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Johan Håstad Systems of linear equations



Introduction
Algorithms

Hardness and PCP
Algorithms and SDP

Basic problem



x1 + x2 + x3 = 1
x1 + x2 = 1
x1 + x2 + x4 = 1

x2 + x4 = 0
x1 + x3 + x4 = 0

x2 + x3 + x4 = 1
x1 + x3 = 0

mod 2

Satisfy as many equations as possible (or ≥ K ).
Max-k-Lin-2, m equations n variables and k variables in each
equation. (m = 7, n = 4, k = 3).
Abstract claimed that I would discuss general p instead of 2 but
this will happen only briefly at the end.
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My angle: efficient computation

Efficient in theory: Time polynomial in the input size. Used
most of the time. Input size mk .

Efficient in practice. What we can run on our machines, about
250 ≈ 1015 operations and 235 ≈ 30 · 109 memory.
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Motivation

1. Basic computational problem.

2. Applications in cryptography:

Factoring large integers, breaking RSA.

Removing non-linearity by making some equations incorrect
breaking symmetric encryption.
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Obvious algorithms

Try to satisfy all using Gaussian elimination.
Time ≈ mn2.

Try all possible assignments and take the best.
Time ≈ mk2n.
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Satisfying all equations

Gaussian elimination in time O(mn2) closes the theoretical
question but problems remain in practice.

Recent factorization of 21039 − 1 used
m ≈ n ≈ 66 · 106 and k ≈ 150.

Cannot even store the matrix in dense form and time mn2 ≈ 278 is
much too large!

Different algorithms running in time O(mnk) and memory O(mk)
are used.
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Learning parity with noise

If you want to space out and think consider

m = 10000, n = 200, k = n/2.

Construct left hand side of each equation randomly.

Have a hidden solution x0 and set right hand side to be correct for
x0 with probability 2

3 .

Given resulting system, find x0 (the key to a cryptosystem).
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One approach in theory

Use equations that behave in the same way on a large set of
variables to eliminate these variables simultaneously.

Gets equations in fewer variables that are less likely to be correct.

In theory m = 2n/ log n can be solved in time 2O(n/ log n) [BKW].

Beats 2n time of exhaustive search but not by much....
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Can we prove impossibility results?

Is O(nmk) best possible when all equations can be simultaneously
satisfied?

No lower bound higher beyond reading the input is known and
seems beyond current technique.

For over-determined systems can we find optimal solutions in
polynomial time?

Not known, but NP-complete.
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NP and P

NP: Decision problems where a positive solution can be verified in
polynomial time.

P: Decision problems that can be solved in polynomial time.

Believed that NP 6= P but we are very far from proving this.

Typical example of NP, satisfiability of Boolean formulas:

ϕ(x) = (x1 ∨ x2) ∧ (x̄1 ∨ x̄2) ∧ (x̄2 ∨ x̄3) ∧ (x1 ∨ x3)
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NP-complete and NP-hard

A problem X∈NP is NP-complete if X∈ P is equivalent to P = NP.

A problem Y is NP-hard if Y ∈ P implies P = NP.

Computational problems that are not decision problems cannot be
NP-complete as they do not belong to NP, but can be NP-hard.

Satisfiability (Sat) was the first problem to be proved NP-complete
by Cook in 1971.
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Max-Lin-2 is NP-hard

Finding the maximal number of simultaneously satisfiable
equations is NP-hard by a very simple reduction (exercise for
undergraduates).

If NP6= P, Max-k-Lin-2 cannot be solved optimally in polynomial
time, for any k ≥ 2.

If Sat requires time 2cn then so does Max-Lin-2.
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Approximation

Idea: If we cannot find the best solutions efficiently maybe we can
find the second best or a reasonably good solution.

An algorithm has approximation ratio α if for any instance

Value of found solution

Value of optimal solution
≥ α

Johan Håstad Systems of linear equations



Introduction
Algorithms

Hardness and PCP
Algorithms and SDP

Approximation

Idea: If we cannot find the best solutions efficiently maybe we can
find the second best or a reasonably good solution.

An algorithm has approximation ratio α if for any instance

Value of found solution

Value of optimal solution
≥ α
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(trivial) Positive results

Can easily find a solution that satisfies m/2 equations, in fact a
random assignment does this on the average.

No solution satisfies more than all m equations.

This gives an approximation ratio of 1/2.
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Real results

Theorem [H] : For any ε > 0 and any k ≥ 3 it is NP-hard to
approximate Max-k-Lin-2 within 1

2 + ε.

Proof by a reduction (with several steps).

Theorem [GW] : It is possible to approximate Max-2-Lin-2 within
≈ .8785 in polynomial time.

Proof by an algorithm relying on semidefinite programming.
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Hardness proof

Given a formula ϕ(x) produce a system of m linear equations
Ay = b such that

If ϕ satisfiable then can satisfy (1− ε)m equations.

If ϕ not satisfiable then can only satisfy (1
2 + ε)m equations.

We can decide whether ϕ is satisfiable by approximating within

1
2 + ε

1− ε
+ δ.
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Probabilistically checkable proof

Details are complicated and omitted but uses something called on
probabilistically checkable proofs (PCPs).

NP: A computationally limited (P-time) verifier checks a proof of a
statement it cannot verify on its own.

For Sat the verifier reads n bits, the number of variables.

We want to limit the verifier to reading three bits.
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PCP from reduction

Given ϕ(x) to be checked for system create Ay = b as in reduction
with k = 3.

ϕ satisfiable can satisfy (1− ε)m equations.

ϕ not satisfiable can only satisfy (1
2 + ε)m equations.

Traditional proof, good assignment to x . Reading n bits to get
anything.

PCP, good assignment to y . Pick one random equation and check
only this equation.
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Parameters of PCP

Reads only three bits.

Completeness: If ϕ satisfiable, exists proof that makes verifier
accept with probability (1− ε).

Soundness: If ϕ not satisfiable, no proof makes verifier accept with
probability ≥ (1

2 + ε).
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Extensions

Can make verifier always accept correct proof of correct statement
but cannot maintain reading three bits and soundness 1

2 .

Reading more bits improves completeness and soundness. Can do
better than independent repetitions and in fact

q bits read

Completeness one (always accept).

Soundness 2−q+O(
√

q) is possible.
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Algorithms for k = 2

xi + xj = b

modulo 2 with xi , xj ∈ {0, 1} is “the same” as

1 + (−1)byiyj

2

with yi , yj ∈ {−1, 1}.
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The task is thus

max
y∈{−1,1}n

∑
(i ,j)∈Q

1 + (−1)bij yiyj

2

Relax by setting zij = yiyj and requiring that Z is a positive
semidefinite matrix with zii = 1.
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Positive semidefinite matrices?

Z symmetric matrix is positive semidefinite iff one of the following
is true

All eigenvalues λi ≥ 0.

wTZw ≥ 0 for any vector w ∈ Rn.

Z = V TV for some matrix V .

zij = yiyj is in matrix language Z = yyT .
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By a result by Alizadeh we can to any desired accuracy solve

max
∑
ij

cijzij

subject to ∑
ij

ak
ijzij ≤ bk

and Z positive semidefinite.

Intuitive reason, the set of PSD matrices is convex and we should
be able to find optimum of linear function as we have no local
optima (as is true for LP).
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Want to solve

max
y∈{−1,1}n

∑
(i ,j)∈Q

1 + (−1)bij yiyj

2

but as Z = V TV we do

max
‖vi‖=1

∑
(i ,j)∈Q

1 + (−1)bij (vi , vj)

2
,

i.e. optimizing over vectors instead of real numbers.
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Going vector to Boolean

The vector problem accepts a more general set of solutions. Gives
higher objective value.

Key question: How to use the vector solution to get back a
Boolean solution that does almost as well.
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Rounding vectors to Boolean values

Great suggestion by GW.

Given vector solution vi pick random vector r and set

yi = Sign((vi , r)),

where (vi , r) is the inner product.

Johan Håstad Systems of linear equations



Introduction
Algorithms

Hardness and PCP
Algorithms and SDP

Intuition of rounding

Assume bij = 1. Contribution to objective function large,

1− (vi , vj)

2
large implying angle between vi , vj large,
Sign((vi , r)) 6= Sign((vj , r)) likely

vi vj

PPPPPPPPPPPPPPq

��������������)

Johan Håstad Systems of linear equations



Introduction
Algorithms

Hardness and PCP
Algorithms and SDP

Analyzing GW

Do term by term, θ angle between vectors.
Contribution to semi-definite objective function

1− (vi , vj)

2
=

1− cos θ

2

Probability of satisfying equation

Pr [Sign((vi , r)) 6= Sign((vj , r))] =
θ

π

Minimal quotient gives approximation ratio

αGW = min
θ

2θ

π(1− cos θ)
≈ .8785
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Other finite fields

Inapproximability results extend to any field getting ratio 1
p + ε for

Max-k-Lin-p and 1
pd + ε in GF [pd ] for k ≥ 3.

SDP can be used to get non-trivial approximation when k = 2,
again in any field.

Extremely important problem: Consider Max-2-Lin-p. Is it true
that for any ε > 0 there is a p = p(ε) such it is hard to distinguish
cases where we can satisfy (1− ε)m of the equations from cases
where we can only satisfy εm of the equations?

Unique games conjecture [K].
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Johan Håstad Systems of linear equations



Introduction
Algorithms

Hardness and PCP
Algorithms and SDP

Some final words

Possible cases to improve algorithms

Large sparse systems where we want to satisfy all equations.

Random linear systems with clear champion satisfying a
fraction p > 1

2 of the equations.

Other point: PCPs gives a very efficient way to check
NP-statements that at least I find surprising.
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