+i; i � 0:

Another aspect of relativized computations was studied by Bennett and Gill who decided
to measure the set of oracles which separate certain complexity classes. They showed that
PA 6= NPA for almost all oracles. More precisely, they showed that for almost all oracles A
the following relationships hold [5]:

PA 6= NPA 6= co-NPA

SPACEA[logn] 6= PA

PSPACEA 6= EXPA

PA = RPA = BPPA:
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Figure omitted.

Figure 1: Some standard complexity classes.
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Many other interesting random oracle results followed. For almost all oracles A [8, 9, 27]:

BHA is in�nite

PHA� PSPACEA

The Berman-Hartmanis Conjecture fails relative to A.

The last result asserts that there exist non-isomorphic many-one complete sets for NPA for
random oracle A. It was conjectured that all NP many-one complete sets are polynomial-time
isomorphic [6].

Surveying the rich set of relativization results, we can make several observations. First,
almost all questions about the relationship between the major complexity classes have con-
tradictory relativizations. That is, there exist oracles which separate the classes and oracles
which collapse them. Furthermore, many of our proof techniques relativize and cannot re-
solve problems with contradictory relativizations. Finally, we have unsuccessfully struggled
for over twenty years to resolve whether P =?NP =?PSPACE.

These observations seemed to support the conviction that problems with contradictory
relativizations are extremely di�cult and may not be solvable by current techniques. This
opinion was succinctly expressed by John Hopcroft [22]:

This perplexing state of a�airs is obviously unsatisfactory as it stands. No prob-
lem that has been relativized in two con
icting ways has yet been solved, and
this fact is generally taken as evidence that the solutions of such problems are
beyond the current state of mathematics.

How should complexity theorists remedy \this perplexing state of a�airs"? In one ap-
proach, we assume as a working hypothesis that PH has in�nitely many levels. Thus, any
assumption which would imply that PH is �nite is deemed incorrect. For example, Karp,
Lipton and Sipser [24] showed that if NP � P/poly, then PH collapses to �P

2 . So, we
believe that SAT does not have polynomial sized circuits. Similarly, we believe that the
Turing-complete and many-one complete sets for NP are not sparse, because Mahaney [29]
showed that these conditions would collapse PH. One can even show that for any k � 0,
PSAT[k] = PSAT[k+1] implies that PH is �nite [23]. Hence, we believe that PSAT[k] 6= PSAT[k+1]

for all k � 0. Thus, if the Polynomial Hierarchy is indeed in�nite, we can describe many
aspects of the computational complexity of NP.

A second approach used random oracles. Since most of the random oracle relativization
results agreed with what complexity theorists believed to be true in the base case and since
random oracles have no particular structure of their own, it seemed that the behavior of
complexity classes relative to a random oracle should be the same as the base case behavior.
This led Bennett and Gill to postulate the Random Oracle Hypothesis [5] which essentially
states that structural relationships which hold in almost all oracle worlds also hold in the
unrelativized case | i.e., the real world.

In the following, we will discuss a set of results about interactive proofs which provide
dramatic counterexamples to the belief that problems with contradictory relativizations can-
not be resolved with known techniques. Soon after these results were publicized, several
researchers independently noticed that these results also add a striking new counterexam-
ple against the Random Oracle Hypothesis [10, 20]. There have previously been several
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counterexamples in the literature and in unpublished reports [19, 26, 13]. Some of these
counterexamples use double relativization and classes which are not closed under polyno-
mial time reductions. While the results in this paper are not the �rst, the authors believe
that they are the most natural and compelling. Thus, contradictory relativizations should
no longer be viewed as strong evidence that a problem is beyond our grasp. We hope that
these results will encourage complexity theorists to renew the attack on problems with con-
tradictory relativizations.

2 A Review of IP

The class IP is the set of languages that have interactive proofs or protocols. IP was �rst
de�ned as way to generalize NP [1, 17]. NP can be characterized as being precisely those
languages for which one can present a polynomially long proof to certify that the input string
is in the language. Moreover, the proof can be checked in polynomial time. It is this idea of
presenting and checking the proof that the de�nition of IP generalizes.

Is there a way of giving convincing evidence that the input string is in a language without
showing the whole proof to a veri�er? Clearly, if we do not give a complete proof to a veri�er
which does not have the power or the time to generate and check a proof, then we cannot
expect the veri�er to be completely convinced. This leads us to a very fascinating problem:
how can the veri�er be convinced with high probability that there is a proof? and how rapidly

can this be done?

This problem has been formulated and extensively studied in terms of interactive protocols
[16]. Informally, an interactive protocol consists of a Prover and a Veri�er. The Prover is
an all powerful Turing Machine (TM) and the Veri�er is a TM which operates in time
polynomial in the length of the input. In addition, the Veri�er has a random source (e.g., a
fair coin) not visible to the Prover. In the beginning of the interactive protocol the Prover
and the Veri�er receive the same input string. Then, the Prover tries to convince the Veri�er,
through a series of queries and answers, that the input string belongs to a given language.
The Prover succeeds if the Veri�er accepts with probability greater than 2=3. The probability
is computed over all possible coin tosses made by the Veri�er. However, the Veri�er must
guard against imposters masquerading as the real Prover. The Veri�er must not be convinced
to accept a string not in the language with probability greater than 1=3 | even if the Prover
lies.

De�nition IP: Let V be a probabilistic polynomial time TM and let P be an arbitrary
TM. P and V share the same input tape and communicate via a communication tape. P
and V form an interactive protocol for a language L if

1. x 2 L =) Prob[ P -V accepts x ] > 2
3
.

2. x 62 L =) 8P �, Prob[ P �-V accepts x ] < 1
3
.

A language L is in IP if there exist P and V which form an interactive protocol for L.

Clearly, IP contains all NP languages, because in polynomial time the Prover can give the
Veri�er the entire proof. In such a protocol, the Veri�er cannot be fooled and never accepts
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a string not in the language. To illustrate how randomness can generalize the concept of a
proof, we look at an interactive protocol for a language not known to be in NP. Consider
GNI, the set of pairs of graphs that are not isomorphic. GNI is known to be in co-NP and
it is believed not to be in NP [7]. However, GNI does have an interactive protocol [15].
The Veri�er determines if two graphs Gi and Gj are non-isomorphic, using the following
interactive protocol:

1. The Veri�er randomly selects Gi orGj and a random permutation of the selected graph.
This process is independently repeated n times, where n is the number of vertices inGj.
If the graphs do not have the same number of vertices, they are clearly not isomorphic.
This sequence of n randomly chosen, randomly permuted graphs is sent to the Prover.
Recall that the Prover has not seen the Veri�er's random bits. (With a more elaborate
interactive protocol, this assumption is not necessary [18].)

2. The Veri�er asks the Prover to determine, for each graph in the sequence, which graph,
Gi orGj, was the one selected. If the Prover answers correctly, then the Veri�er accepts.

Suppose the two original graphs are not isomorphic. Then, only one of the original graphs is
isomorphic to the permuted graph. The Prover simply answers by picking that graph. If the
graphs are isomorphic, then the Prover has at best a 2�n chance of answering all n questions
correctly. Thus, the Veri�er cannot be fooled often. Therefore, GNI 2 IP.

Note that GNI is not known to be complete for co-NP. So, the preceding discussion does
not show that co-NP � IP. For a while, it was believed that co-NP is not contained in IP,
because there are oracle worlds where co-NP 6� IP [12]. In fact, the computational power
of interactive protocols was not fully appreciated until Lund, Fortnow, Karlo� and Nisan
[28] showed that IP actually contains the entire Polynomial Hierarchy. This result then led
Shamir [31] to completely characterize IP by showing that

IP = PSPACE:

Then, Babai, Fortnow and Lund [2] characterized the computational power of multi-prover
interactive protocols

MIP = NEXP:

In both cases, it is interesting to see that interactive proof systems provide alternative de�-
nitions of classic complexity classes. Thus, they �t very nicely with the overall classi�cation
of feasible computations. Furthermore, both of these problems have contradictory relativiza-
tions [12]. That is, there exist oracles A and B such that

IPA = PSPACEA and IPB 6= PSPACEB;

and similarly for the multi-prover case. Thus, these results provide the �rst natural coun-
terexamples to the belief that problems with contradictory relativizations are beyond our
proof techniques.
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3 The Random Oracle Hypothesis

In this section we observe that the proof of IP = PSPACE does not relativize and show that
for almost all oracles A the two relativized classes di�er:

IPA 6= PSPACEA:

It is easily seen that

IPPSPACE = PSPACEPSPACE

and using standard methods [3] one can construct an A such that

IPA 6= PSPACEA:

Thus, the IP =?PSPACE problem has contradictory relativizations and the IP = PSPACE
proof does not relativize. Similarly, we can see that the MIP =? NEXP problem has contra-
dictory relativizations. In the following we show that these theorems also supply counterex-
amples to the Random Oracle Hypothesis.

3.1 IPA 6= PSPACEA with probability 1, . . .

Before we begin the construction of the counterexamples to the Random Oracle Hypothesis,
we need to establish some conventions. For every veri�er V and every oracle A, there exists
a prover which maximizes the probability that the veri�er will accept each input string. This
optimal prover considers all possible coin tosses made by V and makes the replies to V which
result in the maximum accepting probability. Hence, in our discussions it su�ces to specify
the veri�er and the oracle (as the prover is implicitly determined by them).

Convention: Let optV (A; x) denote the probability that the veri�er V accepts when inter-
acting with the optimal prover on common input x and access to the oracle A. If V is part
of an interactive protocol for some language L, then

x 2 L =) optV (A; x) >
2
3

x 62 L =) optV (A; x) <
1
3
:

Notation: For every set X, let X=n denote the set X \ f0; 1gn. Similarly, let X<n be the
set of strings in X of length strictly less than n and let X�n = X<n [ X=n. By abuse of
notation, we let f0; 1g<n denote (f0; 1g�)<n.

Theorem 1 For almost all oracles A, IPA� PSPACEA.

Proof: For all oracles A, IPA � PSPACEA, so we only need to show that this containment
is strict for almost all oracles. We show that for almost all oracles A the candidate language
L(A) is in PSPACEA, but not in IPA, where L(A) is de�ned as:

L(A) = f 1n j the cardinality of A=n is odd g:
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Clearly, for all A, L(A) 2 PSPACEA. Let V be �xed veri�er. We will show that the set of
oracles A for which V A constitutes a relativized interactive proof for L(A) has measure 0.
Since there is only a countable number of veri�ers, the set of oracles A for which some veri�er
V correctly accepts L(A) also has measure 0.

Let nc be a strict upper bound on the running time of the veri�er V on inputs of length
n. Then, for any oracle A, the computation of V A(x), jxj = n, depends only on strings in
the oracle of length up to nc. Thus, if A<nc = B<nc, then the computation of V B(x) and
V A(x) are identical. Now, de�ne seg(n) = f � j � � f0; 1g<n

c

g. I.e., a set � is in seg(n)
if and only if it is a �nite set and contains only strings of length strictly less than nc. We
de�ne seg(n) in this way because the computation of V A(1n) depends only on A<nc which
is a set in seg(n).

Consider the class C(n) of �nite sets � 2 seg(n) for which V � correctly determines
whether 1n is in L(�). That is, C(n) contains the oracles � 2 seg(n) for which V � accepts 1n

with probability greater than 2
3
and 1n 2 L(�) or V � accepts 1n with probability less than

1
3
and 1n 62 L(�). For n large enough, we can show that jC(n)j < 2

3
jseg(n)j. By standard

techniques in the literature [5, Lemma 1, pp.98{99], this bound on the size of C(n) would be
su�cient to prove the statement of the theorem. For the sake of completeness, we include a
complete proof.

The rest of our analysis is a �nite extension argument. Essentially we need to show that
for each � 2 C(n) at most 2=3 of all the oracles � 2 seg(nc) which \extend" � can be in
C(nc). Thus, as we shall see, the measure of the oracles A for which V A correctly determines
whether 1n is in L(A) for all n is bounded by (2

3
)i for all i.

Now, let N be large enough so that 2N > 18N c. This guarantees that for all n � N ,
1
2
(1� 6nc2�n) > 2

3
. Also, for all n and for all � � f0; 1g<n, let B(�; n) be the collection of

� 2 seg(n) such that �<n = �. Intuitively, B(�; n) is a set of �nite extensions of �.

Lemma 2 For all n � N , let � be an arbitrary subset of f0; 1g<n. Then, jB(�; n)\C(n)j �
2
3
�jB(�; n)j. That is, the fraction of �nite sets � 2 B(�; n) for which V � correctly determines

whether 1n is in L(�) is at most 2
3
of all � 2 B(�; n).

Proof: On input 1n and access to an oracle � 2 seg(n), the veri�er V interacts with
the optimal prover and makes some queries to � about some strings. Let Q(�; x) be the
probability over the coin tosses of V that V �(1n) makes query x. Since nc is a strict upper
bound on the running time of V , for every n and for every sequence of coin tosses made by
V � on input 1n, the machine V makes less than nc queries. So, for every oracle � 2 seg(n)X

jxj=n

Q(�; x) � nc:

Thus, there is a string q 2 f0; 1gn such that for all but a 3nc 2�n fraction of the �'s in
B(�; n), Q(�; q) � 1

3
. Let q be such a string.

Now let � be an oracle in B(�; n) such that 1n 2 L(�) and denote by �(q) the oracle
which contains the same strings as � except for q (i.e., the symmetric di�erence of � and
�(q) equals fqg). Then,

optV (�
(q); 1n) � optV (�; 1

n)�Q(�; q):
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To see this, consider the prover P 0 that uses the same strategy which the optimal prover
uses on V � to convince V �(q)

(1n) to accept. Then, on the computation paths of V �(q)
(1n)

which never asks about q, P 0 will do as well as the optimal prover does on V �. Since only
a Q(�; q) fraction of the paths ask about q, and since the optimal prover will do at least as
well as P 0, the relationship above holds.

Finally, group all the � 2 B(�; n) in pairs of the form (�; �(q)) where 1n 2 L(�) (and
hence 1n 62 L(�(q))). We claim that whenever Q(�; q) < 1

3
, the veri�er V is incorrect in

determining the membership of 1n in L(�) or in L(�(q)). To prove this, suppose that V �

accepts 1n. (If V �(1n) does not accept, we are done since 1n 2 L(�).) Then, optV (�; 1
n) must

be greater than 2
3
. So, optV (�

(q); 1n) > 1
3
. However, 1n 62 L(�(q)), so V fails to determine

whether 1n is in L(�(q)). By our choice of q, Q(�; q) < 1
3
for at least 1�2 �3nc 2�n fraction of

the pairs. Hence, V fails to determine the membership of 1n for at least 1
2
� (1� 6nc 2�n) > 1

3

of all � 2 B(�; n).

Lemma 3 Let ni = N ci and let Ri be the collection of the �nite sets � 2 seg(ni) such

that for all r � ni, V
� correctly determines whether 1r is in L(�). Then, for all i � 0,

jRij � (2
3
)i � jseg(ni)j.

Proof: The proof is by induction on i. The base case, i = 0, is trivial since Ri � seg(ni).
So, jR0j � jseg(n0)j. In the induction case, suppose that the theorem holds for i = k, we
show that it also holds for i = k + 1.

First, let n = nk and m = nk+1. We partition seg(m) according to the initial segments
up to length nc. That is, seg(m) =

S
�2seg(n)B(�;m). Now, suppose that � is not in Rk,

for some � 2 seg(n). Then, for all � 2 B(�;m), � 62 Rk+1. To see this, observe that in
order for � 62 Rk to hold, there must be an r � n such that V � does not correctly determine
whether 1r is in L(�). Since � 2 B(�; n) and since V �(1r) only queries about strings of
length strictly less than rc, V � will also fail to determine whether 1r is in L(�). Thus,
Rk+1 �

S
�2Rk

B(�;m).
Finally, if � 2 Rk+1, then V � must correctly determine whether 1m is in L(�). So, �

must be in C(m), and Rk+1 �
S
�2Rk

C(m) \ B(�;m). By Lemma 2, we know that for all

�, jC(m) \ B(�;m)j � 2
3
� jB(�;m)j. Also, since for all � 2 seg(n), jB(�;m)j =

jseg(m)j
jseg(n)j

,

jRk+1j �
2

3
�
X
�2Rk

jB(�;m)j =
2

3
� jRkj �

jseg(m)j

jseg(n)j
�
�
2

3

�k+1
� jseg(m)j :

To �nish the proof of the theorem, simply note that for a random oracle A, the probability
that V A correctly determines whether 1n is in L(A) for all n is bounded by the probability
that A<nci 2 Ri. This probability is in turn equal to jRij=jseg(ni)j, which by Lemma 3 is
bounded by (2=3)i for all i. Hence,

ProbA[ IP
A = PSPACEA ] = 0:

2
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Using standard techniques [3, 5, 12], the proof of Theorem 1 can be modi�ed to yield the
following theorem.

Theorem 4 For almost all oracles A, co-NPA 6� IPA.

Proof: We will use a di�erent candidate language, L1(A), for this proof. To de�ne L1(A),
we partition the strings of length n into segments, S1; S2; S3; : : :, of n=2 contiguous strings
each. Then,

L1(A) = f 1n j 8i; 1 � i � 2
n
2 ; Si 6� A g

Clearly, L1(A) 2 co-NPA for any A. We will prove that L1(A) 62 IPA with oracle measure
1 by the same outline as the previous proof. Again, we �x a veri�er V with running time
nc. We also �x a length n and a pre�x � then consider only oracles from B(�; n), the set of
� 2 seg(n) which extend �.

In the following, let N be large enough so that for all n � N , 0:36 < (1 � 1=n)n < e�1

and 3nc < 0:01 � 2n. (For the �rst condition, N � 25 su�ces.) As in the previous theorem,
let C(n) be the set of � 2 seg(n) such that V � correctly determines whether 1n is in L1(�).
We show that C(n) \ B(�; n) contains at most 2

3
of all the sets in B(�; n).

Lemma 5 For all n � N , let � be an arbitrary subset of f0; 1g<n. Then, jC(n)\B(�; n)j �
2
3
� jB(�; n)j. That is, the fraction of �nite sets � 2 B(�; n) such that V � correctly determines

whether 1n is in L1(�) is at most 2
3
of all � 2 B(�; n).

Proof: Call � 2 B(�; n) accepting if none of the �rst 2n=2 segments of f0; 1gn is contained
in � and call � uniquely rejecting if exactly one of these segments is contained in �. Observe
that the fraction of accepting oracles converges quickly to e�1 from below . By our choice of
N , this fraction is bounded below by 0:36 and above by e�1. The same holds for the fraction
of uniquely rejecting oracles.

For any accepting �, let �(i) = � [Si. Then, �
(i) is a uniquely rejecting oracle and by an

obvious extension of the argument used in Lemma 2, the following relation holds:

optV (�
(i); 1n) � optV (�; 1

n)�
X
x2Si

Q(�; x):

Thus, if optV (�; 1
n) � 2

3
, then, for all but 3nc of the i's, optV (�

(i); 1n) > 1
3
. Hence, for each

accepting � where optV (A; 1
n) � 2

3
, there exists 2n=2 � 3nc uniquely rejecting oracles �(i)

such that V �(i)
fails to determine the membership of 1n in L1(�

(i)). Moreover, each uniquely
rejecting oracle can be obtained in this manner from at most 2n=2� 1 accepting oracles. Let
� be the fraction of � 2 B(�; n) for which � is accepting and where optV (�; 1

n) � 2
3
. Then,

the fraction of oracles � 2 B(�; n) for which V � fails to determine the membership of 1n in
L1(�) is at least

(0:36� �) +

 
2n=2 � 3nc

2n=2 � 1

!
� = 0:36�

�
3nc � 1

2n=2 � 1

�
� � 0:36� 0:01 � e�1 >

1

3
:

This completes the proof of the Lemma.
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To �nish the proof of the theorem, we simply use a lemma analogous to Lemma 3 to show
that for a random oracle A, the probability that V A correctly determines the membership
of 1n in L1(A) for all n is bounded by (2=3)i for all i. Hence,

ProbA[ co-NP
A � IPA ] = 0:

2

These results easily extend to the multi-prover interactive proof systems of Ben-Or, Gold-
wasser, Kilian and Wigderson [4]. For the sake of brevity, we omit the proofs.

Theorem 6 For almost all oracles A MIPA� NEXPA.

3.2 . . . , but IPPA = PSPACEA with probability 1.

The IP = PSPACE and MIP = NEXP results provided natural examples against the Random
Oracle Hypothesis. To give a more complete understanding of the behavior of these classes
with random oracles, we de�ne a less restrictive acceptance criterion for interactive protocols
and denote the class of such languages by IPP. This class is a slight variant of the class
PPSPACE de�ned by Papadimitriou [30]. We show that

8A; IPPA = PSPACEA:

Using the theorem in the previous section, we can provide both an example and a counterex-
ample to the Random Oracle Hypothesis, because for almost all oracles A

IPA 6= PSPACEA and IPPA = PSPACEA:

This severely damages the already battered hypothesis because it shows that the Random
Oracle Hypothesis is sensitive to small changes in the de�nition of complexity classes. Thus,
it cannot be used to predict what happens in the real world.

De�nition IPP: Let V be a probabilistic polynomial time machine and let P be an arbitrary
TM. P and V share the same input tape and they communicate via a communication tape.
V forms an unbounded interactive protocol for a language L if

1. x 2 L =) Prob[ P -V on x accept ] > 1
2
.

2. x 62 L =) 8P �, Prob[ P �-V on x accept ] < 1
2
.

A language L is said to be in the class IPP if it has an unbounded interactive protocol.

Theorem 7 For all oracles A, IPPA = PSPACEA.

Proof:

IPPA � PSPACEA: Let L be a language in IPPA. Using standard techniques [11], it can
be shown that IPPA with private coins is the same as IPPA with public coins. Protocols
with public coins are easy to simulate because the responses from the prover can be guessed.
In fact, a PSPACEA machine can traverse the entire probabilistic computation tree and
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procedure CHECKCOMP(C1; C2; s) ;

f This procedure tries to detect if MA can reach con�guration C2 from con�guration C1 in
s steps. g

begin

if s = 1 then
f This may involve querying the oracle. g
if C1 ! C2 in one step then

accept
else

reject
else

Ask the prover for the middle con�guration C3 between C1 and C2.
Toss a coin.
if the coin toss is heads then

CHECKCOMP(C1; C3; s=2)
else

CHECKCOMP(C3; C2; s=2)
end f procedure g

Figure 2: Pseudo-code for procedure CHECKCOMP.

compute the acceptance probability. Thus, a PSPACEA machine can determine if there is
a prover which makes the veri�er accept in more than half of the computation paths. So,
IPPA � PSPACEA.

PSPACEA � IPPA: This proof is similar to the proof that NP � PP [14] (see also [30]).
Let L be a language in PSPACEA. Then there is a machine MA accepting L which runs
in space p(n) and halts in exactly 2q(n) steps for some polynomials p and q. We claim that
the following veri�er V forms an unbounded interactive protocol for L. Given input x where
jxj = n do the following:

1. Toss q(n) + 1 coins. If all of them are \heads", then goto step 3.

2. Toss another coin. If \heads" then reject; otherwise, goto step 3.

3. Let I and F be the unique initial and �nal con�gurations of MA(x).
Run CHECKCOMP(I; F; 2q(n)).

In order to prove the correctness of the protocol, we need the following lemma.

Lemma: Let WRONG(C1; C2; s) be the proposition that con�guration C2 does not follow
from con�guration C1 in exactly s steps. Then for all A, C1, C2, C3, s and u with 0 � u � s,

WRONG(C1; C2; s) =)

8u; 0 � u � s; C3; WRONG(C1; C3; u)
W
WRONG(C3; C2; s� u):

11



Now, if x 2 L, then with the prover that always tells the truth, the probability of
acceptance is the same as the probability that the veri�er reaches step 3, which is greater
than 1=2. On the other hand, if x 62 L, then Prob[ V rejects x j V reaches step 3 ] � 2�q(n).
(This follows from the lemma.) In this case,

Prob [ V rejects x ] = Prob[ V rejects x at step 2 ]

+ Prob[ V reaches step 3 ]

� Prob[ V rejects x j V reaches step 3 ]

� (1
2
� 2�q(n)�2) + (1

2
+ 2�q(n)�2) � 2�q(n)

> 1
2
.

Therefore, Prob[ V accepts x ] = 1 - Prob[ V rejects x ] < 1
2
. 2

4 Conclusion

We have shown that random oracle results do not reliably predict the base case behavior of
complexity classes. On the other hand, the meaning of random oracle results needs to be
clari�ed and remains an interesting problem. It would be very interesting to know if there
are identi�able problem classes for which the random oracle results do point in the right
direction.

In addition, we would like to note that the IP = PSPACE and MIP = NEXP results
demonstrated equality in the base case. In many other problems with contradictory rela-
tivizations, we expect the unrelativized complexity classes to be di�erent (e.g., we expect
that P 6= NP 6= PSPACE, etc). The next big challenge for complexity theorists is to resolve
one of these problems and separate | if not P and NP | any two classes with contradictory
relativizations.
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