
SIAM J. COMPUT. c© XXXX Society for Industrial and Applied Mathematics
Vol. 0, No. 0, pp. 000–000

(2 + ε)-SAT IS NP-HARD∗

PER AUSTRIN† , VENKATESAN GURUSWAMI‡ , AND JOHAN HÅSTAD†

Abstract. We prove the following hardness result for a natural promise variant of the classical
CNF-satisfiability problem: Given a CNF-formula where each clause has width w and the guarantee
that there exists an assignment satisfying at least g = dw

2
e−1 literals in each clause, it is NP-hard to

find a satisfying assignment to the formula (that sets at least one literal to true in each clause). On
the other hand, when g = dw

2
e, it is easy to find a satisfying assignment via simple generalizations

of the algorithms for 2-Sat. Viewing 2-Sat ∈ P as tractability of Sat when 1 in 2 literals are true
in every clause, and NP-hardness of 3-Sat as intractability of Sat when 1 in 3 literals are true, our
result shows, for any fixed ε > 0, the difficulty of finding a satisfying assignment to instances of
“(2 + ε)-Sat” where the density of satisfied literals in each clause is guaranteed to exceed 1

2+ε
. We

also strengthen the results to prove that, given a (2k + 1)-uniform hypergraph that can be 2-colored
such that each edge has perfect balance (at most k + 1 vertices of either color), it is NP-hard to find
a 2-coloring that avoids a monochromatic edge. In other words, a set system with discrepancy 1 is
hard to distinguish from a set system with worst possible discrepancy. Finally, we prove a general
result showing the intractability of promise constraint satisfaction problems based on the paucity of
certain “weak polymorphisms.” The core of the above hardness results is the claim that the only
weak polymorphisms in these particular cases are juntas depending on few variables.

Key words. constraint satisfaction, complexity dichotomy, discrepancy, hypergraph coloring,
polymorphisms, probabilistically checkable proofs

AMS subject classifications. 68Q17, 68R05, 68W25

DOI. 10.1137/15M1006507

1. Introduction. One of the first distinctions we learn in complexity theory
is that while 2-Sat can be solved in polynomial time, 3-Sat is our favorite NP-
complete problem. As there are no integers between 2 and 3, this seems to be a sharp
characterization, but a closer inspection shows that a more fine-grained analysis is
possible. One conclusion of the current paper is that the transition from easy to hard
takes place just after 2 and not just before 3.

Suppose we consider w-CNF formulas where each clause is of width exactly w
and ask for an assignment that satisfies a literals in each clause. It follows more or
less immediately from the above facts that this problem is NP-hard for a 6 w − 2
and solvable in polynomial time when a > w − 1. Suppose, however, that we make
this into a promise problem and guarantee that there is an assignment that satisfies
g literals in each clause for some g > a. We call the resulting problem (a, g, w)-
Sat. It turns out that (a, g, w)-Sat can be solved in polynomial time if and only if
(a+ 1, g + 1, w + 1)-Sat can be solved in polynomial time. (We give the short proof

∗Received by the editors February 2, 2015; accepted for publication (in revised form) April 3,
2017; published electronically DATE. A preliminary version of this paper has appeared at FOCS
2014 [3].

http://www.siam.org/journals/sicomp/x-x/M100650.html
Funding: The work of the first and third authors was supported by ERC Advanced Grant

226203. The first author’s work was supported by Swedish Research Council grant 621-2012-
4546. The second author’s work was supported in part by a Packard Fellowship and by NSF grant
CCF-1115525.
†School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm,

Sweden (austrin@kth.se, johanh@kth.se).
‡Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213 (guruswami@

cmu.edu).

1

http://www.siam.org/journals/sicomp/x-x/M100650.html
mailto:austrin@kth.se
mailto:johanh@kth.se
mailto:guruswami@cmu.edu
mailto:guruswami@cmu.edu

2 PER AUSTRIN, VENKATESAN GURUSWAMI, JOHAN HÅSTAD

of this fact in the preliminaries.) We can thus focus on the case a = 1, i.e., finding
satisfying assignments in the usual sense.

Let us start with some easy observations. Starting with a 3-CNF formula, we
can turn this into a 3g-CNF formula by taking the union of all g-tuples of clauses. It
is easy to see that if the original formula is satisfiable, then we can satisfy g literals
in each clause of the produced formula. From this it follows that (1, g, w)-Sat is
NP-hard whenever g 6 w/3. To the best of our knowledge, no hardness was known
for any g > w/3.

On the algorithmic side it is not difficult to see that the probabilistic 2-Sat
algorithm of Papadimitriou [19] extends to (1, g, w)-Sat when g > w/2. Using a
linear program, we show how to construct an algorithm running in deterministic
polynomial time for the same range.

1.1. Our results. It turns out that this is all that can be achieved in polynomial
time. The main new result of this paper is to establish that the problem is NP-hard
whenever g < w/2. In particular, we have the following theorem. While the above
discussion focused on the search problem, our hardness result applies even for the
promise decision problem, of distinguishing instances of Sat that admit assignments
satisfying many literals in each clause from unsatisfiable instances.

Theorem 1.1. For every fixed integer g > 1, (1, g, 2g + 1)-Sat is NP-hard.

This hardness result is the source of the above claim that the transition from easy
to hard takes place at 2. Once the density of satisfied literals drops strictly below one
half, it is hard to find a satisfying assignment.1

To establish this result we give a reduction from the Label Cover problem, the
usual starting point for inapproximability results (even though our results apply only
to traditional constraint satisfaction problems (CSPs) where we want to satisfy all
constraints). At first glance it might seem slightly surprising that such a strong
starting point is needed for our NP-hardness result. As an indication that something
non-trivial is going on, we give a proof that there is no standard gadget reduction from
3-Sat to any of our problems, and in particular not to (1, g, 2g + 1)-Sat. This im-
possibility result is due to [22], and extends to show that there is no gadget reduction
from (1, g, 2g + 1)-Sat to (1, g′, 2g′ + 1)-Sat for g′ > g > 1.

One can also consider an approximation problem associated with (1, g, 2g + 1)-
Sat, where we are guaranteed that there is an assignment that satisfies at least g
literals in a fraction c of clauses and where the goal is to find an assignment that
satisfies a fraction s of the clauses. Our proof of Theorem 1.1 implicitly shows that
this problem is hard for c = 1 and some s = s(g) < 1, thus showing APX-hardness of
(1, g, 2g + 1)-Sat. We observe that an application of the theorem on “uselessness of
predicates” from [4] implies a strong inapproximability result for this problem (albeit
only for almost satisfiable instances, and assuming the Unique Games conjecture) that
shows hardness for c = 1−ε and s = 1−2−(2g+1) +ε for any ε > 0 (see Theorem 3.8).

Hypergraph discrepancy. A problem closely related to (a, g, w)-Sat is hypergraph
discrepancy. Here, given sets of size 2g + 1 of elements from a universe, the problem is to
color the elements with two colors such that each set has a good balance of colors. We extend
our methods to prove the following hardness result, showing that systems of bounded-size

1This is the sense in which we implied that (2 + ε)-Sat is NP-hard in the paper title, but we
should mention here that (2 + ε)-SAT has been used previously to denote instances of satisfiability
containing a mix of 2CNF and 3CNF clauses, with about ε fraction of clauses being 3CNF [1]. As
the terminology (2 + ε)-Sat is restricted to just the title of this paper, we hope it does not cause
much confusion.

(2 + ε)-SAT IS NP-HARD 3

sets with smallest possible discrepancy are NP-hard to distinguish from set systems with
worst possible discrepancy.

Theorem 1.2. For each fixed g > 1, given a (2g + 1)-uniform hypergraph that admits a
2-coloring under which each hyperedge is evenly balanced (g elements of one color and g+1 of
the other), it is NP-hard to find a 2-coloring that avoids creating a monochromatic hyperedge.

The above result implies Theorem 1.1 via a simple reduction: for each hyperedge (x1, x2,
. . . , x2g+1) of the hypergraph, create two width 2g + 1 clauses (x1 ∨ x2 ∨ · · · ∨ x2g+1) and
(x1 ∨ x2 ∨ · · · ∨ x2g+1). We prove Theorem 1.1 first to illustrate our approach in a simpler
setting that allows arbitrary clauses of width 2g + 1.

For the case of even-sized sets, i.e., 2g-uniform hypergraphs for g > 2, we can get the
following statement by a simple reduction from Theorem 1.2. (The first statement follows
by adding a special private element to each set in the instance, and the second by taking all
2g-element subsets of each (2g + 1)-sized set in the instance.)

Corollary 1.3.
1. For each fixed g > 2, given a 2g-uniform hypergraph that admits a 2-coloring under

which each hyperedge is perfectly balanced (has g elements of each color), it is NP-hard to
find a 2-coloring with discrepancy smaller than (2g − 2) (i.e., with more than one vertex of
each color in every hyperedge).

2. For each fixed g > 2, given a 2g-uniform hypergraph that admits a 2-coloring with
discrepancy at most 2, it is NP-hard to find a 2-coloring that avoids creating a monochromatic
hyperedge.

The above statements are best possible in the sense that if there is a perfectly bal-
anced (discrepancy 0) coloring of a 2g-uniform hypergraph, then one can efficiently find a
2-coloring that avoids monochromatic hyperedges. This follows from the more general state-
ment that (1, g, 2g)-Sat can be solved in polynomial time (via the reduction mentioned after
Theorem 1.2).

For systems with unbounded set size, it is known that even if there is a coloring with
discrepancy 0, it is NP-hard to find a coloring of discrepancy at most c

√
N , where c > 0 is

a fixed constant and N is the size of the universe [9].
Applications. Apart from the inherent interest in the given problems it is our hope that

these new results will be useful as starting points for reductions to give new inapproximability
results. While the inapproximability of Max-3Lin [15] is a good starting point for problems
where we are counting the number of satisfied constraints, our new problems might be good
starting points when it is the worst local situation that governs the quality of a solution. As
an example, consider the discrepancy problem, where the objective function is governed by
the hyperedge with the most unbalanced coloring. As a small step in this direction we use
our result to improve the inapproximability result for hereditary discrepancy for matrices
from 3/2 to any number arbitrarily close to 2. Our Theorem 1.2 was also used recently in [13]
to show a tight factor 2 inapproximability for a certain scheduling problem on two machines.

1.2. Techniques. Our hardness results are established via reductions from the Label
Cover problem, which is an arity two CSP over a large (but constant-sized) domain [L] =
{1, 2, . . . , L}, and the constraint relations allowed are functions [L] → [L]. Specifically, an
instance of Label Cover can be viewed as a (bipartite) graph H = (U, V,E), and for each
edge e = (u, v) ∈ E there is a projection πe : [L]→ [L] stipulating that the value assigned to
u maps to the value assigned to v under πe. That is, an assignment σ : U ∪V → [L] satisfies
the constraint given by edge e if πe(σ(u)) = σ(v). Given the current technology of reductions
combining Label Cover and dictatorship tests, and the goal of only establishing hardness of
deciding satisfiability (rather than some tight inapproximability ratio), the technical details
of our proof are not difficult. Indeed, our result can be viewed as a particularly good entry
point to understanding the highly influential “Label Cover + Long Code” framework for
showing hardness results.

The combinatorial core of our results is a dictatorship test, where we are given a function
f : {0, 1}L → {0, 1}, which we assume to be odd (i.e., f(z) 6= f(¬z), where ¬z is the point

4 PER AUSTRIN, VENKATESAN GURUSWAMI, JOHAN HÅSTAD

antipodal to z), and the goal is to ascertain whether it is a dictator, i.e., f(z) = zi ∀z ∈ {0, 1}L
for some coordinate i ∈ [L]. For the problem of (1, g, 2g + 1)-Sat, the allowed tests involve
querying carefully chosen subsets of 2g + 1 points of the hypercube, x1, x2, . . . , x2g+1, and
checking that at least g of the values f(xi) are 1. Given our desire to have all dictator
functions pass all tests, there is a very natural choice for which subsets to pick, namely
all (2g + 1)-tuples for which in every coordinate there are at least g 1’s. We prove that if
the clauses produced by this natural dictatorship test are all satisfied by some f , then the
function f is a junta that depends only on a constant number of inputs (independent of L).

To use this in a reduction from Label Cover, we have a hypercube of variables associated
with each vertex w ∈ U ∪ V of the Label Cover instance. A Boolean assignment to these
variables is naturally viewed as a function fw : {0, 1}L → {0, 1}. In the completeness case, if
the vertex w is assigned a label ` ∈ [L], then one takes fw to be the dictator function (aka long
code) that outputs the `th bit of the input, and the reduction ensures that this assignment
will satisfy at least g literals in all the clauses of the produced (2g + 1)-Sat instance.

For the soundness, the reduction will impose the above dictatorship test on each fw, and
this will ensure that each fw must be a junta in order to satisfy all these “intrahypercube”
clauses. Thus each fw can be viewed as highlighting a small set of possible labels for w. To
capture the projection constraints πe, we also introduce some natural clauses between the
hypercubes corresponding the endpoints u, v of each edge e. To pass the constraints that go
across two long codes fu, fv we show that there must be some consistency between the set of
labels highlighted by these juntas, and hence they can be used as labels to satisfy a constant
fraction of the constraints in the Label Cover instance. Thus if the original Label Cover
instance was highly unsatisfiable, there cannot be a satisfying assignment for the produced
(2g + 1)-Sat instance produced by the reduction.

Note that our proof method departs from the usual analytic approaches to analyzing
dictatorship tests (which seem ill-suited in our context) and relies on more combinatorial
reasoning. The fact that our proofs are short and self-contained and yet yield a nontrivial
hardness result about such a natural and easy to state variant of Sat is, in our opinion, one
of the main selling points of this paper.

Connection to weak polymorphisms. Polymorphisms are operations that preserve a
set of relations. They are a crucial tool in the algebraic approach to classifying the complexity
of CSPs as either tractable or NP-hard. Formally, a polymorphism for a predicate P ⊆ {0, 1}k
is a map f : {0, 1}L → {0, 1}, for some arity L, such that for all choices of x(1), x(2), . . . , x(L) ∈
P , applying f componentwise to the x(i)’s yields a string that also satisfies P ; that is, if
z ∈ {0, 1}k is defined by zj = f(x

(1)
j , x

(2)
j , . . . , x

(L)
j) for j = 1, 2, . . . , k, then z ∈ P as well.

Our analysis of the dictatorship test (for (1, g, 2g + 1)-Sat) can be stated equivalently
as characterizing the “weak polymorphisms” that map assignments satisfying at least g out
of 2g+1 variables to an assignment satisfying at least one of those variables. In other words,
the constraint imposed on the output of the polymorphism is a more relaxed one. More
precisely, a weak polymorphism f for (1, g, 2g+1)-Sat of arity L is a map with the following
property: if x(1), x(2), . . . , x(L) ∈ {0, 1}2g+1 are such that each x(j) has Hamming weight at
least g, then applying f componentwise to the x(j)’s yields a string z with at least one 1.
By our combinatorial result, such a weak polymorphism must be a junta that depends on at
most 2g − 1 variables.

To elucidate the more general underlying principle governing our hardness results, we
show that if the only weak polymorphisms mapping satisfying assignments of a predicate P
to those of an implied predicate Q are juntas (i.e., depend on a fixed constant number of
variables), then the promise CSP associated with the pair of predicates P,Q (where we are
promised satisfiability according to P and the goal is to find an assignment satisfying the
more lax predicate Q) is NP-hard.

1.3. Subsequent work. Our work raises several interesting directions for further
research, some of which have already seen progress.

One way to generalize Theorem 1.2 would be to show hardness of weakly 2-coloring
(k+1)-uniform hypergraphs that have even richer structure than discrepancy 1, for instance,

(2 + ε)-SAT IS NP-HARD 5

when the hypergraph is k-rainbow colorable, i.e., there is a k-coloring of vertices such that
every hyperedge has vertices of each color.2 If the hypergraph is k-uniform (instead of k+ 1-
uniform), one can efficiently 2-color it without monochromatic hyperedges (e.g., via a random
walk algorithm similar to the one in section 6). Proving such a hardness for k + 1-uniform
hypergraphs is still open. However, in [14], the following strong inapproximability result for
coloring hypergraphs was shown (taking g = 2 below shows hardness of 2-coloring k-rainbow
colorable hypergraphs when the hyperedges have size 2k):

For arbitrary integers g, k, C > 2, given as input a gk-uniform hypergraph
that is promised to have a k-coloring where each color appears at least
(g − 1) times in every hyperedge, it is NP-hard to weakly C-color the
hypergraph.

While this result does not imply Theorem 1.2, taking k = 2 it implies part 2 of Corollary 1.3,
and in fact a stronger form when an arbitrary constant number of colors are allowed in the
soundness case (part 1 also follows by a simple reduction). The proof of the above result
in [14] is significantly more involved than our proofs, relying on analytic machinery such
as invariance principles [17, 23] and reverse hypercontractivity. The techniques can also
be adapted to yield a proof of Theorem 1.1. Establishing our main result on discrepancy
(Theorem 1.2), however, seems currently out of reach of these analytic methods.

The framework of showing hardness by characterizing the structure of the concerned
weak polymorphisms was applied in [6] to graph coloring. In particular, it was shown there
that it is NP-hard to tell whether an input graph is k-colorable, or has chromatic number
at least (2k − 1)∀ k > 3. The combinatorial crux was a structural theorem about weak
polymorphisms (for k versus 2k − 2 coloring), showing them to be dictators corrupted by
noise in a controlled way. A similar approach yielded results for 2-coloring hypergraphs with
low strong chromatic number.

The authors of [6] also undertook a more systematic investigation into the complexity
of Boolean promise CSPs in [7]. A broad goal here would be to classify, for pairs of predi-
cate P,Q where P implies Q, whether the problem of distinguishing CSP instance satisfiable
according to P from those that are unsatisfiable even when constraints are relaxed to Q, is
tractable or NP-hard. The case when the involved predicates are all symmetric (i.e., mem-
bership in the predicate depends only on the Hamming weight of the string) is settled in
[7] (even when the promise CSP allows several pairs of predicates (Pi, Qi)). Weak polymor-
phisms are the crucial concept in this dichotomy result; in fact, this paper confirms that
weak polymorphisms precisely capture the complexity of a promise CSP by extending the
“Galois correspondence” known for usual CSPs (see, for instance, the excellent survey [10])
to the world of promise CSPs. A simple and generic method for handling repeated literals
is also presented in [7]; we exploit this to simplify our original proofs, particularly that of
Theorem 1.2 where repetitions easily allow one to encode negations (which are not available
in the discrepancy setting).

1.4. Organization. An outline of the paper is as follows. We start with some defi-
nitions and preliminaries in section 2. As our main contribution is on the hardness side, we
discuss the hardness results first and defer the algorithmic results to section 6 towards the
end of the paper.

We start by presenting our hardness result for (1, g, 2g+1)-SAT in section 3. In section 4
we then take a broad perspective and introduce the notion of “weak polymorphisms” and
show that the hardness result for (1, g, 2g + 1)-Sat is a special case of a more general theo-
rem saying that, under certain conditions, a CSP that does not have weak polymorphisms of
arbitrary large arities must be NP-hard. We then discuss our results for discrepancy prob-
lems (Theorem 1.2) and improved inapproximability for hereditary discrepancy in section 5.
Finally, we end with some concluding remarks in section 7.

2Note that such a hypergraph surely has a balanced 2-coloring, by merging b k
2
c colors into one

group and the remaining d k
2
e colors into another group, so such a result will indeed strengthen

Theorem 1.2.

6 PER AUSTRIN, VENKATESAN GURUSWAMI, JOHAN HÅSTAD

2. Preliminaries. We start with some basic definitions.

Definition 2.1. A w-Sat formula is a CNF formula where each clause has width ex-
actly w.

One detail to consider is whether we allow repeated literals or two literals corresponding
to the same variable in a clause. It turns out that this distinction does not change the
complexity of the problems we consider. Specifically, in the follow-up work by Brakensiek
and Guruswami [7, Appendix C], it is shown that the complexity of a promise CSP of the
kind studied here is not affected by allowing or disallowing repeated variables in constraints.
Hence, throughout the paper we will freely allow repeated variables, since this tends to
simplify the presentation.

Definition 2.2. A w-Sat formula Φ is strongly g-satisfiable if there is an assignment
to the variables such that at least g literals are true in every clause of Φ.

Definition 2.3. For 1 6 a 6 g < w, the (a, g, w)-Sat promise problem is as follows.
The input is a w-Sat formula Φ, and the goal is to accept instances Φ that are strongly g-
satisfiable and reject instances that do not admit any assignment that strongly a-satisfies Φ.

We have defined the decision version above, and in the search version we are given a
w-Sat formula Φ that is guaranteed to be strongly g-satisfiable, and the goal is to find an
assignment that strongly a-satisfies Φ.

Note that (1, 1, w)-Sat is the usual w-Sat problem. Let us start with a couple of simple
observations.

Observation 2.4. There is a polynomial-time reduction from (a, g, w)-Sat to (a, g, w+
1)-Sat.

Proof. For each old clause, create two new clauses extending it by a variable and its
complement.

Proposition 2.5. For a > 1, the problems (a, g, w)-Sat and (a+1, g+1, w+1)-Sat are
interreducible to each other in polynomial time, and in particular one of them is polynomial-
time solvable if and only if the other one is.

Proof. We establish two easy reductions and start with the obvious one.
By adding a shared dummy variable to all clauses of an (a, g, w)-Sat instance, it follows

that (a, g, w)-Sat reduces to (a+ 1, g + 1, w + 1)-Sat.
For the reduction in the other direction, take all subclauses of size w of each clause of

size w + 1. It is readily verified that this gives a correct reduction.

In view of the above proposition, we can focus on the case a = 1, i.e., the problem of
finding a satisfying assignment in a w-CNF formula when we are guaranteed that there is
an assignment that satisfies at least g literals in each clause.

We now define the discrepancy problem underlying Theorem 1.2 formally. Let S be a
subset of size 2g + 1 of some universe U . We say that X ⊆ U splits S evenly if |X ∩ S| ∈
{g, g + 1}.

Definition 2.6. An instance of the g-Discrepancy problem consists of a collection of
sets S1, . . . , Sm ⊂ U , each of size exactly 2g + 1, and the objective is to distinguish between

Yes: there is an X ⊆ U that splits each Si evenly.
No: for every X ⊆ U , some Si is not split by X at all (i.e., |X ∩ Si| ∈ {0, 2g + 1}).

Label Cover and Long Codes. Our reductions establishing hardness results fit into
the standard form for probabilistically checkable proofs (PCPs), commonly used to establish
inapproximability results for maximum CSPs. In particular our reductions start from Label
Cover and use the Long Code encoding of each label.

Definition 2.7. An instance Ψ = (U, V,E, {πe : LV → LU}) of Label Cover consists of
a bipartite graph (U, V,E), label sets LU and LV for U and V , and for each edge e ∈ E a
map πe : LV → LU .

(2 + ε)-SAT IS NP-HARD 7

A labeling σ is a map that assigns for each u ∈ U a label σ(u) ∈ LU , and for each v ∈ V
a label σ(v) ∈ LV . The labeling σ satisfies an edge e = (u, v) if πe(σ(v)) = σ(u).

The value of a labeling σ is the fraction of edges satisfied by σ, and the value Opt(Ψ) of
Ψ is the maximum value of any labeling.

Theorem 2.8 ([2, 20]). For every ε > 0 there are LU , LV such that, given a Label Cover
instance Ψ with label sets LU and LV , it is NP-hard to distinguish between Opt(Ψ) = 1 and
Opt(Ψ) 6 ε.

For an alphabet L and symbol ` ∈ L, the Long Code encoding of ` is a function f :
{0, 1}L → {0, 1}, represented by its truth table, where f(x) = x`. Whenever negation is
available in the CSP for which we try to prove a lower bound, we assume that tables are odd
and respect negation (in standard PCP terminology, “are folded”) i.e., that f(¬x) = ¬f(x),
where ¬ is a negation operator that works both on bits and strings (by negating each bit
individually). The oddness of f is ensured by storing, for each pair (x,¬x), only the value
f(x), and if f(¬x) is needed, then ¬f(x) is used instead. We note that this is possible for
our results for satisfiability but not for the hypergraph discrepancy problem, which does not
allow negations in the constraints.

We use some standard notation in the paper. We let ei ∈ {0, 1}n be the unit vector with
a 1 in position i and use ⊕ to denote exclusive-or. Thus if x ∈ {0, 1}n is any assignment, x
and x⊕ ei differ in exactly coordinate i.

3. NP-hardness of (1, g, 2g +1)-Sat. We now return to the goal of establishing
that (1, g, 2g + 1)-Sat is NP-hard. In what follows we write w = 2g + 1.

3.1. A dictatorship gadget. First, we construct a dictatorship gadget, which is
an instance defined over 2n variables, viewed as a function f : {0, 1}n → {0, 1}, which is, as
discussed in the preliminaries, assumed to be folded.

The constraints on f are all clauses of the form (f(x1) ∨ f(x2) ∨ · · · ∨ f(xw)), where
x1, . . . , xw are such that for each j ∈ [n],

∑w
i=1 xi,j > g. In other words, there are at least g

1’s in each coordinate.
The completeness of the gadget (stated below) follows by construction.

Lemma 3.1. If f is a dictatorship function, then it strongly g-satisfies the dictatorship
gadget.

The converse of the above lemma is true only in a weaker sense.

Lemma 3.2. Any assignment f which is odd and satisfies the dictatorship gadget depends
on at most 2g − 1 variables.

In fact, this lemma is sharp—as we shall note in subsection 4.1, the majority of 2g − 1
variables do satisfy the gadget. The essential part of the above lemma is contained in the
following claim that we establish first.

Claim 3.3. Suppose f is odd, depends on g different variables i1, . . . , ig, and satisfies
the dictatorship gadget. Then f(z) = 1 for all inputs z such that zi1 = · · · = zig = 1.

Proof. Suppose for contradiction that there is an input z such that f(z) = 0 yet zij =
1 ∀ j ∈ [g]. Since f depends on variables i1, . . . , ig, there are inputs x1, . . . , xg such that for
each j ∈ [g]

f(xj) = 1 and f(xj ⊕ eij) = 0.

Now consider the clause

f(z) ∨ f(¬x1) ∨ f(x1 ⊕ ei1) ∨ · · · ∨ f(¬xg) ∨ f(xg ⊕ eig).(1)

Note that this clause might contain repeated literals, but by [7, Theorem C.1], allowing this
does not change the complexity of the problem. Clearly, this clause is not satisfied by f , so
if this clause appears in the gadget, we have our desired contradiction. In other words, we
have to show that in each coordinate i ∈ [n] we have at least g 1’s.

8 PER AUSTRIN, VENKATESAN GURUSWAMI, JOHAN HÅSTAD

For any coordinate i 6∈ {i1, . . . , ig} we have that coordinate i is 1 in exactly one of
{¬xj , xj ⊕ eij}, for a total of at least g 1’s. For the coordinate ij , we have that ∀ j′ 6= j at
least one of {¬xj′ , xj′ ⊕ eij′ } has a 1 in coordinate ij . Furthermore z has a 1 in coordinate
j, for a total of at least g 1’s.

It is now easy to prove Lemma 3.2.

Proof of Lemma 3.2. Suppose that f depends on 2g distinct variables i1, . . . , ig,
j1, . . . , jg. Let z be an input such that zi1 = · · · = zig = 1 and zj1 = · · · = zjg = 0.
By Claim 3.3, f(z) = 1 and f(¬z) = 1, contradicting that f is odd.

3.2. Reduction from Label Cover. Let Ψ = (U, V,E, {πe : LV → LU}) be a
Label Cover instance. To each vertex u ∈ U we associate a function fu : {0, 1}LU → {0, 1}
intended to be a dictator of the label `u of u, and similarly fv : {0, 1}LV → {0, 1} for v ∈ V .

We add the following constraints:
• For each u ∈ U (resp., v ∈ V), the dictatorship gadget on fu (resp., fv).
• Fix an edge e = (u, v). Let x1, . . . , xg ∈ {0, 1}LU be g inputs on the U side, and
y1, . . . , yg+1 ∈ {0, 1}LV be g + 1 inputs on the V side. If for each l ∈ LV it holds
that

g∑
j=1

xj,πe(l) +

g+1∑
j=1

yj,l > g,

we add the constraint

fu(x1) ∨ · · · ∨ fu(xg) ∨ fv(y1) ∨ · · · ∨ fv(yg+1).

We also use folding to make sure that each fu (and fv) is odd. Call the resulting formula Φ.
The completeness is standard and follows immediately from the construction and the
completeness of the dictatorship gadget.

Lemma 3.4 (completeness). If Opt(Ψ) = 1, then Φ is strongly g-satisfiable.

We turn to the more interesting case of soundness.

Lemma 3.5 (soundness). If Φ is satisfiable, then Opt(Ψ) > 1/(2g − 1)2.

Proof. Fix a satisfying assignment {fu}, {fv} to Φ. By the soundness of the dictatorship
gadget (Lemma 3.2), every fu and fv depends on at most 2g − 1 variables.

For each variable, let Su ⊆ LU (resp., Sv ⊆ LV) be the set of variables that fu (resp., fv)
depends on, and we have the following claim.

Claim 3.6. For every edge e = (u, v) it holds that πe(Sv) ∩ Su 6= ∅.
Proof. Suppose for contradiction that Su ∩ πe(Sv) = ∅. Let x1, . . . , xg ∈ {0, 1}LU be

some set of g inputs such that fu(xj) = 0 and xj,l′ = 1 ∀ l′ ∈ LU \ Su, and similarly let
y1, . . . , yg+1 ∈ {0, 1}LV be g + 1 inputs such that fv(yj) = 0 and yj,l = 1 ∀ l ∈ LV \ Sv.

Let us now check that

g∑
j=1

xj,πe(l) +

g+1∑
j=1

yj,l > g ∀ l ∈ LV .(2)

Note that this would imply that fu(x1) ∨ · · · ∨ fu(xg) ∨ · · · ∨ fv(y1) ∨ · · · ∨ fv(yg+1) is
a clause in Φ and by construction it is not satisfied, a contradiction. For l /∈ Sv, (2) holds
because yj,l = 1 for j = 1, 2, . . . , g + 1. For l ∈ Sv, we have πe(l) /∈ Su, and therefore
xj,πe(l) = 1 for j = 1, 2, . . . , g, and (2) again holds.

We now finish the proof of Lemma 3.5. We construct a random labeling by picking a
random label from Su (resp., Sv) for each variable u ∈ U (resp., v ∈ V) of Ψ. For each edge
e = (u, v) it follows from the claim that the probability that e is satisfied by this labeling is

1
|Su|·|Sv| > 1/(2g − 1)2, implying the bound on Opt(Ψ).

To finish the proof of Theorem 1.1 we now simply make sure to start with a Label Cover
instance with soundness at most (2g − 1)−2 and then invoke Theorem 2.8.

(2 + ε)-SAT IS NP-HARD 9

Remark 3.7. The above proof can also be used to show that, in the soundness case, there
is no assignment that satisfies more than 1 − γ(g) fraction of clauses, for some γ(g) > 0.
The required soundness 1/(2g − 1)2 for the Label Cover instance can be achieved with
|LU |, |LV | 6 poly(g), and thus the tables fu, fv have sizes that depend only on g. Therefore,
if γ(g) is sufficiently small, then for any assignment to Ψ satisfying more than a 1 − γ(g)
fraction of clauses, most of the tables fu, fv will have all clauses satisfied, and the constructed
labeling then satisfies enough Label Cover constraints.

3.3. Inapproximability under the unique games conjecture. We now note
the following “approximation resistance” phenomenon associated with almost-satisfiable in-
stances of (1, g, 2g + 1)-Sat.

Theorem 3.8. Let g > 1 be an integer. Assuming the unique games conjecture [16],
the following promise problem is hard for every ε > 0. Given an instance of (2g + 1)-Sat
(with no repetitions of variables allowed within a clause), distinguish between the following
two cases:

1. There is an assignment that strongly g-satisfies (1− ε) of the clauses.
2. There is no assignment that satisfies a fraction (1− 2−2g−1 + ε) of the clauses.

Note that we have a gap between the two cases both in terms of the predicate being
imposed on the clauses, and in terms of the fraction of clauses satisfiable according to the
respective predicates. Also, since a random assignment satisfies an expected fraction 1 −
2−2g−1 of the clauses, the inapproximability factor is tight.

Proof of Theorem 3.8. We observe that there is a pairwise independent distribution µ
on {0, 1}2g+1 which is supported only on strings with at least g 1’s. This distribution appears
in the proof of Theorem 5.2 in [11], and as it is easy to describe, we recall it for completeness.
Let p = 1

2g+2
. We sample a string according to µ as follows: With probability p, sample the

all 1’s string, and with probability 1− p, sample a string uniformly from those with exactly
g 1’s. A simple argument (see [11, Theorem 5.2]) shows that every pair of bits is uniformly
distributed under µ. The existence of µ together with Theorem 1.3 of [4] (the hardness part
of which is based on [5]) shows the following: Given an instance of (2g+1)-Sat admitting an
assignment that strongly g-satisfies a fraction (1− ε) of the constraints, it is unique games–
hard to find an assignment for which the distribution of (2g+ 1)-bit substrings appearing in
the scope of various constraints in the instance is ε-far from uniform. In particular, this means
that it is unique games–hard to find an assignment satisfying a fraction (1 − 2−2g−1 + ε)
of the clauses, as a random assignment satisfies an expected fraction (1 − 2−2g−1) of the
clauses.

4. General framework. In this section, we show that the principle underlying our
hardness result for (1, g, 2g + 1)-Sat applies more generally. Namely, the absence of certain
“weak polymorphisms” of arbitrarily large arities implies hardness for the associated promise
CSP.

The hardness for (1, g, 2g+1)-Sat from the previous section turns out to be a particular
case based on the result (established in Lemma 3.2) that there are no weak polymorphisms
of arity larger than 2g−1 that take assignments strongly g-satisfying a width (2g+1)-clause
and output assignments that satisfy the clause.

We present our result for CSPs over an arbitrary finite domain allowing for folding. It
is not clear whether this assumption is essential or whether it can be removed (as we shall
do for the case of discrepancy in section 5).

Definition 4.1 (CSP). For integers q, k > 2, a CSP over domain [q] = {0, 1, . . . , q−1}
and with arity k, denoted CSP(P), is specified by a predicate P : [q]k → {0, 1}.

An instance of this CSP is given by a set of variables V and a collection of constraints,
each specified by (τ, a) for τ = (v1, . . . , vk) ∈ V k and a = (a1, . . . , ak) ∈ [q]k (which re-
quires that the constraint P applied to the “literals” v1 + a1, . . . , vk + ak be met). Accord-
ingly, the instance is said to be satisfiable if there is an assignment σ : V → [q] such that
P (σ(v1) + a1, . . . , σ(vk) + ak) = 1 for all constraints (τ, a) of the instance, where σ(vi) + ai
is to be understood mod q.

10 PER AUSTRIN, VENKATESAN GURUSWAMI, JOHAN HÅSTAD

The following promise problem generalizes the (1, g, 2g + 1)-SAT problem to arbitrary
predicates.

Definition 4.2. For predicates P,Q : [q]k → {0, 1} such that P implies Q (i.e., ∀x,
P (x) 6 Q(x)), the (P,Q)-CSP problem is the following promise problem:

Given an instance of CSP(P), distinguish between “Yes instances” which
are satisfiable as a CSP(P) instance, and “No instances” which are unsat-
isfiable even as a CSP(Q) instance.

We now define the notion of weak polymorphisms that map satisfying assignments for
one predicate into a satisfying assignment for a more relaxed predicate.

Definition 4.3. Let P,Q : [q]k → {0, 1} be predicates such that ∀x, P (x) 6 Q(x). For a
positive integer m, a function f : [q]m → [q] is said to be a folded (P,Q)-weak polymorphism
if the following properties hold:

1. (Polymorphism property) For all b1, b2, . . . , bm ∈ P−1(1), we have

(f(b1,1, b2,1, . . . , bm,1), f(b1,2, b2,2, . . . , bm,2), . . . ,

f(b1,k, b2,k, . . . , bm,k)) ∈ Q−1(1).

2. (Foldedness3) For every x ∈ [q]m and a ∈ [q], f(x+ (a, a, . . . , a)) = f(x) + a, where
the addition is mod q.

In what follows, we define the arity of a function f : [q]m → [q] to be the smallest integer t
for which f is a t-junta (i.e., depends only on t input coordinates)—formally, the smallest
t for which there exists a subset S ⊆ {1, 2, . . . ,m} with |S| = t and a function g : [q]t → [q]
such that for every x ∈ [q]m, f(x) = g(x|S). Thus dictator functions have arity 1.

4.1. (1, g, w)-Sat through the polymorphic lens. Before proceeding with stat-
ing our general NP-hardness result, let us briefly revisit the (1, g, 2g+ 1)-Sat problem using
the framework of weak polymorphisms in order to shed additional light on the problem.

The (1, g, 2g + 1)-Sat problem is the same as the (P,Q)-CSP problem, where P :
{0, 1}2g+1 → {0, 1} accepts all inputs with at least g 1’s, and Q : {0, 1}2g+1 → {0, 1}
accepts all inputs with at least one 1. What nontrivial folded (P,Q)-weak polymorphisms
does this pair of predicates admit?

A natural family of polymorphisms are majority operations on some m number of vari-
ables.

Proposition 4.4. For the predicates P and Q from the (1, g, 2g + 1)-Sat problem, the
majority on m variables for odd m is a folded (P,Q)-weak polymorphism if and only if
m 6 2g − 1.

Proof. Consider m bit strings of length 2g+ 1 with weight at least g. There are in total
g ·m 1’s, meaning that in some coordinate, at least d g·m

2g+1
e of the m strings have a 1. Thus

if d g·m
2g+1
e > dm/2e, then the majority function applied coordinate-wise will evaluate to true

for one of the coordinates, so the (2g + 1)-bit string of majorities satisfies Q, and the m-bit
majority is a weak polymorphism. Conversely if d g·m

2g+1
e < m/2, then it is possible to make

m inputs of length 2g+ 1 and weight g such that in each coordinate there are less than m/2
1’s, and m-bit majority is then not a weak polymorphism.

Since m is odd, the condition d g·m
2g+1
e > dm/2e can be rewritten as g·m

2g+1
> m−1

2
or

equivalently m < 2g + 1. Using again that m is odd, this is equivalent to m 6 2g − 1.

With this perspective, Lemma 3.2 is a strengthening of the “only if” direction of Propo-
sition 4.4—it says that not only are majorities of large arities not weak polymorphisms for
this pair of predicates, but in fact no operations that depend on more than 2g − 1 variables
can be weak polymorphisms. It is this lack of complicated polymorphisms that directly
drives the NP-hardness result for (1, g, 2g + 1)-Sat. This is in contrast to (1, g, 2g)-Sat,
where it is readily verified that majorities of all odd arities are weak polymorphisms.

3This is the generalization to larger domains of the concept of oddness of Boolean functions.

(2 + ε)-SAT IS NP-HARD 11

However, while (1, g, 2g + 1)-Sat does not have arbitrarily large weak polymorphisms,
it does have some nontrivial polymorphisms—majorities up to 2g − 1 variables. As we note
next, even the existence of these polymorphisms has algorithmic implications. In particular,
they imply that there is no simple gadget reduction from 3-Sat to (1, g, 2g + 1)-Sat.

Consider the possibility of such a gadget reduction. For each clause, say (x1∨x2∨x3), this
hypothetical reduction introduces a number of auxiliary variables ai (which are particular to
this clause) and forms a number of constraints in the form of clauses of width 2g + 1. This
reduction must satisfy the following:

1. Completeness: for each assignment to (x1, x2, x3) that satisfies the original clause
there is an assignment to the auxiliary variables such that at least g literals in each
new clause are true.

2. Soundness: if x1, x2, x3 are all set to false, no assignment to the auxiliary variables
satisfies all the new clauses.

If we do not allow repeated literals in a clause, then, as pointed out to us by John
Wright, it easy to see that no such reduction can exist. Namely, take the assignment to the
auxiliary variables when x1 is true and x2 and x3 are false, and use the same assignment
when all the three variables are false. As x1 appears only once in each clause, this change can
only decrease the number of true literals in a clause by one, and hence each clause remains
satisfied. It turns out that allowing repeated literals does not help, and we have the following
proposition pointed out to us by Dominik Scheder.

Proposition 4.5. There is no gadget reduction from 3-sat to (1, g, 2g + 1)-Sat.

Proof. Consider the three cases when (x1, x2, x3) takes the values (1, 0, 0), (0, 1, 0), and
(0, 0, 1), respectively. Consider the good assignment to the auxiliary variables in each of these
three cases, satisfying at least g literals in each (2g + 1)-clause. Define a new assignment
to the xi’s and the auxiliary variables as the majority of these three assignments; note that
x1, x2, x3 are assigned 0 under this majority assignment. We claim that this new assignment
satisfies at least one literal in each created clause even when the xi’s are all false.

To see this, look at a single clause of width 2g + 1, and consider the values of these
2g + 1 literals under the three assignments. Since a majority of three variables is a weak
polymorphism, it follows that at least one of the 2g + 1 literals must be true after applying
majority, and since each of the original variables x1, x2, x3 is set to false in the majority
assignment, the true literal must be one of the auxiliary variables.

It is not difficult to see that the argument can be extended to prove that there is no
gadget reduction from (1, g, 2g + 1)-Sat to (1, g′, 2g′ + 1)-Sat for g′ > g, meaning that
these in some sense form a strict hierarchy of problems. Instead of the assignments (1, 0, 0),
(0, 1, 0), and (0, 0, 1), we now take take 2g + 1 assignments, each assignment having g true
literals, and each literal being true in g of the assignments. A majority of these assignments
does the trick, as in the above argument.

4.2. General NP-hardness result. We now state our general theorem
(Theorem 4.7 below) connecting (the lack of) polymorphisms to the hardness of (P,Q)-
CSP. This generalizes a similar well-known statement for the case P = Q, namely that if the
only polymorphisms for the constraint P are dictators, then the CSP(P) problem is NP-hard.
The converse of this statement would imply the algebraic dichotomy conjecture of [8] that
precisely ties the tractability of a CSP to the existence of nontrivial polymorphisms. Estab-
lishing the converse of Theorem 4.7 for the promise version is only harder, but an interesting
question would be to try to prove it for Boolean CSPs, where the complexity dichotomy was
shown long ago by Schaefer [21]. (See the survey [10] for a modern algebraic treatment of
Schaefer’s dichotomy theorem.)

The statement of the theorem imposes the following technical condition on P .

Definition 4.6. A predicate P : [q]k → {0, 1} is said to be full-domain-using if for every
i ∈ {1, 2, . . . , k} and a∈[q] there is a satisfying assignment to P that sets the ith variable to a.

12 PER AUSTRIN, VENKATESAN GURUSWAMI, JOHAN HÅSTAD

Note that if P is not full-domain-using, say P (x1, x2, . . . , xk) = 1 implies xi ∈ T , then
the range of any variable that appears in the i’th position of any constraint can be reduced.
In the case of Boolean variables this would determine the value of any such variable, but also
in the general case simplifications can be made. Therefore, the full-domain-using property
of P is a natural non-degeneracy condition to assume.

We are now ready to state the main result of this section, which we prove in the rest of
the section.

Theorem 4.7 (Large arity polymorphisms are necessary for tractability). Suppose P,Q :
[q]k → {0, 1} are predicates such that every folded (P,Q)-weak polymorphism has arity
bounded by a finite constant B, and assume that P is full-domain-using. Then (P,Q)-CSP
is NP-hard.

4.3. Dictatorship test. As usual, we start with a dictatorship test for a function
f : [q]m → [q] with constraints corresponding to the (P,Q)-CSP problem. We assume that f
is folded; i.e., f(x+ (a, a, . . . , a)) = f(x) + a for every x ∈ [q]m and a ∈ [q]. The constraints
of this test are as follows:

For all x1, x2, . . . , xk ∈ [q]m such that P (x1,j , x2,j , . . . , xk,j) = 1 for each
j ∈ {1, 2, . . . ,m}, check that

(3) Q(f(x1), f(x2), . . . , f(xk)) = 1.

The completeness of the test is obvious by design.

Lemma 4.8. If f is a dictatorship function, then it satisfies all the constraints of (3)
(even if the predicate Q is replaced with P in those constraints).

It follows pretty much from definition that a function f which passes all the checks (3)
is a (P,Q)-weak polymorphism. Indeed we can take m arbitrary satisfying assignments to
P as the jth entries of x1, x2, . . . , xk for j = 1, 2, . . . ,m, and the output (f(x1), . . . , f(xk))
must satisfy Q. Therefore, we also have the soundness property, similar to Lemma 3.2, as
follows.

Lemma 4.9. If every folded (P,Q)-weak polymorphism has arity bounded by B, then any
folded f that satisfies all constraints (3) of the dictatorship gadget depends on at most B
variables.

4.4. NP-hardness reduction. We now turn to using the above construction in an
NP-hardness reduction. Instead of the “normal” bipartite Label Cover, we reduce from a
k-partite version of Label Cover (where k is the arity of the predicates P,Q). This version
was originally proposed and used by Feige [12] for his tight inapproximability result for Set
Cover.

Definition 4.10 (multipartite Label Cover). An instance of k-partite Label Cover con-
sists of a k-partite k-uniform hypergraph (U1, U2, . . . , Uk, E), label sets L and L̃, and con-

straint functions π
(e)
i : L→ L̃ for each hyperedge e ∈ E and 1 6 i 6 k.

A labeling solution to such an instance consists of assignments σi : Ui → L.
We say a hyperedge e = (u1, u2, . . . , uk) is strongly satisfied by such a labeling if

π
(e)
1 (σ1(u1)) = π

(e)
2 (σ2(u2)) = · · · = π

(e)
k (σk(uk)),

and weakly satisfied if for some pair (i, j), 1 6 i < j 6 k,

π
(e)
i (σi(ui)) = π

(e)
j (σj(uj)).

The following inapproximability result for k-partite Label Cover was shown by Feige [12].

Theorem 4.11. Let k > 2 be an integer. For all ε > 0 there exists ` = `(k, ε) such
that, given a k-partite Label Cover instance with label sets of size at most `, it is NP-hard to
distinguish between the following two cases:

(2 + ε)-SAT IS NP-HARD 13

1. (Yes instance) There exists a labeling solution that strongly satisfies every edge.
2. (No instance) Every labeling solution weakly satisfies at most a fraction ε of the

hyperedges.

We now describe the reduction from k-partite Label Cover to (P,Q)-CSP. Suppose we
are given an instance with hypergraph (U1, U2, . . . , Uk, E), label sets L, L̃, and constraint

functions π
(e)
i . With each ui ∈ Ui we associate a function fui : [q]L → [q], which we assume

to be folded and which is intended to be a dictator of the label σi(ui) of ui. We add the
following constraints:

• For each ui ∈ Ui, i = 1, 2, . . . , k, we add the dictatorship gadget from subsection 4.3
on fui .

• For each hyperedge e = (u1, u2, . . . , uk) ∈ E add the constraint

(4) Q(fu1(x1), fu2(x2), . . . , fuk (xk)) = 1

for every choice of x1, x2, . . . , xk which satisfy

P (x1,l1 , x2,l2 , . . . , xk,lk) = 1

∀ tuples (l1, l2, . . . , lk) ∈ Lk with π
(e)
1 (l1) = π

(e)
2 (l2) = · · · = π

(e)
k (lk).

The completeness of the reduction follows immediately from the construction, by taking
fui to be the dictatorship functions corresponding to the label of ui.

Lemma 4.12. If there is a labeling to the k-partite Label Cover instance which strongly
satisfies every hyperedge, then the above instance is satisfiable even as a CSP(P) instance
(i.e., when replacing predicate Q with P in all the constraints).

It remains to analyze the soundness of the reduction. This is established in Lemma 4.13
below. Note that by picking the soundness ε of the Label Cover instance to be � 1/B2,
Theorem 4.7 would follow from Theorem 4.11 and Lemmas 4.12 and 4.13.

Lemma 4.13. Suppose every folded (P,Q)-weak polymorphism has arity at most B, and
that P is full-domain-using. Then, if the CSP(Q) instance produced by the above reduction
is satisfiable, there is a labeling to the original k-partite Label Cover instance that weakly
satisfies at least 1/B2 of the hyperedges.

Proof. Suppose we have folded tables fui : [q]L → [q] for ui ∈ Ui, 1 6 i 6 k, that satisfy
all the constraints. Then by the soundness of the dictatorship tests, there must be subsets
Sui ⊂ L for each vertex ui with |Sui | 6 B such that fui depends only on variables in Sui .

Fix a hyperedge e = (u1, u2, . . . , uk) ∈ E. For notational simplicity, denote Sui by Si.
We now prove that in order to satisfy all the constraints (4), we must have

(5) π
(e)
i (Si) ∩ π(e)

j (Sj) 6= ∅ for some i 6= j.

Once we prove this, the labeling strategy of assigning to each ui a random label from Sui

will weakly satisfy at least 1/B2 of the hyperedges in expectation, implying the existence of
a labeling that weakly satisfies at least 1/B2 of the hyperedges of the k-partite Label Cover
instance.

Suppose for contradiction that (5) is not the case and we have

(6) ∀ i, j; 1 6 i < j 6 k; π
(e)
i (Si) ∩ π(e)

j (Sj) = ∅.

Pick an assignment β = (β1, β2, . . . , βk) ∈ Q−1(0). (The absence of (P,Q)-weak polymor-
phisms of arbitrary arity implies that Q cannot be the trivial predicate always outputting 1.)
For i = 1, 2, . . . , k, pick xi ∈ [q]L such that

1. xi is constant on Si, say xi,l = bi ∀ l ∈ Si, and
2. fui(xi) = βi

14 PER AUSTRIN, VENKATESAN GURUSWAMI, JOHAN HÅSTAD

Such a choice is possible as the fui are folded. Note that, by choice,

(7) Q(fu1(x1), fu2(x2), . . . , fuk (xk)) = 0.

Therefore, to get a contradiction we need to ensure that xi’s can be completed in other
coordinates in a manner so that the test (4) is made with this choice of xi’s.

Define Ti = (π
(e)
i)−1(π

(e)
i (Si)), i.e., the labels l′ that collide with some l ∈ Si under

π
(e)
i . Since fui(x) depends only on x|Si

, we can further assume that the chosen xi takes the
constant value bi for every coordinate in Ti. By (6), we have

(8) π
(e)
i (Ti) ∩ π(e)

j (Tj) = ∅ ∀ 1 6 i < j 6 k.

By the full-domain-using property of P , for 1 6 i 6 k we can find assignments θ(i) ∈ P−1(1)
such that θ(i) takes value bi in the ith coordinate. We can now fill in the coordinates outside
Ti in xi, for each i = 1, 2, . . . , k, as follows.

• For coordinates l of xi such that π
(e)
i (l) /∈

⋃
j π

(e)
j (Tj), we set xi,l = ai, where

(a1, a1, . . . , ak) is some fixed satisfying assignment of P .

• For the coordinates l of xi such that π
(e)
i (l) ∈ π(e)

j (Tj) for some j 6= i (note that

such a j, if it exists, is unique by (8)), we set xi,l to be the ith coordinate of θ(j).
One can check by a quick inspection that this construction creates a tuple (x1, x2, . . . ,
xk) obeying the conditions under which the constraint (4) is added, which is in contradiction
with (7).

5. Hardness for discrepancy problems. The main result of this section is the
following theorem, which is of course just an alternate statement of Theorem 1.2.

Theorem 5.1. g-Discrepancy is NP-hard for every constant g > 1.

The reduction and proof follow along the same lines as the hardness proof for (1, g,
2g + 1)-Sat in section 3, though some minor modifications in the constructions are needed
since “true” and “false” are now treated symmetrically.

There are two differences between (1, g, 2g+ 1)-Sat and g-Discrepancy. The first one
is that we no longer have the concept of negated literals, and so we can no longer assume
that our long codes are folded. Using repeated elements in our sets, this problem can be
solved very simply by adding a constraint with g copies of f(x) and g + 1 copies of f(¬x)
for all x. Using the generic method to eliminate repeated literals presented in [7], we can
convert this to a collection of (2g + 1)-sized sets with no repetitions.

The second difference is that in the YES case in g-discrepancy, we want every (2g+1)-bit
string to have weight either g or g+1, whereas in (1, g, 2g+1)-Sat the inputs just have weight
at least g. Thus we adjust the dictatorship from subsection 3.1 as follows. Recall that previ-
ously we would add a clause of the form (f(x1) ∨ f(x2)
∨ · · · ∨ f(xw)) whenever x1, . . . , xw are such that, for each j ∈ [n],

∑w
i=1 xi,j > g. Now

we instead add a (multi)set {f(x1), . . . , f(xw)} to our set family whenever x1, . . . , xw are
such that, for each j ∈ [n],

∑w
i=1 xi,j ∈ {g, g + 1}.

Note that in the new dictatorship gadget, multisets with g copies of f(x) and g+1 copies
of f(¬x) are included. This implies that any function f which does not leave any of the sets
in the gadget monochromatic must be odd. The analysis of the dictatorship gadget now
follows very closely along the lines of the previous analysis in subsection 3.1. In particular
we have the following analogue of Claim 3.3.

Claim 5.2. Suppose f depends on g different variables i1, . . . , ig and does not leave
any set of the discrepancy dictatorship gadget monochromatic. Then there are constants
c1, . . . , cg ∈ {0, 1} such that f(z) = 1 for all inputs z such that (zi1 , . . . , zig) = (c1, . . . , cg).

Proof. Since f depends on the g variables i1 to ig, there are inputs x1, . . . , xg such that
for each 1 6 j 6 g

f(xj) = 1, f(xj ⊕ eij) = 0.

(2 + ε)-SAT IS NP-HARD 15

Now define cj = xj,ij , the ijth bit of xj . We claim that these values satisfy the desired
property. To see this, suppose for contradiction that there is a z such that (zi1 , . . . , zig) =
(c1, . . . , cg) but f(z) = 0.

Consider the multiset

{f(z), f(¬x1), f(x1 ⊕ ei1), . . . , f(¬xg), f(xg ⊕ eig)}.

Clearly, this multiset is left monochromatic by f . However, it is also included in the dicta-
torship gadget: for any coordinate not among i1, . . . , ig each pair (¬xj , xj ⊕ eij) contributes
one zero, and one 1, for a total of at least g of each. For coordinate ij for some 1 6 j 6 g,
the pairs (¬xj′ , xj′ ⊕ eij′) for j′ 6= j contribute g − 1 zeros and g − 1 1’s, and then the pair
(z,¬xj) contributes one zero and one 1.

Using this claim, we immediately obtain a direct analogue of Lemma 3.2.

Lemma 5.3. Any assignment f which does not leave any set in the dictatorship gadget
monochromatic depends on at most 2g − 1 variables.

Using this gadget, we can now obtain a NP-hardness reduction from Label Cover. Since
the proof is identical to the proof in subsection 3.2, we leave the details to the reader.

5.1. Application to hereditary discrepancy. Given a family of sets F = {S1,
. . . , Sm} over some universe U , and a subuniverse U ′ ⊆ U , let F|U′ = {S∩U ′ |S ∈ F} denote
the set family where each set in F is restricted to U ′. For each U ′ ⊆ U , let disc(F|U′) denote
the discrepancy of the restricted set family. The hereditary discrepancy of F is defined as
maxU′⊆U disc(F|U′), the worst discrepancy of any restriction of F .

The problem of computing hereditary discrepancy was considered in [18], where it was
proved to be hard to approximate within a factor 3

2
. It follows more or less immediately

from Theorem 5.1 that for any integer g we can improve this inapproximability factor to
2g+1
g+1

and thus arbitrarily close to 2. Both the reduction of [18] and that here actually give a
family such that either the discrepancy of F is large (in our case, 2g + 1) or the hereditary
discrepancy is small (in our case, g + 1).

To see this let F be a set system constructed to prove Theorem 5.1. In the Yes case F
has a near-balanced 2-coloring, and since each set in F has size 2g+ 1, this 2-coloring shows
that any restriction of F has discrepancy at most g + 1; hence this is an upper bound on
the hereditary discrepancy. In the No case F itself has discrepancy 2g+ 1 and thus also this
large hereditary discrepancy.

6. Algorithms for (1, g, 2g)-Sat. We now present efficient algorithms to find a
satisfying assignment when at least half the literals in each clause are promised to be true
under some assignment.

6.1. A randomized algorithm. Let us first describe a simple randomized
algorithm closely following Papadimitriou’s algorithm [19] for 2-Sat.

The analysis of this algorithm is essentially equivalent with that of Papadimitriou.

Proposition 6.1. If Φ is a strongly g-satisfiable width-w CNF formula and w 6 2g, then
Algorithm 1 finds a satisfying assignment in O(tn2) steps with probability at least 1− 2−t.

Algorithm 1. Randomized algorithm for (1, g, w)-Sat.

1: x← arbitrary assignment
2: while x does not satisfy φ do
3: Pick (arbitrarily) a falsified clause φ.
4: Flip the value of a randomly chosen literal of φ.
5: end while
6: return x

16 PER AUSTRIN, VENKATESAN GURUSWAMI, JOHAN HÅSTAD

Proof. Let x∗ be any g-satisfying assignment, and let xi be the value of x in the ith
iteration of Algorithm 1 and φi be the clause chosen. Define the random variable Di =
d(xi, x

∗), where d(x, y) is the Hamming distance between x and y. Clearly, Di+1−Di = ±1.
Furthermore, since x∗ satisfies g literals of φi which contains at most 2g literals, we have

Pr[Di+1 = Di − 1] > 1/2,

so that E[Di+1 − Di|Di] 6 0. In other words D1, D2, . . . describes a random walk starting
at some point between 0 and n where each step is unbiased or biased towards 0. This
is a “gambler’s ruin” chain with reflecting barrier (because the distance cannot increase
beyond n). In such a walk, the gambler is broke (i.e., the distance hits 0) in n2 steps with
constant probability. The probability that it fails to hit 0 with ctn2 steps is thus at most
2−t for a suitable chosen constant c.

Note that this algorithm is not affected by the presence of multiple copies of the same
literal within a clause. Also note that if w < 2g, the walk is in fact biased towards 0, and a
satisfying assignment is, with high probability, found in O(n) steps.

We next present a deterministic algorithm that is based on linear programming.

6.2. A deterministic algorithm. There is a very natural linear program (LP)
connected to a w-Sat formula. Namely, relax each Boolean variable xi to a real-valued
variable yi which takes values in [0, 1]. In the formula replace xi by yi, and ¬xi by 1 − yi,
and require that the sum over each clause be at least g. As an example, in (1, 2, 4)-Sat we
replace the clause (x1 ∨ x2 ∨ ¬x3 ∨ ¬x4) by the linear inequality

y1 + y2 + (1− y3) + (1− y4) > 2.

This might not seem like a very useful LP, as yi = 1/2 ∀ i satisfies all the inequalities when
w = 2g, but forcing a single variable to take the value 0 or 1 does give useful information.
Consider the procedure described in Algorithm 2, where we let bye denote the integer closest
to y. (We only apply this operation to numbers whose fractional part is not 1/2, and hence
this number is unique.) We establish in the below proposition that the algorithm is indeed
correct.

Proposition 6.2. Given a strongly g-satisfiable w-Sat instance, where w 6 2g, Algo-
rithm 2 finds a satisfying assignment.

Proof. Note first that if w < 2g, then in the LP solution any clause must contain a
literal whose value is greater than 1/2, and thus in fact the tentative assignment to xi in
line 9 is not needed.

Algorithm 2. Deterministic algorithm for (1, g, w)-Sat.

1: while there are still unassigned variables do
2: Let xi be some unassigned variable.
3: Choose b ∈ {0, 1} such that the basic LP with yi forced to b is feasible.
4: if the LP is infeasible for both choices of b then
5: return “Not strongly g-satisfiable”
6: end if
7: Let y1, . . . , yn be the LP solution when yi is forced to b.
8: for each i such that yi 6= 1

2 do
9: Assign xi ← byie.

10: end for
11: Remove all satisfied clauses from the formula.
12: end while
13: return x

(2 + ε)-SAT IS NP-HARD 17

When w = 2g each clause that contains a literal that is not exactly 1/2 must, in each
feasible solution, contain a literal that is of value strictly greater than 1/2. This implies
that if we assign the value of some variable in a clause, then in the same round we set
one of its literals to true and satisfy the clause. Thus there is no risk of falsifying a clause
during this process. In addition, the clauses that remain after each round consist only of
unassigned variables, and thus the remaining set of clauses still forms a strongly g-satisfiable
instance.

7. Conclusions. We have given a sharp classification for a natural promise version
of CNF-Sat. As CNF-Sat is a favorite starting point for many reductions, we hope that
this can give quantitatively improved results in many situations. We gave a rather modest
example in subsection 5.1, but one might hope that there are many other possibilities.

As the general framework from section 4 showed, the nonexistence of weak polymor-
phisms whose outputs satisfy a weaker predicate Q than the predicate P obeyed by its inputs
implies the hardness of finding a Q-satisfying assignment to a P -satisfiable CSP instance.
Can one establish results in the converse direction, obtaining algorithms based on the exis-
tence of nontrivial weak polymorphisms, at least for the case of Boolean predicates P,Q? (We
recall that when P = Q, we have Schaefer’s dichotomy theorem in the Boolean case [21], and
the existence of nontrivial polymorphisms precisely governs the tractability of the associated
CSP.) In a follow-up work, a dichotomy theorem for promise Boolean CSPs was established
in the special case when the predicates involved are symmetric [7], and the tractable cases
are governed by essentially three different classes of nontrivial weak polymorphisms.

One may also consider an approximate version of (a, g, w)-Sat where we are guaranteed
that there is an assignment that strongly g-satisfies a fraction c of clauses and the goal
is to find an assignment that strongly a-satisfies a fraction s of clauses. As mentioned in
subsection 3.3, we have a strong hardness result under the unique games conjecture, wherein
given a (2g+1)-Sat instance admitting an assignment that strongly g-satisfies a fraction 1−ε
of the constraints, it is hard to find an assignment that satisfies a fraction 1−2−(2g+1) + ε of
the constraints (which is what a random assignment would achieve). Obtaining such a result
without relying on the unique games conjecture seems out of reach with current techniques.
It is also an interesting goal to obtain a strong inapproximability result for this problem with
perfect completeness, i.e., when the instance admits a strongly g-satisfying assignment.

Acknowledgments. We are indebted to Dominik Scheder for the claim about the
nonexistence of gadget reductions described in subsection 4.1, and to John Wright for point-
ing out that the argument can be made very simple if we have no repeated literals. We also
thank the anonymous reviewers and the handling editor for their careful reading of the paper
and for several useful comments on the presentation.

REFERENCES

[1] D. Achlioptas, L. M. Kirousis, E. Kranakis, and D. Krizanc, Rigorous results for random
(2+p)-Sat, Theoret. Comput. Sci., 265 (2001), pp. 109–129.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and in-
tractability of approximation problems, J. ACM, 45 (1998), pp. 501–555.

[3] P. Austrin, V. Guruswami, and J. Håstad, (2 + ε)-Sat is NP-hard, in Proceedings of 55th
Annual IEEE Symposium of Foundations of Computer Science, 2014, pp. 1–10.

[4] P. Austrin and J. Håstad, On the usefulness of predicates, ACM Trans. Comput. Theory, 5
(2013), pp. 1–24.

[5] P. Austrin and E. Mossel, Approximation resistant predicates from pairwise independence,
Comput. Complex., 18 (2009), pp. 249–271.

[6] J. Brakensiek and V. Guruswami, New hardness results for graph and hypergraph colorings,
in Proceedings of the 31st Conference on Computational Complexity (CCC), 2016, pp. 14:1–
14:27, http://www.dagstuhl.de/dagpub/978-3-95977-008-8.

[7] J. Brakensiek and V. Guruswami, Promise constraint satisfaction: Algebraic structure and
a symmetric Boolean dichotomy, Electronic Colloquium on Computational Complexity
(ECCC), 23 (2016), TR 16–183, http://eccc.hpi-web.de/report/2016/183.

http://www.dagstuhl.de/dagpub/978-3-95977-008-8
http://eccc.hpi-web.de/report/2016/183

18 PER AUSTRIN, VENKATESAN GURUSWAMI, JOHAN HÅSTAD

[8] A. Bulatov, P. Jeavons, and A. Krokhin, Classifying the complexity of constraints us-
ing finite algebras, SIAM J. Comput., 34 (2005), pp. 720–742, https://doi.org/10.1137/
S0097539700376676.

[9] M. Charikar, A. Newman, and A. Nikolov, Tight hardness results for minimizing discrep-
ancy, in Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms,
2011, pp. 1607–1614, https://doi.org/10.1137/1.9781611973082.124.

[10] H. Chen, A rendezvous of logic, complexity, and algebra, ACM Comput. Surv., 42 (2009),
pp. 1–32.

[11] M. Cheraghchi, J. Håstad, M. Isaksson, and O. Svensson, Approximating linear threshold
predicates, ACM Trans. Comput. Theory, 4 (2012), pp. 1–31.

[12] U. Feige, A threshold of lnn for approximating set cover, J. ACM, 45 (1998), pp. 634–652.
[13] E. Feuerstein, A. Marchetti-Spaccamela, F. Schalekamp, R. Sitters, S. van der Ster,

L. Stougie, and A. van Zuylen, Scheduling over scenarios on two machines, in Proceed-
ings of the 20th International Conference on Computing and Combinatorics (COCOON’
14), 2014, pp. 559–571, https://doi.org/10.1007/978-3-319-08783-2 48.

[14] V. Guruswami and E. Lee, Strong inapproximability results on balanced rainbow-colorable hy-
pergraphs, in Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, 2015, pp. 822–836, http://dx.doi.org/10.1137/1.9781611973730.56.

[15] J. Håstad, Some optimal inapproximability results, J. ACM, 48 (2001), pp. 798–859.
[16] S. Khot, On the power of unique 2-prover 1-round games, in Proceedings of the 34th ACM

Symposium on Theory of Computing, 2002, pp. 767–775.
[17] E. Mossel, Gaussian bounds for noise correlation of functions, Geomet. Funct. Anal., 19

(2010), pp. 1713–1756.
[18] A. Nikolov, K. Talwar, and L. Zhang, The geometry of differential privacy: The sparse

and approximate cases, in Proceedings of the 45th annual ACM Symposium on Theory of
Computing (STOC ’13), ACM, 2013, pp. 351–360.

[19] C. H. Papadimitriou, On selecting a satisfying truth assignment, in Proceedings of the 32nd
Annual Symposium on Foundations of Computer Science (FOCS’ 91), 1991, pp. 163–169.

[20] R. Raz, A parallel repetition theorem, SIAM J. Comput., 27 (1998), pp. 763–803, https://doi.
org/10.1137/S0097539795280895.

[21] T. J. Schaefer, The complexity of satisfiability problems, in Proceedings of the Tenth Annual
ACM Symposium on Theory of Computing, 1978, pp. 216–226.

[22] D. Scheder, private communication, 2013.
[23] C. Wenner, Circumventing d-to-1 for approximation resistance of satisfiable predicates strictly

containing parity of width at least four, Theory of Computing, 9 (2013), pp. 703–757.

https://doi.org/10.1137/S0097539700376676
https://doi.org/10.1137/S0097539700376676
https://doi.org/10.1137/1.9781611973082.124
https://doi.org/10.1007/978-3-319-08783-2_48
http://dx.doi.org/10.1137/1.9781611973730.56
https://doi.org/10.1137/S0097539795280895
https://doi.org/10.1137/S0097539795280895

	Introduction
	Our results
	Techniques
	Subsequent work
	Organization

	Preliminaries
	NP-hardness of (1, g, 2g+1)-Sat
	A dictatorship gadget
	Reduction from Label Cover
	Inapproximability under the unique games conjecture

	General framework
	(1,g,w)-Sat through the polymorphic lens
	General NP-hardness result
	Dictatorship test
	NP-hardness reduction

	Hardness for discrepancy problems
	Application to hereditary discrepancy

	Algorithms for (1,g,2g)-Sat
	A randomized algorithm
	A deterministic algorithm

	Conclusions
	References

