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1. Introduction.

One of the most fundamental quantities in linear algebra is the rank of a matrix. This is
a well understood, easy to compute number. The purpose of this paper is to study a higher
dimensional analogue, namely the rank of a three-dimensional tensor.

Let us de�ne this number before we continue. For comparison we �rst give a slightly unusual
de�nition of matrix rank. A matrix is a two-dimensional array of numbers. It has rank 1 i�
it can be written as the outer product of two vectors. By this we mean that there are vectors
x and y such that mij = xiyj . The rank of a general matrix M is now the minimal number
of rank 1 matrices Mi such that M =

P
Mi. In the same way, a three-dimensional tensor is

a three-dimensional array of numbers. It has rank 1 i� it can be written as the outer product
of three vectors and the rank of a general tensor T is the minimal number of rank 1 tensors Ti
such that T =

P
Ti.

Despite the fact that the rank of a tensor is a very natural object, our knowledge of its
properties is surprisingly limited. For instance, it does not seem to be known in any �eld what
is the maximal rank of an n � n � n tensor. In this paper we prove that over most �elds it
is NP-hard to compute the rank of a tensor. Thus unless NP = P there will be no easily
computable characterization of rank and furthermore if NP 6= coNP there will be no easy to
verify characterization of the property \having rank at least r". These facts might explain at
least partly the lack of progress in the study of tensor rank. One can here draw a parallel
with graph theory where the NP-complete problem of Hamiltonian circuit has been much more
elusive than many other properties of graphs.

In spite of the interesting and natural questions above, our main motivation to study tensor
rank is its connection with the multiplicative complexity of collections of bilinear forms. It is
well known (see for instance [S1]) that the rank of the corresponding tensor is exactly equal to
minimal number of multiplications needed to compute a collection of bilinear forms by a bilinear
noncommutative algorithm. Our interest in tensor rank was initiated by an e�ort to prove lower
bounds on this measure of complexity. With this in mind, our present result has some negative
implications. Unless NP = coNP there will not be any optimal, easy to verify, lower bound
proof techniques for the complexity of general bilinear forms. It is very amusing to observe how
complexity theory bites its own tail in this argument. On the other hand one should not be too
pessimistic. It is still possible that it is easier to prove close to optimal lower bounds or that
the bilinear forms we are interested in will be easier to handle than general bilinear forms. In
particular, in view of the enormous e�orts spent on obtaining upper bounds on the complexity
of matrix multiplication (the current champion is [CW]) it would be very interesting to improve
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the lower bounds beyond 2n2�1 in the general case [AS] and beyond 2:5n2�o(n2) in the GF (2)
case [B].

The fact that estimating the number of multiplications when computing bilinear forms was
NP-complete had been proved before in some restricted cases. In particular when no subtraction
is allowed and only the constants 0 and 1 may be used the result was proved by Gonzalez
and Ja'Ja' [GoJ]. These restrictions, however, makes the nature of the problem much more
combinatorial and NP-completeness comes easier. Our result was conjectured in their paper.

This is the journal version of the conference paper [H]. The conference paper contains a longer,
more selfcontained proof of the main theorem and hence that might be easier to read for the
non-expert.

2. Main Result

We will be working with three-dimensional tensors and we will use the notation T = (tijk)
where i will range from 1 to n1, j will range from 1 to n2, and k will range from 1 to n3. The
matrix obtained by �xing the eth coordinate to a given value will be called an e-slice of T .
Let us now make a formal de�nition. Let F be a �eld.

TENSOR RANK OVER F . Given numbers in F , tijk where 1 � i � n1, 1 � j � n2 and

1 � k � n3 and an integer r. Are there vectors v
(l)
e 1 � l � r; 1 � e � 3 where v

(l)
e 2 Fne such

that tijk =
Pr

l=1 v
(l)
1 (i)v

(l)
2 (j)v

(l)
3 (k) for all i; j; k?

We will sometimes write the last equation as

T =
rX

l=1

v
(l)
1 v

(l)
2 v

(l)
3 ;

dropping the indices i; j and k. We will use the phrase \M appears in the expansion of T ," if

M is a rank 1 matrix and M is a scalar multiple of the outer product of v
(l)
e1 and v

(l)
e2 for some l

The pair of indices e1 and e2 will be clear from the context. The rank of T will be denoted by
r(T ).

Now we can state our main theorem.

Theorem 1: TENSOR RANK is NP-complete for any �nite �eld and NP-hard for the rational

numbers.

Proof: First observe that it is easy to verify that the problem is in NP for a �nite �eld since

we have no trouble guessing the vectors v
(l)
e . Over the rational numbers there might be some

problem that the number of bits needed to specify these vectors might be large.

We now reduce 3SAT which is known to be NP-complete [C] (cf [GaJ]) to tensor rank. 3SAT
is the problem of given a Boolean formula of n variables in CNF-form with at most 3 variables
in each of m clauses, is it possible to �nd a satisfying assignment for the formula. We transform
this to the problem of computing the rank of a tensor T of size (2 + n+ 2m)� 3n� (3n+m).

T has the following 3-slices:

1. n variable matrices Vi
2. n help matrices Si

3. n help matrices Mi

4. m clause matrices Cl

Let us describe these matrices in detail.

Vi. The matrix Vi has a 1 in positions (1; 2i � 1) and (2; 2i) while all other elements are 0.
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Si. The matrix Si has a 1 in position (1; 2n+ i) and is otherwise 0.

Mi. The matrixMi has a 1 in positions (1; 2i�1), (2+i; 2i) and (2+i; 2n+i) and is 0 otherwise.

Cl. Let xi be a vector with only a 1 in position 2i� 1 and let �xi be a vector with 1 in positions
2i � 1 and 2i. Now we can identify literals with vectors. Suppose the clause cl contains the
literals u1; u2 and u3. Then we de�ne the matrix Cl as follows.

Row 1 is the vector u1.
Row 2 + n+ 2l � 1 is the vector u1 � u2.
Row 2 + n+ 2l is the vector u1 � u3.

Before we continue let us give an example and the intuition behind the construction. Let
us construct the tensor corresponding to three variables and the two clauses (x1 _ x2 _ x3) ^
(�x1 _ �x2 _ �x3).

V1 =

0
BBBBBBBBBBB@

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCA

; V2 =

0
BBBBBBBBBBB@

0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCA

V3 =

0
BBBBBBBBBBB@

0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCA

; S1 =

0
BBBBBBBBBBB@

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCA

S2 =

0
BBBBBBBBBBB@

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCA

; S3 =

0
BBBBBBBBBBB@

0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCA
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M1 =

0
BBBBBBBBBBB@

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCA

;M2 =

0
BBBBBBBBBBB@

0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCA

M3 =

0
BBBBBBBBBBB@

0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCA

; C1 =

0
BBBBBBBBBBB@

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 �1 0 0 0 0 0 0
1 0 0 0 �1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCA

C2 =

0
BBBBBBBBBBB@

1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 �1 �1 0 0 0 0 0
1 1 0 0 �1 �1 0 0 0

1
CCCCCCCCCCCA

Let us explain the idea behind the construction. As can be seen from the example the 3-
slices are fairly independent in the sense that they have very few common nonzero elements. Now
use the characterization that the rank is the minimal number of rank 1 matrices Ni such that any
of the above 3-slices can be written as a linear combination of the Ni. By the above mentioned
independence the same rank 1 matrix cannot be useful in too many places. In particular, the
matrices Mi and Si make sure that the matrices Vi are written as a sum of two matrices using
one of the two equations

�
1 0
0 1

�
=

�
1 0
0 0

�
+

�
0 0
0 1

�

�
1 0
0 1

�
=

�
1 1
0 0

�
+

�
0 �1
0 1

�
:

We get a matrix whose only nonzero row is the �rst and that takes value xi or �xi. Then
one only needs the fact that one of these is helpful for obtaining Cl i� the literal appears in the
corresponding clause. Let us now make this formal. We have:

Lemma 2: The constructed tensor has rank 4n + 2m i� the formula is satis�able. Otherwise

the rank is larger.
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Remark: Clearly Lemma 2 implies Theorem 1.

Proof: Let us �rst prove that if the formula is satis�able the rank is at most 4n + 2m. Let
xi = �i be a satisfying assignment. We now construct 4n + 2m rank 1 matrices such that the
Vi; Si;Mi and Cl can be written as linear combinations of these matrices.

Matrices V
(1)
i and V

(2)
i where V

(1)
i has �rst row equal to xi i� �i = 1 and otherwise �xi. All the

other rows are 0. We set V
(2)
i = Vi � V

(1)
i .

Matrices Si.

Matrices M
(1)
i where M

(1)
i =Mi � V

(1)
i if �i = 1 and M

(1)
i =Mi � V

(1)
i � Si if �i = 0.

Matrices C
(1)
l and C

(2)
l . Let xi = �i be the assignment that makes the clause cl true. Then

Cl � V
(1)
i has rank 2, since either it has just two nonzero rows (in the case where xi is the �rst

variable in the clause) or it has three nonzero rows of which two are equal. In both cases we
just need two additional rank 1 matrices.
The total number of rank 1 matrices su�cient is 2n+n+ n+2m = 4n+2m and thus the rank
of the constructed tensor is at most 4n+ 2m when the formula is satis�able. That the rank is
exactly 4n+2m is not needed for the NP -completeness proof but will follow from the argument
below showing that the rank is greater than 4n + 2m when the formula is not satis�able. Let
us now turn to proving the lower bound.

In T the 1-slices corresponding to i = 3; 4; : : : n+ 2m+ 2 are all of rank 1 and are linearly
independent, hence by [HK], Lemma 2, these slices can all be made to appear in a minimal
expansion of T . We do not know what multiples of these matrices to be subtracted from the
�rst two 1-slices and we hence leave this as variables for the moment. We get

r(T ) = n+ 2m+min r( ~T )

where ~T is a 2� 3n� (3n+m) tensor described by the following 3-slices:

The matrices Vi and Si truncated to two rows.

Matrices ~Mi. The �rst row of ~Mi is e2i�1+k
1
i (e2i+e2n+i), while the second row is k2i (e2i+e2n+i).

Matrices ~Cl. The �rst row of ~Cl is (1 + c1l + c2l )u1� c1l u2� c2l u3 and the second is (d1l + d2l )u1 �
d1l u2 � d2l u3.

Here k1i ; k
2
i ; c

1
l ; c

2
l ; d

1
l and d2l are independent scalar variables, and the minimum is taken over

these variables.

Now we observe that the 3-slices Si are of rank 1 and can hence be made to appear in the
expansion of ~T (by [HK]). The question is only in what multiples of Si will be subtracted for
the other matrices. To determine these coe�cients let us prove a lemma.

Lemma 3: If the second row of any ~Mi is nonzero then the rank of ~T is at least 3n+1.

Proof: Suppose without loss of generality that the second row of ~M1 is nonzero. After we have
subtracted suitable multiples of Si from all other 3-slices we have 3-slices �Vi; i = 1; : : : n and �M1

(and some other matrices). We claim that the tensor, ~T 0, given by these n+ 1 3-slices already
have rank at least 2n + 1 and this obviously implies the lemma. We know that in the �rst 2n
columns the �Vi look like the original Vi and furthermore in position (2; 2n + 1) they all have a
0. On the other hand �M1 has a nonzero element in this position by the assumption that the
second row of ~M1 was nonzero. Consider the �rst 2n + 1 2-slices, Bj ; j = 1; : : : 2n + 1, of ~T 0

(these are now matrices of size 2� (n+ 1)).

B1 has a 1 in positions (1; 1) and (1; n+ 1) and is otherwise zero.

B2 has k
1
1 in position (1; n+1), 1 in position (2; 1), k21 in position (2,n+1) and is zero otherwise.

B2i�1; 2 � i � n has a 1 in position (1; i) and is zero otherwise.
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B2i; 2 � i � n has a 1 in position (2; i) and is zero otherwise.

B2n+1 has unknown �rst row, while the second row is 0 except that in position n+ 1 it has the
entry k21 which by assumption is nonzero.

We claim that these matrices are linearly independent. It is clear that Bi, 1 � i � 2n are
linearly independent since they each have precisely one 1 in the �rst n columns and these ones
are placed in di�erent positions. Our only problem is that B2n+1 might be a linear combination
of the other Bj . But since the second row of B2n+1 has zeros in the �rst n positions this would
have to be a linear combination of the odd indexed matrices. But all these matrices have a
zero in position (2; n + 1) where B2n+1 has a nonzero element and hence the Bj are linearly

independent. This implies that the rank of ~T 0 is at least 2n + 1 since if the rank is r we can
only get r linearly independent 2-slices in the tensor. The proof of the lemma is complete.

Since for T to have rank n + 2m, ~T must have rank 3n, we can assume that k2i = 0 for
all i. Now if we subtract k1i times Si from ~Mi and leave the other 3-slices as they are we make
all 2-slices for j > 2n identically 0. All other choices would not change the �rst 2n 2-slices and
make some other 2-slice nonzero. Such a choice could clearly only increase the rank. Thus, we
get

r(T ) = 2n+ 2m+min r( �T )

where �T is a tensor of rank 2� 2n� (2m+ 2n) given by the following 3-slices.

Vi (the original matrices truncated).
�Mi. The �rst row of �Mi is e2i�1 + k1i e2i. The second row is 0.

Matrices ~Cl. The �rst row of ~Cl is (1 + c1l + c2l )u1� c1l u2� c2l u3 and the second is (d1l + d2l )u1 �
d1l u2 � d2l u3.

where the minimum is taken over the constants cel ; d
e
l and k1i . The entire question is reduced to

the question whether the tensor �T can have rank as low as 2n.

Since the �Mi have rank 1 and are linearly independent they can all be made to appear in
the expansion of �T . Next we have

Lemma 4: For any k we can assume that Vk� �Mk as well as all the �Mi appear in the expansion

of �T .

Proof: Observe �rst that the matrix Vk� �Mk have rank 1. Now assume that it does not appear
in the expansion. Then Vk is written as a linear combination of the occurring rank 1 matrices
Vk =

Pr

j=1 ajNj . We already know that �Mk appears in the expansion of �T . Thus Vk � �Mk

is also a linear combination of the chosen Nj . Furthermore this linear combination does not
only contain matrices �Mi since Vk� �Mk is linearly independent of these matrices. Hence we can
eliminate one of the Nj which is not equal to �Mi for any i and introduce Vi � �Mi. The lemma
follows.

We need a slight extension of Lemma 4.

Lemma 5: We can assume that all the matrices Vi � �Mi as well as all the �Mi appear in the

expansion of �T .

Proof: This follows by basically the same proof as Lemma 4. Only observe that since the
matrices are linearly independent, we can introduce them one by one in the expansion without
eliminating previously inserted matrices.

Thus the question whether �T has rank 2n is equivalent to whether ~Cl can be written as a
sum of the matrices �Mi and Vi � �Mi. We have the following claim

Claim: If ~Cl can be written as a linear combination of �Mi and Vi � �Mi then the second row of
Cl is 0 and the �rst row of one of the �Mi is ui where ui is one of the literals appearing in cl.
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To see the �rst part of the claim observe that if the second row of a ~Cl is nonzero then it
contains a nonzero element in an odd position. On the other hand both �Mi and Vi � �Mi have
zeros in all odd positions on the second row. This proves the �rst part of the claim. Observe
that this implies in particular that only �Mi's appear in the sum giving Cl.

To establish the second part let uj be a literal belonging to the variable xi which appears in
the �rst row of Cl with a nonzero coe�cient. Since only �Mi of all the �M matrices has nonzero
elements in either of the positions (1; 2i�1) or (1; 2i), �Mi must be used to cancel these elements.
Thus the �rst row of �Mi must be a multiple of uj and since the element in position (1; 2i � 1)
of �Mi is 1 this multiple must be 1. We have established the claim.

To complete the proof of Lemma 2 we just have to observe that if all the ~Cl can be written
as a sum of the �Mi and the Vi� �Mi then we get a satisfying assignment for the original formula
by setting xi = 1 if �Mi has �rst row xi and xi = 0 otherwise. This completes the proof of
Lemma 2 and hence of Theorem 1.

3. Directions for further research.

The fact that tensor rank is NP-complete should not deter us from trying to prove lower
bounds for the number of multiplications needed to compute collections of bilinear forms. In
particular it would be very interesting to obtain nonlinear lower bounds for any natural problem,
in particular for a well studied problem like matrix multiplication.

Maybe in the quest for lower bounds it would be helpful to study the concept of tensor
rank as a mathematical subject rather than just pushing at the lower bound problem. Here a
fundamental question is to determine the maximal rank of an n� n� n tensor. It is known to
be between roughly n2=2 and n2=3. For further information see [S2] and the references therein.
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