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L). As a corollary we

obtain a 
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known lower bound for any explicit function in NP .
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1. Introduction. Proving lower bounds for various computational models is of
fundamental value to our understanding of computation. Still we are very far from
proving strong lower bounds for realistic models of computation, but at least there is
more or less constant progress. In this paper we study formula size for formulae over
the basis ^, _ and :. Our technique is based on random restrictions which were �rst
de�ned and explicitly used in [2] although some earlier results can be formalized in
terms of this type of random restrictions.

To create a random restriction in the space Rp we, independently for each variable,
keep it as a variable with probability p and otherwise assign it the value 0 or 1 with
equal probabilities 1�p

2 . Now suppose we have a function given by a de Morgan
formula of size L. What will be the expected formula size of the induced function
when we apply a random restriction from Rp? The obvious answer is that this size
will be at most pL.

Subbotovskaya [11] was the �rst to observe that actually formulae shrink more.
Namely she established an upper bound

O(p1:5L+ 1)(1)

on the expected formula size of the induced function. This result allowed her to derive
an 
(n1:5) lower bound on the de Morgan formula size of the parity function.

This latter bound was superseded by Khrapchenko [12, 13] who, using a di�erent
method, proved a tight 
(n2) lower bound for the parity function. His result implied
that the parity function shrinks by a factor �(p2), and provided an upper bound � � 2
on the shrinkage exponent �, de�ned as the least upper bound of all 
 that can replace
1.5 in (1).

New impetus for research on the expected size of the reduced formula was given
by Andreev [9] who, based upon Subbotovskaya's result, derived an n2:5�o(1) lower
bound on the de Morgan formula size for a function in P . An inspection of the proof
reveals that his method actually gives for the same function the bound n�+1�o(1).

New improvements of the lower bound on � followed. Nisan and Impagliazzo

[5] proved that � � 21�p73
8 � 1:55. Paterson and Zwick [6], complementing the

1
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technique from [5] by very clever and natural arguments, pushed this bound further

to � � 5�p3
2 � 1:63.

One can also de�ne the corresponding notion for read-once formulae. For such
formulae it was established in [3] that �ro = 1= log2(

p
5� 1) � 3:27. This result was

made tight in [1], in that they removed a polylogarithmic factor in the bounds.

In this paper we continue (and possibly end) this string of results by proving that
� = 2. To be more precise we prove that remaining size is O(p2(log 1

p )
3=2L + p

p
L).

As discussed above this gives an 
(n3�o(1)) lower bound for the formula size of the
function de�ned by Andreev.

Our proof is by a sequence of steps. We �rst analyze the probability of reduc-
ing the formula to a single literal. When viewing the situation suitably, this �rst
lemma gives a nice and not very di�cult generalization of Khrapchenko's [12, 13]
lower bounds for formula size. As an illustration of the power of this lemma we next,
without too much di�culty, show how to establish the desired shrinkage when the
formula is balanced. The general case is more complicated due to the fact that we
need to rely on more dramatic simpli�cations. Namely, suppose that � = �1 ^�2 and
�1 is much smaller than �2. Then, from an intuitive point of view, it seems like we
are in a good position to prove that we have substantial shrinkage since it seems quite
likely that �1 is reduced to the constant 0 and we can erase all of �2. The key new
point in the main proof is that we have to establish that this actually happens. In
the balanced case, we did not need this mechanism. The main theorem is established
in two steps. First we prove that the probability that a formula of size at least 2
remains after we have applied a restriction from Rp is small, and then we prove that
the expected remaining size is indeed small.

It is curious to note that all except our last and main result are proved even under
an arbitrary but "favorable" conditioning, while we are not able to carry this through
for the main theorem.

2. Notation. A de Morgan formula is a binary tree in which each leaf is labeled
by a literal from the set fx1; : : : ; xn; �x1; : : : ; �xng and each internal node v is labeled by
an operation which is either ^ or _. The size of a formula � is de�ned as the number
of leaves and is denoted by L(�). The depth D(�) is the depth of the underlying tree.
The size and the depth of a Boolean function f are, respectively, the minimal size and
depth of any de Morgan formula computing f in the natural sense. For convenience
we de�ne the size and depth of a constant function to be 0.

A restriction is an element of f0; 1; �gn. For p 2 [0; 1] a random restriction �
from Rp is chosen by that we set randomly and independently each variable to � with
probability p and to 0; 1 with equal probabilities 1�p

2 . The interpretation of giving
the value � to a variable is that it remains a variable, while in the other cases the
given constant is substituted as the value of the variable.

All logarithms in this paper are to the base 2. We use the notation x�i to denote
xi when � = 0 and �xi when � = 1. We also need the concept of a �lter.

Definition 2.1. A set of restrictions � is a �lter, if when � 2 �, and �(xi) = �,
then for � 2 f0; 1g the restriction �0 obtained by setting �0(xj) = �(xj), for every j 6= i
and �0(xi) = � also belongs to �.

For any event E we will use Pr[Ej�] as shorthand for Pr[Ej� 2 �]. Note that
the intersection of two �lters is a �lter.

3. Preliminaries. We analyze the expected size of a formula after it has been
hit with a restriction from Rp. The variables that are given values are substituted
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into the formula after which we use the following rules of simpli�cation:

� If one input to a _-gate is given the value 0 we erase this input and let the
other input of this gate take the place of the output of the gate.

� If one input to a _-gate is given the value 1 we replace the gate by the constant
1.

� If one input to a ^-gate is given the value 1 we erase this input and let the
other input of this gate take the place of the output of the gate.

� If one input to a ^-gate is given the value 0 we replace the gate by the constant
0.

� If one input of a _-gate is reduced to the single literal xi (�xi) then xi = 0 (1)
is substituted in the formula giving the other input to this gate. If possible
we do further simpli�cations in this subformula.

� If one input of a ^-gate is reduced to the single literal xi (�xi) then xi = 1 (0)
is substituted in the formula giving the other input to this gate. If possible
we do further simpli�cations in this subformula.

We call the last two rules the one-variable simpli�cation rules. All rules preserve the
function the formula is computing. Observe that the one-variable simpli�cation rules
are needed to get a nontrivial decrease of the size of the formula as can be seen from
the pathological case when the original formula consists of an _ (or ^) of L copies
of a single variable xi. If these rules did not exist then with probability p the entire
formula would remain and we could get an expected remaining size which is pL. Using
the above rules we prove that instead we always get an expected remaining size which
is at most slightly larger than p2L.

In order to be able to speak about the reduced formula in an unambiguous way
let us be more precise about the order we do the simpli�cation. Suppose that � is a
formula and that � = �1 ^�2. We �rst make the simpli�cation in �1 and �2 and then
only later the simpli�cations which are connected with the top gate. This implies
that the simpli�ed � will not always consist of a copy of simpli�ed �1 and a copy of
simpli�ed �2 since the combination might give more simpli�cations. In particular, this
will happen if �1 is simpli�ed to one variable xi since then xi = 1 will be substituted
in the simpli�ed �2. Whenever a one-variable simpli�cation rule actually results in a
change in the other subformula we say that a one-variable simpli�cation is active at
the corresponding gate.

We let �d� denote formula that results when the above simpli�cations are done
to �. As usual L(�d�) denotes the the size of this formula.

It is important to note that simpli�cations have a certain commutativity property.
We say that two restrictions �1 and �2 are compatible if they never give two di�erent
constant values to the same xi. In other words, for any xi the pair (�1(xi); �2(xi)) is
one of the pairs (�; �); (�; 0); (�; 1); (0; �); (0; 0); (1; �) or (1; 1). For compatible restric-
tions we can de�ne the combined restriction �1 � �2 which in the mentioned 7 cases
takes the values �; 0; 1; 0; 0; 1; 1 respectively. This combined restriction is the result
(on the variable level) of doing �rst �1 and then doing �2 on the variables given � by
�1. Note that the fact that �1 and �2 are compatible makes the combining operator
commutative. We need to makes sure that combination acts in the proper way also
on formulae.

Lemma 3.1. Let �1 and �2 be two compatible restrictions then for any �,

(�d�1 )d�2= (�d�2 )d�1= �d�1��2 :
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Proof. Let � denote �1 � �2. Clearly we need only establish (�d�1 )d�2= �d� since
the other equality follows by symmetry. We proceed by induction over the size of
�. When the size is 1 the claim is obvious. For the general case we assume that
� = �1 ^ �2 (the case � = �1 _ �2 being similar) and we have two cases:

1. Some one-variable simpli�cation rule is active at the top gate when de�ning
��1 .

2. This is not the case.

In case 2 there is no problem since there is no interaction between �1 and �2
until after both �1 and �2 have been applied. Namely, by induction �jd�= (�jd�1)d�2
for j = 1; 2 and since we do all simpli�cation to the subformulae before we do any
simpli�cation associated with the top gate, the result will be the same in both cases.

In case 1, assume that �1d�1= x�j . This means that xj = �� is substituted in

�2d�1 . Viewing this as a restriction �(j) giving a non-� value to only one variable, �2
is simpli�ed to (�2d�1)d�(j) . Now we have three possibilities depending on the value
of �2 on xj .

When �2(xj) = � then (�1d�1)d�2� 0 and by induction �1d�� 0 and hence
(�d�1 )d�2= �d�� 0.

When �2(xj) = �� then by induction (�1d�1)d�2= �1d�� 1, and since �(j) is com-
patible with (even a subassignment of) �2 we have

(�d�1)d�2= ((�2d�1)d�(j) )d�2= (�2d�1)d�2= �2d�= �d�
where we again have used the induction hypothesis.

When �2(xj) = � then since (by induction) �1d�= (�1d�1)d�2= x�j when simplify-

ing by �, �2 will be simpli�ed also by the restriction �(j) and will be (�2d�)d�(j) which
by induction is equal to �2d���(j) . On the other hand when simplifying by �1 and
then by �2 �2 reduces to ((�2d�1)d�(j) )d�2 which by applying the induction hypothesis

twice is equal to �2d�1��(j)��2 and since �1 � �(j) � �2 = � � �(j) the lemma follows.
We will need the above lemma in the case of analyzing what happens when we

use the one-variable simpli�cation rules. In that case the restriction �2 will just give
a non-� value to one variable. Since the lemma is quite simple and natural we will
not always mention it explicitly when we use it.

Two examples to keep in mind during the proof are the following:

1. Suppose � computes the parity of m variables and is of size m2. Then if p
is small, the probability that � will depend on exactly one variable is about
pm = p

p
L(�) and if p is large, we expect that the remaining formula will

compute the parity of around pm variables and thus be of size at least (pm)2 =
p2L(�).

2. Suppose � is the ^ of L=2 copies of x1 _ x2. By our rules of simpli�cation,
this will not be simpli�ed if both x1 and x2 are given the value � by the
restriction. Hence with probability p2 the entire formula remains and we get
expected remaining size of at least p2L.

4. Reducing to size 1. We start by estimating the probability that a given
formula reduces to size one. For notational convenience we set q = 2p

1�p . This will
be useful since we will change the values of restrictions at individual points and if we
change a non-� value to �, we multiply the probability by q. Since we are interested
in the case when p is small, q is essentially 2p.
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Lemma 4.1. Let � be a formula of size L and � a random restriction in Rp. Let

E� be the event that � is reduced to the constant � by � for � = 0; 1. Furthermore let

� be any �lter. Then Pr[L(�d�) = 1j�] is bounded by

q (LPr[E0j�]Pr[E1j�])1=2 :

Remark: Most of the time the implied bound q
p
L=4 (which follows from x(1�x) �

1=4) will be su�cient.
Proof. Let � be a restriction that satis�es L(�d�) = 1 and belongs to � and

suppose that � makes � into the literal x�i . By de�nition �(xi) = � and we have two
fellow restrictions �� , � = 0; 1 where �� is obtained by changing �(xi) to xor(�; �).
�� contributes to the event E� and by the de�nition of a �lter it belongs to �. We
can hence identify the set of restrictions we are interested in with edges between
restrictions that reduce the formula to the constants 0 and 1 respectively and we are
on familiar grounds.

Let A be set the of restrictions that satisfy E0 and belong to � and let B be the
set of restrictions that satisfy E1 and belong to �. We partition A�B into rectangles
Aj � Bj , where for each j there is some variable xij which takes a di�erent value in
Aj and in Bj . This was �rst done in [10] (see also [7]), but we will here need a slight
generalization and thus we choose to use the more intuitive framework introduced by
Karchmer and Wigderson [4].

In the normal KW-game P1 gets an input, x, from f�1(1) while P0 gets an input,
y, from f�1(0) and their task is to �nd a coordinate i such that xi 6= yi. This is
solved by tracing the formula from the output to an input maintaining the property
that the two inputs give di�erent values to the gates on the path. This is achieved in
the following way. At an ^-gate, P0 points to the input of this gate that evaluates to
0 on y. Similarly at an _-gate P1 points to the input that evaluates to 1 on x.

We extend this game by giving P� a restriction �� that simpli�es the formula to
the constant �. The task is to �nd an xi on which the two restrictions take di�erent
values (we allow answers where one restriction takes the value � and the other takes
the value 0 or 1).

To solve this game both players start by setting ��(xj) = 1 for each j such that
��(xj) = �. After this they play the standard KW-game. If the path ends at literal
x�i , then in the extended restrictions ��(xi) = xor(�; �). Note that if ��(xi) = 0, then
this was the initial value (since we only change values to 1), while if ��(xi) = 1 then
the initial value was 1 or �. In either case we solve the problem.

The extended KW-game creates a partition of A � B and let Aj � Bj be the
inputs that reach leaf j. Note that the fact that the set of inputs that reach a certain
leaf is a product set follows from the fact that each move of the game is determined
by one of the players based only on his own input. Let Cj be the set of restrictions �
that satisfy L(�d�) = 1 and belong to � and such that the pair (�0; �1) reaches leaf
j. By necessity the literal that appears at leaf j is the literal to which � reduced the
formula. Now, note that the probability of Cj is bounded by q times the probability
of Aj . This follows since the mapping � 7! �0 gives a one-to-one correspondence of Cj

with a subset of Aj and that Pr(�) = qPr(�0) for each �. We have the same relation
between Cj and Bj and hence

Pr[L(�d�) = 1j�] =
X
j

Pr[Cj j�] �
X
j

q (Pr[Aj j�]Pr[Bj j�])1=2 �
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q

0
@X

j

1

1
A

1=20
@X

j

Pr[Aj j�]Pr[Bj j�]
1
A

1=2

= q (LPr[Aj�]Pr[Bj�])1=2

where we used Cauchy-Schwartz inequality.

Remark: Please note that the theorem of Khrapchenko is indeed a special case of
this lemma. Khrapchenko starts with A � f�1(0), B � f�1(1) and C which is a set
of edges of the form (a; b) where a 2 A, b 2 B and the hamming distance between a
and b is one. As noted above each such edge naturally corresponds to a restriction �
by setting �(xi) = ai when ai = bi and �(xi0 ) = � for the unique coordinate i0 such
that ai0 6= bi0 . Abusing notation we can identify the restriction and the edge. Now
setting � = A [ B [ C we get a �lter and since

Pr[C]

qjCj =
Pr[A]

jAj =
Pr[B]

jBj
the lemma reduces to Khrapchenko's theorem, i.e. to

L � jCj2
jAj � jBj :

5. The balanced case. In the general case we cannot hope to have an estimate
which depends on the probability of reducing to either constant. The reason is that
formulae that describe tautologies do not always reduce to the constant 1.

It remains to take care of the probability that the remaining formula is of size
greater than 1.

Definition 5.1. Let L2(�) be the expected size of the remaining formula where

we ignore the result if it is of size 1, i.e. L2(�) =
P1

i=2 iP r[L(�d�) = i]. Furthermore,

let L2(�j�) be the same quantity conditioned on � 2 �. Here we think of � as taken

randomly from Rp and thus L2(�) depends on the parameter p. We will, however,

suppress this dependence.

To familiarize the reader with the ideas involved in the proof, we �rst prove the
desired result when the formula is balanced. We will here take the strictest possible
de�nition of balanced, namely that the formula is a complete binary tree and just
establish the size of the reduced formula as a function of its original depth.

Theorem 5.2. Let � be a formula of depth d and � a random restriction in Rp.

Let � be any �lter and assume that q � (d21+d=2)�1, then

L2(�j�) � q2d2d�1:

Proof. The proof is by induction over the depth. The base case (d = 1) is obvious.
Now suppose � = �1 ^ �2 (the _-case is similar) where the depth of each �i is d � 1
and hence the size is bounded by 2d�1. We need to consider the following events:

1. L(�id�) � 2, for i = 1 or i = 2.
2. L(�1d�) = 1 and the size of �2 after the simpli�cation by � and the application

of the one-variable simpli�cation rule is at least 1.
3. L(�2d�) = 1 and the size of �1 after the simpli�cation by � and the application

of the one-variable simpli�cation rule is at least 1.
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The estimate for L2(�j�) is now
2 � q2(d� 1)2d�2 + Pr[case 2] + Pr[case 3]:

The �rst term comes from any subformula of size at least two appearing in either of
the three cases while the other two terms cover the new contribution in the respective
cases.

Let us analyze the probability of case 2. Let p�i be the probability that �1 reduces
to x�i . We know by Lemma 4.1 thatX

p�i � q2(d�3)=2:

Now consider the conditional probability that, given that �1 reduces to x�i , �2 does
not reduce to a constant. The condition that �1 reduces to x�i can be written as
\� 2 �0 ^ �(xi) = �" for some �lter �0. The reason for this is that if � reduces �1
to x�i , then changing any �(xj), j 6= i from � to a constant the resulting restriction
still reduces �1 to x�i . This follows by Lemma 3.1. Thus we should work with the
conditioning � 2 �

T
�0 ^ �(xi) = �. Now we substitute xi = �� in �2 and we can

forget the variable xi and just keep the restrictions in �
T
�0 that satisfy �(xi) = �

(as restrictions on the other n � 1 variables). This yields a �lter �
00

. Thus we want
to estimate the conditional probability that �2dxi=� does not reduce to a constant
given that � 2 �

00

. But now we are in position to apply induction and hence this
probability can be estimated by

q2(d�3)=2 +
1

2
q2(d� 1)2d�2;

where the �rst term is given by Lemma 4.1 and the second term is a bound on
1
2L

2(�2j�00

). Using q � (d21+d=2)�1 we get the total bound q2d=2�1. This implies
that the total probability of case 2 is bounded byX

p�iq2
d=2�1 � q22d�5=2:

the probability of case 3 can be bounded the same way and �nally

2 � q2(d� 1)2d�2 + q22d�3=2 � q2d2d�1;

and the proof is complete.
It is not di�cult to extend Theorem 5.2 to larger d, but we leave the details to

the reader.

6. The probability of size at least 2 remaining. The reason why things are
so easy in the balanced case is that we need not rely on very complicated simpli�ca-
tions. In particular, we did not need the fact that a subformula can kill its brother.
This will be needed in general and let us start by:

Lemma 6.1. Let � be a formula of size L and � a random restriction in Rp.

Let � be any �lter and assume that q � (2
p
L logL)�1. Then the probability that

L(�d�) � 2 conditioned on � 2 � is at most q2L(logL)1=2:

Proof. We prove the lemma by induction over the size of the formula. It is not
hard to see that the lemma is correct when L � 2. Suppose that � = �1 ^ �2 (the
_-case is similar) where L(�i) = Li, L1 +L2 = L, and L1 � L2. We divide the event
in question into the following pieces:
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1. L(�1d�) � 2
2. L(�1d�) = 1 and even after the one-variable simpli�cation rule is used the

size of the simpli�ed �2 is at least 1.
3. �1 is reduced to the constant 1 by � and L(�2d�) � 2.

The probability of the �rst event is by induction bounded by q2L1(logL1)
1=2.

Suppose the probability, conditioned on � 2 �, that �1 is reduced to the constant 1 is
Q. Call the corresponding set of restrictions �0. Note that �0 is a �lter. Then using
the induction hypothesis with the conditioning �

T
�0 we get the probability of the

third event to be bounded by

Qq2L2(logL2)
1=2:

Let us now estimate the probability of the second case. The probability that L(�1d�) =
1 is by Lemma 4.1 bounded by q (L1Q(1�Q))

1=2
. To estimate the conditional prob-

ability that, given that L(�1d�) = 1, �2 remains to be of size at least 1 we reason
exactly as in the proof of Theorem 5.2. Hence, this probability can be estimated by

q
p
L2=4 + q2L2(logL2)

1=2;

where the �rst term comes from an application of Lemma 4.1 and the second term
from the inductive assumption. Thus for the second case we get the total bound

q (L1Q(1�Q))1=2 �
�
q
p
L2=4 + q2L2(logL2)

1=2
�
�

q2 (L1L2Q(1�Q))
1=2 � q2 (L1L2(1�Q))

1=2
;

where we used q � (2
p
L logL)�1 � (2

p
L2 logL2)

�1. We want to bound the sum of
the estimates for probabilities of cases 2 and 3. Di�erentiating

QL2(logL2)
1=2 + (L1L2(1�Q))

1=2

with respect to Q yields

L2(logL2)
1=2 � 1

2

�
L1L2

1�Q

�1=2

:

Thus the derivative is 0 when

(1�Q) =
L1

4L2 logL2

and this corresponds to a maximum since the second derivative is negative. Using
this optimal value for Q we get a total estimate which is

q2L1 (logL1)
1=2

+ q2L2 (logL2)
1=2 � q2

4
L1(logL2)

�1=2 +
q2

2
L1(logL2)

�1=2 =

q2L1 (logL1)
1=2 + q2L2 (logL2)

1=2 +
q2

4
L1(logL2)

�1=2
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and we need to prove that this is less than q2L (logL)1=2 when L1 � L2 and L =
L1 + L2. This is only calculus, but let us give the proof.

First note that logL2 � log dL=2e � 1
2 logL when L � 3 and hence it is su�cient

to bound

q2L1 (logL1)
1=2

+ q2L2 (logL2)
1=2

+
q2

2
L1(logL)

�1=2:

Now if we set H(x) = x(log x)1=2 it is not di�cult to see that H 00(x) is positive for
x � 2 and hence the above expression is convex for L1 � 2. This means that it is
maximized either for L1 = 1; 2 or L1 = L2. The �rst two cases correspond to the
inequalities

(L� 1)(log (L� 1))1=2 +
1

2
(logL)�1=2 � L(logL)1=2

and

2 + (L� 2)(log (L� 2))1=2 + (logL)�1=2 � L(logL)1=2

which are easily seen to hold for L � 3 and L � 4 respectively. To check the required
inequality when L1 = L2 we need to prove that

L (logL=2)1=2 +
L

4
(logL)�1=2 � L (logL)1=2 :

This follows from
p
x�p

x� 1 � 1
2
p
x
which is valid for all x � 1.

7. Main shrinkage theorem. We are now ready for our main theorem.

Theorem 7.1. Let � be a formula of size L and � a random restriction in Rp.

Then the expected size of �d� is bounded by

O

�
p2(1 + (log (min(

1

p
; L)))3=2)L+ p

p
L

�
:

Crucial to this theorem is the following lemma:

Lemma 7.2. Let � be a formula of size L and � a random restriction in Rp. If

q � (2
p
L logL)�1, then

L2(�) � 30q2L(logL)3=2;

while if 1
2 � q � (4

p
L logL)�1, then

L2(�) � 200q2L(log q�1)3=2:

First note that Theorem 7.1 follows from Lemma 7.2 together with Lemma 4.1 and
thus it is su�cient to prove Lemma 7.2. Also note that Lemma 7.2 and Theorem 7.1
do not consider conditional probabilities. There are two reasons for this. It is not
needed and the proof does not seem to allow it.

Proof. (Of Lemma 7.2) The hard part of the lemma is the case when q is small
and we will start by establishing this case. As before we proceed by induction. The
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base case (L = 1) is obvious. Suppose that � = �1 ^ �2 (the _-case is similar) where
L(�i) = Li, L1 + L2 = L and L1 � L2.

Our basic estimate for L2(�) is L2(�1) + L2(�2), which by induction can be
bounded by

S(L1; L2) = 30q2L1(logL1)
3=2 + 30q2L2(logL2)

3=2:

We need to revise this estimate and in particular we need to consider the events which
contribute either to the event described by the basic estimate (L(�id�) � 2 for i = 1,
or i = 2) or to the event we are trying to estimate (L(�d�) � 2).

1. We have L(�id�) � 2 for i = 1 and i = 2.
2. L(�id�) = 1 for i = 1 or i = 2, and the one-variable simpli�cation rule was

active at the top gate.
3. L(�1d�) = L(�2d�) = 1 and the one-variable simpli�cation rule was not active

at the top gate.
4. L(�1d�) = 1 and L(�2d�) � 2 and the one-variable simpli�cation rule was not

active at the top gate.
5. L(�2d�) = 1 and L(�1d�) � 2 and the one-variable simpli�cation rule was not

active at the top gate.
6. The function �1 is reduced to the constant 0 while L(�2d�) � 2.
7. The function �1 is reduced to the constant 1 while L(�2d�) � 2.
8. The function �2 is reduced to the constant 0 while L(�1d�) � 2.
9. The function �2 is reduced to the constant 1 while L(�1d�) � 2.

Let us �rst investigate what corrections we need to make to our basic estimate in the
various cases.
Case 1 The basic estimate is correct.
Case 2 Suppose that �1 reduces to x�i . If the resulting formula is of size at least 2
then �2 was of size at least 2 before we did the simpli�cation of substituting �� for xi.
This reduced the size of �2 by at least one. This means that the formula size of �
is at most the formula size of �2 before we did this simpli�cation. But in our basic
estimate we have not taken this simpli�cation into account and thus we need not add
anything to our basic estimate in this case.
Case 3 In this case we need to add 2 to our basic estimate. We will need some work
to estimate the probability of this case.
Case 4 In this case we need to add 1 to our basic estimate. Also the probability of
this event needs a little bit of work.
Case 5 In this case we need to add 1 to our basic estimate. From our previous
work we can estimate the probability of this event simply by the probability that the
remaining size of �1 is at least 2 and this probability is by Lemma 6.1 bounded by

q2L1(logL1)
1=2:

Cases 6 and 8 In this case we can subtract at least 2 from our original estimate.
This follows since in this case we erase a formula of size at least 2 which contributed
needlessly to the basic estimate. We will only use case 6.
Cases 7 and 9 The basic estimate is correct.

The above reasoning gives the total bound:

S(L1; L2) + 2Pr[case 3] + Pr[case 4] + Pr[case 5]� 2Pr[case 6]:
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We have already bounded Pr[case 5] and for the other probabilities we will establish:

Lemma 7.3. If q � (2
p
L1 logL1)

�1, then

Pr[case 3] � 20q2L1 +
1

2
q2L1(logL1)

1=2 +
1

2
Pr[case 6]

and

Lemma 7.4. If q � (2
p
L1 logL1)

�1, then

Pr[case 4] � q2L1 + Pr[case 6]

Let us just check that this is su�cient to prove Lemma 7.2 in the case when q is
small.

S(L1; L2) + 2Pr[case 3] + Pr[case 4] + Pr[case 5]� 2Pr[case 6] �

S(L1; L2) + 41q2L1 + q2L1(logL1)
1=2

We need to prove that this is bounded by 30q2L(logL)3=2 for all possible L1. Sub-
stituting L2 = L� L1 and di�erentiating twice we see that this is a convex function
of L1 when 2 � L1 � L=2. This means that it is maximized either for L1 = 1; 2 or
L1 = L2.
For L1 = 1 we need to establish

30(L� 1)(log (L� 1))3=2 + 41 � 30L(logL)3=2

which is easily checked to be true for L = 2 and L = 3. For L � 4 the inequality
follows from

L(logL)3=2 � (L� 1)(logL)3=2 + 2:

For L1 = 2 we need to check

30(L� 2)(log (L� 2))3=2 + 60 + 82 + 1 � 30L(logL)3=2

which for L � 4 follows from

L(logL)3=2 � (L� 2)(logL)3=2 + 2 � 23=2

and 60 � 23=2 > 143.
Finally, for L1 = L=2 we need to estimate

30L(logL=2)3=2 + L=2(41 + (logL=2)1=2)

and using the inequality x3=2 � (x � 1)3=2 � x1=2, which is valid for any x � 1, this
can be bounded by

30L(logL)3=2 � 30L(logL)1=2 +
43

2
L(logL)1=2 � 30L(logL)3=2

and we are done.
Hence we need just establish Lemma 7.3 and Lemma 7.4. The basic principle

is to start with a set of restrictions that contribute to the bad case (cases 3 and 4
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respectively ) and create a set of restrictions that contribute to the good case, namely
case 6. In this process there will be some \spills" and hence we need the additive
terms. The Lemma 7.4 is by far the easier, and since the basic outline is the same,
we start with this lemma.

Proof. (Of Lemma 7.4) Let C be the set of restrictions such that �1 reduces to
exactly one variable or its negation and such that the reduced �2 does not contain
this variable. Let A be the set of restrictions that is formed by setting the variable
that remains in �1 in such a way to make �1 reduce to the constant 0 and let B be
the corresponding set that makes �1 reduce to 1. Each element in C corresponds to
an edge between A and B and we can (as in the proof of Lemma 4.1) let this de�ne a
path in �1. Thus each leaf in �1 corresponds to a set Aj �Bj which reaches this leaf
and a subset Cj of C such that for any � 2 Cj , its neighbors belong to Aj and Bj

respectively. The sets Aj � Bj form a partition of A�B. Suppose furthermore that
the literal at leaf j of �1 is x

�j
dj
. Note that this implies that if � 2 Cj then � simpli�es

�1 to x
�j
dj
.

Let qj be the conditional probability that, when � is chosen uniformly from Cj ,
L(�2d�) � 2. The probability of case 4 is then given byX

j

Pr[Cj ]qj :

If we take any restriction � contributing to this event and change the value of � at
xdj to �j then we get a restriction �0 contributing to case 6. This follows since xdj
does not appear in the reduced �2. The set of restrictions created at leaf j will be of
total probability q�1Pr[Cj ]qj and we seem to be in good shape. However the same
restriction �0 might be created at many leaves and hence we would be over counting
if we would just sum these probabilities for various j. However, note that �0 belongs
to A and if it is created at leaf j then it belongs to Aj . Now, since Aj � Bj form a
partition of A�B we have for any � 2 AX

jj�2Aj

Pr[Bj ] = Pr[B] � 1:

This means that if we multiply the total probability of restrictions created at leaf j
by Pr[Bj ] we avoid over counting. Thus the sure contribution to the probability of
case 6 is X

j

q�1Pr[Cj ]Pr[Bj ]qj :

We need to compare this to
P

j Pr[Cj ]qj . For the j for which Pr[Bj ] � q the
term in the sum for case 6 is bigger than the corresponding term for the case 4, while
for other j, we use that Pr[Cj ] � qPr[Bj ] � q2 and thus summing over those j gives
a contribution of at most q2L1. We have proved Lemma 7.4.

Next we turn to Lemma 7.3. This will be more complicated, mainly because the
restrictions contributing to case 6 are more di�cult to construct.

Proof. (Of Lemma 7.3) Let Aj , Bj and Cj be as in the previous proof. For �xed
j let rj be the conditional probability that L(�2d�) = 1 given that � 2 Cj . We divide
the leaves into two cases depending on whether rj � 20qPr[Bj ]

�1. If we restrict the
summation to those j that satisfy this inequality thenX

j

Pr[Cj ]rj �
X
j

qPr[Bj ]20qPr[Bj ]
�1 � 20q2L1
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and this gives the �rst term in the right hand side of Lemma 7.3. We thus concentrate
on the case when rj � 20qPr[Bj ]

�1.
Let A2;j and B2;j be the subsets of Cj which reduce �2 to 0 and 1 respectively.

Let � be a restriction that belongs to Cj and contributes to case 3. Assume that �
reduces �2 to x

�
d. We can obtain a restriction �0 in A2;j (if � = 1) or B2;j (if � = 0) by

setting �0(xk) = �(xk) for k 6= d and �0(xd) = 1. To see that �0 2 Cj note that before
we play the KW-game we give all variables given the value � by � the value 1. Thus
the executions on � and �0 are identical and thus �0 2 Cj . Also, clearly, �

0 forces �2
to ��. Now, suppose that X

�j�02A2;j

Pr[�] �
X

�j�02B2;j

Pr[�](2)

(the other case being symmetric). Suppose A2;j consists of the restrictions �1 : : : �k.
For �i we de�ne a set of critical variables and xk is in this set if

� �i(xk) = 1.
� Creating the restriction �0i by setting �0i(xl) = �i(xl) for every l 6= k while
�0i(xk) = � creates a restriction in C and �2d�0

i
reduces to �xk .

Note that, as observed above, �0 2 C in fact implies that �0 2 Cj since � 2 Cj and we
go from �0 to � by changing the value on a variable from � to 1.

Suppose there are si critical variables for �i. By de�nition, each restriction con-
tributing to the conditional probability rj gives one critical variable for one �i 2 A2;j

exactly when �2 is reduced to a negated variable and otherwise it gives no contribu-
tion. By (2) the �rst case happens in at least half the cases and hence we have

rj = �Pr[Cj ]
�1X

i

qsiPr[�i];

for some � satisfying 1 � � � 2. We now create a set of restriction in the following
way. We obtain

�
si
2

�
new restrictions from �i by choosing two critical variables for �i

and for each such choice (s; t) create a restriction �
(s;t)
i by setting �

(s;t)
i (xk) = �i(xk)

for every k 62 fs; tg while �
(s;t)
i (xs) = �

(s;t)
i (xt) = �. This way we get a set of

restrictions of total probability q2
�
si
2

�
Pr[�i].

Let us relate the total probability of these constructed restrictions to rj . Note
that

r2j =

 
�Pr[Cj ]

�1X
i

(qsiPr[�i])

!2

� �2

 
Pr[Cj ]

�1X
i

(q2s2iPr[�i])

!
�
 
Pr[Cj ]

�1X
i

Pr[�i]

!

= �2Pr[Cj ]
�1Pr[A2;j jCj ]

X
i

q2s2iPr[�i];

where the inequality comes from Cauchy-Schwartz inequality. Now

X
i

q2
�
si
2

�
Pr[�i] =

X
i

1

2
q2s2iPr[�i]�

X
i

1

2
q2siPr[�i]
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� r2jPr[Cj ]

2�2Pr[A2;j jCj ]
� q

2�
rjPr[Cj ]

� (
1

2�2
� 1

40�
)r2jPr[Cj ] � 1

10
r2jPr[Cj ];

since � � 2 and rj � 20q.

Remark: Note that the constructed restrictions need not be in Cj . The reason is
that there is no control when you change a variable from being �xed to being �. In
particular, if we were trying to estimate a conditional expectation we would be in
deep trouble, since it need not be the case that these recently constructed restrictions
satisfy the condition.

Let us look more closely at these obtained restrictions. They give the value � to
the variable xdj since the restriction we started with belonged to Cj . They also give
the value � to the two special variables xs and xt.

We now change the value at xdj to �j in an attempt to force �1 to 0. Note that
this attempt might not always be successful since once xs and xt become unassigned
�1 might also depend on those variables (as well as others). We leave this problem
for the time being. Let us analyze the set of restrictions created in this way.

At leaf j we have this way created a set of restrictions of total probability at least
q�1 1

10Pr[Cj ]r
2
j . However, the same restriction might appear many times and we need

to adjust for this fact. Take any restriction � created from �i 2 A2;j . First note that
� determines the identity of the two special variables xs and xt. These are namely
the only variables xk given the value � by � with the property that setting �(xk) = 1
makes �2 depend on only one variable. This follows since we recreate a restriction
from Cj with the additional property that xdj is set, but since we are considering
cases when �2 was independent of xdj , setting a value to xdj does not matter. To
complete the characterization of xs and xt, note that after setting any other variable
xk to any value it is still true that �2 depends on both xs and xt.

Let xs be the variable with lower index of the variables xs and xt which we
just have identi�ed. Consider the restriction �0 obtained by setting �0(xs) = 1 while
�0(xk) = �(xk) for every xk 6= xs. We claim that �0 belongs to Aj . Remember
that Aj � Bj was the set of inputs reaching leaf j when playing the KW-game on
the formula �1. To see this claim let �00 be obtained by setting �00(xk) = �0(xk) for
xk 6= xdj while �

00(xdj ) = �. By the conditions for xt being a critical variable for �i,
�00 2 Cj and hence �0 2 Aj .

Thus, starting with � we have created a unique restriction �0 such that whenever
� is created at leaf j then �0 2 Aj . Thus, reasoning as in the proof of Lemma 7.4, if
we multiply the probability of the restrictions produced at leaf j by Pr[Bj ], then we
avoid making an overestimate. This means that we have created a set of restrictions
of total probability at least

X
j

1

10
q�1Pr[Cj ]r

2
jPr[Bj ]:

The created restrictions are of two types, either they reduce the formula �1 to 0
or not. In the former case they contribute to case 6 (since �2 depends on xs and
xt), and we have to estimate the probability of the latter case. We claim that in
this case the reduced �1 contains both the variables xs and xt. This follows, since
setting �(xs) = 1 or �(xt) = 1 simpli�es �1 to 0 which in its turn is basically the fact
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�0 2 Aj established above. By Lemma 6.1 it follows that the probability of this case
is bounded by q2L1(logL1)

1=2. Summing up we have

Pr[case 3] =

L1X
j=1

Pr[Cj ]rj =
X

jjrj small

Pr[Cj ]rj +
X

jjrj large

Pr[Cj ]rj

� 20q2L1 +
1

20

X
j

q�1Pr[Cj ]r
2
jPr[Bj ]

� 20q2L1 +
1

2

�
Pr[case 6] + q2L1(logL1)

1=2
�
;

where the �rst inequality uses the bound for rj and the last inequality is based on the
above reasoning. The proof of Lemma 7.3 is complete.

All that remains is to complete the proof of Lemma 7.2 when q � (4
p
L logL)�1.

To simplify the calculations we will in this case prove the slightly stronger bound

L2(�) � 200q2L(log q�1)3=2 � 2:

First note that when (4
p
L logL)�1 � q � (2

p
L logL)�1 the second bound follows

from the �rst bound since

200q2L(log q�1)3=2 � 200q2L(1=2 logL)3=2 � 62q2L(logL)3=2

� 30q2L(logL)3=2 + 32(4
p
L logL)�2L(logL)3=2

� 30q2L(logL)3=2 + 2:

It remains to establish the second bound when q � (2
p
L logL)�1 and we do this

by induction over L. Assume that � = �1 ^ �2, (the _-case being similar) where
L(�i) = Li, L1 + L2 = L, and L1 � L2. This implies that we can always use the
second bound when bounding L2(�2). We have two cases depending on whether
q � (4

p
L1 logL1)

�1. If q � (4
p
L1 logL1)

�1, then using the induction hypothesis
and L2(�) � L2(�1) + L2(�2) + 2 the result follows immediately.

To take care of the other case, notice that our estimates for the corrections to the
basic estimates depended only on L1. This means that in this case we get the total
bound

L2(�1) + L2(�2) + 41q2L1 + q2L1(logL1)
1=2

and using the induction hypothesis (the �rst case for �1 and the second for �2) we
can bound this by

30q2L1(logL1)
3=2 + (200q2L2(log q

�1)3=2 � 2) + q2L1(41 + (logL1)
1=2)

� 60q2L1(log q
�1)3=2 + (200q2L2(log q

�1)3=2 � 2) + 43q2L1(log q
�1)1=2)

� 200q2L(log q�1)3=2 � 2

and the proof is complete.

8. Application to formula size lower bounds. As mentioned in the intro-
duction, it is well known that shrinkage results can be used to derive lower bounds
on formula size. Let us just brie
y recall the function which seems to be the most ap-
propriate for this purpose. The input bits are of two types. For notational simplicity
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assume that we have 2n input bits and that logn is an integer that divides n. The
�rst n bits de�ne a Boolean function H on logn bits. The other n bits are divided
into logn groups of n= logn bits each. If the parity of the variables in group i is yi
then the output is H(y). We call this function A as it was �rst de�ned by Andreev
[9].

Theorem 8.1. The function A requires formulae of size




�
n3

(logn)7=2(log logn)3

�
:

Proof. Assume that we have a formula of size S which describes A. We know
([8], Chap 4, Theorem 3.1) that there is a function of logn variables which requires a
formula size which is




�
n

log logn

�
:

We �x the �rst set of values to describe such a function. This might decrease the size of
the formula, but it is not clear by how much and hence we just note that the resulting
formula is of size at most S. Apply an Rp-restriction with p = 2 logn log log n

n on the
remaining formula. By our main theorem the resulting formula will be of expected
size at most O(Sn�2(logn)7=2(log logn)2 +1). The probability that all variables in a
particular group are �xed is bounded by

(1� p)
n

logn � e�
pn

logn � (logn)�2:

Since there are only logn groups, with probability 1� o(1) there remains at least one
live variable in each group. Now since a positive random variable is at most twice its
expected with probability at least 1/2, it follows that there is a positive probability
that we have at most twice the expected remaining size and some live variable in each
group. It follows that

O
�
Sn�2(logn)7=2(log logn)2

�
� 


�
n

log logn

�
:

and the proof is complete.
We might not that there are indeed formulas for the function A of sizeO(n3(logn)�1)

and hence our bounds are close to optimal.

9. Conclusions. As we see it there remain two interesting questions in shrink-
ing:

� What is the shrinkage exponent for monotone formulae? In some
sense we have established that it is 2, namely one of the two examples given
in the introduction is monotone and shrinks only by a factor p2. This is the
example of L=2 copies of x1^x2. This is not a natural example and if it is the
only one, we are asking the wrong question. We can get around it by using
2-variable and 3-variable simpli�cation rules. We could also ask a slightly
di�erent question, namely what is the minimal � such that for arbitrary
small p there is a monotone formula of size O(p��) that is trivialized by a
restriction from Rp with probability at most 1=2?
Apart from its inherent interest, a successful answer to this question would
in most cases (depending on the exact form of the answer) lead to an !(n2)
lower bound for monotone formulae for the majority function.
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� Are these annoying log factors really needed? This is really of minor
importance. If they were indeed needed it would be surprising.
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