12 . Small Depth Circuits

Figure 1 shows a typical example.

Figure 1

Without loss of generality we can assume that negations occur only as
negated input variables. If negations appear higher up in the circuit we
can move them down to the inputs using DeMorgan’s laws which at most
doubles the size of the circuit. Observe that we have alternating levels
of AND and OR gates, since two adja,cent gates of the same type can be
collapsed into one gate.

The crucial parameters for a circuit are its depth and its size. Depth
is defined as the lancth nf the Innreet nath frarm an nmart 4 tho ~esdbnet nfnJ
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As an example, let us convert the following depth-3 circuit into a
circuit of depth 2.

Figure 2

Take any gate at distance two from the inputs. It represents a sub-
circuit of depth 2. In this case this circuit will be an AND of ORs. Now _
observe that any function can be written either as an AND or ORs or as
‘and OR of ANDs. Thus we can change this depth 2 circuit to and OR
of ANDs which computes the same function. Thus we have the following
circuit computing the same function.
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Figure 4
There is an obvious drawback with the above procedure. When we
convert an AND of ORs to an OR of ANDs the size of the circuit will in
general increase considerably. Thus we have converted a small depth %
circuit to a large depth k -~ 1 circuit and hence we fail to achieve {2).

3.2 Restrictions

The way around this problem was introduced in [FSS] and works as
follows. If we assign values to some of the variables we can simplify the
circuit. In particular if we assign the value 1 to one of the inputs of an
OR gate, the output of the OR gate will be 1 no matter what the other
inputs are. In the same way we need only know that one of the inpuis
to an AND gate is 0 to decide that it outputs 0. This means that the
value of any specific gate on the bottom level can be forced by assigning
a suitable value to one of its inputs. However there are many more gates

“than inputs and we have to do something more sophisticated. Let us first

make formal what we mean by fixing some variables.
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Switching Lemma

A picture of G which is good to keep in mind is the following.
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Figure 5 o
I w = 0 the lemma is obvious (G = 1). For the induction step let
us study what happens to G, the first OR in the circuit. We have two
possibilities, either it is forced to be 1 or it is not. We estimate these two-
probabilities separately. We have

Primin(G@) > s | F{,= 1] <

max(Primin(G) > s | F[,=1AG4[,= 1],
Primin(@) > s | F[,=1AG4[,# 1))

The first term is

Primin(G) > s | (F AGy)[,=1]
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Thus by definition f;" is a function of m*~1y/k/2 variables.
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Yao has claimed exponential lower bounds for these functions, but
the proof has not yet appeared. We have the following results for the

functions f;*.
Theorem 6.1: Depth k — 1 circuits computing fg* are of size at least
- 73 .
9i2vzEV e ™ for m > m;, where m; is some absolute constant.
Asg an immediate corollary we get.

Corollary 6.2; Polynomial size circuits of depth f (n) are more powerful
logn

than polynomial size circuits of depth f(n) — 1 if f{n) < Tootosn —
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6.3 Proof of Theorem 6.1 ' 49

Proof: The fact that k is odd implies that the two lower levels lock like:
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Figure 7

We establish a series of facts.

Fact 1: The AND gate correspondmg to block B; takes the value s; for
all ¢, with probability at least 2 g for m > my.

The AND gate correspondmg to block B; takes the values s; pre-
cisely when not only ones are given to the block. The probability of this
happening is (1 - ¢)!B:! = (1 — \/M)\/ﬁa < gTklogm %}n_’“.
Thus the probabﬂxty that this happens for any block B; is bounded by %
for sufficiently large m

Fact 2 With probability at least & at least \/(k — I)mlog m/2 inputs
given the value * by pg(p) to each OR gate at level k — 1. Again this is
true only for sufficiently large m.

The expected number of such inputs is \/2kmlogm and the fact
follows from known estimates using é"; > 100k. For completeness let
us include a very elementary proof.

Let p; be the probability that an OR gate has as input exactly i AND
gates which take the value *. Then




