
Chapter 1

Introduction

Let f be Boolean function from �nite binary strings to the set f0; 1g.
The basic question of complexity theory is what computational resources

are needed to compute f(x) for an arbitrary n-bit string x. Computa-

tional resources can be taken to mean sequential time, sequential space,

number of gates in Boolean network, parallel time with certain number

of processors, etc. For the moment we interpret resources as the time it

takes to compute f(x) on an ordinary sequential computer.

To exactly determine the time T (n) needed to compute f , two issues

of very di�erent kind need to be discussed. On the one hand time T (n)

must be shown suÆcient to compute f(x) for any n-bit input string x,

namely T (n) is an upper bound on the time it takes to compute f . On

the the other hand it must be shown that for any algorithm A there is

at least one input of length n for which the algorithm runs for T (n), and

hence T (n) is a lower bound for the time to compute f . In this thesis we

will focus on the problem of proving lower bounds.

The problem of computing a Boolean function can be rephrased as a

language recognition problem over the alphabet � = f0; 1g. A language is

a set of string, in this case L = fxjf(x) = 1g, and to recognize a language

L is to be able to answer questions of the type \Is x 2 L?" for any string

x.

Languages of close to equal complexity belong to the same complexity

class. For instance P is the class of languages that can be recognized in
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polynomial time and NP is the set of languages that can be recognized in

nondeterministic polynomial time. Informally this means that if L is in

NP then for any x 2 L, there is a proof that x 2 L which can be veri�ed

in polynomial time. The most famous open problem in complexity theory

is whether NP is equal to P , in other words: Is there a language L such

that it is signi�cantly harder to �nd a proof that x 2 L than to verify

the same proof? Most researchers believe that this is the case and indeed

NP 6= P .

The obvious way to proceed to prove that NP 6= P is to display lan-

guage L such that L 2 NP and L 62 P . The natural candidates for L are

the NP-complete languages which have the property that L 2 P implies

P = NP . To prove that L 62 P one has to prove that any algorithm

which recognizes L has a running time T (n) which grows faster than any

polynomial in n. As of today, however, no nonlinear lower bounds have

been proved on general models of computation for any language in NP .

The apparent diÆculty of proving nonlinear lower bounds for general

models of computation has led people to approach the problem in an

indirect way. An informal way to explain the line of attack is the following:

We want to prove that the computer cannot do something quickly.

We cannot do this. But if we tie the hands and feet of the computer

together maybe we will have better luck. The hope being of course that

we eventually will be able to remove the ropes and prove that the full

powered computer needs a long time.

To be more technical, we want to study a weaker model of compu-

tation and develop techniques for proving lower bounds in this weaker

model, and maybe eventually be able to extend these techniques to the

general situation. We proceed to describe such limited models of compu-

tation.
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1.1 The Circuit Model of Computation

Let us �rst de�ne a general Boolean circuit and point out some well

known facts concerning circuits as a computational model. A function f

is computed by a sequence of circuits, one for each length of the input.

One individual circuit has n inputs, one output, interior AND gates, OR

gate and negations con�gured to compute f(x) for inputs of length n.

Some researchers make assumptions about the diÆculty of constructing

the circuit once the length n of the input is speci�ed. We will work with

nonuniform circuits, which means that we make no such assumptions, and

hence the lower bounds we prove will be as strong as possible.

The circuit analog of sequential time is the size of the circuit which is

is de�ned to be the number of gates it contains. It is not too hard to prove

that any problem that can be solved in time T (n) on a Turing machine can

be solved by circuits of size O(T 2(n)) and it is well known that this bound

can be improved to O(T (n) log T (n)) [PF]. Consequently lower bounds

on the size of general circuits computing a function f yield corresponding

lower bounds for the time to compute f on a Turing Machine.

Even though nonuniform circuits are more powerful that Turing ma-

chines they seem better suited to lower bound proofs, since they do not

contain hard to control features like moving heads and changing states. In

spite of this general feeling no nonlinear lower bounds have been proved

for the size of general circuits recognizing any language in NP .

By weakening the power of the circuit, however, very interesting re-

sults can be obtained. One way to limit the model is to study small-depth

circuits. These circuits have the complete instruction set of negations,

AND and OR gates which have arbitrarily many inputs, but the depth,

i.e, the longest path form an input to the output, is restricted to be small,

either a constant independent of the input length, or a slowly growing

function of the input length.

The subject of this thesis is to study small-depth circuits and our
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main result is a collection of techniques for proving exponential lower

bounds on the size of such circuits. The techniques are quite powerful

and can be used to show almost-optimal lower bounds on the sizes of

small-depth circuits that compute a variety of functions, including parity

and majority. Our results are discussed in more detail in section 1.3.

Another example of a restricted model of computation is the model

of monotone circuits. Monotone circuits contain AND and OR gates,

but no negations, which restricts the functions that can be computed

to be monotone: i.e. changing an input from 0 to 1 cannot change the

value of the function from 1 to 0. For example, the majority function

can be computed by monotone circuits while the parity function cannot.

Recently Razborov [R1] proved superpolynomial lower bounds on the size

of monotone circuits computing the NP-complete clique function. The

results were improved by Alon and Boppana [AlBo] to give exponential

lower bounds for the clique function and by Andreev [An] who obtained

exponential lower bounds for other languages in NP.

Interestingly, Razborov [R1] proved the same superpolynomial lower

bounds for detecting whether a graph has a perfect matching. Since this

problem is well known to be in P , his result shows that even when a

function can be computed by monotone circuits, these circuits may need

to be signi�cantly larger than general circuits that compute the same

function.

The recent results for small-depth circuits and monotone circuits

show that it is possible to prove exponential lower bounds in nontriv-

ial cases. Although, it is doubtful that the techniques used will apply to

the P 6= NP question, this progress is encouraging and we can look for

techniques for proving lower bounds for general circuits with increased

optimism.
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1.2 Lower Bounds for Small-Depth Circuits, a History.

The problem of proving lower bounds for small-depth circuits has

attracted the attention of several researchers in the �eld. Functions typ-

ically considered have been simple functions such as parity and majority.

Parity is de�ned to be the sum modulo two of the inputs and majority is

de�ned to be 1 when at least half the inputs are 1.

Furst, Saxe and Sipser [FSS] were the �rst to give superpolynomial

lower bounds by proving that circuits of depth k that compute parity

require size 
(nlog
(3(k�2)) n), where log(i) n denotes the logarithm function

iterated i times. One of the important contributions of their paper was to

introduce the concept of random restrictions which have played a major

role in subsequent papers. Ajtai [Aj] independently proved the stronger

bounds 
(nck log n).

To illustrate the di�erence in the power of depth k circuits versus

depth k � 1 circuits Sipser [Si] introduced a sequence of functions fnk
which are computable by linear size circuits of depth k and proved that

the same functions require superpolynomial size circuits when the depth

is restricted to k � 1.

In the attempt to prove exponential lower bounds, the simpler case

of monotone small-depth circuits was studied. Valiant [V] proved that the

clique problem needed exponential size circuits when the circuit depth is

restricted to 3. Boppana [Bo1] proved that depth k monotone circuits

computing majority had to be of size 2
(n
1

k�1 ) while Klawe, Paul, Pip-

penger and Yannakakis [KPPY] obtained similar lower bounds for Sipser's

functions fnk+1.

The �rst breakthrough in proving exponential lower bounds without

restricting the circuits to be monotone was obtained by Yao [Y2] who

proved that depth k circuits which compute parity require size 
(2n
1
4k ).

He also stated exponential lower bounds for the functions fnk . These

results have interesting consequences for relativized complexity, which
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will be described in section 1.4.

1.3 Our Improved Lower Bounds.

We extend the results mentioned in the previous section. In par-

ticular we prove that depth-k circuits which compute parity require size

2ckn
1

k�1
, that depth-k circuits computing majority require the same size

and also that depth-k circuits which compute fnk+1 need size 2ckn
1
2k . The

key to the lower bound proofs is the following technical lemma. Let a

small gate denote a gate with few inputs.

Switching Lemma: Given a depth two circuit which is an AND of small

OR gates, then if random values are substituted for a randomly selected

subset of the variables, it is possible to write the resulting induced function

as an OR of small AND gates with very high probability.

Using this lemma, lower bounds are easily proved by induction over the

depth k.

The idea of giving random values to some of the variables, in order to

prove lower bounds for small-depth circuits was �rst introduced in [FSS]

and weaker versions of the Switching Lemma were proved in [FSS] and

[Y2]. In [FSS] the lemma was proved as stated but for them very high

probability meant probability 1� O(n�l), while we get a probability ex-

ponentially close to 1. Yao on the other hand did obtain exponentially

small probability of failure, although his constants were not optimal, but

he only proved that the resulting circuit was well approximated, in a tech-

nical sense, by an OR of small ANDs. These approximations signi�cantly

complicated the rest of his proofs.

Our lower bounds for parity are close to optimal since it is well

known that parity can be computed by circuits of depth k and size

n2n
1

k�1
. The results imply that polynomial size parity circuits require

depth logn
log log n�O( log n

(log logn)2 ) which is also optimal. The best previous
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lower bounds for the depth of polynomial size parity circuits were 
(
p
logn)

by Ajtai [Aj].

Finally, we would like to point out that there is an essential dif-

ference between the proof for parity and majority on one hand and the

Sipser functions on the other. The di�erence being that we use di�erent

probability distributions for substituting random values for some of the

variables. Consequently the Switching Lemma is in reality two di�erent

lemmas.

1.4 Small-Depth Circuits and Relativized Complexity.

Because of the present inability to prove lower bounds for functions

and hence to separate complexity classes, a signi�cant amount of attention

has been spent on relativized complexity, a concept which originated in

recursion theory. As a computational aid a Turing Machine may ask

questions of the type: \Is x 2 A?" for an arbitrary string x. A is a

�xed set of strings called the oracle set which remains �xed during the

computation. The questions are answered correctly in one time step. The

usual complexity classes are now de�ned using the normal de�nition and

thus for instance PA is the set of languages recognizable in polynomial

time by a Turing machine with access to the oracle A.

Relativized complexity can be studied for its own sake, but it has

also some implications for the study of normal unrelativized complexity

for the following reason.

The ancestor of complexity theory is the study of recursive functions.

In recursive function theory almost all proofs have the property that they

remain valid even if the Turing machine is equipped with an oracle A.

Now look at the NP 6= P question. It is well known that there are

oracles A and B such that NPA = PA while NPB 6= PB [BGS]. This

implies that methods from recursive function theory will not be suÆcient

to resolve the NP =?P question.
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Connections between relativized complexity and lower bounds for

small-depth circuits were �rst established by Furst, Saxe and Sipser [FSS]

who proved that subexponential lower bounds (more precisely 
(2(log n)
i

)

for all i) for any constant depth circuit computing the parity function

would imply the existence of an oracle separating PSPACE from the

polynomial time hierarchy (PH=
S1
i=1 �

p
i ). Yao [Y2] was the �rst to

prove suÆciently good lower bounds to construct an oracle A such that

PSPACEA 6= PHA. In Chapter 7 we give a full proof of the correspon-

dence between the two problems.

Cai [Ca] extended Yao's methods to prove that a random oracle sepa-

rated the two complexity classes with probability 1. Speci�cally he proved

that the set fA j PSPACEA 6= PHAg has measure 1 in the natural mea-
sure.

The heart of Cai's result is a proof that any small small-depth circuit

cannot compute parity correctly for signi�cantly more than half of the

inputs. We will address the question on what fraction of the inputs a

small small-depth circuit can compute parity correctly in Chapter 8.

In [Si], Sipser presented the theorem that lower bounds of 
(2(log n)
i

)

for all i for the size of depth k � 1 circuits computing the previously

mentioned functions fnk would imply the existence of an oracle separating

the di�erent levels within the polynomial time hierarchy. Since his proof

was sketchy, we give a complete proof in Chapter 7. The lower bounds

claimed by Yao give the �rst oracle achieving this separation, while our

results give the �rst complete proofs of such bounds. An interesting open

question is whether a random oracle achieves this separation which we

conjecture that is the case.

1.5 Is Majority Harder than Parity?

The lower bounds for parity are also valid for majority and are also

close to optimal. Furthermore given a gate which computes majority one
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can construct constant depth circuits of linear size which compute parity.

Thus one can say that majority is at least as hard as parity. It is a general

conjecture that majority is strictly harder, actually that even if parity

gates are allowed, constant depth circuits which compute majority still

require superpolynomial size. We prove that constant depth polynomial

size circuits computing majority that contain parity gates need at least


((log n)
3
2 ) parity gates, which can be taken as weak evidence in favor of

the conjecture.

1.6 Related Results

The small-depth circuit model can be viewed of as a model of par-

allel computation. Our results then imply lower bounds on the time to

compute a function (e.g parity) given a certain number of processors. In

the parallel model corresponding to small-depth circuits the processors

can read arbitrarily many memory locations but they are only able to

compute either the AND or OR of what they have read. Stockmeyer and

Vishkin [SV] proved that unbounded fanin circuits can also be used to

simulate more standard models of parallel computation with a slightly

restricted instruction set. Thus our depth lower bounds gives time lower

bounds for this model. Beame [Be] considers the model where the proces-

sors can do arbitrary computations. Surprisingly, our Switching Lemma

plays a crucial role in his arguments.

1.7 Outline of Thesis.

In Chapter 2 we give basic de�nitions and some properties of small-

depth circuits. In Chapter 3 we give some background and intuition for

the Switching Lemma which is proved in Chapter 4. Chapter 5 applies

the Switching Lemma to get lower bounds for circuits computing parity.

In Chapter 6 we introduce the functions fnk and prove lower bounds on

depth k � 1 circuits computing them. This amounts among other things
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to reprove the Switching Lemma in a di�erent setting. Chapter 7 contains

the applications to relativized complexity and Chapter 8 investigates on

what fraction of the inputs small constant depth circuits can compute

parity correctly. Finally in Chapter 9 we discuss the problem of computing

majority when parity gates of arbitrary fanin are allowed.



Chapter 2

Small Depth Circuits

In this chapter we introduce the model of small-depth circuits and

establish some useful facts, as the known upper bound for the size of

small depth circuits which compute parity. As a curious fact we prove

that inverting permutations computable by constant depth circuits (even

bounded fanin) is P-hard.

2.1 General Notation

The following notation will be used throughout the thesis. The letter

n will always denote the number of inputs to a function. The set of all

�nite strings from the alphabet � = f0; 1g is denoted by ��. Strings are
denoted by lower case letters and the ith bit of a string x is denoted by

xi. A literal will denote a variable or its negation.

For any function f(n), O(f(n)) denotes a function g(n) which satis�es

g(n) � cf(n) for some constant c and 
(f(n)) denotes a function h(n)

which satis�es h(n) � cf(n) for some c.

2.2 Computational Model

We will be working with unbounded fanin circuits of small depth.
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Figure 1 shows a typical example.

Figure 1

Without loss of generality we can assume that negations occur only as

negated input variables. If negations appear higher up in the circuit we

can move them down to the inputs using DeMorgan's laws which at most

doubles the size of the circuit. Observe that we have alternating levels

of AND and OR gates, since two adjacent gates of the same type can be

collapsed into one gate.

The crucial parameters for a circuit are its depth and its size. Depth

is de�ned as the length of the longest path from an input to the output and

can also be thought of as the number of levels of gates. For instance the

depth of the circuit in �gure 1 is 3. Size is de�ned to be the total number

of AND/OR gates and the circuit in �gure 1 is of size 11. The fanin of

a gate is de�ned as the number of inputs to it. We put no restriction on

the fanin of the gates in our circuits. We will be interested in the bottom

fanin of a circuit, however, which is de�ned as the maximum fanin for
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any gate on the lowest level of the circuit which hence has variables as

inputs.

2.3 Smallest Size Circuits for Parity

Eventually in this thesis we will prove lower bounds on the size of

small depth circuits computing parity. In this section, we present con-

structions of circuits whose sizes achieve the best upper bounds known.

This construction seems to belong to the folklore of the subject.

We start by a simple observation.

Lemma 2.1: Depth 2 circuits computing parity are of size 2n�1. The

circuit can be written either as an AND of ORs or an OR of ANDs.

Proof: Let � be a setting of the variable such that parity is equal to 1.

Consider the unique AND of n literals which is one only for �. There are

precisely 2n�1 such ANDs and the OR of them is equal to parity. To prove

that parity can be written as an AND of 2n�1 ORs is done similarly. A few

minutes reasoning will convince the reader that the presented construction

is the best possible. The optimality is due to Lupanov [Lu].

In general we have.

Theorem 2.2: Parity can be computed by circuits of size O(n
k�2
k�1 2n

1
k�1

)

and depth k. The output gate can be either an AND or an OR gate.

Proof: Let us start by outlining the construction for k = 3. A natural

idea is to divide the inputs in n
1
2 groups of n

1
2 variables each. First com-

pute the parity of each group in depth 2 and size 2n
1
2 and then compute

the parity of the n
1
2 outputs using another depth 2 and size 2n

1
2 . This

would lead to a circuit of depth 4 and size O(n
1
2 2n

1
2 ).

We have not used the full force of Lemma 2.1. Assume that the top

circuit is an AND or ORs. If we let the lower circuits to be OR of ANDs

it seems like we get two adjacent levels of OR gates which we then could
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collapse and decrease the depth to 3. This is not quite true since the

top circuit also needs the negation of the outputs of the lower circuits as

inputs. The way around this is to have two copies of the lower circuits,

one which is an OR of ANDs and one which is an AND of ORs. The

latter is used when the input to the top circuit is negated and otherwise

we use the �rst. In both cases we get adjacent levels of OR gates and we

can decrease the depth to 3.

To get the general case make a parity tree of depth k� 1 and fanout

n
1

k�1 and for each node in the parity tree we make one copy of it as an

AND of ORs and one copy as an OR of ANDs. By choosing the suitable

copy every time, we make the resulting circuit have depth k.

In Chapter 8 we will investigate how well smaller circuits can compute

parity. On the positive side we have.

Theorem 2.3: There are circuits of depth d and size n2s which compute

parity correctly for a fraction 1
2 + 2�

n

sd�1 of the inputs.

Proof: Divide the inputs into n
sd�1 sets each of sd�1 variables. Compute

the parity of each such set by a circuit Ci of size s
d�12s and depth d. Let

each Ci have an OR gate as output gate. The �nal circuit C will be the

OR of the circuits Ci. The depth of this circuit is still d and it has the

prescribed size.

If C outputs 0 it has computed parity correctly since the parity of all

the subsets are 0. This happens for a 2�
n

sd�1 fraction of the inputs and

is the only case where the circuit is correct when the parity of the input

is 0. On the other hand the circuit is always correct when the parity of

the input is 1 since at least one of the subsets must have parity 1. We

conclude that C has the desired advantage on parity.

2.4 Some Related Complexity Classes.

Let us relate the present results to some standard de�nitions of Cir-
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cuit Complexity. In particular let us mention the complexity class NC

and AC de�ned in [Co]. We have NC =
S1
i=0NCi where NCi is de�ned

to be languages which are recognized by uniform constant fanin circuits of

polynomial size and depth O((log n)i). In the same way AC =
S1
i=0AC

i

where ACi is de�ned to be languages which are recognized by uniform un-

bounded fanin circuits of polynomial size and depth O((log n)i). Clearly

NCi � ACi � NCi+1. The only strict inclusions that are known are

NC0 6= AC0 6= NC1. The �rst strict inclusion is trivial since AC0

functions might depend on all inputs while this is impossible for NC0

functions. The second result was �rst proved by [FSS] and follows from

the lower bounds for parity circuits since parity is in NC1. We will see

in the next section that there are open problems even concerning NC0.

2.5 How Hard is it to Invert NC0 Permutations?

Relating the complexity of computing a function f and its inverse

f�1 is an important problem. We will address this question assuming

that f is computable by constant depth circuits having fanin bounded by

2. For f to have a well de�ned inverse we assume that f is a permutation

which maps n-bit strings to n-bit strings and that each output bit of f is

computable by an NC0 circuit and hence only depends on a number of

input bits which is independent of the length of the input.

The complexity of inverting simple functions has been studied be-

fore. Boppana and Lagarias [BL] proved that there are permutations

which were computable in NC0 but whose inverses were as hard to com-

pute as parity. These permutations can be said to be oneway since

their inverses are much harder to compute than the permutations them-

selves. Barrington [Bar] gave another example of a oneway function which

was computable in AC0, but computing its inverse was LOGSPACE-

complete. We improve both these results. Let the term P-complete mean

P-complete under LOGSPACE-reductions. Thus if a P-complete prob-
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lem is in LOGSPACE every problem in P is in LOGSPACE. In a similar

manner a problem is de�ned to be P-hard if it has the above property

but is not known to be in P.

Theorem 2.4: There is a uniform family of NC0 permutations which

are P-complete to invert.

Proof: We will reduce the problem of evaluating a straight line pro-

gram to the problem of inverting an NC0 permutation. Since the former

problem is well known to be P-complete [La] the theorem will follow.

Let us set up some notation for the straight line program. The pro-

gram contains a sequence of variables which are either de�ned as a part

of the input or in terms of two previously de�ned variables. To make this

formal let ik and jk be two indices which are less than k and let fk be

arbitrary functions of two Boolean inputs to one Boolean output.

Using this notation we de�ne an instance of straight line program.

INPUT: Boolean variables x1; x2; : : : xn
PROGRAM: xk = fk(xik ; xjk); k = n+ 1; n+ 2; : : : m

OUTPUT: Value of xm.

We will reduce this problem to the question of inverting an NC0

permutation. Let us denote the permutation by g. It will be de�ned

from f0; 1gm to f0; 1gm where m is the number of variables occurring

in the straight line program. Let z1; z2; : : : zm denote the input bits and

g1; g2 : : : gm the output bits. Let � be exclusive or.

Then,

gk(z) = zk k = 1; 2; : : : ; n

gk(z) = zk � fk(zik ; zjk ) k = n+ 1; n+ 2; : : : m

where ik; jk and the functions fk are the same as in the straight line

program.

Let us establish that the reduction is correct.
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Fact 1: g is a permutation.

We need only show that g is onto. Given y 2 f0; 1gm �nd z 2 f0; 1gm
such that g(z) = y by solving for z1; z2; : : : zm in increasing order. This

can be done since the equations can be written zk = yk � f(zik ; zjk ).

Fact 2: The m'th bit of g�1(x1; x2 : : : xn; 0; : : : ; 0) is the output of the

straight line program.

Solving for this input as described above performs the computation

of the straight line program.

Fact 3: The reduction from straight line programs to permutations is

e�ective and g is computable by NC0 circuits.

The reduction is trivial computationally since it just replaces equal-

ity signs by �. The second part of Fact 3 follows from the fact that

any function that only depends on a constant number of inputs can be

computed in NC0.

To establish the theorem we need to prove that there is a uniform

family of instances of the straight line program problem which are hard

to solve. One way to see this is as follows.

Take a Turing machine which solves the problem of evaluating straight

line programs. Now take the computation tableau of this machine and

convert it into a straight line program. Evaluating this straight line pro-

gram for di�erent inputs is P-complete and thus inverting the correspond-

ing NC0 permutation is also P-complete.

We know ([BM], [GM], [Le], [Y1]) that in the sequential setting the

existence of oneway functions implies the existence of good cryptosystems.

There are two obstacles to using the present result to construct parallel

cryptosystems.

The �rst problem is that the function needs to be hard to invert on

a random input. This is not quite achieved since even if we start with

a straight line program which is hard to compute for a random input it
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is not necessarily true that the corresponding NC0 permutation is hard

to invert for random outputs. This is so as our reduction only maps to

values of the permutation whose last m� n bits are 0.

The second problem is that the reductions from oneway functions to

cryptographic generators is sequential i.e. even if the oneway function

is easy to compute in parallel the resulting cryptographic generator will

require large parallel time. For a discussion of \parallel cryptography"

we refer to Reif and Tygar [RT].

We have proved that there is a sequence of uniform NC0 circuits

which are P-complete to invert. An interesting open question is whether

inverting NC0 permutations in general is polynomial time. We conjecture

that this is not the case.



Chapter 3

Outline of Lower Bound Proof

In this chapter we will introduce some of the intuition behind the

lower bound proofs. We also introduce restrictions which will play a

major role in the proof.

3.1 Intuition Behind the Lower Bound Proof

Having established that even very limited circuits may compute rea-

sonably complicated functions let us see how to prove lower bounds for

small depth arbitrary fanin circuits. Several of the lower bound proofs

cited in the introduction ([FSS],[Y2] and the present paper) have the same

outline. The proofs are by induction and proceed as follows.

(1) Prove that parity circuits of depth 2 are large

(2) Prove that small depth k parity circuits can be converted to small

depth k � 1 parity circuits.

Of these two steps the �rst step is easy and tailored for the par-

ity function and is the comment about optimality in the construction of

Lemma 2.1. The second step is much more diÆcult and here lies the

di�erence between the papers.
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As an example, let us convert the following depth-3 circuit into a

circuit of depth 2.

Figure 2

Take any gate at distance two from the inputs. It represents a sub-

circuit of depth 2. In this case this circuit will be an AND of ORs. Now

observe that any function can be written either as an AND or ORs or as

and OR of ANDs. Thus we can change this depth 2 circuit to and OR

of ANDs which computes the same function. Thus we have the following

circuit computing the same function.

Figure 3
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Observe that we have two adjacent levels consisting of OR gates.

These two levels can be merged to one level and we get the following

circuit of depth 2.

Figure 4

There is an obvious drawback with the above procedure. When we

convert an AND of ORs to an OR of ANDs the size of the circuit will in

general increase considerably. Thus we have converted a small depth k

circuit to a large depth k � 1 circuit and hence we fail to achieve (2).

3.2 Restrictions

The way around this problem was introduced in [FSS] and works as

follows. If we assign values to some of the variables we can simplify the

circuit. In particular if we assign the value 1 to one of the inputs of an

OR gate, the output of the OR gate will be 1 no matter what the other

inputs are. In the same way we need only know that one of the inputs

to an AND gate is 0 to decide that it outputs 0. This means that the

value of any speci�c gate on the bottom level can be forced by assigning

a suitable value to one of its inputs. However there are many more gates

than inputs and we have to do something more sophisticated. Let us �rst

make formal what we mean by �xing some variables.
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De�nition: A restriction � is a mapping of the variables to the set

f0; 1; �g.
�(xi) = 0 means that we substitute the value 0 for xi

�(xi) = 1 means that we substitute 1

�(xi) = � means that xi remains a variable.
Given a function F we will denote by F d� the function we get by

doing the substitutions prescribed by �. F d� will be a function of the

variables which were given the value � by �.
Example: Let F (x1; x2; x3; x4; x5) = majority of the variables and let

�(x1) = 1; �(x2) = �; �(x3) = �; �(x4) = 1 and �(x5) = �. Then

F d�(x2; x3; x5) = at least one of x2; x3 and x5 is 1.

The following simple observation will be important when we consider

circuits computing parity.

Observation: Parityd�= Parity or the negation of Parity.

As pointed out above we could get rid of one gate by giving the value

0 or 1 to one of the variables. This is clearly not eÆcient and we have to

make more clever assignments serving many purposes simultaneously. To

do this explicitly seems hard and our way of avoiding this is to rely on

luck. We will pick a random restriction and with high probability it will

have the desired property.

We will be working with random restrictions with distributions pa-

rameterized by a positive real number p which usually will be small.

De�nition: A random restriction � 2 Rp satis�es

�(xi) = 0 with probability 1
2 � p

2

�(xi) = 1 with probability 1
2 � p

2

�(xi) = � with probability p.

independently for di�erent xi.

Observe that we have probability p of keeping a variable. Thus the
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expected number of variables remaining is pn. Obviously, the smaller

p, the more we can simplify our circuits, but, on the other hand, fewer

variables remain. We must choose p as to optimize this trade-o�.

The main improvement of our result over previous work is that we

make a tighter analysis of how much a restriction simpli�es a circuit. We

will prove a lemma which basically tells us that if we hit a depth two

circuit with a random restriction then we can change an AND of ORs to

an OR of ANDs without increasing the size. We prove that this fails with

only exponentially small probability.

We will need some notation. A minterm is a minimal way to make

a function 1. We will think of a minterm � for a function F as a partial

assignment with the following two properties.

(1) � forces F to be true.

(2) No subassignment of � forces F to be true.

Thus (2) says that � is minimal satisfying (1).

Example Let F (x1; x2; x3) be the majority function. Then the minterms

are �1; �2 and �3 where

�1(x1) = 1; �1(x2) = 1; �1(x3) = �
�2(x1) = 1; �2(x2) = �; �2(x3) = 1

�3(x1) = �; �3(x2) = 1; �3(x3) = 1

The size of a minterm is de�ned as the number of variables to which

it gives either the value 0 or the value 1. All three of the above minterms

are of size 2. Observe that it is possible to write a function as an OR of

ANDs where the ANDs precisely correspond to its minterms. The size

of the ANDs will be the size of the minterms since xi will be an input

precisely when �(xi) = 1 and �xi will be an input precisely when �(xi) = 0.



Chapter 4

Switching Lemma

We prove the �rst version of the Switching Lemma on how to con-

vert an AND of small ORs to an OR of small ANDs by using a random

restriction. This will provide the tool for us to carry through the outline

of the proof described in Chapter 3.

4.1 Proof and Statement of Switching Lemma

Let us start by stating the result

Switching Lemma 4.1: Let G be an AND of ORs all of size � t and �

a random restriction from Rp. Then the probability that Gd� cannot be

written as an OR of ANDs all of size < s is bounded by �s where � is

the unique positive root to the equation.

(1 +
4p

1 + p

1

�
)t = (1 +

2p

1 + p

1

�
)t + 1

Remark 1 By looking at :G one can see that it is possible to convert

an OR of ANDs to an AND or ORs with the same probability.

Remark 2 There are two versions of the proof of the switching lemma

which are almost identical except for notation. Our original proof was in

terms of a labeling algorithm used by Yao [Y2] in his proof. The present

version of the proof, avoiding the use of such an algorithm, was proposed

by Ravi Boppana [Bo2].
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It turns out that it is easier to prove a stronger version of the switch-

ing lemma. First we will require all minterms of Gd� to be small. By the

remark in the end of Chapter 3 this implies that Gd� can be written as

an OR of small ANDs. A more signi�cant di�erence is that we prove that

the probability of the existence of large minterms remain small even if we

condition upon an arbitrary function being forced to be 1. This facilitates

induction.

For notational convenience let min(G) � s denote the event that Gd� has
a minterm of size at least s.

Stronger Switching Lemma 4.2: Let G = ^wi=1Gi, where Gi are OR's

of fanin � t. Let F be an arbitrary function and � a random restriction

in Rp. Then

Pr[min(G) � s j F d�� 1] � �s

Remark 3: The stronger switching lemma implies the switching lemma

by choosing F � 1 and the fact that a function has a circuit which is an

OR of ANDs corresponding to its minterms.

Remark 4 If there is no restriction � satisfying the condition F d�� 1 we

use the convention that the conditional probability in question is 0.

Proof: We prove the stronger switching lemma by induction on w the

number of ORs in G.
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A picture of G which is good to keep in mind is the following.

Figure 5

If w = 0 the lemma is obvious (G � 1). For the induction step let

us study what happens to G1, the �rst OR in the circuit. We have two

possibilities, either it is forced to be 1 or it is not. We estimate these two

probabilities separately. We have

Pr[min(G) � s j F d�� 1] �

max(Pr[min(G) � s j F d�� 1 ^G1d�� 1];

P r[min(G) � s j F d�� 1 ^G1d� 6� 1])

The �rst term is

Pr[min(G) � s j (F ^G1)d�� 1]

In this case Gd�= ^wi=1Gid�= ^wi=2Gid� since we are only concerned about
�'s which forces G1 to be 1. Thus min(G) � s is equivalent to saying

that ^wi=2Gid� has a minterm of size at least s. But this probability is

� �s by the inductive hypothesis since we are talking about a product of
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size w � 1. We are conditioning upon another function being 1 but this

is does not matter since we are assuming that the induction hypothesis

is true for an arbitrary F . It is precisely the fact that the conditioning

keeps changing that \forced" us to introduce the stronger version of the

switching lemma.

Now consider the second term (Pr[min(G) � s j F d�� 1^G1d� 6� 1]).

For notational convenience we will assume that G1 is an OR of only

positive literals, i.e.

G1 = _i2Txi
where jT j � t. We do not lose generality since we can interchange xi and

�xi since � is completely symmetric with respect to 0 and 1.

Let � = �1�2, where �1 is the restriction of the variables in T and �2 is

the restriction of all other variables. The condition G1d� 6� 1 is equivalent

to �1 never assigning the value 1. As this is only a condition on �1 we

rewrite this as G1d�1 6� 1. Before going on let us at this point give some

intuition for what is going on and why the proof works. Assume for the

moment that p < 1
10t .

We are now studying the case where the �rst OR, G1 is not forced

to be 1 by the restriction. There are two possibilities, either G1 is forced

to be 0 or it remains undetermined. In the �rst case all our troubles are

over since G itself is forced to be 0. The second case is the bad case and

we have to do further work. However by our choice of p the �rst case will

occur with at least constant probability and this is the key to making the

proof work. Let us return to the formal proof.

By de�nition a minterm � of Gd� makes Gd� true. Since we are now
conditioning upon the fact that G1 is not made true by the restriction,

we know that G1 has to be made true by � i.e. there must be an i 2 T

such that �(xi) = 1. Observe that � might give values to some other

variables in T and that these values might be both 0 and 1. Partition the

minterms of Gd� according to which variables in T they give values to.
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Call a typical such subset Y .

The fact that the minterm gives values to the variables in Y implies

that the variables in Y were given the value � by �1. This fact will be

denoted by �1(Y ) = �. Further let min(G)Y � s denote the event that

Gd� has a minterm of size at least s whose restriction to the variables in

T assigns values to precisely those variables in Y . Using this notation we

get

Pr[min(G) � s j F d�� 1 ^G1d�1 6� 1] �X
Y�T;Y 6=;

Pr[min(G)Y � s j F d�� 1 ^G1d�1 6� 1] =

X
Y�T;Y 6=;

Pr[min(G)Y � s ^ �1(Y ) = � j F d�� 1 ^G1d�1 6� 1] =

X
Y�T;Y 6=;

Pr[�1(Y ) = � j F d�� 1 ^G1d�1 6� 1]

�Pr[min(G)Y � s j F d�� 1 ^G1d�1 6� 1 ^ �1(Y ) = �]

The inequality and the �rst equality follows by the reasoning above.

The last equality follows by the de�nition of conditional probability. Let

us estimate each of the two factors in each term of the above sum starting

with the �rst factor (i.e. Pr[�1(Y ) = �jF d�� 1 ^ G1d�1 6� 1] ). For

simplicity let us �rst ignore the condition F d�� 1.

Lemma 4.3: Pr[�1(Y ) = � j G1d�1 6� 1] = ( 2p
1+p )

jY j.

Proof: As remarked above the condition G1d�1 6� 1 is precisely equivalent

to �1(xi) 2 f0; �g for i 2 T . The induced probabilities are Pr[�(xi) =

0] = 1�p
1+p and Pr[�(xi) = �] = 2p

1+p . The lemma follows since � assigns

values independently to di�erent xi.

Now we must take the condition F d�� 1 into account. The intuition

for handling this case is as follows. The fact that F is determined to be
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1 cannot make stars more likely since having a lot of stars is in a vague

sense equivalent to things being undetermined. This argument can be

made formal in several ways. The one presented here was proposed by

Mike Saks.

We �rst need an elementary fact from probability theory. Let A;B

and C be three arbitrary events

Lemma 4.4: Pr[A j B ^C] � Pr[A j C] i� Pr[B j A^C] � Pr[B j C].
The two inequalities are equivalent to

Pr[A ^B ^ C]
Pr[B ^ C] � Pr[A ^ C]

Pr[C]
and

Pr[A ^B ^ C]
Pr[A ^C] � Pr[B ^ C]

Pr[C]

respectively. If Pr[A ^ B ^ C] > 0 these inequalities are seen to be

equivalent by multiplying the �rst by the positive quantity Pr[B^C]
Pr[A^C] . If

Pr[A^B ^C] = 0 the lefthand sides of both inequalities are 0 and hence

both inequalities are true.

Using this we get:

Lemma 4.5: Pr[�1(Y ) = � j F d�� 1 ^G1d�1 6� 1] � ( 2p
1+p )

jY j.

Proof: Let A = (�1(Y ) = �); B = (F d�� 1) and C = (G1d�1 6� 1). By

the above lemmas we only have to verify that

Pr[F d�� 1 j �1(Y ) = � ^G1d�1 6� 1] � Pr[F d�� 1 j G1d�1 6� 1]

This is clear from inspection since requiring that some variables are �
cannot increase the probability that a function is determined.

Next we to estimate the other factor. Namely

Pr[min(G)Y � s j F d�� 1 ^G1d�1 6� 1 ^ �1(Y ) = �]
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To do this think of a minterm of Gd� which give values to the variables

in Y and no other variable in T as consisting of two parts:

(1) Part �1 which assigns values to the variables of Y .

(2) Part �2 which assigns values to some variables in the complement �T

of T.

This partitioning of a minterm is possible since we are assuming

that � assigns no values to variables in T � Y . Observe that �2 is a

minterm of the function (Gd�)d�1 . This obviously suggests that we can

use the induction hypothesis. We only have to get rid of the unpleasant

condition that G1d�1 6� 1. This we do by maximizing over all �1 satisfying

this condition. Let min(G)Y;�1 � s denote the event that Gd� has a

minterm of size at least s which assigns the values �1 to the variables in

Y and does not assign values to any other variables in T . We have

Pr[min(G)Y � s j F d�� 1 ^G1d�1 6� 1 ^ �1(Y ) = �] �X
�1

(max
�1

Pr�2 [min(G)Y;�1 � s j (F d�1)d�2� 1])

The sum over �1 ranges over �1 2 f0; 1gjY j; �1 6= 0jY j and the maximum

is taken over �1 satisfying �1(Y ) = �; �1(T ) 2 f0; 1gjT j.
The two last conditions have disappeared because they involve only

�1 and the probability is taken over �2 only. By (2) above we know that

min(G)Y;�1 � s implies that (Gd�1�1)d�2 has a minterm of size at least

s � jY j on the variables in �T . Thus we can estimate the probability by

�s�jY j by the induction hypothesis. The stars of �1 are substituted by

taking AND of the two formulas resulting by substituting 0 and 1. This

gives the correct result since both F d�� 1 and the property of having

a certain minterm are properties of forcing a function to 1. Forcing a

function to 1 even when some variable is undetermined is the same as

making the function 1 in the two cases where 0 and 1 are substituted

for the variable. Finally observe that Gdxi=0^Gdxi=1 does not contain
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more ORs than G. The reason is that ORs that do not contain xi are

duplicated and one of the copies can be removed and ORs that contain

either xi or �xi occur only in one of Gdxi=0 and Gdxi=1.

To sum up, each term in the sum is estimated by �s�jY j and we have
2jY j � 1 possible �1. This is because �1 must make G1 true and hence

cannot be all 0. Thus we get the total bound (2jY j � 1)�s�jY j.

Finally we must evaluate the sum and since the term corresponding

to Y = ; is 0 we can include it.

X
Y�T

(
2p

1 + p
)jY j(2jY j� 1)�s�jY j = �s

jT jX
i=0

�jT j
i

�
[(

4p

1 + p

1

�
)i � (

2p

1 + p

1

�
)i] =

�s((1+
4p

1 + p

1

�
)jT j�(1+

2p

1 + p

1

�
)jT j) � �s((1+

4p

1 + p

1

�
)t�(1+

2p

1 + p

1

�
)t

= �s

The second equality comes from the fact that (1 + x)t =
Pt

i=0

�
t
i

�
xi

and the last equality follows from the de�nition of �. This �nishes the

induction step and the proof of the Lemma 4.2.

4.2 Improving the Constant

It is possible to prove a slightly stronger version of the switching

lemma. This result is due to Ravi Boppana [Bo2] and we are grateful

for his permission to include it here. Shlomo Moran [M] independently

produced a similar proof for the same result.
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Lemma 4.7: Let G be an AND of ORs all of size � t and � a random

restriction from Rp. Then the probability that Gd� cannot be written as

an OR of ANDs all of size < s is bounded by �s where � is the unique

positive root to the equation.

(1 +
2p

1 + p
(
2

�
� 1))t = (1 +

2p

1 + p
(
1

�
� 1))t + 1

Furthermore we have the same estimate on the probability even if we

condition upon an arbitrary function F being forced to 1 by �.

To get this result we only have to do a few slight modi�cations to the

original proof. Observe that we are not any more claiming that all the

minterms are small but only that the resulting function can be written

as an OR of small ANDs. To see the di�erence look at f(x1:x2; x3) =

(x1 ^ x2) _ (�x1 ^ x2). x2 = 1 and x3 = 1 gives a minterm which does not

correspond to an AND. By this relaxation we can choose the set Y to be

precisely the set of variables given the value � by �. Let AND(G) � S

denote the event that Gd� cannot be written as an OR of ANDs of size

< s. By the same reasoning as before we are led to estimating

X
Y�T;Y 6=;

Pr[�1(Y ) = � ^ �1(T � Y ) = 0 j F d�� 1 ^G1d�1 6� 1]

�Pr[AND(G) � s j F d�� 1 ^G1d�1 6� 1 ^ �1(Y ) = � ^ �1(T � Y ) = 0]

The second factor will be estimated by induction as before. Denote

the �rst term by PY . Previously we used the bound PY � ( 2p
1+p )

jY j

provided by Lemma 4.5. No stronger bound for PY can be obtained in

general. However Lemma 4.5 really tells us that

X
Y0�Y

PY � (
2p

1 + p
)jY0j

and this is what we will use.
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In the �nal summation we are estimating

X
Y�T

PY (2
jY j � 1)�s�jY j

Using partial summation this is equal to

X
Y�T

((2jY j � 1)�s�jY j � ÆjY j)
X
Y�Y0

PY0

where Æi = 0 if i = 0 and (2i�1 � 1)�s+1�i otherwise.
Now the term outside the inner sum is positive if � < 1 which is

the only case we are interested in. Thus we can use the upper bound

( 2p
1+p

)jY j for the inner sum. Observing that the case of equality is PY =

( 2p
1+p )

jY j( 1�p1+p )
jT j�jY j we can simplify our calculations by immediately sub-

stitute this expression for PY in the original sum. Observe that we have

proved that F � 1 is the worst case. Now estimating the �nal sum is

done as usual.

X
Y�T

(
2p

1 + p
)jY j(

1� p

1 + p
)jT j�jY j(2jY j � 1)�s�jY j

�s(
1� p

1 + p
)jT j

jT jX
i=0

�jT j
i

�
[(

4p

1� p

1

�
)i � (

2p

1� p

1

�
)i] =

�s(
1� p

1 + p
)jT j((1 +

4p

1� p

1

�
)jT j � (1 +

2p

1� p

1

�
)jT j) �

�s((1 +
2p

1 + p
(
2

�
� 1))t � (1 +

2p

1 + p
(
1

�
� 1))t = �s

The last equality follows by the de�nition of �. This �nishes the

proof.
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4.3 Estimates on the Size of �

To make Lemma 4.1 easier to apply we need more explicit bounds

on the size of �. These are provided by the following lemma.

Lemma 4.8: Let � solve the equation

(1 +
4p

1 + p

1

�
)t = (1 +

2p

1 + p

1

�
)t + 1

and let � =
p
5+1
2 . Then � � 2pt

ln� + O(tp2). In particular � < 5pt for

p < p0 for some absolute constant p0 > 0.

Proof: Neglecting terms of order tp2 the equation can be written

e
4pt
� = e

2pt
� + 1

This equation is solved by e
2pt
� = � leading to the claimed expression.



Chapter 5

Lower Bounds for Small-Depth Circuits

In this chapter we will prove exponential lower bounds for depth-k

circuits which compute parity or majority. The two arguments will be

very similar and we will start with the parity function.

5.1 Lower Bounds for Parity

We start by stating the theorem.

Theorem 5.1: There are no depth-k parity circuits of size 2(
1
10 )

k
k�1 n

1
k�1

for n > nk0 for some absolute constant n0.

Remark 5: Observe that this is quite close to optimal since by Theorem

2.2 parity can be computed by depth-k circuits of size n2n
1

k�1
. The best

previous lower bounds were 
(2n
1
4k ) by Yao [Y2].

As in the case of the switching lemma we �rst prove a result suitable

to induction, and later show that this result implies Theorem 5.1.

Theorem 5.2: Parity cannot be computed by a depth-k circuit contain-

ing � 2
1
10n

1
k�1

gates of distance at least 2 from the inputs and which has

bottom fanin � 1
10n

1
k�1 for n > nk0 , where n0 is some absolute constant.

Proof: We prove the theorem by induction over k. The base case k = 2

follows from the well known fact that depth-2 parity circuits must have

bottom fanin n. The induction step is done as outlined in Chapter 3. We

proceed by contradiction. Assuming that a depth-k circuit exists with
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the the described parameters we construct a depth k � 1 circuit with

the corresponding parameters. The key step is of course provided by the

switching lemma which enables us to control the size of the depth-k � 1

circuit.

Suppose, without loss of generality, that our depth-k circuits are such

that the gates at distance 2 from the inputs are AND gates and hence

represents a depth-2 circuit with bottom fanin bounded by 1
10n

1
k�1 . Apply

a random restriction from Rp with p = n�
1

k�1 . Then by our lemma every

individual depth-two subcircuit can be written as an OR of ANDs of

size bounded by s with probability 1 � �s. By the chosen parameters

and Lemma 4.8 � is bounded by a constant less than 1
2 . If we choose

s = 1
10n

1
k�1 the probability that it is not possible to write all depth-two

circuits as OR of ANDs of size s is bounded by 2
1
10n

1
k�1

�s = (2�)s. Thus

with probability at least 1� (2�)s we can interchange the order of AND

and OR in all depth-2 subcircuits giving adjacent levels of OR gates and

still maintain bottom fanin bounded by s. The adjacent levels of OR's

which can be collapsed to decrease the depth of the circuit to k � 1.

Observe that gates at distance at least two from the inputs in this new

circuit corresponds to gates at distance at least three from the inputs in

the old circuit and are hence bounded in number by 2
1
10n

1
k�1

.

The number of remaining variables is expected to be pn = n
k�2
k�1

and with probability greater than 1
3 we will get at least this number

for n > nk0 . Thus with nonzero probability the new circuit of bottom

fanin � 1
10n

1
k�1 having � 2

1
10n

1
k�1

gates of distance at least 2 from the

inputs and which computes the parity or the negation of parity of n
k�2
k�1

variables. In particular such a restriction exists. Applying this restriction

and letting m = n
k�2
k�1 and negating the resulting circuit if necessary we

obtain a circuit certi�ed not to exist by the induction hypothesis. The

proof of Theorem 5.2 is complete.
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Let us now prove Theorem 5.1. Consider the circuit as a depth-k+1

circuit with bottom fanin 1. Hit it with a restriction from Rp using p =
1
10

and by using our switching lemma with s = 1
10 (

n
10 )

1
k�1 we see that we get

a circuit which does not exist by Theorem 5.2.

Since there are no constants depending on k hidden in the theorem

we get the following corollary

Corollary 5.3: Polynomial size parity circuits must have depth at least
log n

c+log logn for some constant c.

Observe that this result is tight since for every constant c there are

such polynomial size circuits.

5.2 Lower Bounds for Majority

Observe that in the above proof the properties of parity were hardly

used. Only the lower bound for k = 2 and the fact that it behaves well

with respect to restrictions. Thus our switching lemma can be used to

improve lower bounds for sizes of small-depth circuits computing other

functions as well. Let us do majority

Theorem 5.4: For any � > 0majority requires size 2(
1��
10 )

k
k�1 n

1
k�1

depth-

k circuits for n > n�.

Proof: The proof is almost identical. First observe that the base case

k = 2 holds. To do the induction step we will use a restriction from

Rp. However this time we will require the following properties of the

restriction

(i) All depth-2 subcircuits within in the circuit can be converted to the

other type without increasing the bottom fanin.

(ii) � gives out the same number of 0's and 1's.

(iii) � gives out at least (1� �)np �'s.
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The probability that the restriction violates either (i) or (iii) is expo-

nentially small. The probability that it satis�es (ii) is � n�
1
2 . Thus with

a positive probability all three conditions are satis�ed.

Now the induction step can be done since (i) implies that the depth of

the circuit decreases and (ii) together with (iii) imply that the remaining

circuit computes majority of large number of variables.

Suppose we want to prove lower bounds for a function f . In general

it is not necessary that fd� is the same function f on fewer variables. As

can be seen from the proof it is suÆcient that fd� for a severe restriction
� has a reasonable probability of having large minterms. We leave the

details to the interested reader.

5.3 Improving the Constant

Since we did not make optimal use even of Lemma 4.1 it is clear that
1
10 is not the optimal constant. Let us improve the constants slightly by

using Lemma 4.7 and not being so careless.

Theorem 5.5: Parity cannot be computed by a depth-k circuit con-

taining � 2:1437n
1

k�1
subcircuit of depth at least 2 and bottom fanin

� :1136n
1

k�1 for n > nk0 for some absolute constant n0.

Proof: The proof is identical to that of Theorem 5.2. We use s = t =

:1136n
1

k�1 and p = n�
1

k�1 and use the bounds of lemma 4.7 giving � =

:415904.

The restriction of the bottom fanin can be removed as before and we

can get theorem 5.1 with the ck tending towards :1437.



Chapter 6

Depth k is More Powerful than Depth k � 1

We prove that there are functions fmk which have linear size circuits of

depth k but require exponential size circuits when the depth is restricted

to k � 1. To prove this we will introduce a new probability space of

restrictions and prove the Switching Lemma for this space of restrictions.

6.1 The Sipser Functions fmk

In [Si], Sipser de�ned a set of functions fmk which could be computed

in depth k and polynomial size. He showed , however, that these functions

require superpolynomial size when the depth is restricted to k�1. We will

rede�ne fmk slightly and let it denote the function de�ned by the circuit

in Figure 6. To avoid confusion we will refer to the circuit in �gure 6 as

the de�ning circuit of fmk . The de�ning circuit is thus a tree with top

fanin
q

m
logm , bottom fanin

p
km logm=2 while all the other fanouts are

m. Each variable occurs at only one leaf.
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Thus by de�nition fmk is a function of mk�1
p
k=2 variables.

Figure 6

Yao has claimed exponential lower bounds for these functions, but

the proof has not yet appeared. We have the following results for the

functions fmk .

Theorem 6.1: Depth k � 1 circuits computing fmk are of size at least

2
1

12
p
2k

p
m

logm for m > m1, where m1 is some absolute constant.

As an immediate corollary we get.

Corollary 6.2: Polynomial size circuits of depth f(n) are more powerful

than polynomial size circuits of depth f(n) � 1 if f(n) < log n
3 log logn

�
!( log n

(log logn)2 ).

Proof: Follows from a computation using n = mk�1
p
k=2 and k = f(n).
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6.2 New Random Restrictions

One would like to prove Theorem 6.1 with the aid of the Lemma 4.1.

Here, however, one runs into problems not encountered in the case of the

parity function. If a restriction from Rp is applied to fmk the resulting

function will be a constant function with very high probability. This

happens since the gates at the bottom level are quite wide and with very

high probability all gates will be forced. There is also a more philosophical

reason why Rp destroys functions like fmk . Rp was designed to destroy

any small-depth circuit, and will in particular destroy the circuits de�ning

fmk . To get around this problem we will de�ne another set of restrictions

are made not to destroy the circuits de�ning fmk .

De�nition: Let q be a real number and (Bi)
r
i=1 a partition of the vari-

ables (The Bi are disjoint sets of variables and their union is the set of all

variables). Let R+
q;B be the probability space of restrictions which takes

values as follows.

For � 2 R+
q;B and every Bi, 1 � i � r independently

1. With probability q let si = � and else si = 0.

2. For every xk 2 Bi let �(xk) = si with probability q and else �(xk) =

1.

Similarly a R�
q;B probability space of restrictions is de�ned by inter-

changing the roles played by 0 and 1.

The idea behind these restrictions is that a block Bi will correspond

to the variables leading into one of the ANDs in the bottom level in the

circuit de�ning fmk . If the bottom level gates are ORs we use a restriction

from R�
q . These restrictions will, however, not be quite suÆcient for our

purposes and we need a complementary restriction.
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De�nition: For a restriction � 2 R+
q;B let g(�) be a restriction de�ned

as follows: For all Bi with si = �, g(�) gives the value 1 to all variables

given the value � by � except one to which it gives the value �. To make
g(�) deterministic we assume that it gives the value � to the variable with
the highest index given the value � by �.

If � 2 R�
q;B, then g(�) is de�ned similarly but now takes the values 0

and �.

These sets of restrictions do not assign values to variables indepen-

dently as our previous restrictions did, but they are nice enough so that

the proof of our switching lemma will go through with only minor mod-

i�cations. Let �g(�) denote the composition of the two restrictions. Ob-

serve that they are compatible since g(�) assigns values to precisely the

variables given the value � by �.
Lemma 6.3: Let G be an AND of ORs all of size � t and � a ran-

dom restriction from R+
q;B . Then the probability that Gd�g(�) cannot

be written as an OR of ANDs all of size < s is bounded by �s, where

� = 4q

2
1
t�1

< 4qt
log 2 < 6qt.

Remark 6 The same is true for R�
q;B .

Remark 7. The probability of converting an OR of ANDs to an AND

of ORs is the same.

As in the case of the switching lemma, before proving Lemma 6.3,

we prove a stronger lemma stating that we have the same estimate of

the probability even when we condition upon an arbitrary function being

forced to 1 by �. De�ne AND(Gd�g(�)) � s denote the event that Gd�g(�)
cannot be written as an OR of ANDs of size < s.
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Lemma 6.4: Let G = ^wi=1Gi, where Gi are OR's of fanin � t. Let F

be an arbitrary function. Let � be a random restriction in R+
q;B . Then

Pr[AND(Gd�g(�)) � s j F d�� 1] � �s

where � = 4q

2
1
t�1

.

Remark 8: Recall that, if there is no restriction � satisfying the condition

F d�� 1 then the conditional probability in question is de�ned to be 0.

Observe that we are only conditioning upon F d�� 1 and not F d�g(�)� 1.

Proof: We will only use the weaker bound 6qt for � and since the lemma

is trivially true if � � 1 we will assume q < 1
6t whenever convenient. The

proof will be done in a similar way to the proof of the stronger switching

lemma (Lemma 4.2). We therefore only outline the proof, and give details

only where the proofs di�er.

As before

Pr[AND(Gd�g(�)) � s j F d�� 1] �
� max(Pr[AND(Gd�g(�)) � s j F d�� 1 ^G1d�� 1];

P r[AND(Gd�g(�)) � s j F d�� 1 ^G1d� 6� 1])

The �rst term,

Pr[AND(Gd�g(�)) � s j (F ^G1)d�� 1]

is taken care of by the induction hypothesis, as discussed in the proof of

Lemma 4.2.

The second term, Pr[AND(Gd�g(�)) � s j F d�� 1 ^ G1d� 6� 1] is

estimated as in Lemma 4.2. We cannot assume that G1 is an OR of

only positive literals since the restrictions employed here assign 0 and 1

nonsymmetrically.
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We denote the set of variables occurring in G1 by T , and jT j � t. We

do not know that G1 must be made true by every minterm ofGd�g(�). This
is because G1 might be made true by g(�). We do know, however, that

for Gd� not to be the constant 0 some of the variables of T must be given

the value � by �. Suppose the variables of T belongs to r di�erent blocks.

Assume for notational convenience that these blocks are Bi; i = 1 : : : ; r.

We call a block B exposed if there is a variable xi 2 B such that xi 2 T

and �(xi) = �. By the above remark there must be some exposed blocks

for G not to be identically 0. Let Y denote the set of exposed blocks.

Denote this event by exp(Y ) and let [r] denote the set f1; 2; : : : ; rg.
We get

Pr[AND(Gd�g(�)) � s j F d�� 1 ^G1d� 6� 1] �
�

X
Y�[r];Y 6=;

Pr[exp(Y ) j F d�� 1 ^G1d� 6� 1]�

Pr[AND(Gd�g(�)) � s j F d�� 1 ^G1d� 6� 1 ^ exp(Y )]

The factors in the above sum can be estimated separately. Let us

start with the �rst factor Pr[exp(Y ) j F d�� 1 ^ G1d� 6� 1]. We need a

little bit of extra notation. Let Pi = fjjxj 2 G1 ^ xj 2 Big and let

Ni = fjj�xj 2 G1 ^ xj 2 Big. Let us start with the simple case when Y

consists of a single block Bi.

Lemma 6.5: Pr[exp(Bi) j F d�� 1 ^G1d� 6� 1] � 2q.

Proof: By the de�nition of conditional probability we want to prove

P0
exp(Bi)

Pr(�)P0
Pr(�)

� 2q

Here the 0 indicates that we are only summing over � satisfying the

condition F d�� 1 ^ G1d� 6� 1. Remember that if this quotient takes the
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form 0
0
we have the convention that it takes the value 0. Now assume that

� gives a nonzero contribution to the numerator. We de�ne a restriction

~� = H(�) which gives a larger contribution to the denominator. Let

1. ~�(xj) = �(xj) for xj 62 Bi

2. ~�(xj) = 0 for j 2 Pi

3. ~�(xj) = 1 for j 2 Ni

4. ~�(xj) = 1 for j 2 Bi �Ni � Pi and �(xj) = 1

5. ~�(xj) = 0 for j 2 Bi �Ni � Pi and �(xj) = �
To check that ~� gives a contribution to the denominator we only have

to check that F d~�� 1 and G1d~� 6� 1. The �rst fact follows by noting that

we only change values from � to non-� values. To see that the second

condition is ful�lled we observe that rules 2 and 3 are tailored to this.

To get an estimate for the quotient we must compute the probability

of � compared to ~�. We must also investigate what restrictions �� satisfy

H(��) = ~�. Let us start with this second task.

Observe �rst that si = � in the de�nition of �� and hence that �� only

gives out the values � and 1 on Bi. Obviously ��(xj) = �(xj) for all xj
not in Pi or Ni. Furthermore ��(xj) = � for xj 2 Pi since Gd�� 6� 1. Finally

�� can take any combination of 1 and � on Ni provided it does not take

the value of all 1 in the case when Pi is empty. Observe that all these ��

might not satisfy the condition F d��� 1 but we are only trying to get an

upper bound.

Let �� give l �'s on Ni and jNij � l ones. Then

Pr(��) =
q

1� q

ql(1� q)jNij�l

(1� q)jNij Pr(~�):

The �rst factor comes from the fact that si = 0 for ~� while si = � for

��. The second factor comes from the behavior on Ni. Observe that the

probability that ~� gives out only 0 on Pi is equal to the probability that
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�� gives out only �. Summing up we get

X
H(��)=~�

Pr(��) � q

1� q
Pr(~�)

jNijX
l=0

�jNij
l

�
(

q

1� q
)l =

q

1� q
Pr(~�)(1� q)�jNij

since jNij � t and q < 1
6t we have (1� q)�jNij < 2. Using this we have

P0
exp(Bi)

Pr(�)P0 Pr(�)
�
P

~�

P0
�;H(�)=~�;exp(Bi)

Pr(�)P0 Pr(�)
�

P0
~�

2q
1�qPr(~�)P0

~�(1 +
2q
1�q )Pr(~�)

� 2q

and the proof is complete.

Next we have

Lemma 6.6: Pr[exp(Y ) j F d�� 1 ^G1d� 6� 1] � (2q)jY j.

Proof: This is proved in the same way as Lemma 6.5. We get restrictions

contributing to the denominator by doing the changes in � on all the

blocks simultaneously.

Next we estimate the factor

Pr[AND(Gd�g(�))Y � s j F d�� 1 ^G1d� 6� 1 ^ exp(Y )]

We want to use induction and to do this we have to get rid of the

condition G1d� 6� 1. In the blocks that are not exposed we know that �

takes the values 0 or 1. This conditioning can be incorporated in F d�� 1.

If a block is exposed we will let the corresponding variable which is

still alive after �g(�) be in the ANDs of Gd�g(�). We try all possibilities of

these variables and we estimate the probability that the remaining formula

cannot be written as an OR of ANDs of size s � jY j. This probability
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is taken over a restriction which does not include the blocks of Y . Thus

we can use the induction hypothesis and we get the estimate �s�jY j for
setting of the variables corresponding to Y . Thus we get the total bound

2jY j�s�jY j.

Finally we evaluate the sum to get

X
Y�[r];Y 6=;

(2q)jY j2jY j�s�jY j = �s
rX

i=1

�
r

i

�
(
4q

�
)i �

�s((1 +
4q

�
)r � 1) = �s(2r=t � 1) � �s

This �nishes the induction step and the proof of the lemma 6.4.

An interesting question is for what probability distributions on the

space of restrictions is it possible to prove the lemma equivalent to Lemma

6.3 and Lemma 4.1. The general proof technique uses two crucial prop-

erties of the distribution.

(1) The condition F d�� 1 for an arbitrary F does not bias the value of

any variable too much towards �. This should also remain true even

if we know that a speci�c variable is not 1 or 0.

(2) It is possible to eliminate the variables of G1 and use induction on a

similar restriction over the remaining variables.

Condition (1) was taken care of by Lemmas 6.6 and 4.5. Condition

(2) seems easier to satisfy and was so obviously satis�ed that no formal

lemma was needed. The veri�cation was basically done where we claimed

that induction could be used after eliminating G1.

6.3 Back to the Proof of Theorem 6.1

Let us continue with the present restriction space R+
q;B and prove

Theorem 6.1. We �rst prove a slightly stronger technical theorem.
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Theorem 6.7: There are no depth k circuit computing fmk with bottom

fanin 1p
2k12

q
m

logm
and � 2

1p
2k12

p
m

logm gates of depth � 2 for m > m0

some absolute constant m0.

Note that Theorem 6.7 implies Theorem 6.1 since a depth k�1 circuit
can be considered as a depth k circuit with bottom fanin 1.

Theorem 6.7 is proved by induction over k. The base case for k = 2

is quite easy and is left to the reader.

For the induction step we use one of the restrictions de�ned above.

Assume for de�niteness that k is odd, so that the gates on the bottom

level are AND gates. De�ne the sets Bi in the partition to be the set of

variables leading into an AND gate. Recall that since the de�ning circuit

of fmk is a tree the blocks are disjoint. Set q =
q

2k logm
m

and apply a

random restriction from R+
q;B .

In the case of the parity function even after applying a restriction,

the remaining circuit still computed parity or the negation of parity. In

the case of fmk , we will prove that the new restrictions used transform fmk
into something that is very close to fmk�1. It was precisely the fact that

the Rp restrictions simpli�ed fmk too much that forced us to de�ne the

new probability space of restrictions.

Lemma 6.8: If k is odd then the circuit that de�nes fmk d�g(�) for a

random � 2 R+
q will contain the circuit that de�nes fmk�1 with probability

at least 2
3 , for all m such that m

logm � 100k, m > m1, where m1 is some

absolute constant.

Remark 9: Lemma 6.8 holds for even k when R+ is replaced by R�.
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Proof: The fact that k is odd implies that the two lower levels look like:

Figure 7

We establish a series of facts.

Fact 1: The AND gate corresponding to block Bi takes the value si for

all i, with probability at least 5
6
for m > m0.

The AND gate corresponding to block Bi takes the values si pre-

cisely when not only ones are given to the block. The probability of this

happening is (1 � q)jBij = (1 �
q

2k logm
m )

p
km

2 logm < e�k logm = 1
6m

�k.
Thus the probability that this happens for any block Bi is bounded by 1

6

for suÆciently large m

Fact 2 With probability at least 5
6 at least

p
(k � 1)m logm=2 inputs

given the value � by �g(�) to each OR gate at level k � 1. Again this is

true only for suÆciently large m.

The expected number of such inputs is
p
2km logm and the fact

follows from known estimates using m
logm � 100k. For completeness let

us include a very elementary proof.

Let pi be the probability that an OR gate has as input exactly i AND

gates which take the value �. Then

pi =

�
m

i

�
(
2k logm

m
)
i
2 (1�

r
2k logm

m
)m�i:

Then for i <
p
km logm we have pi=pi�1 �

p
2. Using pp

mk logm
< 1 we
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estimate
Pp

mk logm=2

i=1 pi by

p
mk logm=2X

i=1

pi � pp
mk logm=2

1X
i=0

2�i � 2pp
mk logm=2

�

2
p
2
�(1� 1p

2
)
p
mk logm

pp
mk logm

� 1

6
m�k

for suÆciently large m.

To sum up, with probability at least 2
3
all OR gates at level k � 2

will remain undetermined. Furthermore all such OR gates will have at

least
p
(k � 1)m logm=2 variables as inputs. This constitutes the de�ning

circuit for fmk�1. The lemma is proved.

Let us now �nish the proof Theorem 6.7. We need to perform the

induction step. This is done using the same argument as in the proof

of Theorem 5.2. Apply a restriction from R+
q;B to the circuit. Observe

�rst that if m
logm < 100k the result of the theorem is trivial and hence we

can assume that the reverse inequality holds. By Lemma 6.8 the de�ning

circuit still computes a function as diÆcult as fmk�1 and setting some of

the remaining variables the circuit can be made into the de�ning circuit

of fmk�1.

On the other hand suppose that there existed a circuit of depth k,

bottom fanin 1p
2k12

q
m

logm and size 2
1p
2k12

p
m

logm which computed fmk . By

using Lemma 6.3 and reasoning as in the proof of Theorem 5.2 we can

interchange the ANDs and ORs on the last two levels without increasing

the bottom fanin. Now it is possible to collapse two adjacent levels of

OR gates and the resulting circuit will be of depth k� 1. As in the proof

of Theorem 5.2 the gates corresponding to subcircuits of depth 2 in this

new circuit corresponds to gates of depth 3 in the old circuit. Thus we

have obtained a circuit certi�ed not to exist by induction.



Chapter 7

Application to Relativized Complexity

In this chapter we will outline the connection between relativized

complexity and lower bounds for small depth circuits. The proofs and

theorems of this section are not due to the author of the thesis. The

proofs that suÆciently strong lower bounds for small depth circuits com-

puting certain functions would imply the existence of certain oracles, were

obtained by Furst, Saxe and Sipser [FSS] and Sipser [Si]. The �rst suf-

�ciently strong lower bounds to imply the existence of such oracles were

obtained by Yao [Y2]. As some of the available proofs are somewhat

sketchy, in this section we give the complete proofs.

7.1 Preliminary Lemmas

Let us introduce the necessary notation.

De�nition: An oracle A is a subset of ��. A Turing machine with oracle

A is a Turing machine with the extra feature that it can ask questions of

the form: \Is the string x in the set A?" These questions are answered

correctly in one time step.

Let us introduce the model of an Alternating Turing Machine (ATM)

[CKS], in order to de�ne the polynomial time hierarchy [St](abbreviated

as PH).

An ATM is a nondeterministic Turing machine, whose states have one

of four labels. The labels \accept" and \reject" occur on halting states.

The non halting states are marked either by ^ or _. These states may
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have several possible next con�gurations. We will assume for notational

convenience that the number of possible next con�gurations is at most

2. For each input x the computation can be viewed as a directed tree

with the interior nodes marked with either ^ or _ and the leaves marked

either \accept" or \reject". The machine accepts the input i� the root is

evaluated to 1 under the natural evaluation of the tree. (Replace \accept"

by 1, \reject" by 0 and evaluate the ^ and _ gates as logical functions).

We make the following de�nition:

De�nition: A �p
i -machine is an ATM for which each path from the root

to a leaf is of polynomial length and such that the number of consecutive

alternating runs of ^ and _ along any path is at most i. The machine

starts in a state labeled _.
We use almost the same notation for languages.

De�nition: A language L is in �p
i i� if it is accepted by some �

p
i machine.

By de�nition we have NP = �p
1. The polynomial time hierarchy is

de�ned as

PH =
1[
i=0

�p
i :

By allowing the alternating machine to have access to an oracle A we

de�ne the complexity classes �p;A
i of languages accepted by machines

having at most i alternations and which run in polynomial time. PHA

is de�ned as
S1
i=0�

p;A
i . In a similar way PSPACEA is de�ned to be

the set of languages which are accepted in polynomial space by a Turing

machine with oracle A. One of the original motivations for [FSS] was to

try to construct an oracle A such that PSPACEA 6= PHA. Let us �rst

do some preliminaries.

De�nition: A weak oracle machine is one which asks at most one oracle

question on each computation branch. Furthermore this question is asked
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at the end of the computation branch.

Weak oracle machines might seem weak but alternation is powerful.

Lemma 7.1: For every oracle A, every �p;A
i language L is accepted by

some �p;A
i+2 weak oracle machine.

Proof: Take a �p;A
i machine MA which accepts L. We convert this into

a weak �p
i+2 machine MA

1 accepting the same language. MA
1 will guess

the answers to the questions that MA asks along a computation branch

and then verify the answers in the end of the branch using some extra

alternations. Let us make this formal.

To simulate the answer to a query \x 2 A?" asked by machine MA,

MA
1 proceeds as follows.

If MA is asking the question while in an ^ state, MA
1 enters an ^ branch

and assumes along one branch that the answer was 0 and along the other

that it was 1. It remembers the question and its guess of the answer for

the rest of the computation.

If MA is asking the question while in an _ state, MA
1 enters an _ branch

and assumes along one branch that the answer was 0 and along the other

that it was 1. It again remembers the question and its guess of the answer

for the rest of the computation.

At a leaf of MA, MA
1 will decide to accept or reject according to the

following rule. Let Qi denote the ith guess made by MA
1 for an oracle

answer along the present branch. MA
1 accepts i�

([MA accepts on this branch]^ [8i Qi is a correct guess])

_ ( 9i[Qi is an incorrect and-guess]^ [8j < i Qj is a correct guess])

Let us establish that the simulation is correct.

Claim: MA
1 accepts an input x i� MA accepts x.
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Look at the computation tree corresponding to the computation ofMA
1 on

input x. It contains all the branches ofMA. These correspond to branches

of MA
1 where only correct guesses were made. However we also have

branches sticking out from this tree corresponding to incorrect guesses.

Observe now that as soon as we leave the tree of correct guesses the

value of the branch is determined. If the �rst incorrect guess was made at

an ^ branch the corresponding branch will accept by the second criteria.

If the �rst incorrect guess was made at an _ branch the corresponding

branch will reject. In neither case does the incorrect guess e�ect the value

of the output and hence the claim is established.

To �nish the proof of Lemma 7.1 we need only observe that MA
1 is

a �p;A
i+2 weak oracle machine. No new alternations are introduced by the

internal guesses since we always use the same connective as the previous

state. To realize the acceptance criteria we need only add two more

alternations at the end.

In the future we will identify an oracle A with a countable set of

Boolean variables yAz de�ned for every z 2 �� by yAz = 1 i� z 2 A. Using

this notation we can establish the relationship between circuits and weak

oracle machines.

Lemma 7.2: Let MA be a �p;A
i weak oracle machine which runs in time

t on input x. Then there is a depth i circuit C of size 2t with has a subset

of the yAz as inputs such that for every oracle A, MA accepts x precisely

when C outputs 1 on inputs yAz .

Proof: Write down the computation tree ofMA on input x. At each leaf

one of four things happens. MA accepts without looking at the oracle,

MA rejects without looking at the oracle, MA asks z 2 A? and accepts

i� yAz = 1 or MA asks z 2 A? accepts i� yAz = 0. In the corresponding

circuit we will write the constant 1, the constant 0 , the variable yAz and

the variable �yAz respectively. By the de�nition of acceptance by an ATM
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the circuit will output 1 precisely when the machine accepts x. By the

de�nition of being in �p;A
i the computation tree does not have more than i

alternations along any branch. This implies that the corresponding circuit

can be collapsed to be of depth i. Finally since the depth of the original

tree was � t the size of the resulting circuit is bounded by 2t.

Observe that the structure of the circuit depends on MA and the input

x.

7.2 An Oracle such that PSPACEA 6= PHA.

Having taken care of the preliminaries we go on to the essentials of

this section.

Theorem 7.3 ([FSS], [Y2]): There is an oracle A such that

PSPACEA 6= PHA.

Proof: Since clearly PHA � PSPACEA for any A we want to display

an oracle such that the inclusion is proper. The language which is in

PSPACEA but not in PHA for a later determine choice of A is

L(A) = f1n j the number of strings of length n in A is oddg
The connection to parity is clear since to determine whether 1n is in

L(A) is precisely to compute the sum mod 2 of the yAz , where jzj = n.

This can clearly be done in polynomial space since we can ask the oracle

about all strings of length n. Thus L(A) 2 PSPACEA for all A and

hence it remains to construct A to make A 62 PHA. We will do this by

diagonalization.

The idea of the construction is as follows. To recognize L(A), MA
i

must compute parity of yAz ; jzj = n. However we know by Lemma 7.2

that the output of MA
i corresponds to the output of a circuit with inputs

yAz of constant depth and relatively small size. We know by Theorem 5.1

that such a circuit cannot compute parity.

Let MA
i ; i = 1; 2 : : : be an enumeration of all weak oracle machines
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that belong to �p;A
j for some constant j. We construct A by determining

the variables yAz in rounds. In round i we will make sure that MA
i does

not accept L(A).

Initialize n0 = 1.

Round i. Suppose MA
i runs in time cnc and has j alternations. Find an

mi such that 100cmc
i < 2

mi
j�1 and mi > ni�1. Look at the computation

tree ofMA
i on the input 1mi . By Lemma 7.2 the value of this computation

is determined by the value of a circuit with inputs yAz for some z's. We

know that the depth of this circuit will be j and the size will be at most

2cm
c
i . First substitute the values of all yAz which have been previously

determined. Then substitute some arbitrary values (e.g. 0) for all other

yAz with jzj 6= mi. Now the remaining circuit is a circuit of depth j in the

2mi variables yAz with jzj = mi. We know by Theorem 5.1 that a depth

j circuit computing parity of 2mi variables have to be of size 2
1
10

j
j�1 2

mi
j�1

.

Thus by the choice of mi the present circuit does not compute parity

correctly. Give values to the yAz ; jzj = n such that the circuit does not

compute parity on this input. Finally let ni be the largest integer such

that yAz has been determined for some z with jzj = ni. Set y
A
z = 0 for all

the so far undetermined variables with jzj � ni.

Fact 1: A is well de�ned.

This is clear since A is uniquely determined by the variables yAz and

each of these variables is given a value precisely once.

Fact 2: MA
i does not decide L(A) correctly on 1mi .

This is by construction. 1n 2 L(A) precisely when parity of the

variables yAz ; jzj = n and A was chosen such that MA
i did not compute

parity of yAz ; jzj = mi.

Using these two facts we see that L(A) is not accepted by any weak
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oracle machine which has a bounded number of alternations. Finally

using Lemma 7.1 we have proved the theorem.

7.3 An Oracle B such that �p;B
i 6= �p;B

i�1 for all i.

Having established the �rm connection between oracle machines and

circuits by Lemmas 7.1 and 7.2 it is natural to proceed and try to use

Theorem 6.1 to get a similar result.

Theorem 7.4 ([Si], [Y2]): There is an oracle B such that �p;B
i 6= �p;B

i�1

for all i.

Remark 10: Yao claimed suÆcient lower bounds to give Theorem 7.4.

Our Theorem 6.1 gives the �rst proof of such lower bounds.

To prove Theorem 7.4 we �rst need a preliminary remark.

Lemma 7.5: If �p;B
i 6= �p;B

i�3 for i > 3 then �p;B
i 6= �p;B

i�1 for all i.

Proof: In fact �p;B
i = �p;B

i�1 implies that PH
B = �p;B

i�1 and in particular

�p;B
i+2 = �p;B

i�1.

Thus it is suÆcient to construct an oracle satisfying the hypothesis

of Lemma 7.5. The construction is almost identical to the previous one.

Start by de�ning a suitable language.

Li(B) = f1nj9x1; x2; : : : xn
i
8xn

i
+1 : : : x 2n

i
9 : : : xn x 2 Bg

Thus to check whether 1n 2 Li(B) corresponds to evaluating a func-

tion gni on the inputs yBz for jzj = n. The function gni is very close to

the function f2
n
i

i introduced in Chapter 6. The only di�erence being that

gni corresponds to a tree of fanout 2
n
i at all levels, while f2

n
i

i has smaller

fanin at levels 1 and i. But this implies that f2
n
i

i appears as a restriction

of gni and hence that gni is at least as hard to compute as f2
n
i

i .

Since the i alternations are built into the de�nition of Li(B), it is

clear that Li(B) 2 �p;A
i . We will construct B such that Li(B) 62 �p;B

i�3.
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The proof is very similar to the proof of Theorem 7.3.

The idea of the proof is that a weak oracle machine with i� 1 alter-

nations corresponds to a relatively small circuit of depth i�1 with inputs

yAz . We know by Theorem 6.1 that a small circuit of depth i cannot

compute f2
n
i

i and hence cannot compute gni .

As before let MB
i ; i = 1; 2 : : : be an enumeration of �p;B

j weak oracle

machines for all constants j. We proceed in rounds.

Initialize n0 = 1.

Round i. Suppose MB
i runs in time cnc and has j alternations. Thus we

wantMB
i not to accept Lj+1(B). Find anmi such that 100cm

c
i < 2

mi
2j =mi

and mi > ni�1. Look at the computation tree of MB
i on the input 1mi .

This is a circuit of depth j and size at most 2cm
c
i with inputs yBz for

some z's. First substitute the values of all yBz which have been previously

determined. Then substitute some arbitrary values (e.g. 0) for all other

yBz with jzj 6= mi. Now the remaining circuit is a circuit in the 2mi

variables yBz with jzj = mi. We know by Theorem 6.1 that it is too small

to compute gmi

j+1 correctly. Give a set of values to the yBz such that the

circuit makes an error for this input. Finally let ni be the largest integer

such that yBz has been determined for some z with jzj = ni. Set y
B
z = 0

for all the so far undetermined variables with jzj � ni.

Fact 1: B is well determined.

B is uniquely determined by the variables yBz and each of these variables

is given a value precisely once.

Fact 2: No weak oracle machine with j alternations computes Lj+1(B)

correctly. More precisely, if the index of the machine is i, it makes an

error on 1mi .

Fact 2 follows from the construction. Finally by Lemma 7.1 no �p;A
j�3
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machine accepts Lj(B) and hence we have satis�ed the hypothesis of

Lemma 7.5 and Theorem 7.4 follows.

It is possible to interleave the two constructions and get an oracle

which achieves the two separations simultaneously. This gives us the

following theorem.

Theorem 7.6 ([FSS], [Si], [Y2]): There is an oracle C such that

PSPACEC 6= PHC and �p;C
i 6= �p;C

i�1 for all i.

7.4 Separation for random oracles.

The above constructions give very little information about what the

oracles look like. One nice extra piece of evidence was provided by by Cai

[Ca].

Theorem 7.7 ([Ca]): With probability 1, PSPACEA 6= PHA for a

random oracle A.

Let us �rst make clear what the theorem means. It is possible to look

at the set B of oracles A satisfying PSPACEA 6= PHA. There is also a

natural measure on the set of subset of ��, this measure corresponding
to Lebesgue measure on [0; 1]. The theorem states that B has measure 1.

For related results see [BG].

Proof: (Due to Babai [Bab]) In view of the previous theorems and proofs

it is not surprising that the theorem will rely on the following question.

How well can small depth circuits compute parity? By this we mean for

what fraction of the inputs can a small circuit be correct. The lemma

that will be suÆcient for our present purpose is the following.

Lemma 7.8: For any constant k there is a constant ck such that for

n > nk0 a depth k circuit which computes parity correctly for 60% of the

inputs is of size at least 2n
ck . Here n0 is an absolute constant.
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We will prove much stronger forms of Lemma 7.8 in the next section.

However we will here establish this weaker result by a simpler proof.

Lemma 7.8 follows from Theorem 5.1 and the following result of Ajtai

and Ben-Or [AjBe].

Lemma 7.9: Suppose there is a depth k circuit of size s which computes

parity correctly for 60% of the inputs. Then for some absolute constant

c there is a circuit of depth k + 4 and size cns which computes parity

exactly.

For the sake of completeness we will give an outline of this result.

De�ne a (p; q) family of circuits to be a set of circuits such that for any

�xed input x a random member of this family outputs 1 on input x with

probability � p if parity(x) = 1 and outputs 1 with probability � q

if parity(x) = 0. Using the circuit C which is correct for 60% we will

construct a (:6; :4) family Cy. For y 2 f0; 1gn de�ne Cy starting from C

by

Interchange xi and �xi i� yi = 1.

Negate the resulting circuit if
Pn

i=1 yi = 1 mod 2.

This will give a (:6; :4) family since for every �xed input the proba-

bility that Cy is correct for a random y is precisely the probability that

C is correct for a random input.

Construct a new family of circuits by taking the AND of c log n ran-

domly chosen Cy. For a suitably chosen c this gives a (n�
1
2+�; n�

1
2��)

family. Now take the OR of n
1
2 random members of this new family.

This gives a (1 � e�n
�

; n��) family. By choosing the correct parameters

and continuing the construction for two more rounds it is possible to

obtain a (1� 2�n�1; 2�n�1) family.

Consider a random element from this (1�2�n�1; 2�n�1) family. The

probability that it is incorrect for any particular input is 2�n�1. Thus

the probability that it is incorrect for any input is bounded by 1
2 . Thus in
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particular there is a member of this family which is correct for all inputs.

This concludes the outline of the proof of Lemma 7.9.

Let us see how Theorem 7.7 follows from Lemma 7.8. We will again

use the language

L(A) = f1n j the number of strings of length n in A is odd g
To prove that Pr[L(A) 2 PHA] = 0 we only need to prove that

Pr[MA accepts L(A)] = 0 for any �p;A
i machine MA. This is suÆcient

since there is only a countable number of machines.

Fix a machineMA with running time cmc and j alternations. De�ne

m1 such that cmc
1 < 2m1cj with the constant cj from Lemma 7.8. Then

recursively de�nemi = cmc
i�1+1. De�ne \MA agrees with L(A) on input

x" to mean that MA outputs 1 on input x and x 2 L(A) or MA outputs

0 on input x and x 62 L(A). Then we have

Lemma 7.10: Pr[M agrees with L(A) on 1mi jM agrees with L(A) on

1mj ; j < i] � :6.

Proof: By the bound for the running time MA cannot write down any

string of length mi during its computations on 1mj ; j < i. In particular it

cannot ask the oracle about any such string. Thus the condition thatMA

behaves correctly on these inputs shed no information on which strings of

length mi the oracle A contains. Thus look at the circuit corresponding

to the computation of MA on input 1mi . We know by Lemma 7.8 that

for any �xed setting of the values of yz for jzij 6= mi the probability that

MA gives the right answer is � :6. The lemma follows.

Lemma 7.10 clearly implies that the probability thatMA agrees with

L(A) on 1mi ; i = 1; : : : k is� (:6)k. Thus the probability thatMA accepts

L(A) is 0. By the previous discussion Theorem 7.7 follows.

To prove that a random oracle separates the di�erent levels within

the polynomial time hierarchy one would have to strengthen Theorem 6.1
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to say that no depth k� 1 circuit computes a function which agrees with

fmk for most inputs. This is not true since if k is even the constant function

1 agrees with fmk for most inputs. It might be possible to get around this

problem by de�ning other functions more suited to this application.



Chapter 8

How Well Can Small Small-Depth

Parity and Small Small-Depth Circuits

The information on the size of a circuit which computes parity exactly

is now quite complete. As we saw in the end of the last chapter the

question of on what fraction of the inputs a small constant depth circuit

could compute parity correctly had some interesting consequences. We

believe that this question is interesting in its own right and we will try to

answer it as well as we can. Let us �x the following notation.

De�nition: Let h(s; k; n) be the function such that no depth k circuit of

size 2s computes parity correctly for more than a 1
2 + h(s; k; n) fraction

of the inputs.

Ajtai [Aj] was the �rst researcher to consider this question. He de-

rived the best known results when the size is restricted to be polynomial.

Using our notation he proved h(c log n; k; n) < 2�n
1��

for all constants

c; k,� > 0 and suÆciently large n. Cai [Ca] when proving the separation

result proved a considerably stronger statement than we used in Chapter

7, namely that h(n
1
4k ; k; n) = o(1). Together with Ravi Boppana we have

obtained the following results.

Theorem 8.1:The following bounds hold for h(s; k; n):

(i) h(s; 2; n) < 2�
(n
s
) for all s.

(ii) h(s; k; n) < 2�
( n

sk�1 ) for k > 2 and s > n
1
k .

(iii) h(s; k; n) < 2�
((n
s
)

1
k�1 ) for k > 2 and s < n

1
k .
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Remark 11: The �rst two bounds are optimal except for a constant.

Proof: The basic idea is to apply a random restriction from Rp and use

our switching lemma of Chapter 4. Suppose that a function f agrees with

parity for a fraction � of the inputs. De�ne the advantage, �(f) of f by

�(f) = � � 1
2
. Observe that this number can be negative. By de�nition

h(s; k; n) is the maximum advantage of any function on n variables which

can be computed by a circuit of size 2s and depth k. Observe that we get

the same bounds for j�(f)j as for �(f). This follows since we can negate

a circuit without increasing its size.

We will need a basic property of how the advantage of a fuction

behaves with respect to restrictions. Let E denote expected value.

Lemma 8.2: �(f) � E(j�(fd�)j) for � 2 Rp.

Proof: Suppose that � gives non � values to the variables in the set

S. Let w(�) denote the weight of � i.e. the number of �i which are 1.

Then

�(f) = 2�jSj
X

�2f0;1gS
(�1)w(�)�(fd�)

This expression can be interpreted as an expected value over all possi-

ble assignments to S. Thus for every �xed S the inequality of Lemma

8.2 holds since introducing the absolute values only increases the right

hand side. The fact that S is chosen randomly does not matter since the

inequality is true for any �xed S.

The way to use the above lemma to prove Theorem 8.1 is as follows.

Suppose f is computed by a small circuit of depth k. Then for suitably

chosen parameter p, fd� will, with very high probability, be computed by

a circuit of depth k � 1. In this case we can use induction. In the very

few cases where fd� is not computed by a depth-k� 1 circuit we estimate

the advantage by 1
2 . Thus the crucial parameter will be the probability of

this failure. Even though it will be exponentially small it will prevent us
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from getting the optimal results for some ranges of s. Let us start by the

case k = 2 and small bottom fanin. For this case we get optimal results.

Lemma 8.3: Any depth 2 circuit with bottom fanin bounded by t can

not agree with parity for more than 1
2 + 2�
( n

t
) of the inputs.

Proof: Assume that the circuit is an AND of ORs of size � t. We will use

a slight modi�cation of the proof of Lemma 4.7. Lemma 4.7 tells us that

if we apply a restriction from Rp with p =
1
10t

we can write the resulting

function as an OR of ANDs of size � r with probability 1� 2�r. Looking
more closely at the proof we see that the inputs accepted by the di�erent

ANDs form disjoint sets.

Now suppose that the number of remaining variables ism. Any AND

of size < m is satis�ed by an equal number of odd and even strings. Thus

for the circuit to accept a di�erent number of odd and even strings it is

necessary that there are some ANDs of full size.

The probability that fewer than n
20t variables remain is � 2�
(n

t
).

The probability of getting any AND of size � n
20t is � 2�
(n

t
). Thus with

probability 1�2�
(n
t
) the resulting circuit has no correlation with parity.

Even if we assume that in the remaining case we get perfect agreement

with parity we have established Lemma 8.3 since the probability of this

case is 2�
(n
t
).

However not all small circuits have only gates with small fanin. The

next lemma takes care of large bottom fanin.

Lemma 8.4: h(s; 2; n) � 2�
(n
s
).

Ideally one would like to apply a random restriction to the circuit to

get rid of the large bottom fanin. Unfortunately the probability of failure

is � 2�s and this is way too much if s < n
1
2 . However in these simple

cases when we only want to decrease the bottom fanin we can proceed by

the greedy method. For notational convenience let us denote the implicit

constant in Lemma 8.3 by c. We prove
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Lemma 8.5: A depth 2 circuit of size 2s which has at most k gates of

size � 20s does not agree with parity for more than 1
2 + (1+ k)

cn

40s2 2�
cn
20s

of the inputs for s > s0 for some absolute constant s0.

Lemma 8.5 clearly implies Lemma 8.4 since k � 2s. Assume that

the circuit is an AND of ORs, the other case can be handled similarly.

Furthermore denote the function computed by the circuit by f . We will

prove the lemma by induction over k and n. The base case k = 0 is

already taken care of by Lemma 8.3 and n = 0 is trivial. To do the

induction step, �nd the variable which appears in the most large clauses

(clauses of size at least 20s). Clearly there is one which occurs in at least
20ks
n

large clauses. Without loss of generality let this variable be x1. We

will substitute values for x1. It is true that

�(f) =
1

2
(�(fdx1=0)��(fdx1=1))

We estimate this number by induction. Let ki denote the number of large

clauses you get by substituting i for x1, i = 0; 1. By induction the above

expression is bounded by

1

2
((1 + k0)

c(n�1)

40s2 2�
c(n�1)
20s + (1 + k1)

c(n�1)

40s2 2�
c(n�1)
20s )

� (1 + k)
cn

40s2 2�
cn
20s (2

c
20s�1((

1 + k0
1 + k

)
cn

40s2 + (
1 + k1
1 + k

)
cn

40s2 ))

Now since the variable x1 occurs in at least 20sk
n large clauses either

the literal x1 or the literal �x1 occurs in at least 10sk
n clauses. Assume

without loss of generality that this is true for x1. This implies that k1 <

k(1� 10s
n ). Clearly k0 � k. Thus

(
1 + k0
1 + k

)
cn

40s2 + (
1 + k1
1 + k

)
cn

40s2 � 1 + (1� 5s

n
)

cn

40s2 � 1 + e�
c
8s

Finally

2
c

20s�1(1 + e�
c
8s ) < 1
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for suÆciently large s and the lemma follows.

For general k we will proceed in the same matter, �rst establishing

the theorem for the case when the bottom fanin is bounded.

Lemma 8.6: A circuit of depth k, size 2s and bottom fanin s can not

compute parity correctly for a fraction of the inputs which is greater than

(i) 1
2
+ 2�
( n

sk�1 ) for s > n
1
k .

(ii) 1
2 + 2�
((n

s
)

1
k�1 ) for s < n

1
k .

Proof: Suppose that the circuit computes the function f . We prove the

lemma by induction over k. We have already established the base case

k = 2. To do the induction step apply a random restriction from Rp

with p = 1
10s to the circuit and use Lemma 8.2. Let r = max(s; (ns )

1
k�1 ).

Observe that r = s precisely when s > n
1
k . By our switching lemma with

probability 1� 2�
(r), fd� can be computed by a circuit of depth k � 1,

size 2s and bottom fanin bounded by r.

With probability 1� 2�
(n
s
) the number of remaining variables is at

least n
10s (1 � �). If these two conditions are true then by induction with

s = r the advantage is bounded by 2�
(
n
s

rk�2 ). Observe that now we are

always in case (i) by the choice of r.

In the case where either there remain too few variables or we cannot

decrease the depth of the circuit we estimate the advantage by 1
2 . Since

the probability of this happening is 2�
(r) we have the the following

estimate for �(f):

2�
(
n
s

rk�2 ) + 2�
(r)

Substituting the two possibilities of r we get Lemma 8.6.
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Lemma 8.7: We have the following bounds for h(s; k; n):

(i) h(s; k; n) � 2�
( n

sk�1 ) for k > 2 and s > n
1
k .

(ii) h(s; k; n) � 2�
((n
s
)

1
k�1 ) for k > 2 and s < n

1
k .

Proof: The proof is very similar to the proof of Lemma 8.5. One uses

the power n
sd

for s > n
1
k and n

1
k�1

s
k

k�1

in the other cases.

Finally observe that we have proved Theorem 8.1 since part (i) is

Lemma 8.4 and parts (ii) and (iii) is Lemma 8.7.



Chapter 9

Is Majority Harder than Parity?

When proving lower bounds for parity circuits it was crucial that the

gates in the circuit were AND and OR gates. A natural extension would

be to allow parity gates of arbitrary fanin. In this case parity trivially has

small circuits. It is far from clear whether there are more eÆcient circuits

computing majority and we will in this chapter prove lower bounds on

the number of parity gates needed.

The converse question whether majority gates help when computing

parity has a positive answer which can be seen as follows. If we can

compute majority, we can compute the function \at least k" for any k

and by negating this function one gets the function \at most k" for any

k. Taking AND of these two functions we get the function \exactly k" and

�nally the OR of circuits computing \exactly k" for odd k � n is parity

of n variables. In fact majority is as hard as any symmetric function. We

will now provide a weak piece of evidence that majority might be harder

to compute than parity.

Theorem 9.1: A circuit containing AND, OR and parity gates of con-

stant depth d, size 2c(log n)
3
2 which computes majority, contains at least


((log n)
3
2 ) parity gates. Here c < cd, where cd is a constant depending

on d.

The reason this theorem is harder to prove and somewhat weak in

conclusion is that parity gates are quite di�erent from AND and OR

gates. An AND gate which has a 0 as input will output 0 no matter
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what the other inputs are. To know the output of a parity gate we must

always know all the inputs. In some sense this makes the parity gates

very powerful. Thus we need di�erent techniques.

Proof: Let us �rst give an outline of the proof. Assume that we have

t parity gates. We will get rid of the parity gates by \guessing" their

outputs. For each guess we substitute the guessed values for the parity

gates, and this way obtain 2t ordinary circuits containing only AND gates

and OR gates. Applying a series of restriction and using Lemma 4.1 we

convert all these circuits simultaneously into very simple circuits which

cannot compute any function even remotely resembling majority. Finally

we establish that at least one of the settings of the parity gates did not

introduce too much error. Let us make this formal.

Number the occurring parity gates by G1; G2; : : : Gt, t � c(log n)
3
2 .

Let � 2 f0; 1gt and let C� be the circuit obtained by substituting �i for

Gi for all i. This is a usual depth d circuit of size 2ck(logn)
3
2 containing

only AND and OR gates. These circuits do not compute majority any

more but we will prove that at least one of them computes something

that is reasonably close. Let F� be the function computed by C�

Let the i'th parity gate Gi have di inputs. These inputs are in general

subcircuits. In each of these subcircuits substitute values for its own

parity gates as prescribed by �. Call the resulting subcircuit C�;i;j for

1 � i � t; 1 � j � di. Denote the function computed by C�;i;j by F�;i;j .

In Chapter 3 we introduced the concept of a minterm. Here we also need

the dual concept of a maxterm.

De�nition: A maxterm of a function f is a minimal assignment that

forces f to be 0.
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We have the following lemma

Lemma 9.2: Let � be a random restriction from R
n�

1
2
. Then for n > n0

for some constant n0 with a positive probability all the following are true.

(i) F�d� has minterms and maxterms of size � 1
2

p
logn for all �.

(ii) F�;i;jd� has minterms and maxterms of size � 1
2

p
logn for all �; i; j.

(iii) � gives out the same number of 0's and 1's.

(iv) � gives out at least
p
n
2 �'s.

Proof: First use the following observation.

Lemma 9.3: Let �1 be a random restriction from Rp1 and �2 be a ran-

dom restriction from Rp2 on the variables given the value � by �1. Then

applying �1 and then �2 gives the same distribution as using a random

restriction from Rp1p2 .

Proof: Under the composition of �1 and �2 a variable gets the value �
precisely when it receives the value � under both restrictions. The proba-

bility of this event is hence p1p2. To see that we get the same distribution

as Rp1p2 we just observe that the variables are treated independently and

the probability of 0 is equal to the probability of 1.

Let us return to the proof of Lemma 9.2. By repeatedly applying

Lemma 9.3 we can interpret the restriction � as d consecutive restrictions

from Rp with p = n�
1
2d . Let us start by analyzing the probability of

failing (i). Fix �rst an individual F�. We reason as we did in proof

that parity required large circuits. Using our switching lemma with s =

t = 1
2

p
logn and p = n�

1
2d d � 1 times we see that we can reduce C�

to be of depth two with bottom fanin 1
2

p
logn with probability at least

1�f(n)(d�1)(5pt)s = 1�2cd(logn)
3
2 where f(n) is the size of C. We even

have a stronger statement that all minterms are small. If we apply a �nal

restriction from Rp we get with the same high probability that also all

maxterms are bounded in size by 1
2

p
log n. Thus the probability of failure

for any individual F� is 2�
((log n)
3
2 ) and we have 2c(log n)

3
2 di�erent �. If
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we have chosen c small enough the probability of failing (i) is 2�
((log n)
3
2 ).

The probability of failing (ii) can be estimated by the same bound in the

same way.

Continuing, the probability of failing the condition (iv) is bounded by

2�
(
p
n) by standard argument. Finally the probability of success of (iii)

is � 1p
n
. But since the probability of failing any of the other conditions

is exponentially small we have proved Lemma 9.2.

We will need an important consequence of having both small minterms

and maxterms.

Lemma 9.4: If a function has minterms only of size � s and maxterms

only of size � t then it depends on at most 2st � 1 variables.

Proof: We prove the lemma by induction over s and t. The lemma is

clearly true for s = t = 1. Now suppose that t > 1. Observe now that any

minterm must have at least one variable in common with every maxterm

(Otherwise we could simultaneously force the function to be 0 and 1.).

Take any minterm � which hence is of size at most s. Now try all the 2s

possible settings of the variables in �. Call the resulting functions f� for

� 2 f0; 1gs. We will bound the sizes of the minterms and maxterms of

the f�.

Let Æ be a minterm of f� . By de�nition Æ together with the assign-

ment prescribed by � forces the f to 1. Thus f has a minterm �1 which

is a subassignment of Æ plus �. By the fact that Æ is a minterm �1 must

contain all of Æ. Thus the size of Æ is bounded by the size of �1 which is

bounded by assumption by s.

Now the same reasoning can be applied to the maxterms. However

in this case we know that the corresponding maxterm of f has to have

some variable in common with the substituted minterm �. Using this fact

we can bound the size of the maxterms of f� by t� 1.

Thus by induction each of f� only depends on at most 2s(t�1) � 1
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variables. Thus f only depends on at most s+ 2s(2s(t�1) � 1) � 2st � 1

variables.

Now let us recall a well known lemma which we prove for the sake of

completeness.

Lemma 9.5: Each boolean function f of m variables can be written as

a GF (2) polynomial of degree at most m.

Proof: Let � 2 f0; 1gm. De�ne

g�(x) =

mY
i=1

(xi + �i + 1)

Then g�(�) = 1 while g�(x) = 0 for x 6= �. Note that g� is a polynomial

of degree m. To prove the lemma observe thatX
�;f(�)=1

g�(x)

is a polynomial of degree at most m which takes the same values as f .

In what follows we always think of a polynomial over GF (2) as a sum

of monomials with all variables occurring to at most their �rst power.

This is possible since xi = x for all i � 1 for x 2 GF (2). Let us combine

Lemma 9.4 and Lemma 9.5 and state conditions (i) and (ii) in Lemma

9.2 in a di�erent manner.

Lemma 9.6: The conditions (i) and (ii) of Lemma 9.2 imply that F�d�
and F�;i;jd� can be written as polynomials of degree at most n

1
4 for all

�; i and j.

Proof: By Lemma 9.4 the functions depend on at most n
1
4 variables and

the degree bound follows from Lemma 9.5.

The true value of Gi is
Pdi

j=1 F�;i;j . Since the degree does not in-

crease when we add two polynomials this means that the value of Gi is

a polynomial P�;i(x) of degree at most n
1
4 . Now we can make precise in

what way the circuits C� almost computes majority.
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Lemma 9.7: The circuit C� computes majority correctly except for

those inputs x where
Qs

i=1(P�;i(x) + �i + 1) = 0.

Proof: If the product is nonzero then each term is nonzero. Thus if the

product is nonzero then P�;i(x) + �i + 1 = 1 for all i and replacing the

parity gates by the �i did not change the circuit.

De�ne P� =
Qs

i=1(P�;i(x) + �i + 1). Note that the degree of P� is

bounded by n
1
4 c(log n)

3
2 . We will sometimes call P� the error polynomi-

als.

The reason that the degree bound will give us information is the

following lemma.

Lemma 9.8: Let P (x) be a polynomial over GF (2). If majority of m

variables agrees with the constant function 1(0) except when P (x) = 0

then either P (x) � 0 or the degree on P is at least m
2
.

Proof: We give the proof in the case of 1, the other case being similar.

The condition implies that P (x) = 0 for all x of weight at most m
2 .

Assume that P is nonzero and let
Q

i2S xi be a monomial of minimal

degree of P . S is here a subset of f1; 2; : : : mg. Look at P evaluated at

xi = 1; i 2 S; xj = 0; j 62 S. This value must clearly be 1. Thus jSj > m
2 .

There are a two problems in using Lemma 9.8 to prove Theorem 9.1.

Firstly, the remaining circuit does not compute the constant function and

secondly we do not know that the polynomial in question is nonzero.

The �rst problem can be taken care of as follows. If we replace

the �nal circuit by a constant b we only make an error where F� + b +

1 = 0. Since this is a polynomial of degree � n
1
4 we only add this

polynomial to the product de�ning the error polynomial obtaining a new

error polynomial P�;b.

The second problem comes from the fact that polynomials over GF (2)

is not an integral domain i.e. a product can be zero even if none of the
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factors is 0. (e.g. x(1 + x) = 0). Even if the proof is not diÆcult let us

state it as a lemma.

Lemma 9.9: There is an � and a b such that P�;b(x) 6� 0.

Proof: Take an arbitrary input x to the original circuit Cd�. For this

input the parity gates evaluate to some values �i and the circuit evaluates

to b. The polynomial P�;b is nonzero, in particular it takes the value 1 at

x.

Let us see how the lemmas �t together to �nish the proof of Theorem

9.1. We take the C� which corresponds to the � of Lemma 9.9. Replace

the circuit by the constant b. Now supposedly majority of the remaining

variables is b except when P�;b(x) = 0. This is a contradiction by Lemma

9.8.
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CONCLUSIONS

We have established exponential lower bounds for the size of small

depth circuits but still many open questions concerning small depth cir-

cuits remain. It seems that the lower bounds proved for the size of circuits

computing parity, are essentially the best bounds one could hope to obtain

for any function if the main tool used is our switching lemma.

It would be very interesting to establish lower bounds which are

better than our bounds for parity on the size of constant depth circuits

computing some NP -complete function like clique. Hopefully, a proof

establishing such lower bounds would not only rely on the restrictive

nature of the model but also on the diÆculty of computing the clique

function. Such a proof might shed light on what makes a function diÆcult

to compute in a general model of computation.

Another interesting direction for future research is to extend the

rather weak results of Chapter 9. Adding parity gates to the circuit seems

to complicate the situation considerably. Our switching lemma seems to

be an insuÆcient tool and to get substantially better results we believe

that new insight is required.

One of the few open problems of this thesis which potentially might

not need new ideas but only a bit of cleverness is to prove that �p;A
i 6=

�p;A
i�1 for a random oracle A. One way to prove this is to prove that there

are functions that are computable by small depth k circuits which cannot

be approximated well by small circuits of smaller depth. Here smaller

depth can be interpreted as depth d(k) for any function d(k) which goes

to in�nity with k.
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Finally a question of another type is to determine the complexity of

inverting a NC0 permutation. By the results in Chapter 2 this is at least

as hard as P , and clearly the problem is in NP
T
coNP . We conjecture

that this problem is not in P.
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Appendix

After the thesis was submitted the conjecture in Chapter 9 was

proved by Razborov [R2]. He proved that depth-d circuits containing

AND gates, OR gates and parity gates which compute majority require

size 2
(n
1

2(d�1) ). Other results concerning small-depth circuits with gates

computing sum modulo p for primes p was later obtained by Smolensky

[Sm].
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