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Abstract. The long code is a central tool in hardness of approximation, especially in questions
related to the Unique Games Conjecture. We construct a new code that is exponentially more
efficient, but can still be used in many of these applications. Using the new code we obtain exponential
improvements over several known results, including the following: (1) For any ε > 0, we show the
existence of an n-vertex graphG where every set of o(n) vertices has expansion 1−ε, but G’s adjacency
matrix has more than exp(logδ n) eigenvalues larger than 1 − ε, where δ depends only on ε. This
answers an open question of Arora, Barak, and Steurer [Proceedings of the 2010 IEEE 51st Annual
Symposium on Foundations of Computer Science, 2010, pp. 563–572], who asked whether one can
improve over the noise graph on the Boolean hypercube that has poly(log n) such eigenvalues. (2) A
gadget that reduces Unique Games instances with linear constraints modulo K into instances with
alphabet k with a blowup of kpolylog(K), improving over the previously known gadget with blowup
of kΩ(K). (3) An n-variable integrality gap for Unique Games that survives exp(poly(log logn))
rounds of the semidefinite programming version of the Sherali–Adams hierarchy, improving on the
previously known bound of poly(log logn). We show a connection between the local testability of
linear codes and Small-Set Expansion in certain related Cayley graphs and use this connection to
derandomize the noise graph on the Boolean hypercube.

Key words. hardness of approximation, Cayley graphs, locally testable codes, expanders

AMS subject classification. 68Q17

DOI. 10.1137/130929394

1. Introduction. Khot’s Unique Games Conjecture (UGC) [Kho02] has been
the focus of intense research effort in the last few years. The conjecture posits the
hardness of approximation for a certain constraint satisfaction problem and shows
promise for settling many open questions in theory of approximation algorithms.
Specifically, an instance Γ of the Unique Games problem with n variables and al-
phabet Σ is described by a collection of constraints of the form (x, y, π), where π is a
permutation over Σ. An assignment to Γ is a mapping f from [n] to Σ, and f ’s value
is the fraction of constraints (x, y, π) such that f(y) = π(f(x)). The UGC is that for
any ε > 0, there is some finite Σ such that it is NP hard to distinguish between the
case that a Unique Games instance Γ with alphabet Σ has an assignment satisfying
a 1−ε fraction of the constraints, and the case that every assignment satisfies at most
a ε fraction of Γ’s constraints.

Many works have been devoted to studying the plausibility of the UGC, as well
as exploring its implications and obtaining unconditional results motivated by this
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effort. Tantalizingly, at the moment we have very little evidence for the truth of this
conjecture. One obvious reason to believe the UGC is that no algorithm is known to
contradict it, though that of course may have more to do with our proof techniques for
algorithm analysis than actual computational difficulty. Thus perhaps the strongest
evidence for the conjecture comes from results showing particular instances on which
certain natural algorithms will fail to solve the problem. However, even those integral-
ity gaps are quantitatively rather weak. For example, while Arora, Barak, and Steurer
[ABS10] showed a subexponential upper bound on an algorithm for Unique Games

and the related Small-Set Expansion problem, the hardest known instances for
their algorithm only required quasi-polynomial time [Kol10]. Similarly (and related
to this), known integrality gaps for Unique Games and related problems do not rule
out their solution by an O(log n)-round semidefinite hierarchy, an algorithm that can
be implemented in quasi-polynomial (or perhaps even polynomial [BRS11]) time.

The long code has been a central tool in many of these works. This is the set of
“dictator” functions mapping FN

2 to F2 that have the form (x1, . . . , xN ) �→ xi for some
i. Many hardness reductions (especially from Unique Games) and constructions of
integrality gap instances use the long code as a tool. However, this is also the source
of their inefficiency, as the long code is indeed quite long. Specifically, it has only
N codewords but dimension 2N , which leads to exponential blowup in many of these
applications. In this work, we introduce a different code, which we call the “short
code,” that is exponentially more efficient and can be used in the long code’s place
in many of these applications, leading to significant quantitative improvements. In
particular, we use our code to show instances on which the [ABS10] algorithm, as
well as certain semidefinite hierarchies, requires almost subexponential time, thus
considerably strengthening the known evidence in support of the UGC.

1.1. Our results. At the heart of the long code’s applications lies its connec-
tion with the noisy hypercube. This is the weighted graph HN,ε whose vertices are
elements in FN

2 , where a random neighbor of x ∈ FN
2 is obtained by flipping each bit

of x independently with probability ε.1 It is not too hard to show that the codewords
of the long code correspond to the top eigenvectors of the noisy hypercube, which
also give the minimal bisections of the graph, cutting only a ε fraction of edges. In
addition, several converse results are known, showing that bisections (and more gen-
eral functions) cutting few edges are close to these top eigenvectors (or dictatorships)
in some sense. (One such result is the “Majority Is Stablest” theorem of [MOO05].)
The inefficiency of the long code is manifested in the fact that the number of vertices
of the noisy cube is exponential in the number N of its top eigenvectors.

The short code. Another way to describe the long code is that it encodes x ∈ Fn
2

by a binary vector vx of length 22
n

, where vx(f) = f(x) for every function f : Fn
2 → F2.

This view also accounts for the name “long code,” since one can see that this is the
longest possible encoding of x without having repeated coordinates. For every subset
D of functions mapping Fn

2 to F2, we define the D-short code to be the code that
encodes x by a vector vx of length |D|, where vx(f) = f(x) for every f ∈ D. Note
that this is a very general definition that encapsulates any code without repeated
coordinates. For d ∈ N, we define the d-short code to be the D-short code where
D is the set of all polynomials over Fn

2 of degree at most d. Note that the 1-short
code is the Hadamard code, while the n-short code is the long code. We use the

1This graph is closely related and has similar properties to the unweighted graph where we
connect x and y if their Hamming distance is at most εN .
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name “short code” to denote the d-short code for d = O(1). Note that the short

code has 2n codewords and dimension roughly 2n
d

, and hence only quasi-polynomial
blowup, as opposed to the exponential blowup of the long code. Our main contribution
is a construction of a “derandomized” noisy cube, which is a small subgraph of the
noisy cube that enjoys the same relations to the short code (including a Majority Is
Stablest theorem) as the original noisy cube has to the long code. As a result, in
many applications one can use the short code and the derandomized cube in place
of the long code and the noisy cube, obtaining an exponential advantage. Using this
approach we obtain the following results.

Small-set expanders with many large eigenvalues. Our first application, and the
motivation to this work, is a question of Arora, Barak, and Steurer [ABS10]: How
many eigenvectors with eigenvalue at least 1 − ε can an n-vertex small-set expander
graph have? We say a graph is a small-set expander if all sufficiently small subsets of
vertices have, say, at least a 0.9 fraction of their neighbors outside the set. [ABS10]
showed an upper bound of nO(ε) on the number of large (i.e., greater than 1 − ε)
eigenvalues of a small-set expander. Arora, Barak, and Steurer then observed that
the subspace enumeration algorithm of [KT07, Kol10] for approximating Small-Set

Expansion in an input graph takes time at most exponential in this number, which
they then use to give an algorithm with similar running time for the Unique Games

problem. Up to this work, the best lower bound was polylog(n), with the example
being the noisy cube, and hence as far as we knew, the algorithm of [ABS10] could
solve the Small-Set Expansion problem in quasi-polynomial time, which in turn
might have had significant implications for the Unique Games problem as well.
Our derandomized noisy cube yields an example with roughly exponentially more
eigenvalues than the noisy cube.

Theorem 1.1. For every ε > 0, there is an n-vertex small-set expander graph

with 2(logn)Ω(1/ log(1/ε))

eigenvectors with corresponding eigenvalues at least 1− ε.
Theorem 1.1 actually follows from a more general result connecting locally testable

codes to small-set expanders, which we instantiate with the Reed–Muller code. See
section 2 for details.

Efficient integrality gaps. There is a standard semidefinite programming (SDP)
relaxation for the Unique Games problem, known as the “basic SDP” [FL92, KV05,
RS09]. Several works have shown upper and lower bounds on the approximation
guarantees of this relaxation, and for constant alphabet size, the relation between
the alphabet size and approximation guarantee is completely understood [CMM06].
However, for an unbounded alphabet, there was still a big gap in our understanding
of the relation between the approximation guarantee and the number of variables.
Gupta and Talwar [GT06] showed that if the relaxation’s value is 1 − ε, there is
an assignment satisfying a 1− O(ε logn) fraction of constraints. On the other hand,
Khot and Vishnoi [KV05] gave an integrality gap instance where the relaxation’s value
was 1− 1/ poly(log logn),2 but the objective value (maximum fraction of constraints
satisfied by any assignment) was o(1). It was a natural question whether this could be
improved (e.g., see [Lee11]), and indeed our short code allows us to obtain an almost
exponential improvement.

2Throughout, for any function f , poly(f(n)) denotes a function g satisfying g(n) = f(n)Ω(1) .
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Theorem 1.2. There is an n-variable instance of Unique Games with ob-
jective value o(1) but for which the standard SDP relaxation has value at least 1 −
1/ qpolylog(n).3

Integrality gaps for SDP hierarchies. Our best evidence for the hardness of the
UGC comes from integrality gap instances for SDP hierarchies. These are strength-
ened versions of the basic SDP where one obtains tighter relaxations by augmenting
them with additional constraints; we refer the reader to [CT10] for a good overview of
SDP hierarchies. These hierarchies are generally parametrized by a number r (often
called the number of rounds), where the first round corresponds to the basic SDP, and
the nth round (where n is the instance size) corresponds to the exponential brute force
algorithm that always computes an optimal answer. Generally, the rth round of each
such hierarchy can be evaluated in nO(r) time (though in some cases nO(1)2O(r) time
suffices [BRS11]). In this paper we consider two versions of these hierarchies—the
SA-SDP hierarchy and the weaker LH hierarchy defined in the work of Raghavendra
and Steurer [RS09]. Loosely speaking, the rth round of the SA-SDP hierarchy adds
the constraints of the rth round of the Sherali–Adams linear programming hierarchy
(see [SA90]) to the basic SDP; the rth round of the LH hierarchy (here LH stands for
“local constraints hierarchy”) augments the basic SDP with the constraint that every
subset of r vectors from the vector solution embeds isometrically into the �1 metric.
(See Appendix B and [RS09] for more details.)

Barak, Raghavendra, and Steurer [BRS11] (see also [GS11]) showed that for every
ε > 0, nε rounds of the SA-SDP hierarchy yield a nontrivial improvement over the
basic SDP. The UGC predicts that this is optimal, in the sense that no(1) rounds of
any hierarchy should not improve the worst-case approximation ratio above the basic
SDP.4 However, this prediction is far from being verified, with the best lower bounds
given by [RS09] (see also [KS09]), which showed instances that require logΩ(1) n rounds
for the LH hierarchy, and (log logn)Ω(1) rounds for the SA-SDP hierarchy. Moreover,
these instances are known to be solvable in quasi-polynomial time [Kol10] and, in fact,
via polylog(n) rounds of the SA-SDP hierarchy [BRS11] . Thus prior work gave no
evidence that the Unique Games problem cannot be solved in quasi-polynomial
time. In this work we obtain almost exponentially more efficient integrality gaps,
resisting qpoly(logn) rounds of the SA-SDP hierarchy and qqpoly(n) rounds of the
LH hierarchy. The latter is the first superlogarithmic SDP hierarchy lower bound for
Unique Games for any SDP hierarchy considered in the literature.

Theorem 1.3. For every ε > 0 there is some k = k(ε) such that for every n
there is an n-variable instance Γ of Unique Games with alphabet size k such that
the objective value of Γ is at most ε, but the value on Γ of both qpoly(logn) rounds of
the SA− SDP hierarchy and qqpoly(n) rounds of the LH hierarchy is at least 1−ε.

A corollary of the above theorem is a construction of an n-point metric of negative
type such that all sets of size up to some k = qqpoly(n) embed isometrically into �1,
but the whole metric requires qpolylog(n) distortion to embed into �1. We remark
that Theorem 1.3 actually yields a stronger result than stated here—as a function of
k, our results (as was the case with the previous ones) obtain a close to optimal gap
between the objective value and the SDP value of these hierarchies; in particular we

3For functions f, g : N → [0,∞) we write f = qpoly(g) if f = exp(polylog(g)), that is, if there are
constants C > c > 0 such that for all sufficiently large n, exp((log g(n))c) � f(n) � exp((log g(n))C ).
(Note that we allow c < 1, and so f = qpoly(g) does not imply that f > g.) Similarly, we define
qpolylog(g) = qpoly(log g) and write f = qqpoly(g) if f = exp(exp(poly(log log g))).

4This is under the widely believed assumption that NP � Dtime(exp(no(1)).
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show that in the above number of rounds one cannot improve on the approximation
factor of the Goemans–Williamson algorithm for Max-Cut. It is a fascinating open
question whether these results can be extended to the stronger Lasserre hierarchy.
Some very recent results of Barak et al. [BHK+11] (obtained subsequent to this work)
indicate that new ideas may be needed to do this, since the Unique Games instances
constructed here and in prior works are not integrality gaps for some absolute constant
number of rounds of the Lasserre hierarchy.

Alphabet reduction gadget. Khot et al. [KKMO07] used the long code to show
an “alphabet reduction” gadget for Unique Games. They showed how to reduce a
Unique Games instance with some large alphabet K to an instance with an arbitrar-
ily small alphabet. (In particular, they showed how one can reduce arbitrary Unique

Games instances into binary alphabet instances, which turns out to be equivalent
to the Max-Cut problem.) However, quantitatively their result was rather inefficient,
incurring an exponential inK blowup of the instance. By replacing the long code with
our “short code,” we obtain a more efficient gadget, incurring only a quasi-polynomial
blowup. One caveat is that, because the short code doesn’t support arbitrary per-
mutations, this reduction works only for Unique Games instances whose constraints
are affine functions over Fk

2 , where k = logK; however, this class of Unique Games

seems sufficiently rich for many applications.5

Theorem 1.4. For every ε there are k, δ, and a reduction that for every � maps
any n-variable Unique Games instance Γ whose constraints are affine permutations
over alphabet F�

2 into an n · exp(poly(�, k))-variable Unique Games instance Γ′ of
alphabet k such that if the objective value of Γ is larger than 1− δ, then the objective
value of Γ′ is larger than 1− ε, and if the objective value of Γ is smaller than δ, then
the objective value of Γ′ is smaller than ε.

Once again, our quantitative results are stronger than stated, and as in
[KKMO07], we obtain a nearly optimal relation between the alphabet size k and
the soundness and completeness thresholds. In particular, for k = 2 our results match
the parameters of the Max-Cut algorithm of Goemans and Williamson. Our alphabet
reduction gadget suggests a new approach to proving the UGC by using it as an “in-
ner PCP.” For example, one could first show hardness of Unique Games with very
large alphabet (polynomial or even subexponential in the number of variables) and
then applying alphabet reduction. At the very least, coming up with plausible hard
instances for Unique Games should be easier with a large alphabet.

Remark 1.1. The long code is also used as a tool in applications that do not
involve the UGC. On a high level, there are two properties that make the long code
useful in hardness of approximation: (i) It has a 2-query test obtained from the noisy
hypercube, and (ii) it has many symmetries, and in particular one can read off any
function of x from the xth codeword. Our short code preserves property (i) but (as
is necessary for a more efficient code) does not preserve property (ii), as one can read
off only low degree polynomials of x (also it is symmetric only under affine transfor-
mations). We note that if one does not care about property (i) and is happy with a
3-query test, then it’s often possible to use the Hadamard code, which is more efficient
than the short code (indeed it’s essentially equal to the d-short code for d = 1). Thus,
at least in the context of hardness of approximation, it seems that the applications in
which the short code will be most useful are those where property (i) is the crucial one.

5For example, because the multiplicative group of the field F2n is cyclic, one can represent
constraints of the form xi − xj = ci,j (mod 2n − 1) as linear constraints over Fn

2 (i.e., constraints of
the form xi = Ci,jxj , where Ci,j is an invertible linear map over Fn

2 ).
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Despite the name “short code,” our code is not the shortest possible code. While
in our applications, dimension linear in the number of codewords is necessary (e.g.,
one can’t have a graph with more eigenvalues than vertices), it’s not clear that the
dimension needs to be polynomial. It is a very interesting open question to find
shorter codes that can still be used in the above applications.

2. Our techniques. To explain our techniques we focus on our first application—
the construction of a small-set expander with many eigenvalues close to 1. The best
way to view this construction is as a derandomization of the noisy hypercube, and so
it will be useful to recall why the noisy hypercube itself is a small-set expander.

Recall that the ε-noisy hypercube is the graph HN,ε whose vertex set is {±1}N ,
where we sample a neighbor of x by flipping each bit independently with probability ε.
The eigenvectors inHN,ε are given by the parity functions χα(x) =

∏
i∈α xi for subsets

α ⊆ [N ], and the corresponding eigenvalues are λα = (1 − 2ε)|α|. Thus λα depends
only on the degree |α| of χα. In particular, the “dictator” functions χ{i}(x) = xi
have eigenvalue 1 − 2ε, and they correspond to balanced cuts (where vertices are
partitioned based on the value of xi) with edge expansion ε. As α increases, λα
decreases, becoming smaller than a universal constant < 1 at around |α| = O(1/ε).

Given f : {±1}N → {0, 1} which is the indicator of a set S, its Fourier expansion

f(x) =
∑

α f̂(α)χα(x) can be viewed as expressing the vector f in the eigenvector
basis. The edge expansion of S is determined by the distribution of its Fourier mass;
sets where most of the Fourier mass is on large sets will expand well. Given this
connection, Small-Set Expansion follows from the fact that the indicator functions
of small sets have most of their mass concentrated on large Fourier coefficients. More
precisely, a set S of measure μ has most of its Fourier mass on coefficients of degree
Ω(log(1/μ)). This follows from the so-called (2,4)-hypercontractive inequality for low-
degree polynomials—that for every degree-d polynomial f ,

(2.1) E
x∈{±1}N

[f(x)4] � C E
x∈{±1}N

[f(x)2]2

for some C depending only on d. (See section 4.1 for the proof, though some intuition
can be obtained by noting that if f is a characteristic function of a set S of measure
μ = o(1), then E[f2]2 = μ2 and E[f4] = μ, and hence (2.1) shows that f cannot be
an O(1)-degree polynomial.)

By a “derandomized hypercube” we mean a graph on much fewer vertices that still
(approximately) preserves the above properties of the noisy hypercube. Specifically,
we want to find a very small subset D of {±1}N and a subgraph G of HN,ε whose
vertex set is D such that (i) G will have an eigenvalue profile similar to HN,ε and, in
particular, have N eigenvalues close to 1, and (ii) G will be a a small-set expander.
To get the parameters we are looking for, we’ll need to have the size of D be at most
qpoly(N).

A natural candidate is to take D to be a random set, but it is not hard to show
that this will not work.6 A better candidate might be a linear subspace D ⊆ FN

2 that
looks suitably pseudorandom. We show that in fact it suffices to choose a subspace D
whose dual C = D⊥ is a sufficiently good locally testable code. (We identify FN

2 with
{±1}N via the usual map (b1, . . . , bN ) �→ ((−1)b1 , . . . , (−1)bN ).)

6The noisy hypercube places most of its edge weight on pairs with Hamming distance ε ·N , which
form an exponentially small fraction of all pairs. Therefore, a random subset of subexponential size
will essentially contains no edges with high probability.
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Our construction requires an asymptotic family of [N,K,D]2 linear codes C ⊆ FN
2

with a sufficiently large constant distance D. The codes must be equipped with an
εN -query local tester which when given a received word α ∈ FN

2 samples a codeword
q of weight at most εN from a distribution T on C⊥ and accepts if 〈α, q〉 = 0. The
test clearly accepts codewords in C; we also require it to reject words that are distance
at least D/10 from every codeword in C with probability 0.49. Given such a locally
testable code C, we consider the Cayley graph7 G whose vertices are the codewords
of the dual code D = C⊥, while the (appropriately weighted) edges correspond to the
distribution T . That is, a vertex of G is a codeword x ∈ D, while a random neighbor
of x is obtained by picking a random q from T and moving to x+ q.

Because D is a subspace, it is easy to show that the eigenvectors of G are lin-
ear functions of the form χα(x) for x, α ∈ FN

2 (where if α ⊕ α′ ∈ C, then χα and
χα′ are identical on G’s vertices). Moreover, from the way we designed the graph,
for every α ∈ Fn

2 , the corresponding eigenvalue λα is equal to Eq∈T [(−1)〈α,q〉] =
1 − 2PT [Test rejects α]. This connection between the spectrum of G and the local
testability of C allows us to invoke machinery from coding theory in our analysis.

From this one can deduce that the eigenvalue spectrum of G does indeed resemble
the hypercube in the range close to 1. In particular, for at least half the coordinates
i, χ{i}(x) = xi is a distinct eigenvector with eigenvalue at most 1 − 4ε and gives a
bad cut in G (where vertices are partitioned based on the value of xi). On the other
hand, for any eigenvector χ of G, choose α of minimal weight such that χ = χα. Now
if |α| > D/10, this means that the distance of α from C is at least D/10, which using
the testing property implies that λα � 1− 2 · 0.49 = 0.02.

If we can show that indicator functions of small sets have most of their Fourier
mass on such eigenvectors (with small eigenvalue), this will imply that small sets have
good expansion. For small subsets of the hypercube, recall that this is proved using
(2,4)-hypercontractivity for low-degree polynomials. The key observation is that the
inequality

(2.2) E
x∈D

[f(x)4] � C E
x∈D

[f(x)2]2

still holds for all polynomials f of degree d < D/4. This is because the distance of C
is D; hence the distribution of a random x in D is D-wise independent, which means
that the expectation of any polynomial of degree at most D is equal over such x and
over a uniform x in {±1}N . Thus (2.2) follows from (2.1), completing our proof.

We instantiate this approach by using for C the Reed–Muller code consisting of
polynomials in n variables over F2 of degree n − d − 1. This is a code of distance
D = 2d−1. We note that the degree n−d−1 and hence the rate of the code C are very
high. The graph is over the codewords of D = C⊥ that is itself the Reed–Muller code
of polynomials over Fn

2 of degree d. Our basic tester consists of selecting a random
minimum weight codeword of D.8 Thus our graph G has as its vertices the d-degree
polynomials over Fn

2 with an edge between all polynomials p, q such that p − q is a
product of d linearly independent affine functions (as those are the minimal weight
codewords in the Reed–Muller code). We use the optimal analysis of Bhattacharyya
et al. [BKS+10] to argue about the local testability of C which is a high-degree Reed–
Muller code. We should note that this test is very closely related to the Gowers

7Cayley graphs are usually defined to be unweighted graphs. However, the definition can be
generalized straightforwardly to weighted graphs.

8For many applications we amplify the success of this tester by selecting a sum of t random such
words; this corresponds to taking some power of the basic graph G described.
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uniformity test that was first analyzed in the work of Alon et al. [AKK+05], but our
application requires the stronger result from [BKS+10].

2.1. Other applications. We now briefly outline how we use the above tools to
obtain more efficient versions of several other constructions such as alphabet reduction
gadgets and integrality gaps for Unique Games and other problems.

Efficient integrality gaps for Unique Games. To begin with, the graph we con-
struct can be used to prove Theorem 1.2. Fix a constant δ > 0 (say 1/100). The goal
is to construct an M -variable instance Γ of Unique Games where every assignment
can satisfy at most a δ fraction of the constraints, but for which the standard SDP
relaxation has value of at least 1− 1/ qpoly(logM). The basic idea is to simply take
the graph G we constructed above and turn it into an instance of Unique Games by
considering it to be the label extended graph of some Unique Games instance. We
now elaborate a bit below, leaving the full details to section 6. Recall that a Unique

Games instance Γ with M variables and alphabet Σ is described by a collection of
constraints of the form (x, y, π), where π is a permutation over Σ. An assignment to
Γ is a mapping f from [M ] to Σ, and f ’s value is the fraction of constraints (x, y, π)
such that f(y) = π(f(x)). The label extended graph corresponding to Γ is the graph
GΓ over vertices [M ]× Σ, where for every constraint of the form (x, y, π) and σ ∈ Σ
we add an edge between (x, σ) and (y, π(σ)). It is not hard to see that an assignment
of value 1 − ε corresponds to a subset S containing exactly M of GΓ’s vertices with
small expansion (i.e., a ε fraction of the edges from S leave the set). Thus if GΓ is an
expander for sets of measure 1/|Σ| in GΓ, then there is no nearly satisfying assignment
for the Unique Games instance Γ. In our case, our graph G has the degree-d poly-
nomials over Fn

2 as its vertices, and we transform it into a Unique Games instance
whose variables correspond to degree-d polynomials without linear terms. The alpha-
bet Σ consists of all linear functions over Fn

2 . We ensure that the graph G is the label
extended graph of Γ by setting the permutations accordingly: Given a polynomial p
without a linear term, and a function q that is a product of d affine functions,9 if we
write q = q′+q′′, where q′′ is the linear part of q, then we add a constraint of the form
(p, p + q′, π), where π is the permutation that maps a linear function r into r + q′′.
Some not too difficult calculations show that the top eigenvectors of our graph G yield
a solution for the semidefinite program for Γ (if the top eigenvectors are f1, . . . , fK ,
our vector solution will associate with each vertex x the vector (f1(x), . . . , fK(x))).
By choosing carefully the parameters of the graph G, the instance Γ will have SDP
value 1− 1/ qpoly(logM), where M is the number of variables.

Derandomized invariance principle. While hypercontractivity of low-degree poly-
nomials suffices for some applications of the long code, other applications require
other theorems, and in particular the invariance principle, shown for the hypercube
by Mossel, O’Donnell, and Oleszkiewicz [MOO05]. Roughly speaking, their invari-
ance principle says that for “nice” functions f on the vertices of the N -dimensional
noisy hypercube, the distribution of f(x), where x is a random vertex, is close to the
distribution of f(y), where y consists of N independent standard Gaussian random
variables (appropriately extending f to act on RN ). To obtain a more efficient version
of these applications, we first show that the same holds even when x is a random ver-
tex in our smaller subset of N -dimensional strings—the Reed–Muller codewords. Our
central tool is a recent result by Meka and Zuckerman [MZ13] which derandomizes the

9Actually, to get better parameters, we take some power t of G, meaning that we consider q that
is a sum of t functions that are products of d affine functions.
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invariance principle of Mossel, O’Donnell, and Oleszkiewicz. Our key insight is that
taking a random Reed–Muller codeword can, in fact, be viewed as an instantiation of
the Meka–Zuckerman generator, which involves splitting the input into blocks via a
pairwise independent hash function, and using independent k-wise independent dis-
tributions in each block. This allows us to obtain a version of the Majority Is Stablest
theorem for our graph, which is the main corollary of the invariance principle that is
used in applications of the long code. See section 5 for more details

Efficient alphabet reduction. With the Majority Is Stablest theorem in hand, prov-
ing Theorem 1.4 (efficient alphabet reduction for Unique Games), is fairly straight-
forward. The idea is to simply replace the noisy hypercube gadget used by [KKMO07]
with our derandomized hypercube. This is essentially immediate in the case of al-
phabet reduction to a binary alphabet (i.e., reduction to Max-Cut) but requires a bit
more work when reducing to a larger alphabet. See Appendix A for more details.

Efficient hierarchy integrality gaps. Our proof of Theorem 1.3 again works by
plugging in our short code/derandomized noisy hypercube in place of the long code
in the previous integrality gap constructions [KV05, KS09, RS09]. Specifically, these
constructions worked by starting with an integrality gap for Unique Games where
the basic SDP yields 1−1/r, and then composing it with an alphabet reduction gadget
to obtain a new instance; Raghavendra and Steurer [RS09] showed that the composed
instances resist poly(r) rounds of the SA-SDP hierarchy and exp(poly(r)) rounds of
the LH hierarchy. These constructions used the noisy cube twice—both to obtain the
basic Unique Games gap instance and to obtain the alphabet reduction gadget. We
simply plug in our short code in both usages—using for the basic Unique Games

instance the efficient version obtained in Theorem 1.2, and for the alphabet reduction
gadget the efficient version obtained in Theorem 1.4. (Luckily, our Unique Games

instance has affine constraints and so is compatible with our alphabet reduction gad-
get.) The result essentially follows in a blackbox way from the analysis of [RS09]. See
Appendix B for details.

3. Preliminaries. Let G be a regular graph with vertex set V . For a subset S ⊆
V we define the volume of S, denoted μ(S), to be |S|/|V |. We define the expansion of
S, denoted Φ(S), to be the probability over a random edge (u, v), conditioned on u ∈ S
such that v 	∈ S. Equivalently (since G is regular), Φ(S) = G(S, V \ S)/(degG ·|S|),
where degG is the degree of the graph G and G(S, V \S) is the number of edges going
from S to V \S. Throughout, we denote the normalized adjacency matrix of a graph
G also by G, and refer to the spectrum of the adjacency matrix as the spectrum of
the graph G. Note that by definition, every regular graph has maximum eigenvalue
1. In this paper, we use expectation norms for real-valued functions. That is, for a
function f : S → R and p � 1, we let ‖f‖p := (Ex∈S |f(x)|p)1/p.

Many of the Unique Games instances that appear in this work belong to a
special subclass of Unique Games, namely Fn

2 -Max-2Lin instances defined below.

Definition 3.1. Given a group H, an H-Max-2Lin instance consists of a system
of linear equations over the group H, where each equation is of the form xi− xj = cij
for some cij ∈ H.

Locally testable codes. Let C be an [N,K,D]2 code; that is, C is a K-dimensional
linear subspace of FN

2 with minimum distance D (= min{wt(x) : x ∈ C}). (In this
paper, we are mostly interested in the extremely high rate regime when H = N−K is
very small compared to N and are happy with D being a sufficiently large constant.)
Let Δ(x, y) ∈ {0, . . . , N} denote Hamming distance between x, y ∈ FN

2 . For α ∈ FN
2
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and a code C, we define

Δ(α, C) def
= min

c∈C
Δ(α, c).

Definition 3.2. We say a distribution T over FN
2 is a canonical tester for

C if every vector in the support of the distribution T is a codeword q ∈ C⊥. The
query complexity of T is the maximum weight of a vector in its support. The tester’s
soundness curve sT : N→ [0, 1] is defined as

sT (k)
def
= min

α∈FN
2

Δ(α,C)�k

P
q∼T
{〈α, q〉 = 1}.

Similarly, we denote the rejection probability of T for a vector α ∈ FN
2 by sT (α) =

Pq∼T {〈α, q〉 = 1}. We let the query probability τ ∈ [0, 1] of a tester be the expected
fraction of queried coordinates, that is, τ = Eq∼T wt(q)/N . We say that a tester T
with query probability τ is smooth if for any coordinate i ∈ [N ], Pq∼T {qi = 1} = τ ,
and we say it is 2-smooth if, in addition, for any two distinct coordinates i 	= j,
Pq∼T {qi = qj = 1} = τ2.

If the tester T is clear from the context, we will sometimes drop the subscript
of the soundness curve/rejection probability sT . In the setting of this paper, we will
consider testers with query probability slowly going to 0 (with N). Further, given a
canonical tester T , it is easy to amplify the probability of rejection by repeating the
test and taking the XOR of the results.

Finally, the following simple lemma gives some estimates for rejection probabilities
of vectors for smooth testers.

Lemma 3.3. If T is a smooth canonical tester with query probability τ , then
sT (α) � Δ(α, C) · τ for every vector α ∈ FN

2 . Furthermore, if T is 2-smooth, then
sT (α) � (1− γ) ·Δ(α, C) · τ for every vector α ∈ FN

2 with Δ(α, C)τ � γ.
Proof. Fix α ∈ FN

2 and let k = Δ(α, C). Without loss of generality, we may
assume wt(α) = k. By renaming coordinates, we may assume α1 = · · · = αk = 1 and
αk+1 = · · · = αN = 0. Then, sT (α) � Pq∼T {q1 = 1} + · · · + Pq∼T {qk = 1} = k · τ .
On the other hand,

sT (α) �
k∑

i=1

P
q∼T
{qi = 1}−

∑
0�i<j�k

P
q∼T
{qi = qj = 1} � kτ−k2τ2 � (1−γ)·kτ .

We review the prerequisites for Majority Is Stablest and Unique Games related
results in the corresponding sections.

4. Small-set expanders from locally testable codes. In this section we first
use some known properties of hypercontractive norms to give a sufficient condition
for graphs to be small-set expanders. We then describe a generic way to construct
graphs satisfying this condition from locally testable codes, proving Theorem 1.1.

4.1. Subspace hypercontractivity and SMALL-SET EXPANSION. Let V
be a subspace of the set of functions from V to R for some finite set V . We denote
by PV the projection operator to the space V . For p, q � 1, we define

‖V‖p→q
def
= max

f :V→R

‖PVf‖q
‖f‖p .

We now relate this notion to Small-Set Expansion. We first show that a subspace
V with bounded (4/3)→ 2 norm cannot contain the characteristic function of a small
set.
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Lemma 4.1. Let f : V → {0, 1} such that μ = Ex∈V [f(x)]; then ‖PVf‖22 �
‖V‖24/3→2μ

3/2.
Proof. The proof is by direct calculation

‖PVf‖22 � ‖V‖24/3→2‖f‖24/3 = ‖V‖24/3→2μ
(3/4)·2.

Note that if ‖V‖4/3→2 = O(1) and μ = o(1), then ‖PVf‖22 = o(‖f‖22), meaning
the projection of f onto V is small. It is often easier to work with the 2 → 4 norm
instead of the 4/3 → 2 norm. The following lemma allows us to use a bound on the
former to bound the latter.

Lemma 4.2.

‖V‖4/3→2 � ‖V‖2→4.

Proof. Let f : V → R and let f ′ = PVf . We know that

E[f ′2] = E[f ′ · f ] (since f ′ is the projection of f)

� E[f ′4]1/4 E[f4/3]3/4 (by Hölder’s inequality)

= E[(PVf
′)4]1/4 E[f4/3]3/4 (projection is idempotent)

� ‖V‖2→4 E[(f
′)2]1/2 E[f4/3]3/4 .

Dividing by ‖f‖2 = E[f2]1/2 yields the result.
We now conclude that graphs for which the top eigenspace has bounded 2 → 4

norm are small-set expanders. The lemma can be viewed qualitatively as a gener-
alization of one direction of the classical Cheeger’s inequality relating combinatorial
expansion to eigenvalue gap [Che70].

Lemma 4.3. Let G = (V,E) be a regular graph, and let V be the span of the
eigenvectors of G with eigenvalue larger than λ. Then, for every S ⊆ V ,

Φ(S) � 1− λ− ‖V‖22→4

√
μ(S).

Proof. Let f be the characteristic function of S, and write f = f ′ + f ′′, where
f ′ = PVf (and so f ′′ = f − f ′ is the projection to the eigenvectors with value at most
λ). Let μ = μ(S). We know that

(4.1) Φ(S) = 1− 〈f,Gf〉/‖f‖22 = 1− 〈f,Gf〉/μ.

By Lemmas 4.1 and 4.2,

〈f,Gf〉 = 〈f ′, Gf ′〉+ 〈f ′′, Gf ′′〉 � ‖f ′‖22 + λ‖f ′′‖22 � ‖V‖24/3→2μ
3/2 + λμ

� ‖V‖22→4μ
3/2 + λμ .

Plugging this into (4.1) yields the result.

4.2. Cayley graphs on codes. Motivated by the previous section, we now
construct a graph for which the projection operator onto the top eigenspace is hyper-
contractive, i.e., has small 2→ 4 norm, while also having high rank.

Let C ⊆ FN
2 be an [N,K,D]2 code. The graph we construct will be a Cayley

graph with vertices indexed by C⊥ and edges drawn according to a canonical local
tester T for C. Let Cay(C⊥, T ) denote the (weighted) Cayley graph with vertex set
C⊥ and edges generated by T . We describe the graph more precisely by specifying
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the neighbor distribution for a random walk on the graph. For a vertex p ∈ C⊥, a
random neighbor has the form p + q with q sampled from the tester T . (Since the
group C⊥ has characteristic 2, the graph Cay(C⊥, T ) is symmetric for every tester T .)

We will argue that if the tester T has small query complexity and good sound-
ness, then the graph Cay(C⊥, T ) has many large eigenvalues while being a small-set
expander.

Theorem 4.4. Let C be an [N,K,D]2 linear code that has a canonical tester
T with query complexity εN and soundness curve s(), and let k < D/5. The graph
Cay(C⊥, T ) has 2N−K = 2H vertices with at least N/2 eigenvalues larger than 1− 4ε.
All subsets S of C⊥ have expansion at least

Φ(S) � 2s(k)− 3k
√
μ(S).

By XORing the results of multiple tests, one can let the soundness s(k) tend to
1/2. Hence, if s(k) is significantly larger than ε (for appropriate k), one can obtain
a graph with many large eigenvalues such that small enough sets have near-perfect
expansion.

Eigenfunctions and eigenvalues. We identify the graph G = Cay(C⊥, T ) by its
normalized adjacency matrix. For every vector α ∈ FN

2 , the character χα : C⊥ → {±1}
with χα(p) = (−1)〈α,p〉 is an eigenfunction of G. If two vectors α, β ∈ FN

2 belong to
the same coset of C, they define the same character over C⊥ since 〈α + β, p〉 = 0 for
all p ∈ C⊥, while if α + β 	∈ C, then 〈χα, χβ〉 = 0. Thus, the set of characters of C⊥
corresponds canonically to the quotient space FN

2 /C. If we fix a single representative
α for every coset in FN

2 /C, we have exactly 2N−K = 2H distinct, mutually orthogonal
characters. We define the degree of a character as follows:

(4.2) deg(χα) = min
c∈C

wt(α+ c) = Δ(α, C) .

Note that if deg(χα) < D/2, then the minimum weight representative in α + C is
unique. (This uniqueness will allow us later to define low-degree influences of func-
tions; see section 5.)

We let λα denote the eigenvalue corresponding to character χα. The following
observation connects the soundness of the canonical tester to the spectrum of G.

Lemma 4.5. For any α ∈ FN
2 , λα = 1− 2s(α).

Proof. From standard facts about Cayley graphs, it follows that

(4.3) λα = E
q∈T

[χα(q)] = E
q∈T

[(−1)α·q] = 1− 2 P
q∈T

[α · q = 1] = 1− 2s(α).

We use this to show that many dictator cuts in G which correspond to characters
with degree 1 have eigenvalues close to 1. We let λi, χi denote λ{i}, χ{i}. As noted
before, for D > 2 these are distinct characters.

Corollary 4.6. We have λi � 1− 4ε for at least N/2 coordinates [i] ∈ N .
Proof. We have λi = 1− 2Pq∈T [qi = 1]. Since wt(q) � εN for every q ∈ T ,

N∑
i=1

P
q∈T

[qi = 1] � εN.

So we can have Pq∈T [qi = 1] � 2ε for at most N/2 coordinates.
Another immediate consequence of Lemma 4.5 is that large-degree characters

have small eigenvalues.
Corollary 4.7. If deg(χα) � k, then λα � 1− 2s(k).
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Subspace hypercontractivity. Given a function f : C⊥ → R, we can write it
(uniquely) as a linear combination of the characters {χα}α∈FN

2 /C :

f(p) =
∑

α∈FN
2 /C

f̂(α)χα(p) ,

where f̂(α) = 〈χα, f〉 is the Fourier transform of f (over the abelian group C⊥).
We define the degree of f , denoted deg(f), to be maxα:f̂(α) �=0 deg(χα). Note that

deg(f + g) � max{deg(f), deg(g)} and deg(fg) � deg(f) + deg(g). The following
crucial observation follows immediately from the fact that C has minimum distanceD.

Fact 4.8. The uniform distribution on C⊥ is (D− 1)-wise independent. That is,
for any α ∈ FN

2 such that 1 � wt(α) < D, we have Ep∈C⊥ [χα(p)] = 0.
This fact has the following corollary.
Lemma 4.9. Let � < (D−1)/4, and let V be the subspace of functions with degree

at most �. Then ‖V‖2→4 � 3�/2.
Proof. The proof follows from the following two facts:
1. This bound on the 2 → 4 norm is known to hold for true low-degree poly-

nomials under the uniform distribution on the hypercube by the Bonami–
Beckner–Gross inequality [O’D08].

2. The expectation of polynomials of degree up to 4� < D− 1 is the same under
the uniform distribution and a (D − 1)-wise independent distribution.

Given f : Rn → R, let f � denote its projection onto the space V spanned by
characters where deg(χα) � �. We have

‖f �‖44 = E
p∈C⊥

[f �(p)4] = E
p∈{0,1}N

[f �(p)4] ,

‖f‖22 � ‖f �‖22 = E
p∈C⊥

[f �(p)2] = E
p∈{0,1}N

[f �(p)2] .

By the 2→ 4 hypercontractivity for degree-� polynomials over {0, 1}N ,

E
p∈{0,1}N

[f �(p)4] � 9� E
p∈{0,1}N

[f �(p)2]2 .

So we conclude that

E
p∈C⊥

[f �(p)4] � 9� E
p∈C⊥

[f �(p)2]2 � 9� E
p∈C⊥

[f(p)2]2 ,

which implies that ‖V‖2→4 � 3�/2.
Combining the above bound with Lemma 4.3, we get that, if the local tester

rejects sufficiently far codewords with high probability, then the resulting graph is a
small-set expander.

Corollary 4.10. For every vertex subset S in the graph Cay(C⊥, T ) and every
k < D/5, we have

Φ(S) � 2s(k)− 3kμ(S)
1
2 .

In particular, as s(k) tends to 1/2, the expansion of small sets tends to 1. This
corollary together with Corollary 4.6 completes the proof of Theorem 4.4.
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4.3. A canonical tester for Reed–Muller codes. We instantiate the con-
struction from the previous section for the Reed–Muller code. Let C = RM(n, n−d−1)
be the Reed–Muller code on n variables of degree n − d − 1, which has N = 2n,
H =

∑
j�d

(
n
j

)
, and D = 2d+1. Specifically, RM(n, n − d − 1) consists of tables of

evaluations of n-variate (n − d − 1)-degree polynomials over {0, 1}n. Bhattacharyya
et al. [BKS+10] analyze the canonical tester TRM which samples a random minimum
weight codeword from C⊥. It is well known that the dual of RM(n, n−d−1) is exactly
RM(n, d) and that the minimum weight codewords in RM(n, d) are products of d lin-
early independent affine forms. They have weight 2n−d = εN , where ε = 2−d. Thus,
our graph CayRM = Cay(RMn,d, TRM) has as its vertices the d-degree polynomials over
Fn
2 with an edge between every pair of polynomials P,Q such that P −Q is equal to a

minimum weight codeword, which are known to be products of d linearly independent
affine forms.

Theorem 4.11 (see [BKS+10]). There exists a constant η0 > 0 such that for all
n, d, and k < η02

d the tester TRM described above has soundness s(k) � (k/2) · 2−d.
Theorem 4.11 allows us to estimate the eigenvalue profile of CayRM and shows

that small sets have expansion close to O(η0). From here, we can get near-perfect
expansion by taking short random walks. To avoid cumbersome discretization issues,
we work with continuous-time random walks on graphs instead of the usual discrete
random walks.

Definition 4.12. For a graph G the continuous-time random walk on G with
parameter t is described by the (stochastic) matrix G(t) = e−t(I−G). G(t) and G have
the same eigenvectors, and the eigenvalues of G(t) are {e−t(1−μi)}, where {μi} is the
spectrum of G.

We will view CayRM(t) as a weighted graph. We show that its eigenvalue profile
is close to that of the noisy cube; this stronger statement will be useful later.

Lemma 4.13. Let t = ε2d+1 for ε > 0 and ρ = e−ε. Let {λα} denote the
eigenvalues of CayRM(t).

– If deg(χα) = k, then λα � max(ρk/2, ρμ02
d

), where μ0 is an absolute constant.
– For all δ < δ0 for some constant δ0, if deg(χα) = k < δ22d+1, then |λα −
ρk| � δ.

Proof. Let {μα} be the eigenvalues of CayRM corresponding to the character χα

so that λα = e−t(1−μα). Let τ = 2−(d+1). Since the canonical tester TRM for C is
2-smooth, by Lemma 3.3, μα = 1− kτ ± k2τ2. Hence, λα = e−t(1−μα) = e−εk(1±kτ) =
ρke−εk

2τ .

For k � 2d, 1 − μα = kτ ± k2τ2 � kτ/2. Therefore, if deg(χα) � 2d, λα =

e−ε2
d+1(1−μα) � e−ε2

d+1kτ/2 = ρk/2. For k > 2d, by Corollary 4.7, μα < 1−2s(k) < C0

for a universal constant C0 < 1. Therefore, |λα| < e−ε2
d+1(1−C0) = ρ(1−C0)2

d+1

<

ρμ02
d

for μ0 < (1− C0)/2.

We now prove the second bound. If εk2τ < δ/10, we have λα = ρ−k(1 ± δ)
which implies |λα − ρk| � δ. Otherwise, if εk2τ � δ/10, our assumption k < δ22d+1

implies εk > 1/(10δ); hence ε−εk � e−
1

10δ � δ/4 for all δ < δ0. For k � 2d,

(1 − μα) = kτ ± k2τ2 � kτ/2. Hence λα � e−tkτ/2 � e−
1

20δ � δ/4 for all δ < δ0. In
this case, we get |λα − ρk| � |λα|+ |ρk| � δ/2.

Since the eigenvectors stay the same, CayRM(t) inherits the hypercontractive prop-
erties of CayRM. In particular, by Lemma 4.9, ‖V‖2→4 � 3�/2, where V denotes poly-
nomials of degree � � D−1

4 . Combining Lemmas 4.3 and 4.13, we obtain a graph with
Small-Set Expansion and many large eigenvalues.
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Theorem 4.14. For any ε, η > 0, there exists a graph G with 2(log |G|)
1
d eigen-

values larger than 1 − ε for d = log(1/ε) + log log(1/η) + O(1) and where every set
S ⊆ G has expansion

Φ(S) � 1− η − 3
c1
ε log(1/η)

√
μ(S)

for some constant c1.

Proof. Let μ0, δ0 be constants from previous lemma. Fix � = c1
ε log( 1η ) so that

e−ε�/2 = η and d = log(�) + c2 so that � � min(μ02
d+1, 2d/5). Consider the graph

CayRM(t) of the continuous random walk on CayRM where t = ε2d+1 as in Lemma 4.13.
Note that the graph has |G| =

∑
j�d

(
N
i

)
vertices. Let {μα} be the spectrum of CayRM,

and let λα be the spectrum of CayRM(t).

Then, for every α ∈ FN
2 /C, deg(χα) = 1, we have sτ (α) � 2−d. Hence μα �

1 − 2−d+1, λα � e−t2
−d+1

= e−4ε. Therefore, there are at least N = 2(log |G|)
1/d

eigenvalues which are larger than 1− 4ε.

Since � < μ02
d+1, by Lemma 4.13, if deg(χα) > �, λα � η. Let V be the subspace

spanned by characters of degree at most �. Since � < 2d/5 by Lemma 4.9, ‖V‖2→4 �
3�/2. Therefore, by Lemma 4.3, for any set S ⊆ G with μ(S) � δ,

Φ(S) � 1− η − 3
c1
ε log(1/η)

√
μ(S).

Remark 4.15 (coding application). The fact that our graph is a Cayley graph over
Fn
2 has a potentially interesting implication for coding theory. By looking at the set of

edge labels as the rows of a generating matrix for a code, we know that large Fourier
coefficients correspond to low weight codewords, and hence we get a code of dimension
m =

(
n
d

)
that has an almost exponential (i.e., 2n) number of codewords of low weight,

but yet has small generalized Hamming distance in the sense that every subspace of
codimension ω(1) contains a codeword of fractional Hamming weight 1 − o(1). In
particular, by setting d to be a function slowly tending to infinity, we can get a linear
code for which correcting from a o(1) fraction of corruption errors requires an almost
exponential list size, but for which one can correct a fraction approaching 1 of erasure
errors using a list of constant size. (The code obtained by taking all edges of our
graph has an almost exponential blowup, but this can be reduced by subsampling the
edges.)

5. Majority Is Stablest over codes. In this section we show an analogue of the
Majority Is Stablest result of Mossel et al. for the Reed–Muller graph we constructed
in the previous section; this will help us replace the noisy cube with the Reed–Muller
graph in various Unique Games gadgets.

We first review some definitions. For a function f : {±1}N → R and � > 0, define

Inf��
i (f) =

∑
α∈{0,1}N ,|α|��,αi=1

|f̂(α)|2.

For ρ > 0, let Γρ : [0, 1] → [0, 1] be the Gaussian noise stability curve defined as
follows. For μ ∈ [0, 1], let t ∈ R be such that Pg←N (0,1)[g < t] = μ. Then, Γρ(μ) =
PX,Y [X � t, Y � t], where (X,Y ) ∈ R2 is a two-dimensional mean zero Gaussian

random vector with covariance matrix ( 1 ρ
ρ 1 ). We refer the reader to Appendix B in

Mossel, O’Donnell, and Oleszkiewicz [MOO05] for a more detailed discussion on Γρ.
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Let P (x) =
∑

I⊆[N ] aI
∏

i∈I xi be an N -variate multilinear polynomial P : RN →
R. We define ‖P‖2 =

∑
I a

2
I and say P is ε-regular if for every i ∈ [N ],

∑
i�I a

2
I �

ε2 · ‖P‖2.
Throughout this section, we let Tρ,N (we omit N when the dimension is clear)

denote the noisy hypercube graph with second largest eigenvalue ρ.

5.1. Majority Is Stablest and invariance. The following theorem shows that,
in the context of noise stability, a regular function on the hypercube behaves like a
function on Gaussian space.

Theorem 5.1 (Majority Is Stablest [MOO05]). Let f : {±1}N → [0, 1] be a

function with E f = μ. Suppose Inf
�10 log(1/τ)
i (f) � τ for all i ∈ [N ]. Then,

〈f, Tρf〉 � Γρ(μ) +
10 log log(1/τ)
(1−ρ) log(1/τ) ,

where Tρ is the Boolean noise graph with second largest eigenvalue ρ and Γρ is the
Gaussian noise stability curve.

We will need the following ingredient of the proof of Theorem 5.1 from [MOO05].
For a, b ∈ R, let ζ[a,b] : R→ R+ be the functional ζ[a,b](x) = max{a−x, x− b, 0}2. For
a real-valued random variable X , the expectation E ζ(X) is the L2

2-distance of X to
the set of [a, b]-valued random variables (over the same probability space as X). We
will be interested in the case a = 0 and b = 1. For this case, we abbreviate ζ = ζ[0,1].

Theorem 5.2 (invariance principle [MOO05, Theorem 3.19]). Let P be a τ-
regular N -variate real multilinear polynomial with degree at most � and ‖P‖2 � 1.
Then, ∣∣∣∣ E

x∈{±1}N
ζ ◦ P (x)− E

y∼N (0,1)N
ζ ◦ P (y)

∣∣∣∣ � 2O(�)
√
τ .

We will need the following corollary that can handle functions that are not [0, 1]-
valued as in the theorem but just close to [0, 1]-valued functions.

Corollary 5.3. Let f : {±1}N → R be a function with E f = μ and E ζ ◦ f � τ .
Suppose Infi f

�30 log(1/τ) � τ for all i ∈ [N ]. Then,

〈f, Tρf〉 � Γρ(μ) +
40 log log(1/τ)
(1−ρ) log(1/τ) ,

where Tρ is the Boolean noise graph with second largest eigenvalue ρ and Γρ is the
Gaussian noise stability curve. (Here, we assume that τ is small enough.)

Proof. Let f ′ be the closest [0, 1]-valued function to f . Since ‖f − f ′‖ � √τ ,
it follows that Inf

�20 log(1/τ)
i f ′ � τ + O(

√
τ)  τ1/3 and E f ′ � E f +

√
τ . Since

〈f, Tρf〉 � 〈f ′, Tρf ′〉 + O(
√
τ ), the corollary follows by applying Theorem 5.1 to the

function f ′. (Here, we also use that fact that Γρ(μ+
√
τ ) � Γρ(μ)+2

√
τ . See Lemma

B.3 in [MOO05].)
We remark that although we specialize to Reed–Muller codes in this section, most

of the arguments generalize appropriately to arbitrary codes with good canonical
testers modulo a conjecture about bounded independence distributions fooling low-
degree polynomial threshold functions. We briefly discuss this in section 5.3.

To state our version of Majority Is Stablest we first extend the notion of influences
to functions over Reed–Muller codes. For n, d ∈ N, N = 2n, let C ⊆ FN

2 be the Reed–
Muller code RM(n, n − d − 1), and let C⊥ ⊆ FN

2 be its dual RM(n, d). For the rest
of this section we assume that a set of representatives corresponding to the minimum
weight codeword in each coset is chosen for the coset space FN

2 /C.
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Definition 5.4. For a function f : C⊥ → R and i ∈ [N ], � > 0, the �-degree
influence of coordinate i in f is defined by

Inf��
i (f) =

∑
α∈FN

2 /C,
|α|��,αi=1

f̂(α)2 .

(Recall that the Fourier coefficient f̂(α) = Ex∈C⊥ [χα(x)].) As all α’s with weight
less than half the distance of C fall into different cosets of C, for � < D/2, the above
expression simplifies to

Inf��
i (f) =

∑
α∈FN

2 , |α|��, αi=1

f̂(α)2 .

The sum of �-degree influences of a function f can be bounded as below.
Lemma 5.5. For a function f : C⊥ → R and � < D/2,∑

i∈[N ]

Inf��
i (f) � �V[f ],

where V[f ] = E[f2]− (E[f ])2 denotes the variance of f .
Proof. The lemma is an easy consequence from the definition of Inf��(f) and the

fact that V[f ] =
∑

α�=0 f̂(α)
2. We include the proof for the sake of completeness:∑

i∈[N ]

Inf��
i (f) =

∑
i∈[N ]

∑
α∈FN

2 , |α|��, αi=1

f̂(α)2

=
∑

α∈FN
2 , |α|��, α�=0

|α|f̂(α)2

� �
∑

α∈FN
2 , |α|��, α�=0

f̂(α)2 � �V[f ]

We are now ready to state the main result of this section generalizing the Majority
Is Stablest result to Reed–Muller codes. Let TRM be the canonical tester for C as
defined in section 4.3.

Theorem 5.6. There exist universal constants c, C such that the following holds.
Let G be a continuous-time random walk on the Reed–Muller graph Cay(C⊥, TRM) with
parameter t = ε2d+1. Let f : C⊥ → [0, 1] be a function on C⊥ with Ex∼C⊥ [f(x)] = μ

and maxi∈[N ] Inf
�30 log(1/τ)
i (f) < τ . Then, for d > C log(1/τ),

(5.1) 〈f,Gf〉 � Γρ(μ) +
c log log(1/τ)

(1− ρ) log(1/τ) ,

where ρ = e−ε and Γρ : R→ R is the noise stability curve of Gaussian space.
The proof of the theorem proceeds in three steps. We first show that the eigen-

value profile of the graphG is close to the eigenvalue profile of the Boolean noise graph
(see Lemma 4.13). We then show an invariance principle for low-degree polynomials
(and as a corollary for smoothed functions), showing that they have similar behavior
under the uniform distribution over the hypercube and the uniform distribution over
the appropriate Reed–Muller code. Finally, we use the invariance principle to trans-
late the Majority Is Stablest result in the hypercube setting to the Reed–Muller code.
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The above approach is similar to that of Mossel, O’Donnell, and Oleszkiewicz, who
translate a Majority Is Stablest result in the Gaussian space to the hypercube using
a similar invariance principle.

We first state the invariance principle that we use below (see the next subsection
for the proof). Recall the definition of the functional ζ : R→ R from section 5.1.

Theorem 5.7. Let N = 2n and d � 4 log(1/τ). Let P : RN → R be a τ-regular
polynomial of degree at most �. Then, for x ∈u {±1}N , z ∈u RM(n, d),

|E[ζ ◦ P (x)] − E[ζ ◦ P (z)]| � 2c1�
√
τ ,

for a universal constant c1 > 0.
The (somewhat technical) proof of Theorem 5.6 from the above invariance princi-

ple closely follows the argument of Mossel, O’Donnell, and Oleszkiewicz and is deferred
to Appendix C.

5.2. Invariance principles over Reed–Muller codes. The various invariance
principles of Mossel, O’Donnell, and Oleszkiewicz [MOO05] are essentially equivalent
(up to some polynomial loss in error estimates) to saying that for any low-degree
regular polynomial P , the polynomial threshold function (PTF) sign(P ( )) cannot
distinguish between the uniform distribution over the hypercube and the standard
multivariate Gaussian distribution N (0, 1)N .

Theorem 5.8. Let P : RN → R be an ε-regular polynomial of degree at most �.
Then, for any x ∼ {±1}N , y ← N (0, 1)N ,

|E[sign(P (x))] − E[sign(P (y))]| � O(�ε1/(2�+1)).

Ideally, we would like a similar invariance principle to hold even when x is cho-
sen uniformly from the codes of the earlier sections instead of being uniform over
the hypercube. Such an invariance principle will allow us to analyze alphabet re-
ductions and integrality gaps based on graphs considered in earlier sections (e.g., the
Reed–Muller graph). We obtain such generic invariance principles applicable to all
codes modulo certain plausible conjectures on low-degree polynomials being fooled by
bounded independence.

For the explicit example of the Reed–Muller code we bypass the conjectures and
directly show an invariance principle by proving that the uniform distribution over the
Reed–Muller code fools low-degree PTFs. To do so, we will use the specific structure
of the Reed–Muller code along with the pseudorandom generator (PRG) for PTFs
of Meka and Zuckerman [MZ13]. Specifically, we show that the uniform distribution
over the Reed–Muller code can be seen as an instantiation of the PRG of [MZ13] and
then use the latter’s analysis as a blackbox. Call a smooth function ψ : R→ R B-nice
if |ψ(4)(t)| � B for every t ∈ R.

Theorem 5.9. Let N = 2n and d � log �+2 log(1/ε)+2. Let P : RN → R be an
ε-regular multilinear polynomial of degree at most �. Let x← N (0, 1)N , z ∼ RM(n, d).
Then, for every 1-nice function ψ : R→ R,

|E[ψ(P (x))] − E[ψ(P (z))]| � �29�ε2 .

To prove the theorem, we first discuss the PRG construction of [MZ13]. Let
t = 1/ε2 and M = N/t. Let H : [N ]→ [t] be a family of almost pairwise independent
hash functions10 and let D ≡ D4� be a (4�)-wise independent distribution over {±1}m.
The PRG of [MZ13], GH,D, can now be defined by the following algorithm:

10A hash family H is almost pairwise independent if for every i �= j ∈ [N ], a, b ∈ [t], Ph∈uH[h(i) =
a ∧ h(j) = b] � (1 + α)/t2 for α = O(1).
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1. Choose a random h ∈ H and partition [N ] into t blocks B1, . . . , Bt, with
Bj = {i : h(i) = j}.

2. Choose independent samples x1, . . . , xt ← D and let y ∈ {±1}N be chosen
according to an arbitrary distribution independent of x1, . . . , xt.

3. Output11

(5.2) z′ ∈ {±1}N , with z′i = zi · yi for i ∈ [N ], where z|Bj
= xj for j ∈ [t].

Meka and Zuckerman show that GH,D as above fool (arbitrary) low-degree polynomi-
als. Below we state their result for regular PTFs, which suffices for our purposes and
gives better quantitative bounds.

Theorem 5.10 (Lemma 5.10 in [MZ13]). Let P : RN → R be an ε-regular
multilinear polynomial of degree at most �. Then, for x ∈u {±1}N , and y ∈ {±1}N
generated according to GH,D,

|E[ψ(P (x))] − E[ψ(P (y))]| � 1

3
�29�ε2 .

We next show that the uniform distribution over RM(n, d) for a sufficiently high
d is equivalent to GH,D as above for an appropriately chosen hash family H and (4�)-
wise independent distribution D. Below we identify [N ] with Fn

2 and [t] with Fc
2 for

c = 2 log(1/ε).
Proof of Theorem 5.9. For simplicity, in the following discussion we view RM(n, d)

as generating a vector in FN
2 and show that the uniform distribution over RM(n, d)

has the appropriate independence structure as required by Theorem 5.10, albeit with
{±1} replaced with {0, 1}. This does not affect the analysis of the generator.

At the outset, the idea is to view random low-degree polynomials as an instan-
tiation of the Meka and Zuckerman PRG. Fix D to be the uniform distribution over
polynomials of degree d− c over n− c variables for c = 2 log(1/ε). Let H denote the
family of hash functions from Fn

2 → Fc
2 given by affine maps. The family H is almost

pairwise independent. The Meka–Zuckerman construction will partition the [N ] = Fn
2

coordinates into 2c buckets using the hash family H, and within each bucket assign a
sample from distribution D, namely an (n−c)·variate, degree-(d−c) polynomial. The
key observation is that the resulting function on Fn

2 (over all buckets) is an n-variate
polynomial of degree at most d. Therefore, uniform distribution over RM(n, d) can be
expressed as a mixture of Meka–Zuckerman PRG constructions. The details of the
argument are presented below.

Let c = 2 log(1/ε), and let S be the subspace of polynomials of the form

Q1(x1, . . . , xn) =
∑

a∈{0,1}c
1(x|[c] = a) · Pa(xc+1, . . . , xn),

where the polynomials Pa each have degree at most d − c. Note that we can sample
a uniformly random element Q1 ∈ S by choosing independent, uniformly random
degree at most d − c polynomials Pa : Fn−c

2 → F2 for a ∈ {0, 1}c and setting Q1 as
above. This is because each collection (Pa)a∈{0,1}c leads to a unique element of S,
and together they cover all elements of S.

Let S ′ be a subspace of degree-d, n-variate polynomials such that S ∩ S ′ = {0}
and S,S ′ together span all degree-d polynomials. Let A : Fn

2 → Fn
2 be the space of all

11The description we give here is slightly different from that of [MZ13] due to the presence of the
string y. However, the analysis of [MZ13] works without any changes for this case as well.
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affine transformations. For A ∈ A, let hA : [N ] → [t] be defined by hA(x) = A(x)|[c],
and let H ≡ {hA : A ∈ A}. It is easy to see that for A ∈u A, the hash functions hA
are almost pairwise independent. Observe that for Q1 ∈u S, Q2 ∈u S ′, and A ∈u A,
the polynomial Q( ) = (Q1 + Q2)(A( )) is uniformly distributed over all n-variate
degree-d polynomials.

Now, fix a polynomial Q2 ∈ S ′. Then, for a random Q1 ∈u S, we have

Q(x) =
∑

a∈{0,1}c
1(hA(x) = a) · Pa(ua+1, . . . , un) +Q2(u),

where u = Ax and the polynomials (Pa)a∈{0,1}c are independent uniformly random
polynomials of degree at most d− c in n− c variables. Let D denote the distribution
of (P ′(u))u∈Fn−c

2
for P ′ a uniformly random polynomial of degree at most d − c in

n − c variables. Then, for every fixed A ∈ A and Q2 ∈ S ′, the distribution of the
evaluations of Q restricted to different buckets Ba = {x : hA(x) = a} are independent
of one another. Moreover, within each bucket Ba, the evaluations vector (Q1(x))x∈Ba

is distributed as D, which is (2d−c − 1)-wise independent.
Therefore, for every fixed Q2 ∈ S ′, the distribution of z = (Q(x))x∈Fn

2
is the same

as the output of GH,D as defined in (5.2), where y = Q2(A(x)). The theorem now
follows from Theorem 5.10.

The invariance principle of Theorem 5.9 combined with the appropriate choice of
the smooth function ψ gives us the following corollaries.

Proof of Theorem 5.7. The proof follows from using Theorem 5.9 and an argument
as in Theorem 3.19 of [MOO05], where the authors get a similar conclusion for the
hypercube starting from an invariance principle for the hypercube to the Gaussian
space.

Corollary 5.11. Let N = 2n and d � log �+2 log(1/ε)+2. Let P : RN → R be
an ε-regular polynomial of degree at most �. Then, for x ∈u {±1}N , z ∈u RM(n, d),

|E[sign(P (x))] − E[sign(P (z))]| � O(�ε1/(2�+1)).

Proof. The proof follows from Theorem 5.9 and Lemma 5.8 in [MZ13].
Finally a similar argument in the proof Theorem 5.9, using a minor modification

of the full analysis of the PRG from [MZ13, Theorem 5.17], shows that Reed–Muller
codes with d = Ω(� log(1/ε)) fool all degree-� PTFs. We exclude the proof in this
work as we do not need the more general statement in our applications

Theorem 5.12. There exists a constant C > 0 such that the following holds. Let
N = 2n and d = C� log(1/ε). Let P : RN → R be a multilinear polynomial of degree
at most �. Then, for x ∈u {±1}N , z ∈u RM(n, d),

|E[sign(P (x))] − E[sign(P (z))]| � ε.

5.3. Invariance principles over codes. Our main tool for proving the Ma-
jority Is Stablest result over Reed–Muller codes, Theorem 5.6, was the invariance
principle, Theorem 5.7. We conjecture that similar results should hold for any linear
code with sufficiently large dual distance so that the codewords have bounded inde-
pendence. In particular, we conjecture that bounded independence fools arbitrary
low-degree PTFs over {±1}n.

The conjecture is known to be true for half-spaces [DGJ+09], degree-2 PTFs
[DKN10], and for Gaussians with bounded independence [Kan11].

Conjecture 5.13. For all d ∈ N and ε > 0, there exists k = k(d, ε) such that
the following holds: Let Q be an n-variate multilinear real polynomial with degree d.
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Let X be a k-wise independent distribution over {±1}n, and let Y be the uniform
distribution over {±1}n. Then, |E sign ◦Q(X)− E sign ◦Q(Y )| � ε.

Finally, we remark that for the application to Majority Is Stablest it suffices to
show a weaker invariance principle applicable to the ζ functional.

Conjecture 5.14. For all d ∈ N and ε > 0, there exist k = k(d, ε) and η = η(ε)
such that the following holds: Let Q be an n-variate multilinear real polynomial with
degree d. Let X be a k-wise independent distribution over {±1}n, and let Y be the
uniform distribution over {±1}n. Suppose that EQ(X)2 � 1 and E ζ ◦ Q(X) � η.
Then, E ζ ◦Q(Y ) � ε.

We show in the appendix that Conjecture 5.13 implies Conjecture 5.14.
Lemma 5.15. Let X be a 20�-wise independent distribution over {±1}N that

ε-fools every τ-regular degree-� PTF. Then, for every τ-regular N -variate multilinear
real polynomial Q with degree at most � and EQ(X) � 1, we have for the uniform
distribution Y over {±1}N ,

E ζ ◦Q(Y ) � E ζ ◦Q(X) + 2O(�)ε0.9 .

6. Efficient integrality gaps for UNIQUE GAMES. In this section, we present
constructions of SDP integrality gap instances starting from a code C along with a
local tester. To this end, we make an additional assumption on the code C. Specifi-
cally, let us suppose there exists a subcode H of D = C⊥ with distance 1

2 . Formally,
we show the following result.

Theorem 6.1. Let C be an [N,K,D]2 linear code with a canonical tester T
as described in Definition 3.2. Furthermore, let H be a subcode of D = C⊥ with
distance 1

2 . Then, there exists an instance of Unique Games, more specifically an
H-Max-2Lin instance, whose vertices are D ( |D| = 2N−K) and alphabet H such that

– The optimum value of the natural SDP relaxation for Unique Games is

at least
(
1− 2t

N

)2
, where t is the number of queries made by the canonical

tester T .
– No labelling satisfies more than a

min
k∈[0,D/5]

(
1− 2s(k) +

3k

|H| 12

)

fraction of constraints.
Instantiating the above theorem with the Reed–Muller code and its canonical

tester, we obtain the following explicit SDP integrality gap instance.
Corollary 6.2. For every integer n, δ > 0, there exists an Fn

2 -Max-2Lin

instance Γ on M = 22
log2 n

vertices such that the optimum value of the SDP relaxation

on Γ is 1 − O( log(1/δ)n ) = 1 − O( log(1/δ)

2(log log M)1/2
), while every labelling of Γ satisfies at

most a O(δ) fraction of edges.
Proof. Fix the code C to be the Reed–Muller code RM(n, n − logn) of degree

d = n− logn over n variables. Its dual D = C⊥ = RM(n, logn) consists of polynomials
of degree d = log n. The block length of the code D is N = 2n, while the rate is
K = 2n −

∑
i�d

(
n
i

)
� 2n − O(2log2 n). This code contains the Hadamard code H

which is of relative distance 1
2 .

Let TRM denote the canonical Reed–Muller tester for RM(n, n − logn), and let
T ⊕rRM denote the XOR of r-independent tests. Let us fix r = 100 log(1/δ), thus yielding
a canonical tester making t = log(1/δ) · 2n−d queries. By the work of [BKS+10], this
tester has a soundness of at least s(k) = 1

2 − (1 − k/2d+1)r/2. With k = 2d/10, the
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above soundness is at least s(k) � 1/2− δ/2. Using Theorem 6.1, the optimum value
of the resulting Fn

2 -Max-2Lin instance is at most δ. On the other hand, the SDP
value is at least

(1− 2t/N)2 = 1− 100 log(1/δ)2n−d/2n = 1−O
(
log 1/δ

2d

)
= 1− log(1/δ)

n
.

Starting from C, we construct an SDP integrality gap instance Γ(C, T ) forUnique

Games as described below. The integrality gap instance can be thought of as a
derandomization of the Unique Games integrality gap instance constructed by Khot
and Vishnoi [KV05].

In the construction of Khot and Vishnoi [KV05], the code D consists of all strings
over Fn

2 , which clearly contains the Hadamard code H. The vertices of the Unique

Games instance are elements of D = Fn
2 , and the edges are given by the noisy hy-

percube graph. The set of labels are the Hadamard codewords H. Hence, a labelling
� : D → H assigns a Hadamard codeword for each point in Fn

2 . The constraints of the
unique game are set up to ensure that nearby points receive the same label. Specifi-
cally, if (c, c′) is an edge in the noisy hypercube graph, then it is natural to include the
constraint �(c) = �(c′). Equality constraints alone would result in a trivial Unique

Games instance which is satisfied by labelling all vertices with the same label. Hence,
we will also enforce the condition that the labelling obeys the linear structure of cosets
of Hadamard code. Specifically, if c ∈ Fn

2 and h ∈ H, we will want �(c+ h) = �(c)+ h.
The constraints of the Khot–Vishnoi integrality gap instance are obtained by incor-
porating both of the above-mentioned tests into the constraints of the instance. The
instance admits a very natural SDP solution with value close to 1, arising out of the
natural embedding of Fn

2 as {−1, 1}n. On the other hand, Small-Set Expansion

of the noisy hypercube can be used to show that the instance does not admit good
labellings.

We will construct derandomizations of the Khot–Vishnoi instance by using a
derandomization of the noisy hypercube. In particular, we will replace D = Fn

2 by
a different code of much smaller size, but which retains the Small-Set Expansion

property of the noisy hypercube. The SDP solution is again an immediate consequence
of the natural embedding ofD into {−1, 1}n. Analogous to the Khot–Vishnoi example,
the soundness argument is again a direct consequence of the Small-Set Expansion

of the underlying graph. The formal description of the integrality gap instance is
presented below.

The vertices of Γ(C, T ) are the codewords of D. The alphabet of the Unique

Games instance Γ(C, T ) are the codewords inH. The constraints of Unique Games

instance Γ(C, T ) are given by the tests of the following verifier.
The input to the verifier is a labelling � : D → H. Let us denote by R = |H|. The
verifier proceeds as follows:

– Sample codewords c ∈ D and h, h′ ∈ H uniformly at random.
– Sample a codeword q ∈ D from the tester T .
– Test if

�(c+ q + h)− �(c+ h′) = h− h′.

SDP solution. Here we construct SDP vectors that form a feasible solution to a
natural SDP relaxation of Unique Games [KV05].
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Maximize E
c∈D,h,h′∈H

E
q∈T

[
1

R

∑
�∈H
〈bc+h′,�+h, bc+q+h,�+h′〉

](6.1)

subject to 〈bc,h, bc,h′〉 = 0 ∀c ∈ D, h 	= h′ ∈ H,
(6.2)

〈bc,h, bc′,h′〉 � 0 ∀c, c′ ∈ D, h, h′ ∈ H,(6.3) ∑
�∈H
〈bc,�, bc,�〉 = R ∀c ∈ D.(6.4)

For a vector c ∈ Fm
2 , we will use (−1)c ∈ Rm to denote the vector whose coordi-

nates are given by (−1)ci = (−1)ci . For a pair of vectors c, c′, we have

〈(−1)c, (−1)c′〉 = 1− 2Δ(c, c′) .

For each vertex c ∈ D associate vectors {bc,h = (−1)c+h ⊗ (−1)c+h|h ∈ H}.
Notice that for a pair of vectors bc,h, bc′,h′ , we have

〈bc,h, bc′,h′〉 = 〈(−1)c+h, (−1)c′+h′〉2 = (1− 2Δ(c+ h, c′ + h′))2 .

Since the distance of the code H is 1
2 , we have

(6.5) 〈bc,h, bc,h′〉 = (1− 2Δ(h, h′))2 =

{
1 if h = h′,

0 if h 	= h′.

In other words, for every vertex c, the corresponding SDP vectors are orthonormal.
The objective value of the SDP solution is given by

OBJ = E
c∈D,h,h′∈H

E
q∈T

[
1

R

∑
�∈H
〈bc+h′,�+h, bc+q+h,�+h′〉

]

= E
c∈D,h∈H

E
q∈T

[
1

R

∑
�∈H

(1− 2Δ(c+ h′ + �+ h, c+ q + h+ �+ h′))2

]

= E
c∈D,h∈H

E
q∈T

[
(1 − 2Δ(0, q))2

]
�
(
1− 2t

N

)2

,

where t is the number of queries made by the canonical tester T for C.
Soundness. Let � : D → H be an arbitrary labelling of the Unique Games

instance Γ(C, T ). For each p ∈ H, define a function fp : D → [0, 1] as follows:

fp(c) = E
h∈H

[I[�(c+ h) = p+ h]] .

The fraction of constraints satisfied by the labelling � is given by

OBJ = E
c∈D,h,h′∈H

E
q∈T

⎡
⎣∑
p∈H

I[�(c+ h′) = p+ h′] · I[�(c+ q + h) = p+ h]

⎤
⎦
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= E
c∈D

E
q∈T

⎡
⎣∑
p∈H

E
h′∈H

I[�(c+ h′) = p+ h′] · E
h∈H

I[�(c+ q + h) = p+ h]

⎤
⎦

= E
c∈D

E
q∈T

⎡
⎣∑
p∈H

fp(c)fp(c+ q)

⎤
⎦(6.6)

=
∑
p∈H
〈fp, Gfp〉,(6.7)

where G = Cay(C⊥, T ) is the graph associated with the code C⊥ and tester T .
The expectation of the function fp is given by

E
c∈D

fp(c) = P
c∈D,h∈H

[�(c+ h) = p+ h]

= P
c∈D,h∈H

[�(c) = p+ h] because (c+ h, h) ∼ (c, h)

=
1

|H| =
1

R
.

Since fp is bounded in the range [0, 1] we have

〈fp, fp〉 = E
c∈D

[fp(c)
2] � E

c∈D
[fp(c)] =

1

R
.

Applying Corollary 4.10, we get that for each p,

〈fp, Gfp〉 �
1

R
· min
k∈[0,D5 ]

(
1− 2s(k) +

3k

R1/2

)
.

Substituting the previous equation into (6.7), we get that the fraction of constraints
satisfied by � is at most

min
k∈[0,D5 ]

(
1− 2s(k) +

3k

R1/2

)
.

Appendix A. Efficient alphabet reduction. The long code over a (nonbinary)
alphabet Q consists of the set of dictator functions {f1, . . . , fN : QN → Q}, where
fi(x) = xi for all x ∈ QN .

A natural 2-query test for this code was proposed by Khot et al. [KKMO07] and
analyzed in Mossel, O’Donnell, and Oleszkiewicz [MOO05]. The queries of the test
are associated with the edges of the ε-noise graph on QN . In this graph, the weight of
an edge (x, y) is its probability in the following sampling procedure: Sample x ∈ QN

uniformly at random and resample each coordinate of x ∈ QN independently with
probability ε to generate y ∈ QN .

In this section, we present a more efficient code that serves as an analogue for the
long code over a nonbinary alphabet. For n, d ∈ N, let N = 2n, and let C ⊆ FN

2 be
the Reed–Muller code RM(n, n − d − 1) and let D = C⊥ ∈ FN

2 be its dual RM(n, d).
Let T ⊆ D denote the canonical test set for the code C as in section 4.3.

Let t ∈ N and let Q = Ft
2. We define the following distribution Tt over Dt (the

t-fold direct sum of D, a subspace of Ft·N
2 ):
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– Sample c from the test set T ⊆ D.
– Sample w = (w(1), . . . , w(t)) from Ft

2 at random.
– Sample z = (z(1), . . . , z(t)) ∈ Dt by setting

z(i) =

{
c if w(i) = 1 ,

0 if w(i) = 0 .

Consider the continuous-time random walk on the graph Cay(Dt, Tt) with parameter
ε · 2d (starting at point 0 ∈ Dt). Let Tε,t be the distribution over Dt corresponding
to this random walk. The Cayley graph Cay(Dt, Tε,t) will serve us as an analogue of
the ε-noise graph on QN .

Spectrum. In the following we will demonstrate that (part of) the spectrum of
the Cayley graph Cay(Dt, Tt,ε) corresponds to the spectrum of the ε-noise graph on
QN . To this end, we recall the spectrum of the ε-noise graph on QN . First, we
define a convenient basis for the functions on Q = Ft

2. We will denote the coordinates
of a vector α ∈ Q = Ft

2 by α = (α(1), . . . , α(t)). The set of characters of Ft
2 is

{χα : Ft
2 → {±1} | α ∈ Ft

2}, where

χα(x) = (−1)
∑

j α(j)x(j)

.

Since the noise graph on QN is a Cayley graph over the abelian group FtN
2 , the

characters of this group form a basis of eigenfunctions. For β = (β1, . . . , βN ) ∈ QN ,
let χβ : Q

N → {±1} denote the character

χβ(x1, . . . , xN ) =
∏
i∈[N ]

χβi(xi) .

The eigenvalue of χβ in the ε-noise graph on QN (1 − ε)hwt(β), where hwt(β) = |{i |
βi 	= 0t}|, is the Hamming weight of β as a length-N string over alphabet Q. (In this
section hwt(β) will always refer to the Hamming weight of string β over alphabet Q.)

The canonical eigenfunctions of Cay(Dt, Tt) and Cay(Dt, Tt,ε) are indexed by
β ∈ QN/Ct. (Note that Ct is the orthogonal complement of Dt.) Analogously to
the definition in section 4.2, we define the degree of a character χβ : Dt → {±1} for
β ∈ QN/Ct as

deg(χβ) = wt(β) = min
β′∈β

hwt(β′) ,

where hwt(β′) = |{i ∈ [N ] | β′i 	= 0t}| is the Hamming weight of β′ seen as a length-N
string over alphabet Q. (Here, the minimum is over all β′ ∈ QN that lie in the same
coset as β in QN/Ct.)

The following lemma is an analogue of Lemmas 3.3 and 4.13 and shows that the
eigenvalues of Cay(Dt, Tt) are similar to the eigenvalues of the ε-noise graph.

Lemma A.1. Let β ∈ QN/Ct. The eigenvalue λβ of the character χβ in the
graph Cay(Dt, Tt) satisfies λβ = 1− wt(β)/2d ± O(wt(β)/2d)2 and λβ � 1− Ω(1/t) ·
min{wt(β) · 2−d, 1}.

Proof. We will first prove an upper bound on λβ for the case that wt(β) � 2d.
We write β = (β(1), . . . , β(t)) with β(i) ∈ FN

2 . Let z = (z(1), . . . , z(t)) ∈ Dt be a string
drawn from the distribution Tt. Note that z(i) = w(i) · c, where w = (w(1), . . . , w(t))
and c are sampled as in the definition of Tt. Since w is a random vector in Ft

2, we can
upper bound λβ :
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λβ = E
z
(−1)〈β,z〉

= 1− 2 P
w∈Ft

2, c∈T

{
t∑

i=1

w(i)〈β(i), c〉 = 1

}

= 1− P
c∈T

{
∃i, 〈β(i), c〉 = 1

}
� 1−max

i∈[t]
P

c∈T

{
〈β(i), c〉 = 1

}
.

Without loss of generality, we may assume that β(t) has Hamming weight (as a binary
string) at least wt(β)/t. By Theorem 4.11, if wt(β) > η2−d for sufficiently small η > 0,
we can upper bound λβ � 1− Ω(η/t).

Next, we will estimate λβ (from below and above) for wt(β) 2−d. Let I ⊆ [N ]
be the set of coordinates i ∈ [N ] with βi 	= 0t. We claim

λβ = 1− P
c
{|I ∩ supp(c)| = 1} ±O(1) · P

c
{|I ∩ supp(c)| � 2} .

We write β = (β1, . . . , βN) with βi ∈ Ft
2. Then, 〈β, z〉 =

∑
i∈[N ] ci〈w, βi〉. We refine

the event 〈β, z〉 = 1 according to the cardinality of I ∩ supp(c). If I ∩ supp(c) = ∅,
then 〈β, z〉 = 0. On the other hand, conditioned on |I ∩ supp(c)|, the event 〈β, z〉 = 1
is equivalent to the event 〈w, βi0 〉 = 1 with {i0} = I ∩ supp(c). Since βi0 	= 0t, this
event has (conditional) probability 1/2. Hence,

P
z

{
〈β, z〉 = 1

}
= 1

2 P
c∈T

{
|I ∩ supp(c)| = 1

}
± P

c∈T

{
|I ∩ supp(c)| � 2

}
,

which implies the claimed estimate for λβ .
It remains to estimate the distribution of |I∩supp(c)|. The argument is similar to

the proof of Lemma 3.3. For every coordinate i ∈ [N ], we have Pc∈T {ci = 1} = 2−d.
Thus, P { |I ∩ supp(c)| = 1} � |I| · 2−d = wt(β)/2d. On the other hand, for any two
distinct coordinates i 	= j ∈ [N ], we have Pc∈T {ci = cj = 1} = 2−2d. Therefore,

P { |I ∩ supp(c)| = 1} �
∑
i∈I

P {ci = 1}−
∑

i<j∈I
P {ci = cj = 1} � wt(β)/2d−(wt(β)/2d)2.

Similarly, P { |I ∩ supp(c)| � 2} � (wt(β)/2d)2. We conclude that

λβ = 1− wt(β)/2d ±O(wt(β)/2d)2.
(Note that the estimate is meaningful only when wt(β) 2d.)

If the character χβ has eigenvalue λβ in the graph Cay(Dt, Tt), then it has eigen-

value e−ε(1−λβ)/2
d

in Cay(Dt, Tt,ε). Similarly to Lemma 4.13, the eigenvalue of a
character χβ is close to e−εwt(β) in the graph Cay(Dt, Tt,ε).

Lemma A.2.

– If wt(β) � δ22d for sufficiently small δ, then the character χβ has eigenvalue
e−ε·wt(β) ± δ in the graph Cay(Dt, Tt,ε).

– For an absolute constant c0 and all β ∈ QN/Dt, λβ � max(ρwt(β)/c0t, ρ2
d/c0t).

Influences. Let β ∈ QN/Ct. Suppose wt(β) < wt(Ct)/2. (Note that Ct ⊆ QN has
the same minimum distance as C ⊆ FN

2 .) In this case, we will identify β with the
(unique) codeword of minimum weight in the equivalence class β ∈ QN/Ct.

Definition A.3. For a function f : Dt → R, a coordinate i ∈ [N ], and a degree
bound � < dist(Ct)/2), we define the �-degree influence of coordinate i on f as

Inf��
i (f) =

∑
β∈QN/Ct, βi �=0t, wt(β)��

f̂(β)2 .
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(Here, βi refers to the ith coordinate of the unique minimum weight representative of
the equivalence class β.)

A.1. Majority Is Stablest. In this section, we show an analogue of the Major-
ity Is Stablest theorem of [MOO05] on the ε-noise graph on QN just as Theorem 5.6
showed an analogue of the Majority Is Stablest theorem over the Boolean noise graph.

Theorem A.4. For every ε, δ, t > 0, there exist L, d, τ such that if G denotes the
graph Cay(Dt, Tt,ε) constructed using Reed–Muller codes of degree d, then for every

function f : Dt → [0, 1] with maxi∈[N ] Inf
�L
i (f) < τ ,

(A.1) 〈f,Gf〉 � Γρ(μ) + δ,

where ρ = e−ε, μ = Ex∼Dt[f(x)], and Γρ : R → R is the noise stability curve over
Gaussian space.

Given the characterization of the spectrum of Cay(Dt, Tt,ε) (Lemma A.2), the
proof of Theorem A.4 is similar to that of Theorem 5.6. For the sake of completeness,
we include a proof sketch in Appendix C.1.

A.2. 2-query test. We will now describe a dictatorship test for functions on
Dt, analogous to the 2-query dictatorship test on the ε-noise graph.

We are interested in functions f : Dt → Q where Q = Ft
2. Note that v ∈ Dt can

also be thought of as v ∈ QN . For all β ∈ Fn
2 , the β

th
dictator function χβ from

Dt ⊆ QN to Q is given by

χβ(c) = cβ.

Clearly, the dictator functions are linear functions over Dt, i.e., χβ(c+ c′) = χβ(c) +
χβ(c

′). This linearity is used to perform the 2-query test via folding. Note that for
each α ∈ Q, the constant function α(x) = α for all x ∈ Fn

2 belongs to the code Dt.
We will fold the function by enforcing that for all α ∈ Q, f(c+ α) = f(c) + α for all
α ∈ Q.

The details of the 2-query dictatorship test are described below.

DICT
Input: f : Dt → Q

Folding. The function is assumed to satisfy f(c+ r) = f(c) + r for every c ∈ Dt

and r ∈ Q. This is enforced by folding the table of the function f .
– Sample a vertex c ∈ Dt.
– Sample a neighbor c′ ∈ Dt of the vertex c in the Cayley graph Cay(Dt, Tt,ε).
– Sample r ∈ Q uniformly at random.
– Accept if f(c+ r)− r = f(c′).

Given a function f : Dt → Q, we can arithmetize the value of the test in terms of
Q functions {fα}α∈Q that are defined as

fα(x) = I[f(x) = α] .

Due to folding, we have fα(x) = fα+r(x + r) for all r ∈ Q. For each α ∈ Q, the
expectation of fα is given by

E
c∈Dt

fα(c) = P
c∈Dt,r∈Q

[f(c+ r) = α] =
1

Q
,
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where we used the fact that f is folded. The probability of acceptance of the 2-query
test can be written in terms of the functions fα as follows:

P[Test accepts f ] =
∑
α∈Q

E
(c,c′)∼Cay(Dt,Tt,ε)

[fα+r(c+ r)fα(c
′)]

=
∑
α∈Q

E
(c,c′)∼Cay(Dt,Tt,ε)

[fα(c)fα(c
′)] ,

where (c, c′) ∼ Cay(Dt, Tt,ε) denotes a uniformly random edge in the graph
Cay(Dt, Tt,ε).

Theorem A.5. The 2-query dictatorship test DICT described above satisfies the
following completeness and soundness:

– (Completeness) Every dictator function χβ(x) = xi is accepted by the test
with probability at least 1− ε.

– (Soundness) For every δ > 0, there exist τ, L such that if f satisfies the

condition maxi∈[N ] Inf
�L
i (fα) � τ for all α ∈ Q, then f is accepted with

probability at most

Q · Γρ

(
1
Q

)
+ δ ,

where ρ = e−ε.
Completeness. Recall that for a c ∈ C⊥ generated from distribution Tε, for each

x ∈ Fn
2 (see Lemma 4.5),

P
c∼Tε

[c(x) = 0] � 1−O(ε) .

It is easy to see that by construction, this property holds for the distribution Tt,ε also,
namely,

P
c∼Tt,ε

[c(x) = 0] � 1−O(ε) .

Hence for a random edge (c, c′) in the Cayley graph Cay(Dt, Tt,ε) and a β ∈ Fn
2 ,

c(β) = c′(β) with probability 1 − ε. Therefore, for each β ∈ Fn
2 , the βth dictator

function satisfies the test with probability 1−O(ε).
Soundness. The probability of acceptance of the 2-query test is given by

Pr[Test accepts f ] =
∑
α∈Q

E
(c,c′)∼Cay(Dt,Tt,ε)

[fα(c)fα(c
′)] .

By applying Theorem 5.6, there is an appropriate choice of L, τ such that if
maxi∈[N ] Inf

�L
i (fα) � τ for all α, then the probability of acceptance can be bounded by

P[Test accepts f ] =
∑
α∈Q
〈fα, Gfα〉 � Q · Γρ

(
1
Q

)
+ δ ,

where ρ = e−ε and G = Cay(Dt, Tt,ε). The conclusion follows.

Appendix B. Hierarchy integrality gaps for UNIQUE GAMES and re-
lated problems. This section is devoted to the construction of an integrality gap
instance for a hierarchy of SDP relaxations to Unique Games. More specifically,
we consider the LHr and SAr SDP hierarchies described in [RS09]. For these SDP
hierarchies, we will demonstrate the following integrality gap constructions.

Theorem B.1. For every ε, δ > 0, there exists an Ft
2-Max-2Lin instance I for

some positive integer t such that no labelling satisfies more than a δ fraction of edges
of Γ, while there exists an SDP solution such that
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– the SDP solution is feasible for LHR with R = exp(exp(Ω(log log1/2N)));

– the SDP solution is feasible for SA-SDPR with R = exp(Ω(log log1/2N));
– the SDP solution has value 1−O(ε),

where N is the number of vertices in the instance I.

Remark B.2. Composing the above SDP integrality gap with Unique Games–
based hardness reductions yields corresponding gap instances for several classes of
problems such as constraint satisfaction problems (CSPs) and ordering CSPs such as

maximum acyclic subgraph. Specifically, up to exp(exp(Ω(log log1/2N))) rounds of

the LH hierarchy or the exp(Ω(log log1/2N)) rounds of the SA-SDP hierarchy can be
shown to have the same SDP integrality gap as the simple SDP relaxation for every
CSP. For the sake of brevity, we omit a formal statement of this result here.

Towards showing Theorem B.1, we follow the approach outlined in [RS09]. At a
high level, the idea is to start with an integrality gap instance Γ for a simple SDP
relaxation for Unique Games over a large alphabet. The instance Γ is reduced to
an instance Ψε,Q,d(Γ) of Unique Games over a smaller alphabet using a reduction
similar to that of Khot et al. [KKMO07]. Moreover, the SDP solution to the simple
SDP relaxation of Γ can be translated to a solution for several rounds of the SDP
hierarchy for Ψε,Q,d(Γ).

Let Γ be an instance of Fn
2 -Max-2Lin over a set of vertices V (Γ) and edges E(Γ).

On every edge (u, v) ∈ E(Γ), there is a constraint of the form u − v = αuv for some
α ∈ Fn

2 . We will reduce Γ to an instance of Q-Max-2Lin using the 2-query test
described in Appendix A.

Translations. Notice that the Reed–Muller code is invariant under translation
of its coordinates. Therefore, the code Dt and the test distributions Tt,ε are both
invariant under translation. Formally, for an α ∈ Fn

2 , the translation operator
Tα : Q

N → QN is defined by

(Tα ◦ c)β = cβ+α ∀c ∈ QN , β ∈ Fn
2 .

Given a codeword c ∈ Dt, we have Tα ◦ c ∈ Dt.

The vertices of Ψε,Q,d(Γ) are V (Γ) × Dt. Let � : V (Γ) × Dt → Q be a labelling of
the instance Ψε,Q,d(Γ).

Folding. The labelling � is assumed to satisfy �(v, c+ r) = �(v, c) + r for every
vertex v ∈ V (Γ), c ∈ Dt, and r ∈ Q. This is enforced by “folding.”
The constraints of Ψε,Q,d(Γ) are given by the queries of the following verifier:

– Sample a vertex u ∈ V (Γ) uniformly at random. Sample two neighbors
v1, v2 ∈ N(u) of u uniformly at random. Let the constraint on the edge
(u, vi) be vi − u = αi for i ∈ {1, 2}.

– Sample an element c1 ∈ Dt uniformly at random, and sample a neighbor
c2 ∈ Dt of c1 in the graph Cay(Dt, Tt,ε).

– Sample an element r ∈ Q uniformly at random.
– Test if �(v1, (Tα1 ◦ c1) + r) − r = �(v2, Tα2 ◦ c2).

We are now ready to describe the reduction from Γ to an instance of Fn
2 -Max-2Lin.

Soundness.

Lemma B.3. For all sufficiently small constants ε, δ > 0 and all choices of
Q = 2t, there exist γ, d such that if no labelling of Γ satisfies more than a γ fraction
of edges, then every labelling of Ψε,Q,d(Γ) satisfies at most a QΓρ (1/Q)+ δ fraction of
constraints, where ρ = e−ε.
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Proof. Let � : V × Dt → Q be a labelling of the instance Ψε,Q,d(Γ). For each
vertex v ∈ V (Γ), let F v : Dt → Q denote the labelling � restricted to the vertex v,

i.e., F v(c)
def
= �(v, c). For each vertex v ∈ V (Γ) and q ∈ Q, define fv

q : Dt → [0, 1] as

fv
q (c)

def
= I[F v(c) = q] .

Due to folding we have fv
q (c) = fv

q+r(c+ r) for all r ∈ Q. Moreover, this implies that

Ec∈Dt fv
q = 1

Q . Finally, for a vertex u ∈ V (Γ) and r ∈ Q, define

hur (p)
def
= E

v∈N(u)
fv
r (Tαuv ◦ p) .

Clearly, for the functions hur also we have

(B.1) E
p
hur =

1

Q
∀u ∈ V (Γ), r ∈ Q.

The probability of acceptance of the verifier can be arithmetized in terms of the
functions hur :

P[verifier accepts]

= E
u∈V (Γ)

E
v1,v2∈N(u)

E
c1,c2∈Cay(Dt,Tt,ε)

E
r∈Q

⎡
⎣∑
q∈Q

fv1
q+r(Tα1 ◦ c1 + r)fv2

q (Tα2 ◦ c2)

⎤
⎦

= E
u∈V (Γ)

E
v1,v2∈N(u)

E
c1,c2∈Cay(Dt,Tt,ε)

⎡
⎣∑
q∈Q

fv1
q (Tα1 ◦ c1)fv2

q (Tα2 ◦ c2)

⎤
⎦ (folding)

= E
u∈V (Γ)

E
c1,c2∈Cay(Dt,Tt,ε)

⎡
⎣∑
q∈Q

E
v1∈N(u)

fv1
q (Tα1 ◦ c1) · E

v2∈N(u)
fv2
q (Tα2 ◦ c2)

⎤
⎦

= E
u∈V (Γ)

E
c1,c2∈Cay(Dt,Tt,ε)

⎡
⎣∑
q∈Q

huq (c1)h
u
q (c2)

⎤
⎦

= E
u∈V (Γ)

⎡
⎣∑
q∈Q
〈huq , Hhuq 〉

⎤
⎦ (where H = Cay(Dt, Tt,ε)).

Suppose the probability of acceptance of the verifier is at least Q · Γρ(1/Q) + δ. By
simple averaging, for at least a δ/2 fraction of the vertices u ∈ V (Γ), we have∑

q∈Q
〈huq , Hhuq 〉 � QΓρ(1/Q) +

δ

2
.

Let us refer to such a vertex u as being good.
Fix the parameters τ, L, d to those obtained by applying Theorem A.4 with pa-

rameters ε, δ/2Q. Recall that by (B.1), we have EDt [huq ] =
1
Q . Applying Theorem A.4,

if for each q ∈ Q, maxα∈Fn
2
Inf�l

α (huq ) � τ , then

∑
q∈Q
〈huq , Ghuq 〉 � QΓρ(1/Q) +Q · δ

2Q
.
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This implies that for each good vertex u there exist q, α such that Inf�L
α (huq ) � τ .

We will use these influential coordinates to decode a labelling for the Fn
2 -Max-2Lin

instance Γ.
For each vertex v ∈ V (Γ) define the set of influential coordinates Sv as

Sv= {α ∈ Fn
2 | Inf�L

α (hvq) � τ/2 for some q ∈ Q}(B.2)

∪{α ∈ Fn
2 | Inf�L

α (fv
q ) � τ/2 for some q ∈ Q}.

Using Lemma C.1, for each of the functions hvq or fv
q , there are at most 2L/τ coor-

dinates with influence greater than τ/2. Therefore, for each vertex v the set Sv is of
size at most 2 ·Q · 2L/τ = 4QL/τ .

Define an assignment of labels A : V (Γ) → Fn
2 as follows. For each vertex v,

sample a random α ∈ Sv and assign A(v) = α.
Fix one good vertex u and a corresponding q, α such that Inf�L

α (huq ) � τ . By
definition of huq this implies that

Inf�L
α

(
E

v∈N(u)
Tαuv ◦ fv

q

)
� τ ,

which by convexity of influences yields

τ � E
v∈N(u)

[Inf�L
α (Tαuv ◦ fv

q )] = E
v∈N(u)

[Inf�L
α−αuv

(fv
q )] .

Hence, for at least a τ/2 fraction of the neighbors v ∈ N(u), the coordinate α − αuv

has influence at least τ/2 on fv
q . Therefore, for every good vertex u, for at least a τ/2

fraction of its neighbors v ∈ N(u), the edge (u, v) is satisfied by the labelling A with
probability at least 1

|Su|
1
|Sv| � τ2/16Q2L2. Since there is at least a δ/2 fraction of

good vertices u, the expected fraction of edges satisfied by the labelling A is at least
δ
2 ·

τ
2 ·

τ2

16Q2L2 = δτ3

64Q2L2 .

Choosing the soundness γ of the outer unique game Γ to be lower than δτ3

64Q2L2

yields a contradiction. This shows that the value of any labelling � to Ψε,Q,d(Γ) is
less than QΓρ(1/Q) + δ.

SDP solution. We will construct feasible solutions to certain strong SDP relax-
ations of Ψε,Q,d(Γ) by appealing to the work of [RS09]. The SDP hierarchies that we
consider are referred to as the LH and SA-SDP hierarchies. Informally, the rth-
level LH relaxation (LHr) consists of the simple SDP relaxation for Unique Games

augmented by local distributions μS over integral assignments for every set S of at
most r vertices. The local distribution μS is required to be consistent with the inner
products of the SDP vectors. Alternately, this SDP hierarchy can be thought of as
the simple SDP relaxation augmented by every valid constraint on at most r vertices.

The SA-SDP hierarchy is a somewhat stronger hierarchy that requires the local
distributions μS to be consistent with each other, namely, μS and μT agree on S ∩ T .
Alternately, the SA-SDP hierarchy corresponds to the simple SDP relaxation aug-
mented with r rounds of SA linear program variables. We refer the reader to [RS09]
for formal definitions of the SA-SDP and LH hierarchies.

Lemma B.4. Suppose Γ has an SDP solution that is of value 1 − η; then there
exists an SDP solution to the instance Ψε,Q,d(Γ) such that

– the SDP solution is feasible for LHR with R = 2Ω(ε/η1/4);
– the SDP solution is feasible for SA-SDPR with R = Ω(ε/η1/4);
– the SDP solution has value 1−O(ε)− oη(1) on Ψε,Q,d(Γ).



1318 BARAK, GOPALAN, HÅSTAD, MEKA, RAGHAVENDRA, STEURER

Proof. This lemma is a direct consequence of Theorem 9 from [RS09].
In [RS09], the authors start with an integrality gap instance Γ for the simple

SDP for Unique Games, and then perform a traditional long code–based reduction
to obtain an instance Φε,Q(Γ).

The crucial observation is the following.
Observation B.5. The vertices of Ψε,Q,d(Γ) are a subset of vertices of Φε,Q(Γ)—

the instance obtained by the traditional Q-ary long code reduction on Γ.
Proof. The vertices of Ψε,Q,d(Γ) are pairs of the form (v, c), where v ∈ V (Γ) and

c ∈ Dt. The codeword c ∈ Dt can be thought of as a string of length N = 2n over
the alphabet Q = Ft

2, namely, c ∈ Q2n . The vertices of the instance Φε,Q(Γ) obtained
via a traditional Q-ary long code reduction are V (Γ) × Q2n . Hence the observation
follows.

In [RS09], the authors construct an SDP solution for the instance Φε,Q(Γ) that

is feasible for LHR relaxation with R = 2Ω(ε/η1/4) and for SA-SDPR relaxation with
R = Ω(ε/η1/4). As noted in Observation B.5, the vertices of Ψε,Q(Γ) are a subset of
the vertices of Φε,Q(Γ). Therefore, the same SDP solution constructed in [RS09] when
restricted to the instance Ψε,Q,d(Γ) yields a feasible solution for the corresponding
LHR and SA-SDPR relaxations.

To finish the proof, we need to show that the value of the SDP solution from
[RS09] is 1− 2ε− oη(1).

The traditional long code–based reduction to get Φε,Q(Γ) uses the noise stability
test as the inner gadget. Namely, to test whether a function f : F2n

Q → FQ is a dictator

function, the verifier picks x ∈ F2n

Q uniformly at random, rerandomizes each coordinate
of x independently with probability ε, and then tests whether f(x) = f(y). Composing
this noise stability test with the outer unique game Γ yields the instance Φε,Q(Γ).
The value of the SDP solution constructed for Φε,Q(Γ) in [RS09] depends only on the
expected Hamming distance between the queries x, y. More precisely, in Claim 2 of
[RS09], the authors show that if the distribution on the queries (x, y) ∈ F2n

Q × F2n

Q is

chosen to be an arbitrary distribution NS over F2n

Q × F2n

Q , the SDP objective value of
the solution is given by

P
{x,y}∼NS,�∈[2n]

[x� = y�]− ε .

The instance Ψε,Q,d is obtained by using the following distribution of x, y over
F2n

Q × F2n

Q : Sample (c1, c2), an edge in Cay(Dt, Tt,ε).
By construction, for any coordinate � ∈ [2n], P[x� = y� = 1 − O(ε). Therefore,

using Claim 2 of [RS09], the SDP objective value on the instance Ψε,Q,d(Γ) is at least
1−O(2ε)− oη(1).

Proof of Theorem B.1. Fix t = �10/ε log(1/δ)� and Q = 2t. By our choice of Q,
we have QΓe−ε(1/Q) � δ (see Appendix B in [MOO05] for such asymptotic bounds
on Γ).

Fix γ, d depending on ε, δ, andQ as dictated by Lemma B.3. Let Γ be theUnique

Games instance obtained by Corollary 6.2 with the optimal integral value set to γ.

In particular, Γ is an Fn
2 -Max-2Lin instance that has M = 22

log2 n

vertices. Its SDP
optimum for the simple Unique Games SDP relaxation is at least 1−O(C(ε, δ)/n)
(η = O(C(ε, δ)/n)) for some constant C(ε, δ) depending on ε, δ.

Now we apply the reduction to Ft
2-Max-2Lin outlined below to obtain an instance

Ψε,Q,d(Γ). The number of vertices of the instance Ψε,Q,d(Γ) is |V (Γ)| × |Dt|. Note
that the choice of the degree d is a constant (say d(ε, δ)) depending on ε, δ. Hence,
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the number of points in Dt is given by |Dt| = 2O(nd(ε,δ)). Therefore, the number of

vertices of Ψε,Q,d(Γ) is N = 22
log2 n · 2O(nd(ε,δ)) = 22

O(log2 n)

. Equivalently, we have

n = 2Ω(log log1/2 N).
– By Lemma B.3, the optimal labelling to Ψε,Q,d(Γ) satisfies at most a QΓe−ε

(1/Q) + δ = O(δ) fraction of constraints.
– By Lemma B.4, there exists an SDP solution to the instance Ψε,Q,d(Γ) with
value 1−O(ε)− oη(1). Since η = O(C(ε, δ)/n), for large enough choice of n,
the SDP value is at least 1−O(ε).

– The SDP solution is feasible for LHR for R = 2Ω(ε/η1/4) = 2c(ε,δ)n
1/4

=
exp(exp(Ω(log log1/2N))) rounds, where c(ε, δ) is a constant depending on
ε and δ. Furthermore, the SDP solution is also feasible for SA-SDPR for
R = Ω(ε/η1/4) = c(ε, δ)n1/4 = exp(Ω(log log1/2N)).

Appendix C. Missing proofs.
Proof of Theorem 5.6. Suppose d � C log(1/τ) for C to be chosen later, and fix

γ < 1/8 for γ to be chosen later. Let � = log(1/τ)/4c1 < τ22d+1, where c1 is the
constant from Theorem 5.7. For α ∈ FN

2 /C, let λα be the eigenvalues of G. Then, by
Lemma 4.13,

(C.1) |λα − ρk| < τ for k � � |λα| < ρ�/2 for k > �.

Let g = Gγf and G′ = G1−2γ . Then, the graph G′ has the same eigenfunctions as
G—χα for α ∈ FN

2 /C with eigenvalues λ′α = λ1−2γα . From the above equation, it is
easy to check that, for ρ′ = ρ1−2γ ,

(C.2) |λ′α − (ρ′)k| <
√
τ for k � �, |λ′α| < (ρ′)�/2 for k > �.

Further, as the eigenvalues of G are each at most 1, the coordinate influences of g are
no larger than those of f .

Now, decompose g = g��+g>� into a low-degree part g�� =
∑

α∈Fn
2 , wt(α)�� ĝ(α)χα

and a high-degree part g>� =
∑

α∈Fn
2 /C, Δ(α,C)>� ĝ(α)χα. Then,

〈f,Gf〉 = 〈g,G′g〉 = 〈g��, G′g��〉+〈g>�, G′g>�〉 � 〈g��, G′g��〉+μ· max
α∈FN

2 /C, Δ(α,C)>�
λ′α .

Hence, using (C.2) (and the crude bound μ � 1),

(C.3) 〈f,Gf〉 =
∑

α∈FN
2 ,wt(α)��

(ρ′)wt(α)ĝ(α)2 + (ρ′)� +
√
τ .

Observe that g�� is a multilinear polynomial of degree at most � and, as the
�-degree influences of g are at most τ , g�� is τ -regular.

Let S ⊆ {±1}N be the set of {±1}-vectors corresponding to the Reed–Muller
code C⊥ = RM(n, d); that is, for every codeword c ∈ C⊥, the set S contains the vector
((−1)c1 , . . . , (−1)cN ). Then, as g is [0, 1]-valued on C⊥ and ζ measures distance to
bounded random variables, by (C.1),

E
z∼S

[ζ ◦ g��(z)] � E
z∼S

[(g(z)− g��(z))2] = E
z∼S

[(g>�(z))2] = E
z∼S

[(Gγf>�(z))2]

� max
α:|α|>�

(λγα)
2 � ργ�.
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Hence, by Theorem 5.7 (recall that � = log(1/τ)/4c1),

E
x∼{±1}N

[ζ ◦ g��(x)] � E
z∼S

[ζ ◦ g��(z)] + 2O(�)
√
τ � ργ� + τ1/4︸ ︷︷ ︸

η:=

.

Now, as C⊥ is �-wise independent (� < 2d+1),

E
x∼{±1}N

[g��(x)] = E
z∼S

[g��(z)] = E
z∼S

[g(z)]± E
z∼S

[(g>�(z))2]1/2 � μ+
√
η.

Therefore, by Corollary 5.3,

(C.4) 〈g��, Tρ′g��〉 =
∑

α:wt(α)��

(ρ′)wt(α)ĝ(α)2 � Γρ′(μ+
√
η) +

O(log log(1/η))

(1 − ρ′) log(1/η) .

Since Γρ′(μ+
√
η) � Γρ′(μ) + 2

√
η and Γρ(μ) � Γρ′(μ) + |ρ− ρ′|/(1− ρ) (cf. Lemma

B.3, Corollary B.5 in [MOO05]), it follows from (C.3) and (C.4) that

〈f,Gf〉 = 〈g,G′g〉 � Γρ(μ) +O

(
|ρ− ρ′|
1− ρ

)
+O(

√
η) +

O(log log(1/η))

(1 − ρ) log(1/η)
+ ρ(1−2γ)� +

√
τ

= Γρ(μ) +O

(
γ log(1/ρ)

1− ρ + ργ�/2 + τ1/8 +
log log(1/η)

(1 − ρ) log(1/η)

)
.

(Here we used the estimate |ρ − ρ′| = |ρ − ρ1−2γ | = O(γ log(1/ρ)).) By choosing
d � C log(1/τ) and γ = CK log log(1/τ)/(log(1/τ) log(1/ρ)) for an appropriately
large constant C, the above expression simplifies to

〈f,Gf〉 � Γρ(μ) +
O(log log(1/τ))

(1− ρ) log(1/τ) .

Proof of Lemma 5.15. Since X fools τ -regular degree-� PTFs, we have for all
u � 0, ∣∣∣P {ζ ◦Q(X) > u} − P {ζ ◦Q(Y ) > u}

∣∣∣ � O(ε) .

By hypercontractivity and 20�-wise independence of X ,

P {ζ ◦Q(X) > u} � P
{
|Q(X)| >

√
u
}
� u−10 EQ(X)20 � u−102O(�).

Since ζ ◦Q(X) is a nonnegative random variable,

E ζ ◦Q(X) =

∫
P {ζ ◦Q(X) > u} du.

Hence, we can bound its expectation:

E ζ ◦Q(X) =

∫
u�0

P {ζ ◦Q(X) > u} du

=

∫
0�u�M

P {ζ ◦Q(X) > u} du± 2O(�)

∫
u�M

u−10 du

=

∫
0�u�M

P {ζ ◦Q(Y ) > u} du±O
(
εM + 2O(�)/M9

)
= E ζ ◦Q(Y )±O

(
εM + �O(�d)/M9

)
.

(In the last step, we used that P {ζ ◦Q(Y ) > u} � u−102O(�), a consequence of hy-
percontractivity.) Choosing M = 2O(�)/ε0.1 (so that εM = 2O(�)/M9), we conclude
that E ζ ◦Q = E ζ ◦Q± ε0.92O(�).
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C.1. Proofs from section A.1. The following lemma shows a bound on the
sum of influences.

Lemma C.1. For a function f : Dt → R and � < dist(Ct)/2, the sum of �-degree

influences of f is at most
∑

i∈[N ] Inf
��
i (f) � �V[f ].

Proof. The usual identity for the total (low-degree) influence holds:∑
i∈[N ]

Inf��
i (f) =

∑
β∈QN/Ct, wt(β)��

wt(β)f̂(β)2 � �V f .

Analogously to Theorem 5.7, the following invariance principle can be shown for
regular multilinear polynomials.

Theorem C.2. Let N = 2n and t be an integer. For every τ, � > 0, there exists
C such that for d > C log(1/τ) the following holds: If P : RNt → R is a τ-regular
polynomial of degree at most �, then, for x ∈u {±1}Nt, z ∈u RM(n, d)t,

|E[ζ ◦ P (x)]− E[ζ ◦ P (z)]| � 2c1�
√
τ

for a universal constant c1 > 0.
The proof follows easily from the proofs of Theorems 5.9 and 5.7 and the fact that

if RM(n, d) satisfies the properties of the PRG in [MZ13], then so does RM(n, d)t. We
omit the proof.

The work of Mossel, O’Donnell, and Oleszkiewicz [MOO05] also obtains bounds
on noise stability of functions over product spaces of large alphabets, namely QN .
The following corollary is a consequence of Theorem 4.4 in [MOO05]. The proof is
analgous to that of Corollary 5.3, the corollary to Theorem 5.1.

Corollary C.3. Let f : QN → R be a function with E f = μ and E ζ ◦ f � τ .
Suppose Infi f

�30 log(1/τ)/ logQ � τ for all i ∈ [N ]. Then,

〈f, Tρf〉 � Γρ(μ) +O
(

logQ log log(1/τ)
(1−ρ) log(1/τ)

)
,

where Tρ is the noise graph on QN with second largest eigenvalue ρ and Γρ is the
Gaussian noise stability curve. (Here, we assume that τ is small enough.)

Now we are ready to present the proof of the Majority Is Stablest theorem over
Dt (Theorem A.4) using Theorem C.2 and Corollary C.3.

Proof of Theorem A.4. Let Q = 2t. Fix d � C log(1/τ) for a sufficiently large
constantC to be chosen later. Let γ < 1/8 be a constant depending on ε, δ whose value
will be chosen later. Let � = log(1/τ)/4c1 < τ22d+1, where c1 is the constant from
Theorem C.2. For α ∈ QN/C, let λα be the eigenvalues of G. Then, by Lemma A.2,

(C.5) |λα − ρwt(α)| < τ for wt(α) � �, |λα| < ρΩ(�/t) for wt(α) > �.

Let g = Gγf and G′ = G1−2γ . Then, the graph G′ has the same eigenfunctions as
G—χα for α ∈ QN/C with eigenvalues λ′α = λ1−2γα . From the above equation, it is
easy to check that, for ρ′ = ρ1−2γ ,

(C.6) |λ′α − (ρ′)wt(α)| <
√
τ for wt(α) � �, |λ′α| < (ρ′)Ω(�/t) for wt(α) > �.

Further, as the eigenvalues of G are each at most 1, the coordinate influences of g are
no larger than those of f . Now, decompose g = g��+g>� into a low-degree part g�� =∑

α∈QN , wt(α)�� ĝ(α)χα and a high-degree part g>� =
∑

α∈QN/C, wt(α)>� ĝ(α)χα. Then,

〈f,Gf〉= 〈g,G′g〉= 〈g��, G′g��〉+〈g>�, G′g>�〉 � 〈g��, G′g��〉+μ· max
α∈QN/C, deg(α)>�

λ′α .
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Hence, using (C.6) (and the crude bound μ � 1),

(C.7) 〈f,Gf〉 =
∑

α∈QN/C,wt(α)��

(ρ′)wt(α)ĝ(α)2 + (ρ′)Ω(�/t) +
√
τ .

Observe that g�� is a multilinear polynomial of degree at most � · t. Since the
�-degree influences of g are at most τ , it implies that the multilinear polynomial g��

is τ -regular.
Let S ⊆ {±1}Nt be the set of {±1}-vectors corresponding to the Reed–Muller

code Dt; that is, for every codeword c = (c(1), c(2), . . . , c(t)) ∈ Dt, the set S contains

the vector ((−1)c
(1)
1 , . . . (−1)c

(i)
j , (−1)c

(t)
N ). Then, as g is [0, 1]-valued on Dt and ζ

measures distance to bounded random variables, by (C.5),

E
z∼S

[ζ ◦ g��(z)] � E
z∼S

[(g(z)− g��(z))2] = E
z∼S

[(g>�(z))2] = E
z∼S

[(Gγf>�(z))2]

� max
α:wt(α)>�

(λγα)
2 � ρΩ(γ�/t).

Hence, by Theorem C.2 (recall that � = log(1/τ)/4c1),

E
x∼{±1}N

[ζ ◦ g��(x)] � E
z∼S

[ζ ◦ g��(z)] + 2O(�)√τ � ρΩ(γ�) + τ1/4︸ ︷︷ ︸
η:=

.

Now, as Dt is �-wise independent (� < 2d+1),

E
x∼{±1}N

[g��(x)] = E
z∼S

[g��(z)] = E
z∼S

[g(z)]± E
z∼S

[(g>�(z))2]1/2 � μ+
√
η.

Therefore, by Corollary C.3,

(C.8) 〈g��, Tρ′g��〉 =
∑

α:wt(α)��

(ρ′)wt(α)ĝ(α)2 � Γρ′(μ+
√
η) +

O(t log log(1/τ))

(1− ρ′) log(1/τ) .

Since Γρ′(μ+
√
η) � Γρ′(μ) + 2

√
η and Γρ(μ) � Γρ′(μ) + |ρ− ρ′|/(1− ρ) (cf. Lemma

B.3, Corollary B.5 in [MOO05]), it follows from (C.7) and (C.8) that

〈f,Gf〉 = 〈g,G′g〉 � Γρ(μ) + O

(
|ρ− ρ′|
1− ρ

)
+O(

√
η) +

O(t log log(1/τ))

(1− ρ) log(1/τ)
+ ρΩ((1−2γ)�/t) +

√
τ .

By a sufficiently small choice of τ , and fixing � = log(1/τ)/4c1 and

γ = 100tc1 log log(1/τ)/(log(1/τ) log(1/ρ))

(so that ρΩ(γ�/t) < 1/ log(1/τ) and |ρ − ρ′| = O( t
log 1/ρ log 1/τ )), the error term in the

above expression can be made smaller than δ.
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