
OPTIMAL DEPTH, VERY SMALL SIZE CIRCUITS FOR

SYMMETRIC FUNCTIONS IN AC0

Johan Hastad, Royal Institute of Technology
10044 Stockholm, Sweden

and

Ingo Wegener�, Norbert Wurm and Sang-Zin Yi
FB Informatik, LS II, Univ. Dortmund,

Postfach 500 500, 4600 Dortmund 50, Fed. Rep. of Germany

Abstract

It is well-known which symmetric Boolean functions can be computed by constant depth,
polynomial size, unbounded fan-in circuits, i.e. which are contained in the complexity class
AC0. This result is sharpened. Symmetric Boolean functions in AC0 can be computed
by unbounded fan-in circuits with the following properties. If the optimal depth of AC0-
circuits is d, the depth is at most d + 2, the number of wires is almost linear, namely
n logO(1) n, and the number of gates is subpolynomial (but superpolylogarithmic), namely

2O(log� n) for some � < 1.

Warning: Essentially this paper has been published in Information and Com-

putation and is hence subject to copyright restrictions. It is for personal use

only.

� � Supported in part by DFG grants No. We 1066/2-1 and Me 872/1-2

1

1. Introduction

Symmetric functions form an important subclass of Boolean functions including all kinds
of counting functions. A Boolean function f : f0; 1gn ! f0; 1g is called symmetric if
f(x1; : : : ; xn) depends on the input only via x1+ : : :+xn, the number of ones in the input.
Hence, symmetric functions f can be described by value vectors v(f) = (v0; : : : ; vn) where
vi is the output of f on inputs with exactly i ones.

It is a classical result of Boolean complexity theory that all symmetric Boolean functions
are contained in NC1. They can even be computed by fan-in 2 circuits of logarithmic depth
and linear size. We are interested in the more massive parallel, unbounded fan-in circuits.
AC0 is the class of Boolean functions computable by unbounded fan-in circuits of constant
depth and polynomial size. The following theorem by Moran (1987) and Brustmann and
Wegener (1987) is based on the lower bounds of Boppana (1984) and Hastad (1986) and
the upper bounds due to Ajtai and Ben-Or (1984), Denenberg, Gurevich and Shelah (1986)
and Fagin, Klawe, Pippenger and Stockmeyer (1985).

Theorem 1: A sequence of symmetric Boolean functions f = (fn) with value vectors
v(fn) = (vn0 ; : : : ; v

n
n) is contained in AC0 i� vng(n) = : : : = vnn�g(n) for some polylogarithmic

function g, i.e. g(n) = O(logk n) for some k.

This theorem does not answer whether symmetric functions in AC0 can be computed by
AC0-circuits which are e�cient compared with the well-known logarithmic depth, linear
size, fan-in 2 circuits for symmetric functions. A similar question has been asked for adders.
The carry-look-ahead method leads to an unbounded fan-in circuit with optimal depth 3
(adders of depth 2 need exponential size), �(n2) gates and �(n3) wires. But these adders
cannot compete with the well-known fan-in 2 adders of linear size and logarithmic depth.
The problem of determining the complexity of unbounded fan-in constant depth adders has
been solved by Chandra, Fortune and Lipton (1983) for the upper bounds and by Dolev,
Dwork, Pippenger and Wigderson (1983) for the lower bounds. For any recursive function
g(n) where g(n) ! 1 as n ! 1 there are constant depth adders of size O(ng(n)) but
there do not exist linear size adders of constant depth. The results of this paper go into
the same direction.

It is proved that symmetric Boolean functions in AC0 can be computed by unbounded
fan-in circuits with constant depth, an almost linear number of n logO(1) n wires and a

subpolynomial but superlogarithmic number of 2O(log� n) gates for some � < 1. We improve
the best known upper bounds for the depth of AC0-circuits by a factor of approximately
2. If the optimal depth of AC0-circuits is d, the depth of our circuits is at most d+ 2.

In Section 2 we review some known results and discuss some lower bounds. In Section 3 we
reformulate the method of Denenberg, Gurevich and Shelah (1986) on which our circuit
design presented in Section 4 is based.

2

2. Known results and simple lower bounds

Many of the known results are stated only for threshold functions which form some kind
of basis for all symmetric functions. The threshold function Tnk on n variables computes
1 exactly on those inputs with at least k ones, i.e. vl(T

n
k) = 1 i� l � k. NTnk := :Tnk+1,

is the corresponding negative threshold function, vl(NT
n
k) = 1 i� l � k. En

k := Tnk ^NT
n
k

is called exactly function, vl(E
n
k) = 1 i� l = k. A symmetric function f is obviously the

disjunction of all En
k where vk(f) = 1.

We have already mentioned that the upper bounds of Theorem 1 have been proved
independently in three papers. Di�erent methods have been used. For Tnk where k =
blogm nc Ajtai und Ben-Or (1984) proved the existence of circuits of depth 2m + 3 and
size �(n2m+4 logm+1 n). The circuit whose existence has been proved by Fagin, Klawe,
Pippenger and Stockmeyer (1985) also has depth 2m + 3 but the size is larger, namely

n�(m2). Denenberg, Gurevich and Shelah (1986) could even construct AC0-circuits. They
were only interested in the qualitative result that the circuits are AC0-circuits. A direct
implementation leads to circuits which are less e�cient with respect to depth and size
compared with the other circuits. Our circuit design uses the main idea of Denenberg,
Gurevich and Shelah (1986) (see also Mayr (1985)), the e�cient coding of the cardinality
of small subsets of f0; : : : ; n�1g by short 0-1-vectors, see Lemma 1. Since we work directly
with circuits and do not use the notation of logics, we are not concerned with the size of
the \universe". This simpli�es our approach. Furthermore, we present an iterative circuit
design and use some implementation tricks. This leads to the uniform design of mono-
tone circuits for Tnk , where k = blogm nc, with the following characteristics. The depth is

bmc + 3 (m must not be an integer), the number of gates is g = 2O(logm=(bmc+1) n log log n)

and, hence, o(n�) for all � > 0, and the number of wires equals O(n log2m+2 n). By using
some more wires, namely O(ng) wires, we can decrease the depth to bmc + 2, which is
optimal, if m is not an integer.

Independently from our approach and with some other methods Newman, Ragde and
Wigderson (1990) have worked in the same direction. They have designed uniformly circuits
of depth O(m), approximately 4m, number of gatesO(n) and number of wiresO(n log2m n).
Because of their use of hash functions the circuit is not monotone. This design beats our
bounds only for the number of wires and is worse else.

For constant k better results are possible. Friedman (1984) has investigated the formula
size of threshold functions. Using his methods the following theorem can be proved in a
straightforward way.

Theorem 2: For constant k, Tnk can be computed by unbounded fan-in circuits of depth
3 with O(logn) gates and O(n logn) wires.

In order to appreciate the new upper bounds we discuss some lower bounds. Each Boolean

3

function can be computed with depth 2 by its DNF . But what is the minimal depth of
circuits with polynomial size ? And what is the minimal size if the depth is bounded or
even unbounded ? The following lower bound has been proved by Boppana (1984) for
monotone circuits and by Hastad (1986) in the general form.

Theorem 3: Polynomial size, unbounded fan-in circuits for Tnk where k = blogm nc and
m 2 IR

+ have depth d � dme+ 1.

There are not too many small size lower bounds on the number of gates and wires of
unbounded fan-in, unbounded depth circuits for functions in AC0 or NC1. Hromkovic
(1985) proved some lower bounds by a communication complexity approach and Wegener
(1990) adapted the elimination method for proving lower bounds on the complexity of the
parity function. For threshold functions we only know the following simple lower bounds.

Proposition 1: Unbounded fan-in circuits for Tnk and 1 � k � n=2 need at least n wires
and k gates.

Proof: Obviously, at least one wire has to leave each variable xi. If xi enters an _-gate
or �xi enters an ^-gate, we can eliminate this gate for xi = 1. Otherwise one gate can be
eliminated for xi = 0. This procedure can be repeated at least k times before Tnk is replaced
by a constant function.

3. The method of Denenberg, Gurevich and Shelah

We reformulate the method of Denenberg, Gurevich and Shelah (1986) in a generalized
form. We use a representation supporting our circuit design. The method is based on a
number theoretic theorem allowing a succint coding of the cardinality of small subsets of
f0; : : : ; n� 1g. Let res(i; j) := (imod j) 2 f0; : : : ; j � 1g.

Lemma 1: Let L := L(n). For large n one can choose for each small subset S of
f0; : : : ; n� 1g, i.e. jSj � L, some number u < L2 logn such that res(i; u) 6= res(j; u) for all
di�erent i; j 2 S.

Proof: The proof relies on the prime number theorem in the following form.

lim
x!1

 (x)=x = 1 for (x) :=
X

p prime;pk�x<pk+1

ln pk:

Let S � f0; : : : ; n � 1g be some small set, i.e. jSj � L. Let u be the smallest number
such that res(i; u) 6= res(j; u) for all di�erent i; j 2 S. For large n, either u < L2 logn or
 (u � 1) > (u � 1) ln 2. We prove that (u � 1) > (u � 1) ln 2 implies u < L2 logn and,
hence, we prove the lemma.

4

Let a be the least common multiple of all ji � jj, where i; j 2 S and i 6= j, and let
b be the product of all pk where p is prime and pk � u � 1 < pk+1. By de�nition of
u, res(i; pk) = res(j; pk) for some di�erent i; j 2 S. Hence, ji � jj is a multiple of pk.
This implies that pk and also b divides a. Hence, b � a. Also, a < nL(L�1)=2, since, by
assumption, S has at most

�
L
2

�
subsets fi; jg where i 6= j and ji � jj < n for i; j 2 S. By

de�nition ln b = (u� 1).

Combining all our inequalities we have (u � 1) ln 2 < (u � 1) = ln b � ln a < L2 lnn or
u < L2 logn.

This lemma can be applied several times. For the second application n is replaced by
n0 := L2 logn and S is replaced by S0 := fiji = res(j; u) for some j 2 Sg. It should be
emphasized that u = u(S) depends on S. For our circuit design this repeated application
of the lemma is only of limited use. In order to keep the depth of the circuit small, we
work with L = log� n for some � < 1 but � � 1. After the �rst application of the lemma
u can be estimated by log1+2� n and the upper bound for u does not become smaller than
(log2� n) log logn.

We shall see that large L corresponds to large size and small depth, and small L corresponds
to small size and large depth. For the size of the circuit the function LL is important.

If L = O(log� n) for some � < 1, LL = 2O((log� n) log log n) = o(n�) for all � > 0. If
L =
(logn), LL grows superpolynomial.

4. The construction of small depth, small size circuits

We start with a simple but important subcircuit.

Lemma 2: NTn1 can be computed by a circuit of depth 3 with 3dlogne + 1 gates and
(n+ 3)dlogne wires. The output gate of the circuit is an ^-gate.

Proof: We assume that n = 2k, otherwise one may consider NTN1 where N = 2dlogne

and may replace N � n inputs by zeros. NTn1 is the conjunction of all prime clauses
�xi _ �xj , i 6= j. We use a so-called separating system to compute these prime clauses. By
(�x0 ^ : : : ^ �xn=2�1) _ (�xn=2 ^ : : : ^ �xn�1) we compute with 3 gates and n + 2 wires the
conjunction of all prime clauses �xi _ �xj where the �rst bit of the k-bit number i equals
0 while the �rst bit of j equals 1. The same can be done for the other k � 1 bits of the
numbers 0; : : : ; n� 1. Finally, the k outputs of the _-gates are combined by an ^-gate.

If we like to decrease the depth to 2, �(n2) gates and wires are necessary and su�cient.

5

We are interested in the design of e�cient circuits for symmetric functions in AC0. Since
f and :f have the same complexity, it is by Theorem 1 su�cient to consider symmetric
functions f where vk(f) = 1 only for some k where k or n � k is bounded by a polyloga-
rithmic function. Furthermore, by duality, we may restrict ourselves to functions f where
vk(f) = 1 only for some k where k is bounded by a polylogarithmic function.

Let L = L(n) be a function speci�ed later and let f be a symmetric function where
vk(f) = 1 only for some k � L.

The �rst step of our circuit design is an application of the coding lemma. For all u 2
f1; : : : ; Ug where U := bL2 lognc we compute in parallel the following information:

yu = (yuo ; : : : ; y
u
u�1); �y

u = (�yuo ; : : : ; �y
u
u�1); c

u:

Here yuj := 1 i� xi = 1 for some i where res(i; u) = j, �yuj is the negation of yuj , and c
u is

the so-called validity bit, i.e. cu := 1 i� for all j 2 f0; : : : ; u � 1g there is at most one i
such that xi = 1 and res(i; u) = j.

Altogether we have replaced the n inputs by less than 2U2+U \new inputs". If cu = 1; yu

contains the same number of ones as x. Since symmetric functions depend only on the
number of ones in the input and not on their positions, yu is in this case a valid encoding
of the input. By Lemma 1 there exists at least one valid encoding, if f(x) = 1.

The computation of yu; �yu and cu is easy. Let A(j; u) be the set of all i where res(i; u) =
j. Then yuj is the disjunction of all xi; i 2 A(j; u), and �yuj is the conjunction of all
�xi; i 2 A(j; u). yu and �yu can be computed in depth 1 with 2n wires and 2u gates. The
validity bit cu is the conjunction of buo ; : : : ; b

u
u�1 where buj is the NT1-function for the

variables xi; i 2 A(j; u). Since the NT1-circuits of Lemma 2 compute the output at an
^-gate, the conjunction for the computation of cu can be combined with these ^-gates.
Let nj := jA(j; u)j. Then no+ : : :+nu�1 = n. Hence, cu can be computed in depth 3 (last
gate is an ^-gate) with

3
X

0�j�u�1

dlognje+ 1 = O(U logn)

gates and X
0�j�u�1

(nj + 3)dlognje = O(n logn)

wires.
Hence, all yu; �yu and cu can be computed in depth 3 withO(U2 logn) gates and O(nU logn)
wires.

6

Let v = (vo; : : : ; vn) be the value vector of f . We consider the symmetric function fu on
u variables with value vector vu := (vo; : : : ; vu). We know that f(x) = fu(yu), if cu = 1.
Furthermore, f(x) = 0, if cu = 0 for all u. Hence,

f(x) =
_

1�u�U

cu ^ fu(yu):

We compute fu(yu) by its conjunctive normal form, i.e. in depth 2, from yu and �yu. Hence,
fu(yu) is computed on the third level by an ^-gate. Therefore, also cu ^ fu(yu) can be
computed on the third level. Finally, f is computed in depth 4.

We still have to estimate the size of the conjunctive normal forms. Since, vi = 0 for
i > L;

�
u

L+1

�
clauses are su�cient to cover the inputs with more than L ones. If vi = 0 and

i � L;
�
u
i

�
clauses are su�cient to cover the inputs with i ones. Since

�
U
j

�
� U j , we can

compute all cu ^ fu(yu) from yu; �yu and cu with O(UL+2) = O(L2L+4 logL+2 n) gates and
O(UL+3) = O(L2L+6 logL+3 n) wires. We have proved the following theorem.

Theorem 4: i) Symmetric functions f on n variables where vk(f) = 1 only for some k � L
can be computed by an unbounded fan-in circuit of depth 4 with O(L2L+4 logL+2 n) gates
and O(L2L+6 logL+3 n+ n L2 log2 n) wires.

ii) If L = L(n) = O(log� n) for some � < 1, the number of gates is bounded by 2O(log� n log log n)

and the number of wires by O(n log2+2� n).

We make some remarks. The number of gates (in part ii) of the theorem) is subpolynomial,
i.e. o(n�) for each � > 0, but superpolylogarithmic. The upper bound is superpolynomial,
if L =
(logn). We leave it to the reader to discuss functions L where L = o(logn) but
L = !(log� n) for all � < 1. We also leave it to the reader to design circuits where Lemma
1 is applied more than once.

The threshold functions are of particular interest. Our circuit works for NTnk�1 only with
the negative variables �xi. The conjunctive normal form for fu = NTuk�1 consists only of

the
�
n
k

�
prime clauses containing only n� k negative yu-variables each. By Lemma 1, the

NT1-circuits work only with negative variables. By construction, �yuj is the conjunction of
some negative variables. Hence, we do not need the positive yu- and x-variables. In order to
compute Tnk = :NTnk�1 we apply deMorgan's rules to this circuit and obtain a monotone
circuit for Tnk of the same size as stated in Theorem 4.

Up to now we do not have designed e�cient circuits for all symmetric functions in AC0.
For the general case let us assume that vk = 1 only for some k � Lm where L = O(log� n)
for some � < 1 and m is a constant. For U := bL2m lognc we compute as before all yu; �yu

and cu with O(U2 logn) gates and O(nU logn) wires. yu and �yu are computed in depth 1
and cu in depth 3.

7

Since vk may equal 1 for k = Lm, the normal forms for fu may have nonpolynomial size.
We only can test yu for up to L ones with normal forms of very small size. We do these
computations for all subvectors of yu. Afterwards we may test for L2 ones by testing L
pieces for L ones each. After m steps of this type we can test yu for up to Lm ones. We
explain these ideas now in more detail.

Let u be �xed and let [i; j] denote the vector (yui ; : : : ; y
u
j). We are interested in the following

functions and their negations.

- pl[i; j], where 1 � l � m and 0 � i � j � u� 1, computes 1 i� [i; j] contains exactly Ll

ones.
- ql[i; j], where 1 � l � m and 0 � i � j � u� 1, computes 1 i� [i; j] contains less than Ll

ones.
- rl[i; a], where 1 � l � m, 0 � i � u � 1 and 0 � a � Ll + 1, computes 1 i� [i; u � 1]
contains exactly a ones.
- sl[i; a], where 1 � l � m, 0 � i � u � 1 and 0 � a � Ll + 1, computes 1 i� [i; u � 1]
contains less than a ones.
- t[i; j], where 1 � i � j � u� 1, computes 1 i� [i; j] contains no one.

The computation of t and �t is simple and can be done on level 2.

The functions for l = 1 have simple conjunctive and disjunctive normal forms. Each of the
O(U2) functions p1; �p1; q1; �q1; r1; �r1; s1 and �s1 has at most

max f

�
U

L

�
;

�
U

L� 1

�
+

�
U

L+ 1

�
;

�
U

a

�
;

�
U

a� 1

�
+

�
U

a+ 1

�
g = O(UL+2)

prime implicants. All these functions are computed on level 3 by conjunctive normal forms
with O(UL+4) gates and O(UL+5) wires.

We describe how we compute the functions pl; �pl; : : : ; sl; �sl by disjunctive forms using the
functions pl�1; : : : ; �sl�1; t; �t. Then we know by deMorgans's rules also conjunctive forms of
the same complexity for these functions.

For even l we use the disjunctive forms and for odd l the conjunctive ones. Then the �rst
level of stage l is of the same type as the second level of stage l � 1 and these two levels
can be merged.

pl[i; j] = 1 i� there exists a partition of [i; j] into L pieces each containing exactly Ll�1

ones. This leads to a disjunctive form for pl with at most
�

U
L�1

�
+ 1 gates.

�pl[i; j] = 1 i� [i; j] contains less than Ll ones or more than Ll ones. This is equivalent to the
following statement. There exists a partition of [i; j] into k 2 f1; : : : ; Lg pieces such that

8

the �rst k � 1 pieces contain exactly Ll�1 ones each and the last piece contains less than
Ll�1 ones or there exists a partition of [i; j] into L+1 pieces such that �rst L pieces contain
exactly Ll�1 ones each and the last piece is not the constant 0-vector. Hence, O(L

�
U

L+1

�
)

gates are su�cient.

ql[i; j] = 1 i� there exists a partition of [i; j] into k 2 f1; : : : ; Lg pieces such that the �rst
k�1 pieces contain Ll�1 ones each and the last piece contains less than Ll�1 ones. Hence,
O(L

�
U
L

�
) gates are su�cient.

�ql[i; j] = 1 i� there exists partition of [i; j] into L + 1 pieces such that the �rst L pieces
contain Ll�1 ones each. Hence, O(

�
U

L+1

�
) gates are su�cient.

The computation of the functions rl; �rl; sl and �sl can be performed in a similar way.

Finally, we like to compute the function f where vk(f) = 1 only for some k � Lm. For
even m the last level is an _-level and we compute f as the disjunction of all rm[0; k]
where vk(f) = 1. The negation of f is the disjunction of all rm[0; k] where k � Lm and
vk(f) = 0 and the function �sm[0; L

m+1]. Hence, in all cases it is possible to integrate the
computation of f into the computation of the functions of stage m.

Up to now we have considered the computation of f on the input (yu; �yu) under the
assumption that cu = 1. We still have to eliminate invalid computations. In any case we
have negations only at the inputs. If the last level is an _-level, we feed all gates on level 3,
an ^-level, with the appropriate cu. Furthermore, we combine the outputs for the di�erent
u on the last level by a disjunction which does not increase the depth. Invalid computations
feed 0 into this output disjunction. If all computations are invalid, we compute 0 which is
also the correct result. If the last level is an ^-level, we feed all gates on level 4, an _-level
with the appropriate �cu. Furthermore, we combine the outputs for the di�erent u on the
last level by a conjunction. Invalid computations feed 1 into this output conjunction. In
order to obtain the correct result also in the case where all u are invalid, we also feed the
disjunction of all cu into the output conjunction.

The depth of our circuit is m+ 2, if m � 2. The number of gates can be estimated by

O(Lm+1UL+4) = 2O(log� n log log n):

The number of bits in all (yu; �yu; cu) is very small. Hence, the number of wires which enter
the gates on the �rst two levels dominates the number of all other wires. Therefore, the
number of wires can be estimated by O(nU logn) = O(n log2m�+2 n).

We have proved the following theorem.

9

Theorem 5: Let L = O(log� n) for some � < 1. Symmetric functions f on n variables,
where vk(f) = 1 only for some k � Lm and m � 2 is a constant, can be computed by

unbounded fan-in circuits of depth m+2 with 2O(log� n log log n) gates and O(n log2m�+2 n)
wires.

In order to compare our results with the results of the other papers we consider the special
case of Tnk and k = blogmc. Let L := logm=(m+1) n. Then Lm+1 = logm n. We have proved
the following theorem.

Theorem 6: The threshold functions Tnk where k = blogm nc for constant m can be

computed by unbounded fan-in circuits of depth m+ 3 with 2O(logm=(m+1) n log log n) gates
and O(n log2m+2 n) wires.

In order to compare our results with the other papers we consider the special case of
threshold functions. We design circuits for NT -functions working on the negative variables
�xi only and apply deMorgan's rules to obtain monotone circuits for threshold functions.
We consider NTnk . W.l.o.g. (reductions by projection) we assume that k = Lh and that L
is an integer.

We compute as before cu (for all u � U) in depth 3. We also compute all �yu in depth 1.
Now we are interested in the following functions.

- p�l [i; j], where 1 � l � h and 0 � i � j � u� 1, computes 1 i� [i; j] contains at most Ll

ones.
- q�l [i; j], where 1 � l � h and 0 � i � j � u� 1, computes 1 i� [i; j] contains less than Ll

ones.

The functions for l = 1 again have simple disjunctive normal forms. We describe how we
compute the functions p�l and q

�
l by disjunctive forms (for odd l) and by conjunctive forms

(for even l) using the functions p�l�1 and q
�
l�1.

p�l [i; j] = 1 i� there exists a partition of [i; j] into L pieces such that each piece contains
at most Ll�1 ones. And p�l [i; j] = 1 i� for all partitions of [i; j] into L pieces the �rst piece
contains at most Ll�1 ones or some other piece contains less than Ll�1 ones.

q�l [i; j] = 1 i� there exists a partition of [i; j] into L pieces such that the �rst L� 1 pieces
contain at most Ll�1 ones and the last piece contains less than Ll�1 ones. And q�l [i; j] = 1
i� for all partitions of [i; j] into L pieces there is some piece containing less than Ll�1 ones.

In this way we compute correctly NTnk if yu is a valid coding. If the last level is an _-
level, we feed the ^-gates on level 4 by cu and combine all outputs on the last level by

10

a disjunction. If the last level is an ^-level, we combine all outputs on the last level by
a conjunction. If NTnk (x) = 1, the invalid codings cause no problem, since they are only
underestimating the number of ones. If NTnk (x) = 0, invalid computations may feed ones
into the output gate. Hence, we feed the disjunction of all cu into the output gate.

For k = blogm nc (m not necessarily an integer but a constant) we choose L = blogm=(bmc+1) nc
and h = bmc + 1. (In order to be precise we have to use the appropriate reductions.) By
the design above we have proved the following theorem.

Theorem 6: The threshold functions Tnk where k = blogm nc for constant m can be com-

puted by monotone unbounded fan-in circuits of depth bmc+3 with 2O(logm=(bmc+1) n log log n)

gates and O(n log2m+2 n) wires.

The depth of our circuits di�ers, by Theorem 3, from the lower bound for polynomial-size
circuits only by 2, if m is an integer, and by 1 else.

In order to minimize the depth we can even do better. The coded variables �yu are com-
puted by ^-gates on the �rst level, and the functions p�1 and q�1 are computed by their
disjunctive normal forms. Hence, the level of the computation of �yu and the �rst level of
the computation of p�1 and q

�
1 can be merged. This increases the number of wires to O(ng)

where g is the number of gates. If m � 2, the total depth is decreased to bmc + 2. For
1 � m < 2, we like to get by with depth 3 and have to feed the disjunction of all cu into
the output gate, an ^-gate, on depth 3. In this case we compute the NT1-functions c

u by
their disjunctive normal forms in depth 2. Also in depth 2 we can compute the disjunction
of all cu. In this case we have increased the number of gates to O(nU) and the number of
wires to O(n2U).

Theorem 7: The threshold functions Tnk where k = blogm nc can be computed by mono-
tone unbounded fan-in circuits of depth bmc+2 with polynomial size. Ifm � 2, the number
of gates is subpolynomial and the number of wires is only by a linear factor larger.

By Theorem 3 this depth is optimal, ifm is not an integer. Theorem 7 holds also form < 1,
since in that case Tnk has disjunctive normal forms of polynomial size.

References

Ajtai,M. and Ben-Or, M. (1984). A theorem on probabilistic constant depth computations.
16. Symp. on Theory of Computing, 471-474.

Boppana,R. (1984). Threshold functions and bounded depth monotone circuits. 16. Symp.
on Theory of Computing, 475-479.

11

Brustmann,B. and Wegener,I. (1987). The complexity of symmetric functions in bounded-
depth circuits. Information Processing Letters 25, 217-219.

Chandra, A., Fortune,S. and Lipton,R.J. (1983). Unbounded fan-in circuits and associative
functions. 15. Symp. on Theory of Computing, 52-60.

Denenberg,L., Gurevich,Y. and Shelah,S. (1986). De�nability by constant-depth polyno-
mial-size circuits. Information and Control 70, 216-240.

Dolev,D., Dwork,C., Pippenger,N.J. and Wigderson,A. (1983). Superconcentrators, gener-
alizers and generalized connectors with limited depth. 15. Symp. on Theory of Computing,
42-51.

Fagin,R., Klawe,M.M., Pippenger,N.J. and Stockmeyer,L. (1985). Bounded-depth, poly-
nomial-size circuits for symmetric functions. Theoretical Computer Science 36, 239-250.

Friedman,J. (1984). Constructing O(n logn) size monotone formulae for the k-th elemen-
tary symmetric polynomial of n Boolean variables. 25. Symp. on Foundations of Computer
Science, 506-515.

Hastad,J. (1986). Almost optimal lower bounds for small depth circuits. 18. Symp. on
Theory of Computing, 6-20.

Hromkovic,J. (1985). Linear lower bounds on unbounded fan-in Boolean circuits. Informa-
tion Processing Letters 21, 71-74.

Mayr,E. (1985). Fast selection on paracomputers. 11. Int. Workshop on Graphtheoretical
Concepts in Computer Science, 249-254.

Moran,S. (1987). Generalized lower bounds derived from Hastad's main lemma. Informa-
tion Processing Letters 25, 383-388.

Newman,I., Ragde,P. and Wigderson,A. (1990). Perfect hashing, graph entropy and circuit
complexity. Proc. 5. Structure in Complexity Theory.

Wegener,I. (1990). The complexity of the parity function in unbounded fan-in, unbounded
depth circuits. To appear: Theoretical Computer Science.

12

